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Thermodynamic length for far-from-equilibrium quantum systems
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We consider a closed quantum system initially at thermal equilibrium and driven by arbitrary external
parameters. We derive a lower bound on the entropy production which we express in terms of the Bures angle
between the nonequilibrium and the corresponding equilibrium state of the system. The Bures angle is an angle
between mixed quantum states and defines a thermodynamic length valid arbitrarily far from equilibrium. As an
illustration, we treat the case of a time-dependent harmonic oscillator for which we obtain analytic expressions
for generic driving protocols.
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I. INTRODUCTION

Thermodynamics provides a generic framework to describe
properties of systems at or close to equilibrium. On the other
hand, for systems which are far from equilibrium; that is,
beyond the linear response regime, no unified formalism has
been developed so far. Recently, however, a number of cold-
atom experiments have been able to investigate quantum pro-
cesses which occur far from thermal equilibrium [1–4]; they
underline the need for general characterizations of quantum
processes that take place beyond the range of linear response
theory. In thermodynamics, nonequilibrium phenomena are
associated with a nonvanishing entropy production, 〈�〉 =
�S − 〈Q〉/T � 0, defined as the difference between the
change of entropy and the (mean) heat divided by temperature
[5,6]. The positivity of the (mean) entropy production is an
expression of the second law of thermodynamics and follows
from the Clausius inequality. The entropy production 〈�〉 is
expected to be larger the further away from equilibrium a
system operates. However, it is not possible to compute 〈�〉,
nor to derive a useful, process-dependent lower bound for it
within equilibrium thermodynamics.

For classical systems near equilibrium, such a lower bound
was obtained using a geometric approach and expressed in
terms of the thermodynamic length [7–9]. The latter defines a
thermodynamic Riemannian metric which measures the distin-
guishability of equilibrium and nonequilibrium distributions
[10]. In the linear regime, the entropy production is bounded
from below by the square of the thermodynamic length
〈�〉 � �2. The thermodynamic length plays an important
role in finite-time thermodynamics, where it provides limits
on the efficiency of thermal machines [11,12]. Methods on
how to measure � have been discussed in Refs. [13,14].
Interestingly, the length � is identical to the statistical distance
introduced by Wootters to distinguish two pure quantum states
[15]: the angle in Hilbert space between two wave vectors
ψ1 and ψ2 is given by �(ψ1,ψ2) = arccos

∫
dx

√
p1(x)p2(x),

with the two probability distributions p1(x) = |ψ1(x)|2 and
p2(x) = |ψ2(x)|2. Recently, we have extended the notion of
thermodynamic length to closed quantum systems driven
arbitrarily far from equilibrium [16]. To this end, we have
generalized the length � by the Bures angle L [17–21] between
the nonequilibrium and the corresponding equilibrium density

operators of the system. The Bures metric is a generalization
of Wootters’ metric to mixed quantum states and plays a major
role in quantum information theory [22,23]. Using the Bures
angle, we have derived a generalized Clausius inequality with
a process-dependent lower bound, 〈�〉 � (8/π2)L2, that is
valid for arbitrary nonequilibrium driving beyond the linear
response. This bound, however, corresponds to the lowest-
order term of a systematic series expansion as a function
of the Bures length. Our aim in this paper is to extend
our previous findings and derive a sharper lower bound on
the entropy production 〈�〉 by evaluating the contribution
of higher-order terms. We then apply this result to the case
of a quantum parametric harmonic oscillator, a model for a
driven trapped ion [24,25], for which we find exact analytical
expressions for the angle L for arbitrary driving protocol. We
furthermore compare these results with those obtained with
the trace distance, a non-Riemannian quantum metric [22,23].
Finally, we derive an upper bound for the quantum entropy
production in the appendix.

II. GEOMETRIC ANGLE BETWEEN MIXED
QUANTUM STATES

The Bures angle L is implied by the Bures metric, which
formally quantifies the infinitesimal distance between two
mixed quantum states described by the density operators ρ

and ρ + dρ asL2(ρ + δρ, ρ) = tr{δρG}/2, where the operator
G obeys the equation ρG + Gρ = δρ [23]. In the orthonor-
mal basis |i〉 that diagonalizes ρ = ∑

i pi |i〉〈i|, an explicit
expression of the Bures metric is given by L2(ρ + δρ, ρ) =
(1/2)

∑
i,j |〈i|dρ|j 〉|2/(pi + pj ). In the limit of pure quantum

states, the Bures metric reduces to Wootters’ statistical
distance, �2(p, p + dp) = (1/4)

∑
i(dpi)2/pi [21]. Wootters’

distance is equal to the angle in Hilbert space between two
state vectors, and is the only monotone Riemannian metric
(up to a constant factor) which is invariant under all unitary
transformations [15]. It is therefore a natural metric on the
space of pure states. The Bures metric, on the other hand,
being the generalization of Wootters’ metric to mixed quantum
states, represents a natural, unitarily invariant Riemannian
metric on the space of impure density matrices [23].
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For any two density operators ρ1 and ρ2, the finite Bures
angle L is given by

L(ρ1,ρ2) = arccos (
√

F (ρ1,ρ2)), (1)

where the fidelity F is defined for an arbitrary pair of mixed
quantum states as [19,20]

F (ρ1,ρ2) = [tr{
√√

ρ1ρ2
√

ρ1}]2. (2)

The fidelity is a symmetric, nonnegative and unitarily invariant
function, which is equal to one only if the two states ρ1

and ρ2 are identical. For pure quantum states, ρi = |ψi〉〈ψi |,
the fidelity reduces to their overlap, F (ρ1,ρ2) = tr{ρ1ρ2} =
|〈ψ1|ψ2〉|2. It is worth emphasizing that the Bures angle (1) is
the natural distance quantifying the distinguishability of two
density operators. We shall use this property in the following
to quantify the distance between a nonequilibrium state and
the equilibrium state corresponding to the same configuration
of the system. With the help of this thermodynamic length, we
will also obtain a lower bound on the nonequilibrium quantum
entropy production.

III. THERMODYNAMIC LENGTH AND GENERALIZED
CLAUSIUS INEQUALITY

We consider a quantum system whose Hamiltonian H = Ht

is varied during a finite time interval τ . We assume that the
system is initially let to equilibrate with a thermal reservoir
at inverse temperature β = 1/T , before an external control
parameter is modified. We further assume that the system is
quasi-isolated during the finite driving time τ so that relaxation
is negligible and the dynamics is unitary to an excellent
approximation. This corresponds to a realistic experimental
situation. For an infinitely large driving time, much larger
than the relaxation time induced by the weak coupling to
the reservoir, the transformation is quasistatic and the system
remains in an equilibrium state at all times. During such a
slow, equilibrium transformation, the change in free energy
�F = �E − T �S is equal to the average work 〈W 〉 done on
the quantum system, 〈W 〉 = �F . Here �E = 〈Hτ 〉 − 〈H0〉
is the (internal) energy difference. For a fast, nonequilibrium
transformation, work is larger than the free energy difference.
Using the first law, �E = 〈W 〉 + 〈Q〉, we can rewrite the
nonequilibrium entropy production 〈�〉 = �S − 〈Q〉/T as

〈�〉 = β(〈W 〉 − �F ). (3)

The nonequilibrium entropy production 〈�〉 is thus propor-
tional to the difference between the nonequilibrium and the
equilibrium work done on the system. Equation (3) is valid for
both open and closed dynamics for which 〈Q〉 = 0. Being a
mechanical quantity, it is worth noticing that work is always
defined, even for far-from-equilibrium processes.

Let us denote the density operator of the system at
time t by ρt = Utρ0U

†
t , where Ut is the unitary evolution

operator. The initial equilibrium density operator is then ρ0 =
exp (−βH0)/Z0, where Z0 = tr{exp(−βH0)} is the initial
partition function. The equilibrium density operator at the
final time τ is similarly given by ρ

eq
τ = exp (−βHτ )/Zτ with

Zτ being the corresponding partition function. To obtain
a microscopic expression for the entropy production, we

use �E = tr{ρτHτ } − tr{ρ0H0} and note that −βH0,τ =
ln ρ0,τ + ln Z0,τ . Combined with the expression −β�F =
− ln (Zτ/Z0) for the free-energy difference, we find

〈�〉 = S
(
ρτ ||ρeq

τ

) = tr
{
ρτ ln ρτ − ρτ ln ρeq

τ

}
, (4)

where S(ρτ ||ρeq
τ ) is the quantum relative entropy [26,27].

Note that the latter is different from the entropy variation
tr{ρτ ln ρτ − ρ

eq
τ ln ρ

eq
τ }. Equation (4) is an exact expression

for the nonequilibrium entropy production for closed quantum
systems driven by an external parameter, and a quantum
generalization of the classical results presented in Refs. [28,29]
(see also Ref. [30]). We note, however, that the relative entropy
is not a true metric, as it is not symmetric and does not satisfy
the triangle inequality; it can therefore not be used as a proper
quantum distance [31]. We next derive a lower bound for the
quantum entropy production which we express in terms of the
Bures angle (1).

Inequalities are important tools of classical and quantum in-
formation theory, as they allow us to express “impossibilities;”
that is, things that cannot happen [31]. An elementary example
is Klein’s inequality, S(ρ1||ρ2) � 0, which expresses the
nonnegativity of the quantum relative entropy [22]. Combined
with Eq. (4), it immediately leads to the usual Clausius
inequality. A generalized Clausius inequality can be derived
by noting that the quantum relative entropy satisfies (Ref. [32],
Theorem 4),

S(ρ1||ρ2) � s

(
d(ρ1,ρ2)

d(e1,1,e2,2)

)
, (5)

if d(ρ1,ρ2) is an unitarily invariant norm. Furthermore, ei,j =
|i〉〈j | is the matrix with i,j elements equal to 1 and all other
elements 0. The lower bound (5) has been derived with the help
of optimization theory and is therefore as sharp as possible.
The function s(x) is explicitly given by the expression [32]

s(x) = min
x<r<1

{
(1 − r + x) ln

(
1 + x

1 − r

)

+ (r − x) ln

(
1 − x

r

)}
. (6)

The first five nonzero terms in a series expansion around the
origin x = 0 read

s(x) = 2x2 + 4

9
x4 + 32

135
x6 + 992

5103
x8 + 6656

32805
x10

+O(x12). (7)

Applying inequality (5) to the unitarily invariant Bures
angle L, we obtain a process-dependent lower bound on the
nonequilibrium entropy production. Taking into account that
L(e1,1,e2,2) = π/2, since the two matrices e1,1 and e2,2 are
orthogonal [F (e1,1,e2,2) = 0], we find

〈�〉 � s

(
2

π
L

(
ρτ , ρ

eq
τ

))
� 8

π2
L2(ρτ , ρ

eq
τ

)
. (8)

The first-order term in the expansion (7) yields the generalized
Clausius inequality, 〈�〉 � (8/π2)L2, derived in Ref. [16].
Since the terms in the expansion (7) are positive, an increas-
ingly sharper lower bound can be obtained by taking more
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FIG. 1. (Color online) Irreversible entropy production 〈�〉 (25)
(blue, solid line) together with the lower bound (8) corresponding
to the lowest-order term of the expansion (7) (red, dashed line),
or the exact function s(x) (6) (green, dotted line), as a function of
the (numerical) adiabaticy parameter Q∗ (13). Parameters are h̄ = 1,
β = 1.2, ω0 = 0.9, ω1 = 0.5.

terms into account [33]. An illustration for the case of a
quantum harmonic oscillator with time-dependent frequency,
to be discussed in detail in the next section, is shown in
Fig. 1.

Equation (8) indicates that the nonequilibrium entropy
production 〈�〉 is bounded from below by a function of the
geometric distance between the actual density operator ρτ of
the system at the end of the driving and the corresponding
equilibrium operator ρ

eq
τ , as measured by the Bures angle.

Thus the Bures angle provides a natural scale to compare with
〈�〉 and quantifies in a precise manner the notion that the
entropy production is larger when a system is driven farther
away from equilibrium.

In the classical limit, where nonequilibrium and equilibrium
states are diagonal in the energy basis, the Bures angle
reduces to Wootters’ statistical distance. As a result, Eq. (8)
yields a lower bound to the classical nonequilibrium entropy
production that is valid for any nonequilibrium driving beyond
the linear-response regime,

〈�〉cl � s

(
1

2π
�
(
pτ , p

eq
τ

))
� 2

π2
�2

(
pτ , p

eq
τ

)
. (9)

Moreover, when nonequilibrium and equilibrium states are in-
finitesimally close, Eq. (9) takes the form 〈�〉cl � (2/π2)d�2,
which has been obtained in Refs. [7–9]. It is worth emphasizing
that the latter was derived by expanding the entropy around
equilibrium to second order; it is therefore only valid in the
linear-response regime.

IV. PARAMETRIC HARMONIC OSCILLATOR

Let us now apply the generalized Clausius inequality (8) to
the case of a time-dependent harmonic oscillator. The latter
provides an important physical model for many quantum
systems (for example, ultracold trapped ions [24,25]) and
is furthermore analytically solvable. We will, in particular,
evaluate the Bures angle (1) for a nontrivial quantum time
evolution. Explicit expressions for L are in general only

known for low-dimensional systems [34–36]. The difficulty
arises from the operational square roots in the definition of
the quantum fidelity (2). For Gaussian states, however, the
expression for the fidelity simplifies and can be written in
closed form [37].

The Hamiltonian of the parametric quantum harmonic
oscillator is of the usual form (M denotes the mass),

Ht = p2

2M
+ M

2
ω2

t x
2. (10)

We assume that the time-dependent frequency ωt starts with
initial value ω0 at t = 0 and ends with final value ω1 at t = τ .
Due to the quadratic form of the Hamiltonian (10), the wave
function of the oscillator is Gaussian for any driving protocol
ωt . By introducing the Gaussian wave-function ansatz [38],

ψt (x) = exp

[
i

2h̄
(atx

2 + 2btx + ct )

]
, (11)

the Schrödinger equation for the quantum oscillator can be
reduced to a system of three coupled differential equations for
the time-dependent coefficients at , bt , and ct ,

1

M
dtat = − a2

t

M2
− ω2

t , (12a)

dtbt = − at

M
bt , (12b)

dtct = ih̄
at

M
− 1

M
b2

t . (12c)

The nonlinear equation (12a) is of the Riccati type. It can be
mapped onto the equation of motion of a classical, force free,
time-dependent harmonic oscillator via the transformation
at = MẊt/Xt . The resulting equation reads Ẍt + ω2

t Xt = 0.
Equations (12b)–(12c) can be solved once the solution of
Eq. (12a) has been determined. With the solutions of the three
equations (12a)–(12c) known, the Gaussian wave function
ψt (x) (11) is fully characterized by the time-dependence of
the angular frequency ωt . It can be shown that the dynamics
is completely determined by the function Q∗ introduced by
Husimi [38–40],

Q∗ = 1

2ω0ω1

[
ω2

0

(
ω2

1X
2
τ + Ẋ2

τ

) + (
ω2

1Y
2
τ + Ẏ 2

τ

)]
, (13)

where Xt and Yt are the solutions of the force-free classical
oscillator equation satisfying the boundary conditions X0 = 0,
Ẋ0 = 1 and Y0 = 1, Ẏ0 = 0. The function Q∗ � 1 is a measure
of the adiabaticy of the process: it is equal to one for
adiabatic transformations and increases with the degree of
nonadiabaticy. In particular, the final mean energy of the
quantum oscillator is given by Ref. [40]

〈Hτ 〉 = h̄ω1

2
Q∗ coth(βh̄ω0/2), (14)

and thus linearly increases with Q∗.
To evaluate the Bures angle (1) for the parametric harmonic

oscillator, the quantum fidelity (2) has to be written in closed
form. For Gaussian states such an explicit form is known: for
two arbitrary (nondisplaced) Gaussian density operators ρ1
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and ρ2, the fidelity reads [37]

F (ρ1, ρ2) = 2√
� + δ − √

δ
. (15)

The two parameters � = det (A1 + A2) and δ = [det (A1) −
1][det (A2) − 1] are completely determined by the covariance
matrices Ai (matrices of the variances of position and
momentum) of the quantum oscillator,

Ai =
(

ai
xx ai

xp

ai
xp ai

pp

)
. (16)

The matrix elements ai are explicitly given by

ai
xx = 2

(〈
x2

i

〉 − 〈xi〉2
)
, (17a)

ai
pp = 2

h̄2

(〈
p2

i

〉 − 〈pi〉2
)
, (17b)

ai
xp = 2

h̄

(
1

2
〈xipi + pixi〉 − 〈xi〉〈pi〉

)
. (17c)

To evaluate the terms appearing in the Clausius inequality
(8), we make use of the explicit expressions of the initial,
ρ0, and final density operators, ρτ and ρ

eq
τ , of the oscillator

in coordinate representation, as given in Appendix C. In
particular, the final equilibrium density operator ρ

eq
τ has the

same form as Eq. (C1), replacing ω0 by ω1. Accordingly, the

corresponding equilibrium mean and variances are 〈x〉eq
τ =

〈p〉eq
τ = 〈xp + px〉eq

τ = 0, and

〈x2〉eq
τ = h̄

2Mω1
coth (βh̄ω1/2), (18a)

〈p2〉eq
τ = h̄ω1M

2
coth (βh̄ω1/2). (18b)

On the other hand, for the final nonequilibrium state ρτ , we
have 〈x〉τ = 〈p〉τ = 0, and

〈x2〉τ = h̄

2Mω0

(
Y 2

τ + ω2
0X

2
τ

)
coth (βh̄ω0/2), (19a)

〈p2〉τ = h̄M

2ω0

(
Ẏ 2

τ + ω2
0Ẋ

2
τ

)
coth (βh̄ω0/2). (19b)

The cross correlation function can be evaluated by exploiting
the fact that 〈xp + px〉τ = Mdt 〈x2〉τ and reads

〈xp + px〉τ = h̄

ω0

(
Yτ Ẏτ + ω2

0XτẊτ

)
coth (βh̄ω0/2). (20)

The analytic expression of the quantum fidelity function
F (ρτ ,ρ

eq
τ ) between nonequilibrium and equilibrium oscillator

states at the end of the driving can be finally obtained
by evaluating the determinants � and δ in Eq. (15) using
Eqs. (18a)–(20), with the help of the relation ẊtYt − Xt Ẏt = 1
[38] and the definition of the function Q∗ given in Eq. (13).
We find

F
(
ρτ ,ρ

eq
τ

) = 2√
ct2(βε0/2) + ct2(βε1/2) + 2Q∗ct(βε0/2)ct(βε1/2) + c2(βε0/2)c2(βε1/2) − c(βε0/2)c(βε1/2)

, (21)

with the notation c(.) = csch(.) and ct(.) = coth(.), and the
energies εi = h̄ωi . The Bures angle L then directly follows
from Eq. (1), and the lower bound to the nonequilibrium
entropy production 〈�〉 can be determined, to any order, with
the help of the expansion (7).

To get more physical insight, let us evaluate the limiting
expressions of the fidelity (21) in the low-temperature (quan-
tum) and high-temperature (classical) regimes. An expansion
of the hyperbolic cosine and cotangent functions in the
zero-temperature limit, h̄β → ∞, leads to

F
(
ρτ ,ρ

eq
τ

) h̄β→∞−→
√

2

1 + Q∗ . (22)

In the adiabatic limit Q∗ → 1, the fidelity thus tends to one;
that is, the Bures angle approaches zero, indicating that the
system ends in an equilibrium state, as expected. For strongly
nonadiabatic processes, Q∗ � 1, on the other hand, the fidelity
tends to zero as 1/

√
Q∗. Here the Bures angle tends to

π/2, showing that ρτ and ρ
eq
τ are maximally distinguishable

(orthogonal).
Equation (22) can also be derived directly by noting that, in

the zero-temperature limit, the harmonic oscillator is initially
in a pure state |00〉. The initial equilibrium density operator is,
hence, ρ0|T =0 = |00〉〈00| and analogously for ρ

eq
τ |T =0. Since

these states are pure, the fidelity simplifies to their overlap, and
we have F (ρτ ,ρ

eq
τ )|T =0 = tr{ρτρ

eq
τ } = pτ

0,0, where pτ
0,0 is the

probability for the system to start and end in the corresponding
ground state. The latter is given by the expression [40]

pτ
0,0 =

√
2

1 + Q∗ , (23)

and we thus recover Eq. (22).
In the classical limit, h̄β → 0, by repeating the same

analysis, the fidelity (21) simplifies to

F
(
ρτ ,ρ

eq
τ

) h̄β→0−→ 4ω0ω1

ω2
0 + 2Q∗ω0ω1 + ω2

1

. (24)

For an adiabatic frequency change, Q∗ → 1, the fidelity
reduces to F (ρτ ,ρ

eq
τ ) 	 4ω0ω1/(ω0 + ω1)2. Therefore, as no-

ticed in Ref. [39] (see also Ref. [41]), a unitary process can only
be quasistatic in the thermodynamic sense, F (ρτ ,ρ

eq
τ ) 	 1, if

|ω1 − ω0|/ω0 
 1. Indeed, according to the quantum adia-
batic theorem, the occupation probabilities remain constant
during a quasistatic process. As a result ρτ = exp(−βHτ )/Z0

which is different from ρ
eq
τ = exp(−βHτ )/Zτ , except for

infinitesimal frequency changes. We note additionally that in
the classical limit the fidelity vanishes for large values of Q∗ as
1/Q∗; that is, much faster than in the low-temperature regime.
The density operators ρτ and ρ

eq
τ thus become orthogonal (L =

π/2) much faster as a function of the degree of nonadiabaticy.
For the parametric quantum oscillator, the nonequilibrium

entropy production (5) can be determined exactly, allowing to
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test the generalized Clausius inequality (8). It is given by [39]

〈�〉 = β

2
(Q∗h̄ω1 − h̄ω0) coth(βh̄ω0/2)

− ln

(
sinh(βh̄ω1/2)

sinh(βh̄ω0/2)

)
, (25)

where we used 〈H0〉 = (h̄ω0/2) coth(βh̄ω0/2) and Eq. (14).
Figure 1 shows the nonequilibrium entropy production 〈�〉 as
a function of the measure of adiabaticity Q∗, together with the
lower bound obtained with the first term in the expansion (7)
and the exact function s(x) (6) (the latter is indistinguishable
from the expression including the first five nonzero terms of
the expansion). We see that the first term in the expansion
provides a good lower bound in many cases.

V. LOWER BOUND BASED ON TRACE DISTANCE

As discussed in Sec. I, the Bures angle L, being the
extension of Wootters’ statistical distance to mixed states,
possesses a simple interpretation as the geometric angle
between two density operators. However, Eq. (5) shows that the
nonequilibrium entropy production 〈�〉 is bounded by many
unitarily invariant distances, albeit with possibly less natural
physical interpretation. To elucidate this point, we discuss the
concrete case of the trace norm, which has been reported to
yield the largest lower bound on the relative entropy [32]
(a further comparison of L with the Bures distance D is
given in Appendix A). The trace distance between two density
operators ρ1 and ρ2 is defined as [22,23]

T (ρ1, ρ2) = 1
2 tr{|ρ1 − ρ2|} = 1

2 tr{
√

(ρ1 − ρ2)2}. (26)

Contrary to the Bures angle (or the Bures distance), it is not
a Riemannian distance—however, both are monotone. The
trace distance between nonequilibrium and equilibrium states
of the parametric quantum oscillator (10) can be evaluated
for arbitrary driving with the help of the explicit expressions
of ρτ and ρ

eq
τ given in Appendix C: we have T (ρτ , ρ

eq
τ ) =

(1/2)
∑

i |λi |, where λi are the eigenvalues of ρτ − ρ
eq
τ . Unlike

for the Bures angle, it does not seem to be possible to express
T as a function of the adiabaticy parameter Q∗ alone (the
density operators ρτ and ρ

eq
τ depend on the two functions Xt

and Yt and not on Q∗ directly). To circumvent this problem,
we have numerically evaluated the trace distance for the case
of a sudden switching of the frequencies for which Q∗ =
(ω2

0 + ω2
1)/(2ω0ω1). Figure 2 shows the corresponding entropy

production 〈�〉 (25) and the lower bound (8) for the Bures
angle, s(2L/π ), and for the trace distance, s(T ), as a function
of Q∗ for fixed β and ω0. Contrary to Fig. 1, where both ω0

and ω1 are fixed, for the sudden frequency switch Q∗(ω1) is a
function of ω1.

We observe that the lower bound based on the trace
distance is sharper than the one obtained using the Bures
angle. However, the two bounds appear largely equivalent,
reflecting the fact that L and T are closely related (see, e.g.,
Refs. [22,23]). We stress that the trace distance lacks the simple
interpretation of the Bures angle as the angle between density
operators. Moreover, in the classical limit the bound based on
the trace distance does not reduce to the known bound on the
entropy production derived in linear-response theory [7–9].
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FIG. 2. (Color online) Irreversible entropy production 〈�〉 (25)
(blue, solid line) together with the lower bound (8) evaluated for the
Bures angle L (1) (green, dotted line) and the trace distance T (26)
(purple, dot-dashed line), as a function of the (numerical) adiabaticy
parameter (13) for the sudden switch Q∗(ω1) = (ω2

0 + ω2
1)/(2ω0ω1).

Parameters are h̄ = 1, β = 4.8, ω0 = 0.9.

VI. CONCLUSIONS

The Bures angle between the nonequilibrium and the
corresponding equilibrium state of a driven closed quantum
system defines a thermodynamic length that is valid arbitrarily
far from equilibrium. The latter can be used to characterize the
departure from equilibrium for generic driving. We derived a
lower bound on the nonequilibrium entropy production, which
we expressed as a function of the Bures angle, by using a
sharp lower bound on the quantum relative entropy. In such
a way, we obtained a generalized Clausius inequality, with a
process-dependent lower bound that holds beyond the range of
linear-response theory. As an illustration, we treated the case
of a time-dependent harmonic oscillator for which we derived
analytic expressions for the Bures angle. We further compared
the lower bound obtained with the Bures angle with the one
based on the trace distance. While the trace distance offers a
slightly sharper bound, the two appear to be largely equivalent.
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APPENDIX A: LOWER BOUND BASED ON BURES
DISTANCE

To evaluate the changes induced by the choice of another
unitarily invariant distance on the lower bound (8), we present
in this appendix an alternative constructive derivation of
the lowest-order estimation of the nonequilibrium entropy
production 〈�〉. Let us begin by introducing the Hellinger
distance [42,43],

H2(p1,p2) =
∫

dx(
√

p1(x) −
√

p2(x))2, (A1)

for two (classical) probability distributions p1(x) and
p2(x). The Hellinger distance is another measure of the
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distinguishability of two probability distributions. It is a true
distance which fulfills symmetry, nonnegativity, and the trian-
gle inequality. Expression (A1) can be rewritten in terms of
the classical fidelity function, f (p1,p2) = ∫

dx
√

p1(x)p2(x),
to yield

H(p1, p2) =
√

2 − 2f (p1, p2). (A2)

By using the inequality
√

y − 1 � 1/2 ln (y), we have√
p2(x)

p1(x)
− 1 � 1

2
[ln p2(x) − ln p1(x)]. (A3)

Averaging Eq. (A3) over the probability distribution p1(x)
results in

2

(
1 −

〈√
p2(x)

p1(x)

〉
p1

)
� 〈ln p1(x) − ln p2(x)〉p1 , (A4)

from which we deduce the inequality

D (p1||p2) � 2 − 2f (p1, p2) = H2(p1, p2). (A5)

Here D(p1||p2) denotes the classical Kullback-Leibler di-
vergence between p1 and p2. The classical result (A5) can
be extended to quantum states by considering the quantum
version of the Hellinger distance, which is the Bures distance
between density operators ρ1 and ρ2 [20]:

D2(ρ1, ρ2) = 2(1 −
√

F (ρ1, ρ2)). (A6)

Note the difference in the definitions of the classical and
quantum fidelity. By combining Eqs. (4), (A5), and (A6), we
then find the generalized Clausius inequality,

〈�〉 � D2
(
ρτ , ρ

eq
τ

)
. (A7)

The above lower bound on the entropy production corresponds
to the lowest-order term in the expansion (7) when the Bures
distances is chosen instead of the Bures angle in Eq. (5), since
D(e1,1,e2,2) = √

2. Figure 3 shows the Bures angle L and the
Bures distance D as a function of the quantum fidelity F .
We observe that D � L so that the Bures distance offers a
(slightly) sharper bound to the entropy production than the
Bures angle, to lowest order. However, the distance D bears
the disadvantage that the intuitive, physical interpretation as

0.2 0.4 0.6 0.8 1.0
F

0.5

1.0

1.5

2.0

FIG. 3. (Color online) Lower bounds for the nonequilibrium
entropy production based on the Bures angle, (8/π2)L2 (8) (blue
solid), and on the Bures distance, D2 (A7) (red dashed), as a function
of the fidelity F .

an angle between mixed states is lacking. Moreover, the Bures
distance does not reduce to the classical thermodynamic length
derived in Refs. [7–9] in the appropriate limit, in contrast to
the Bures angle.

APPENDIX B: ANALYTIC UPPER BOUND FOR QUANTUM
RELATIVE ENTROPY

Due to the importance of the relative entropy in physics
and mathematics, and the complexity to evaluate it, accurate
approximations and bounds are essential. While a lower bound
has been obtained for unitarily invariant norms in the form of
Eq. (5) [32], upper bounds are much more difficult to find.
Recently, a general upper bound was proposed in terms of
the eigenvalues of the density operators [44]. In the present
thermodynamic context, we may, however, derive a simpler
upper bound. We start with the inequality [45],

tr{ρ1 ln ρ1 − ρ1 ln ρ2} � 1

ν
tr
{
ρ1+ν

1 ρ−ν
2 − ρ1

}
, (B1)

which is true for all positive definite operators ρ1, ρ2 and
ν > 0. We shall here concentrate on the final nonequilibrium
and equilibrium density operators, ρτ and ρ

eq
τ . By choosing

ν = 1 and using the normalization condition tr{ρ} = 1, we
obtain the upper bound, 〈�〉 � tr{ρ2

τ (ρeq
τ )−1} − 1. In order to

further simplify the bound and derive an expression which does
not depend on the off-diagonal matrix elements in energy rep-
resentation of the density operators, we use the inequality [46]

|tr{ρ1ρ2}| �
n∑

r=1

σ 1
r σ 2

r , (B2)

which holds for any complex n × n matrices ρ1 and ρ2 with
descending singular values, σ 1

1 � · · · � σ 1
n and σ 2

1 � · · · �
σ 2

n . The singular values of an operator A acting on a Hilbert
space are defined as the eigenvalues of the operator

√
A†A. If

ρ1 and ρ2 are density operators acting on the same Hilbert space
Eq. (B2) remains true for arbitrary dimensions, and the singular
values are identically given by the eigenvalues [47,48]. As a re-
sult, we obtain the upper bound for the entropy production 〈�〉:

〈�〉 �
∑

n

(pτ
n)2

p
eq
n

− 1. (B3)

APPENDIX C: EXPLICIT EXPRESSIONS OF DENSITY
OPERATORS

The evaluation of the covariance matrix (16) requires the
expressions of the density operators ρ

eq
0 , ρ

eq
τ , and ρτ in

coordinate representation. We collect them in this Appendix
for completeness. The initial equilibrium density operator ρ

eq
0

is given by Ref. [49]

ρ
eq
0 (x,y) =

√
Mω0

πh̄
tanh (βh̄ω0/2) exp

(
−Mω0

2h̄
coth (βh̄ω0)

× [x2 + y2 − 2sech(βh̄ω0)xy]

)
. (C1)

The final equilibrium density operator ρ
eq
τ has the same form

as Eq. (C1) with the replacement ω0 by ω1. On the other hand,
the final nonequilibrium operator ρτ can be derived
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from Eq. (C1) by noting that ρτ (x, x ′) = ∫
dy

∫
dy ′Uτ (x, y)

ρ
eq
0 (y, y ′)U ∗

τ (y ′, x ′). The propagator Uτ (x, x0) can be de-
termined from the wave function (11) with ψτ (x) =∫

dx0Uτ (x, x0)ψt0 (x0) and reads [38]

Uτ =
√

M

2πih̄Xτ

exp

(
iM

2h̄Xτ

[
Ẋτ x

2 − 2xx0 + Yτx
2
0

])
.

(C2)

The functions Xτ and Yτ are solutions of the force-
free harmonic oscillator satisfying the boundary conditions

X0 = 0, Ẋ0 = 1 and Y0 = 1, Ẏ0 = 0. A direct evaluation of
the Gaussian integrals leads to the expression

ρτ (x,y) =
√

Mω0

πh̄

tanh (βh̄ω0/2)

Y 2
τ + ω2

0X
2
τ

exp
(

−Mω0

2h̄

1

Y 2
τ + ω2

0X
2
τ

× {
coth (βh̄ω0)[x2 + y2 − 2sech(βh̄ω0)xy]

+ i(x2 − y2)
(
ω2

0ẊτXτ + Ẏτ Yτ

)})
. (C3)

[1] T. Kinoshita, T. Wenger, and D. Weiss, Nature (London) 440,
900 (2006).

[2] S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and
J. Schmiedmayer, Nature (London) 449, 324 (2007).

[3] S. Trotzky, Y-A. Chen, A. Flesch, I. P. McCulloch,
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