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The polymerization of octamethylcyclotetrasiloxane (Dy) is investigated using several five-, six- and seven-membered N-hetero-

cyclic carbenes (NHCs). The catalysts are delivered in situ from thermally susceptible CO, adducts. It is demonstrated that the

polymerization can be triggered from a latent state by mild heating, using the highly nucleophilic 1,3,4,5-tetramethylimidazol-2-

ylidene as organocatalyst. This way, high molecular weight PDMS is prepared (up to >400 000 g/mol, 1.6 < Dy < 2.5) in yields

>95%, using low catalyst loadings (0.2—0.1 mol %). Furthermore, the results suggest that a nucleophilic, zwitterionic mechanism is

in operation, in preference to purely anionic polymerization.

Introduction

N-Heterocyclic carbenes (NHCs) [1-3] have had a resounding
impact on organopolymerization [4,5] during the past fifteen
years. Considerable research effort has steadily deepened the
mechanistic understanding of the polymerization pathways open
to NHCs, while the range of accessible monomer structures has
grown impressively [6,7]. Nowadays, NHC-mediated polymer-
ization can be applied to prepare polymers of high industrial

and commercial importance, such as poly(amide)s [8,9],

poly(ether)s [10], poly(urethane)s [11,12] or poly(acrylate)s
[13-18]. Likewise, poly(siloxane)s are attractive and versatile
macromolecular materials produced on large scale and thus a
rewarding field for the development of new catalysts, the more
so if the added benefit of metal-free conditions can be imple-
mented [19-21]. In spite of this, few investigations regarding
the performance of NHCs in this area have been published. In
2006, Waymouth, Hedrick and co-workers showed that
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poly(carbosiloxane)s can be synthesized efficiently from the
monomer 2,2,5,5-tetramethyl-1-oxa-2,5-disilacyclopentane in
the presence of alcohols as initiators, using two different NHCs
[22]. Control over the molecular weight was good (Dy < 1.2),
but prolonged polymerization led to transetherification. Interest-
ingly, the formation of high molecular weight cyclic
poly(carbosiloxane) was observed in the absence of an initiator
[23]. Additionally, octamethylcyclotetrasiloxane (D4) was used
to prepare poly(dimethylsiloxane) (PDMS), using three
different imidazolium-based free NHCs in combination with
benzyl alcohol or methanol as initiator [24]. There, polymeriza-
tions were conducted at 80 °C for 16 h to achieve conversions
of about 85% (1.5 <Dy < 1.7, 0.1% catalyst loading). Notably,
it was found that steric hindrance of the NHC shut down poly-
merization activity. Finally, a report on the polycondensation of
a,0-disilanols describes the efficient polycondensation via
NHCs in spite of the generation of water during the reaction,
finding that the most basic NHC in the small study delivered the
best results [25]. In view of these promising, yet somewhat
limited, results, the aim for this study was (a) to investigate a
range of structurally diverse NHCs to get more insight into the
influence of NHC structure on catalytic activity for the poly-
merization of Dy, and (b) to generate the NHCs in situ from
thermally labile CO, adducts. This type of NHC delivery offers
the double advantage of improved stability and storability of the
NHC adduct and the possibility to generate “on demand” poly-
merization systems where the catalyst can be activated by
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heating. This way, a latent, easy-to-handle metal-free process
which is more competitive in comparison with other catalytic

systems can be realized [26].

Results and Discussion

Several five-, six- and seven-membered NHCs were prepared
and reacted with carbon dioxide to receive the corresponding
CO, adducts (Scheme 1, top), following literature procedures
(see Supporting Information File 1). Compounds 7-Neo-CO;,
7-iPr-CO, and 5¢;-Me-CO; have not been described before
and full characterization can be found in the experimental part
(Supporting Information File 1). In accordance with previous
findings [17,27], these NHC-carboxylates were stable at room
temperature over long periods of time (observed for up to
2 years) without decomposition, exclusion of humidity
provided.

Polymerization experiments with D4 were conducted solvent-
free at elevated temperature (80 °C, 16 h), both in presence and
absence of an initiator (benzyl alcohol, BnOH). This immedi-
ately revealed sharp differences of reactivity between the indi-
vidual pre-catalysts (Table 1). When the protected NHC was
applied in conjunction with BnOH, only 5y.-Me-CO, showed
relevant activity, albeit a very high one.

At a catalyst loading of only 0.2 mol %, a molecular weight

(My) of 70 000 g/mol was achieved at 94% monomer conver-
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Scheme 1: NHC-carboxylates part of this study (top) and polymerization scheme with initial thermal decarboxylation and final end-capping with TMS-

Cl.
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Table 1: Polymerization of Dy in bulk using different protected NHCs (80 °C, 16 h).

Entry NHC-CO, NHC/BnOH/D4
1 5me-Me-CO, 1:5:500
2 5me-Me-CO, 1:1:100
3 5me-Me-CO, 1:1:300
4 5me-Me-CO, 1:1:700
5 5pme-Me-CO3 1:1:1000
6 5-Mes-CO, 1:5:500
7 5¢|-Me-CO, 1:5:500
8 6-iPr-CO, 1:5:500
9 6-Cy-CO, 1:5:500
10 7-iPr-CO, 1:5:500
11 7-Neo-CO, 1:5:500
12 5me-Me-CO, 1:0:100
13 6-Cy-CO, 1:0:100
14 7-iPr-CO, 1:0:100

aDetermined by 'H NMR spectroscopy; Pvia GPC (THF, PS standards).

sion. Interestingly, some degree of control over the molecular
weight is possible by adjusting the initiator to monomer ratio
(Table 1, entries 2—-5). This way, up to a target degree of poly-
merization (DP) of 1000, considerable molecular weight can be
built up, ranging from 200 000 g/mol to over 400 000 g/mol
(My). Importantly, in all these cases very high conversion is
observed. Matrix-assisted laser desorption/ionization time-of-
flight mass spectrometry (MALDI-ToF MS) and NMR experi-
ments clearly show that BnOH is incorporated in the resulting
PDMS (S1-S3), underlining the defined structure of the
polymer. Contrasting this behaviour of Syje-Me-CO3, its steri-
cally more hindered analogue, 5-Mes-CQ,, only brought about
a low conversion of 7% under identical conditions (Table 1,
entry 6), while its electron-poor derivative 5¢c;-Me-CO;, was
completely inactive (Table 1, entry 7). More surprisingly, the
six- and seven-membered pre-catalysts were all found to deliver
very little or no polymer. Differently, in the absence of BnOH
(1% catalyst loading, Table 1, entries 12—14), application of
both 7-iPr-CO; and 6-Cy-CO; resulted in an insoluble
polymer, most probably because very high molecular weight
was generated. Gratifyingly, under the same parameters Syje-
Me-CO; effected a conversion of 92% (M, = 8 100 g/mol).
Overall, polymerization with this pre-catalyst proceeds notice-
ably faster in the presence than in the absence of an initiator
(Figure 1). At a polymerization setup of NHC/BnOH/D4 =
1:5:500, the conversion is practically complete after only 2.5 h.

Above findings obviously render Spe-Me-CO; the most suit-
able pre-catalyst, but important conclusions with regard to the
polymerization mechanism can also be drawn. In part, the
results nicely mirror findings by Baceiredo and co-workers

[24], who described that steric hindrance eliminates any poly-
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Figure 1: Comparison of conversion over time for D4 polymerization
(80 °C, bulk) using 5ye-Me-CO2. Note that the fivefold monomer
excess was used in case of BnOH being present.

merization activity of the NHC; the same is found here when
comparing the performance of Syje-Me-CO, and 5-Mes-CO;.
Additionally, electron-withdrawing substituents (as present in
5c1-Me-COy) preclude any activity, emphasizing that nucleo-
philicity is crucial for successful polymerization. Furthermore,
it is interesting to note that the six- and seven-membered NHCs
do not show any reactivity here, in spite of being very strong
bases. While for a compound like 6-iPr a pKa-value of 28.2
(aqueous solution, 25 °C) was found, the five-membered imida-
zolium derivative 5-Mes was determined to have a pKa-value of
only 20.8 (which compares to 15-19 for typical alcohols; in
turn, silanols are even more acidic than the corresponding alco-
hols) [28-32].
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At the same time, Syje-Me-CO; successfully catalyzed PDMS-
formation in the absence of BnOH (see above), and hence a

mechanism for direct Dy polymerization must exist.

Taken together, all above points strongly suggest that nucleo-
philic ring-opening of the monomer by the NHC is the key step,
in agreement with previous proposals [24]. A purely basic
(anionic) pathway (Scheme 2), often preferred by the six-
membered NHCs [7-9,17], seems clearly disfavoured. In the
absence of BnOH, it is therefore reasonable to assume zwitter-
ionic propagation, in analogy to recent findings for NHC-medi-
ated lactone polymerization [33]. The insoluble material
received by the action of 7-iPr-CO; and 6-Cy-CO; could be
connected to a low initiation efficiency and consequently low
ratio of propagating zwitterions to monomer, resulting in high-
molecular weight polymers. In contrast, a sterically uncon-
gested, highly nucleophilic NHC as liberated from Syq.-Me-
CO; (Table 1, entry 12) is more suitable under these conditions.

Finally, a mixture of 5y.-Me-CO,, BnOH and D4 was tested
for thermal latency (Figure 2). Notably, after 72 h at a slightly
elevated temperature of 45 °C only negligible conversion was
observed. A relatively mild increase to 80 °C, however, trig-
gered a clean jump to near quantitative conversion. Hence, with
this catalytic setup it is possible to form one-component, metal-

Beilstein J. Org. Chem. 2015, 11, 2261-2266.

free mixtures which can be activated by mild heating. Polymer-
ization of Dy is entropically driven [21,34] and thus profits from
elevated temperature in any case, rendering the implementation
of thermally labile pre-catalysts both practically feasible and ad-

vantageous.
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Figure 2: Thermal activation of a 5ye-Me-CO2/BnOH/D4 (1:5:500)
composition after a latency period of 72 h.
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Scheme 2: Discussed mechanisms proposed to operate in NHC-mediated polymerization of D4 in presence/absence of BnOH.

2264



Conclusion

In conclusion, we have demonstrated the first polymerization of
D4 using NHC-carboxylates. Sterically non-hindered, highly
nucleophilic protected NHCs like Syp.-Me-CO; offer access to
an “on demand”, metal-free and effective preparation of PDMS,
including high molecular weight polymers. The results of a
screening of a range of different NHCs indicate that a nucleo-
philic action of the organocatalyst is preferred over action as a

Bronsted base.

Supporting Information

Supporting Information File 1

Details on the synthesis of NHC-CO, and polymerizations.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-11-246-S1.pdf]
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