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Introduction

International institutions and national statistical institutes are increasingly expected to report

disaggregated indicators, i.e., means, ratios or Gini coefficients (Gini, 1912) for different re-

gional levels, socio-demographic groups or other subpopulations (Piacentini, 2014; Leadership

Council of the Sustainable Development Solutions Network, 2015). These subpopulations are

called areas or domains in this thesis. The data sources that are used to estimate these dis-

aggregated indicators are mostly national surveys which may have small sample sizes for the

domains of interest. Therefore, direct estimates that are based only on the survey data might be

unreliable. To overcome this problem, small area estimation (SAE) methods help to increase

the precision of survey-based estimates without demanding larger and more costly surveys (Rao

and Molina, 2015). In SAE, the collected survey data is combined with other data sources, e.g.,

administrative and register data or data that is a by-product of digital activities (Marchetti et al.,

2015; Schmid et al., 2017).

The data requirements for various SAE methods depend to a large extent on whether the

indicator of interest is a linear or non-linear function of a quantitative variable. For the estima-

tion of linear indicators, e.g., the mean, aggregated data is sufficient, that is, direct estimates

and auxiliary information from other data sources only need to be available for each domain.

One popular area-level approach in this context is the Fay-Herriot model (Fay and Herriot,

1979) that is studied in Part I of this work. In Chapter 1, the Fay-Herriot model is used to

estimate the regional distribution of the mean household net wealth in Germany. The analysis

is based on the Household Finance and Consumption Survey (HFCS) that was launched by the

European Central bank and several statistical institutes in 2010 (Household Finance and Con-

sumption Network, 2016b). The main challenge of applying the Fay-Herriot approach in this

context is to handle the issues arising from the data: a) the skewness of the wealth distribution,

b) informative weights due to, among others, unit non-response, and c) multiple imputation to

deal with item non-response (Rubin, 1987). For the latter, a modified Fay-Herriot model that

accounts for the additional uncertainty due to multiple imputation is proposed in this thesis. It

is combined with known solutions for the other two issues and applied to estimate mean net

wealth at low regional levels. The Deutsche Bundesbank that is responsible for reporting the

wealth distribution in Germany, as well as many economic institutes, predominantly work with

the statistical software Stata (StataCorp, 2015). For providing the Fay-Herriot model and its

extensions as used in Chapter 1, a new Stata command called fayherriot is programmed in

the context of this thesis to make the approach available for practitioners. Chapter 2 describes

the functionality of the command with an application to income data from the Socio-Economic

Panel, one of the largest panel surveys in Germany (Goebel et al., 2018). The example appli-
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Introduction

cation demonstrates how the Fay-Herriot approach helps to increase the reliability of estimates

for mean household income compared to direct estimates at three different regional levels.

In an extension to estimating linear indicators, Part II deals with the estimation of non-

linear income and wealth indicators. Since the mean is sensitive to outliers, the median and

other quantiles are also of interest when estimating the income or wealth distribution. As a

first approach, this thesis focuses on the direct estimation of quantiles, which is not as straight-

forward as for the mean. In Chapter 3, common quantile definitions implemented in standard

statistical software are empirically evaluated based on income and wealth distributions with

regards to their bias. The analysis shows that, especially for wealth data that is mostly heavily

skewed, sample sizes need to be large in order to obtain unbiased direct estimates with the

common quantile definitions. Since a design-unbiased direct estimator is one assumption of

the aforementioned Fay-Herriot model, further research would be necessary in order to use

the Fay-Herriot approach for the estimation of quantiles when the underlying data is heavily

skewed. More common methods for producing reliable estimates for non-linear indicators –

including quantiles, poverty indicators (Foster et al., 1984), and inequality indicators such as

the Gini coefficient (Gini, 1912) – in small domains are unit-level SAE methods. However,

for these methods, the data requirements are more restrictive. Both the survey data and the

auxiliary data need to be available for each unit in each domain. Among others, the empirical

best prediction (EBP) (Molina and Rao, 2010), the World-Bank method (Elbers et al., 2003),

and the M-Quantile approach (Chambers and Tzavidis, 2006) are well-known methods for the

estimation of non-linear indicators in small domains. However, these methods are either not

available in statistical software or the user-friendliness is limited. Therefore, in this work the R
package emdi is developed that focuses on an user-friendly application of the EBP. Chapter 4

describes how the package emdi supports the user beyond the estimation by tools for assessing

and presenting the results.

Both, area- and unit-level SAE models, are based on linear mixed regression models that

rely on a set of assumptions, particularly the linearity and normality of the error terms. If

these assumptions are not fulfilled, transforming the response variable is one possible solution.

Therefore, Part III provides a guideline for the usage of transformations. Chapter 5 gives an

extensive overview of different transformations applicable in linear and linear mixed regression

models and discusses practical challenges. The implementation of various transformations and

estimation methods for transformation parameters are provided by the R package trafo that is

described in Chapter 6.

Altogether, this work contributes to the literature by

a) combining SAE and multiple imputation proposing a modified Fay-Herriot approach,

b) showing limitations of existing quantile definitions with regards to the bias when data is

skewed and the sample size is small,

c) closing the gap between academic research and practical applications by providing user-

friendly software for the estimation of linear and non-linear indicators, and

d) giving a framework for the usage of transformations in linear and linear mixed regression

models.

9



Part I

Estimation of Disaggregated Linear
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Chapter 1

The Fay-Herriot model for multiply
imputed data with an application to
regional wealth estimation in Germany

1.1 Motivation

The financial crisis that began in 2007 has uncovered the fragility of the global financial system.

Private households’ solvency is considered as one of the most important channels affecting

financial stability. The tight linkage between private households and financial institutions is

reflected by the large share of an economy’s wealth, which is held by individuals (Ampudia

et al., 2016). For instance, total financial assets of private households in Germany accounted for

almost e 6 trillion, which is almost twice as large as the German annual GDP of e 3.3 trillion

in 2017 (Deutsche Bundesbank, 2018). A historical perspective undermines this important

relationship as two thirds of worldwide financial crises were preceded by a mortgage lending

boom (Brunnermeier and Schnabel, 2016).

Several scholars have underpinned the important impact of the distribution of income and

wealth on the stability of the financial system. For the Unites States (US), Kumhof et al.

(2015) show the relationship between increasing income inequality, wealth concentration and

their impact on financial stability. The key mechanism lies in the negative marginal propen-

sity to consume (see e.g., Carroll, 1998). An increasing income inequality results in a higher

concentration of savings by top earners in form of loans to bottom earners. This may lead to a

rise of the debt-to-income ratio, which in turn may pose threats to the stability of the financial

system.

Most of the literature on the economic importance of income and wealth distributions is

focused at the national distribution. In this context, the spatial distribution of economic activity

deserves additional attention, as economic activities are unevenly distributed across space (see

e.g., Ottaviano and Puga, 1998). These agglomeration economies can be attributed to the im-

portance of the local concentration of wealth, economic activity and innovative capacity (see

e.g., Rodríguez-Pose and Crescenzi, 2008), but also to a process of rising inequality across

regions. This regional divergence provides the justification for financial support schemes such

11
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as the European Cohesion Funds allocating large parts of the EU’s total budget.

The rising importance of agglomeration economies with their linkage to private wealth pro-

vides the motivation to assess the regional distribution of private financial resources (eurostat,

2017). In this context, the German reunification process provides a compelling example from

an economic point of view. After a rapid catching-up process driven mostly by the construction

sector, the convergence of East German regions came to abrupt end in 1995. Afterwards the

disposable income of households living in East Germany has been stagnating at about 80% of

the West German level (Blum et al., 2010), while private net wealth in the East has caught up

only to about 40% of the West German level (Deutsche Bundesbank, 2016).

Differences in the income and wealth gap between East and West Germany are routed

in the economic conditions after the reunification. The ratio of disposable income of East

German to West German households was 46% in 1991, whereas East German mean net wealth

corresponded only to 30% of the average net wealth of households living in West Germany

(Ammermüller et al., 2005). Blum et al. (2010) provide several reasons behind the initial

difference between the income and wealth. First, the weak economy of East Germany at the

start of the reunification process translated into price differences of capital goods such as house

prices. Second, the institutional setting in the former German Democrating Repubilc (GDR)

including a low protection of property rights provided weaker incentives for private capital

accumulation. Third, these differences in incentives for wealth accumulation translated into

lower home-ownership rates and lower saving rates in East Germany. Fourth, financial assets

were converted at the rate 2:1 in contrast to the 1:1 conversion rate of wages. Furthermore, a

lower savings ratio in East Germany contributed to the persistence in the wealth gap.

In order to lower the income and wealth gap and to foster the convergence process of

East German regions, the German government implemented several programs. The so-called

Funds for German Reunification (in German: Fonds Deutsche Einheit) was succeeded by two

programs labeled Solidarity Pact (in German: Solidarpakt). The Solidarpakt II will expire in

2019, and it is an ongoing debate whether a national scheme for regional cohesion shall focus

exclusively on the distinction between East and West Germany (Blum et al., 2011). Structurally

weaker regions in the West claim that they are equally entitled for the reception of financial

help. However, little is known so far about the distribution of financial resources among smaller

regions within the East and West due to limited data availability. This article may enrich this

discussion by focusing on the distribution of private wealth and financial resources at a regional

level going beyond the distinction between East and West.

For the regional distribution of household income on different levels several data sources

are already available (Bundesinstitut für Bau-, Stadt-, und Raumforschung, 2017; RWI;microm,

2016a). Especially, information of income received in form of tax declarations or by notifica-

tion of social security payments can help to develop indicators of income for low regional lev-

els. In contrast, the measurement of the regional distribution of private wealth is not that trivial

because the taxation of wealth is effective only in a few countries. Thus, surveys may provide

one approach to capture the distribution of private wealth. Since 2011, the Household Finance

and Consumption Network (HFCN) provides the Household Finance and Consumption Sur-

vey (HFCS) which is a survey that is, so far, conducted in 15 euro countries in the first wave

12
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and in 19 euro countries in the second wave. It contains detailed information, among others, of

household wealth on a micro-level. The HFCN states the importance of private wealth as an in-

dicator for consumer spendings and its relevance for financial stability (Household Finance and

Consumption Network, 2016b). In Germany, the Deutsche Bundesbank is responsible to de-

scribe the wealth distribution and since 2011 they use the German part of the HFCS, the Panel

on Household Finances (PHF) (Forschungsdaten- und Servicezentrum (FDSZ) der Deutschen

Bundesbank, 2014). However, the lowest regional level for which estimates are reported are

four larger regions with a distinction between East and West Germany. The latter is divided

in three subregions. Given the sample size of about 4,500 households, a more disaggregated

consideration is subject to concerns about the precision of estimates. Therefore, this paper

makes use of small area estimation (SAE) in order to obtain reliable estimates for private net

wealth at a lower regional level, namely 16 federal states (in German: Bundesländer) and 96

regional planning regions (in German: Raumordnungsregionen). From an applied perspective,

this paper contributes to the discussion of the wealth distribution at a regional level and its

implications on the allocation of regional support schemes in Germany.

The estimates are obtained by the Fay-Herriot model (Fay and Herriot, 1979). In order

to increase the accuracy of estimates at lower regional levels, direct estimates obtained from

survey data are enriched with covariate information from other data sources like registers. The

challenge of applying the Fay-Herriot model in this work is the consideration of the data struc-

ture while using the SAE approach. First, the skewness of the wealth distribution requires the

usage of a log-transformation in the Fay-Herriot approach for the planning regions in order

to fulfill the normality assumptions (Slud and Maiti, 2006; Neves et al., 2013). Second, the

present unit and item non-response needs to be taken into account. The unit non-response is

adjusted by the data provider using weighting procedures. The produced sampling weights are

considered in the Fay-Herriot model by using the weighted direct estimator in the model. The

item non-response in the HFCS is handled with multiple imputation (Rubin, 1987). Therefore,

our estimates are obtained by using a combination of Rubin’s rule and the Fay-Herriot ap-

proach. From a theoretical perspective, this leads to a modified (transformed) Fay-Herriot that

accounts for the additional uncertainty due to the multiple imputation. Third, for the reporting

institution the internal consistency of the regional estimates with the estimate obtained for the

national level needs to be ensured by benchmarking the model-based estimates.

The paper is structured as follows. Section 1.2 describes the data sources that are used in

this work, particularly the PHF and the data sources for the covariate information. Section 1.3

describes the statistical method. In Section 1.4 the application of the Fay-Herriot model for

the estimation of household net wealth is described. The results are interpreted in Section 1.5.

Section 1.6 discusses further potential research.

1.2 Data sources and initial analysis

In this section, the definition of household (HH) net wealth is introduced and the data sources

used in the analysis are described. Wealth is composed of several assets and liabilities. It can be

measured as gross wealth, the sum of assets, or as net wealth, the difference between assets and
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liabilities. Thus, negative net wealth is possible if liabilities exceed assets. A typical balance

sheet of a HH is presented in the supplementary material of this paper. In order to take into

account the HHs debt in this analysis, the HH net wealth is the variable of interest.

1.2.1 The wealth survey: Panel on Household Finances

Since wealth is an important indicator for financial stability, the central banks of the Eurosys-

tem and several National Statistical Institutes initiated a joint survey called Eurosystem House-

hold Finance and Consumption Survey (HFCS) as a consequence of the financial crisis in

2007. The survey provides detailed data on various aspects of HH balance sheets and re-

lated economic and demographic variables, including income, private pensions, employment

and measures of consumption (Eurosystem Household Finance and Consumption Network,

2013a,b). The HFCS is the first harmonized survey data across eurozone countries and thus

it is unique in enabling cross-country comparisons on a micro-level. Therefore, many studies

are already based on this data. For instance, some studies compare the accumulated results for

countries wealth from this micro-data source with macro-data sources like national accounts

(Kavonius and Honkkila, 2013; Andreasch and Lindner, 2016).

The German part of the HFCS, namely the Panel on Household Finances (PHF)

(Forschungsdaten- und Servicezentrum (FDSZ) der Deutschen Bundesbank, 2014), is the data

source that the Deutsche Bundesbank, the institution responsible to describe the wealth distri-

bution in Germany, uses. An advantage of the PHF, compared to other data sources that cover

wealth as the German Socio-Economic Panel (SOEP), is the detailed questioning of wealth

components. However, the PHF bears some methodological issues that need to be taken into

account for the analysis. The PHF is a panel survey with a first wave in 2011 and a second

wave in 2014. While most of the following issues occur in both waves, all following numbers

and the analysis itself is based on the second wave.

The sampling design aims to overrepresent wealthy households (Knerr et al., 2015). This

is done because of the unequal distribution of assets, especially financial assets, and liabilities

across households. The sampling is conducted in three stages. In the first stage, German munic-

ipalities are divided into three strata depending on the size and proportion of wealthy HHs. In

a second stage, the streets in cities with more than 100,000 citizens are categorized in wealthy

and other streets. In the third stage, the public register is used to draw persons above 18. This

leads to a sample with 4,461 observations. The PHF has, however, a high unit non-response

rate. Only 19% of the selected households participated in the survey. Thus, the data provider

uses weighting procedures to adjust for the potential bias that is caused by the mentioned is-

sues. A detailed description of the weighting procedure can be found in Knerr et al. (2015).

Considering the sensitive questions, the low response rate is not surprising. In contrast, the

HHs that decided to participate showed high item response rates (Eisele and Zhu, 2013). Thus,

the item non-response is relatively low for many core variables even though very sensitive fi-

nancial questions are asked. Nevertheless, the missing values due to item non-response have to

be taken into consideration. Therefore, the institutions responsible for the survey, in Germany

the Deutsche Bundesbank, are required to conduct multiple imputation (MI) according to Ru-

bin (1987) to replace missing values (Household Finance and Consumption Network, 2016a).

14



CHAPTER 1. THE FAY-HERRIOT MODEL FOR MULTIPLY IMPUTED DATA

Table 1.1: Pearson correlation coefficients of the variable net wealth in the five imputed data
sets M1-M5 based on Forschungsdaten- und Servicezentrum (FDSZ) der Deutschen Bundes-
bank (2014), Panel on Household Finances (PHF) 2014, own estimations.

M1 M2 M3 M4 M5

M1 1.000 0.988 0.990 0.989 0.992
M2 0.988 1.000 0.995 0.993 0.994
M3 0.990 0.995 1.000 0.993 0.994
M4 0.989 0.993 0.993 1.000 0.993
M5 0.992 0.994 0.994 0.993 1.000

Thus, the imputation is conducted M = 5 times by the data provider that has more available

information for the imputation model than the data user (Eisele and Zhu, 2013). For a proper

imputation, Rubin (1996) suggests to use as many variables as available, especially when data

provider and data analyst are distinct entities. The imputation in the PHF generally follows

this rule. However, Eisele and Zhu (2013) also describe how they avoid overfitting using cross-

validation methods for the variable selection. Besides variables that are correlated with the

imputed variable, characteristics explaining the non-response behavior and design weights are

included in the specifications. Disregarding the design could lead to a bias in the variance (Kott,

1995). Also domain indicators are considered (Household Finance and Consumption Network,

2016a). Since the item non-response is relatively low for many variables and especially for

variables with a high impact on wealth, the difference between the five imputations of the vari-

able net wealth is rather small which leads to a high correlation between the imputations (see

Table 1.1). In order to receive final estimates in the presence of multiple data sets the estimates

based on each data set need to be pooled. For the pooling, Rubin (1987) suggests a rule that is

explained more detailed in Section 1.3.3. For the variance estimation of linear and non-linear

indicators replication weights can be used in the PHF. These replication weights are received

from a Rao-Wu rescaled bootstrap (Rao and Wu, 1988; Household Finance and Consumption

Network, 2016a) and provided with the data.

Considering these issues, the mean HH net wealth is reported by the Deutsche Bundesbank

for the regions East and West and the West is further divided into three subregions of northern,

western and southern states (Deutsche Bundesbank, 2016). Table 1.2 summarizes the average

net wealth level for these regions in thousand euro (TEUR) visualizing the distinct differences

between East and West Germany. Furthermore, it provides an indication for heterogeneity of

mean net wealth within the western part of Germany. Since our analysis is based on the most

recent release of the scientific use file issued in 2017, the reported values differ slightly from

those reported by Deutsche Bundesbank (2016).

This regional division (northern, western, southern and eastern states) is neither based on

administrative units nor does the analysis highlight differences within the East. Since the Sol-

idarpakt determines money transfers between the federal states, the wealth levels should also

be estimated on the federal state level (BL). Furthermore, the federal states have own parlia-

ments and budgets, hence identifying regions within the states with different wealth levels is

also of interest. The federal states consist of regional planning regions that are used e.g., for
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Table 1.2: Mean of HH net wealth in TEUR and sample sizes in the East, West and northern,
southern and western federal states based on Forschungsdaten- und Servicezentrum (FDSZ) der
Deutschen Bundesbank (2014), Panel on Household Finances (PHF) 2014, own estimations.

Regional level HH net wealth Sample size

West 248.48 3610
Northern states Schleswig-Holstein, Hamburg, 256.66 752

Niedersachsen, Bremen
Southern states Hessen, Baden-Württemberg, 285.32 1714

Bayern
Western states Nordrhein-Westfalen, Rheinland- 196.83 1144

Pfalz, Saarland
East Thüringen, Sachsen, Sachsen- 90.23 851

Anhalt, Brandenburg, Berlin,
Mecklenburg-Vorpommern

0
100
200
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Figure 1.1: Map of the direct estimates of mean HH net wealth in TEUR for the regions East
and West, the federal states and planning regions based on Forschungsdaten- und Servicezen-
trum (FDSZ) der Deutschen Bundesbank (2014), Panel on Household Finances (PHF) 2014,
own estimations. Out-of-sample regions are colored in black.

calculations of urban development promotion or housing benefits (Arndt et al., 2009). Der Par-

itätische Gesamtverband (2017) uses this regional disaggregation for the analysis of poverty.

The estimation of indicators for the regional planning regions allows to investigate differences

between urban and rural areas. Therefore, average HH net wealth is also estimated for the 96

planning regions (ROR) in this work. Preliminary results using direct estimation are shown

in Figure 1.1. While the map of estimates for the East and the West only shows the known

wealth difference between these two regions, the maps for the federal states and especially the

estimates for the planning regions confirm the assumption of noticeable regional differences.

However, Table 1.3 also shows a decrease in sample sizes compared to the sample sizes in the

Table 1.2. Furthermore, the black colored planning regions do not have observations to directly

estimate HH net wealth. Ten planning regions are not observed in the sample. For another nine

regions the sample size is too small to obtain results not violating confidentiality issues by the

Bundesbank. This means that the direct estimator would be only available for 77 out of 96

regions.

Thus, the application of a direct estimator for the mean of HH net wealth bears two issues:
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Table 1.3: Summary of sample sizes in the federal states and planning regions based on
Forschungsdaten- und Servicezentrum (FDSZ) der Deutschen Bundesbank (2014), Panel on
Household Finances (PHF) 2014, own estimations.

Min. 1st Qu. Median 3rd Qu. Max.

BL 32 98 189 358 925
ROR 9 28 40 65 340

First, the direct estimates might be unreliable due to large variances in small areas. Second,

direct estimates cannot be reported for regions with zero sample size or for direct estimates

violating confidentiality issues. The combination of the survey data with register data that is

available on these regional levels can help to improve the accuracy of the estimates for both

regional levels and to provide predictions for the planning regions where direct estimation is

not possible or not allowed to be published.

1.2.2 Register data of federal states and regional planning regions

The model used in this work requires additional information from administrative data sources

that helps to predict the target variable HH net wealth. As already mentioned, net wealth is

composed of several assets and liabilities. Thus, these components are natural predictors for

the target variable. The HFCN states that home-ownership and the value of the real estate is

the component with an especially strong influence on the HHs wealth (Eurosystem Household

Finance and Consumption Network, 2013b; Household Finance and Consumption Network,

2016b). But also information of other assets like the number or value of vehicles or information

of liabilities may be good predictors.

While not a component of net wealth, a higher income or income growth enables to ac-

cumulate wealth according to the income-to-wealth ratio proposed by Piketty and Zucman

(2014). Since labor income is the highest proportion of the HH income for an average HH,

employment figures such as the employment status should be taken into consideration. Espe-

cially, self-employed people are a group that tends to have higher wealth (Frick and Grabka,

2009). It can also be shown that net wealth initially increases with age and declines after retire-

ment (Eurosystem Household Finance and Consumption Network, 2013b; Household Finance

and Consumption Network, 2016b). Since we measure HH net wealth instead of personal net

wealth, the HH structure can also have an effect on the level of net wealth. Single HHs tend

to have a lower wealth but for HHs with two or more members the wealth does not increase

with size (Eurosystem Household Finance and Consumption Network, 2013b). The variables

that we use to proxy these effects are summarized in Table 1.4. It can be noted that the register

information is only available on an aggregated level, i.e., this information is not available for

each HH but for each region. This is mostly due to confidentiality issues which is an important

issue especially in developed countries like Germany.

For the federal states most of these variables are obtained from the Federal Office of Statis-

tics and the Statistical Offices of the Länder (Statistische Ämter des Bundes und der Länder,

2018) that maintain different databases containing regional information. For instance, the un-

employment rate is obtained from the Regionaldatenbank Deutschland and the disposable in-
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Table 1.4: Identified variables that potentially help to predict HH net wealth. The numbers
in parenthesis state the number of variables for this group. References to the sources of the
variables are given in the supplementary material.

Influence Variables Year Level

Real estate Ownership rate 2011 BL, ROR

Rental and purchase prices per sqm, 2014 BL, ROR
level of interior (3)

Number of houses (2) and types of 2015 ROR
buildings (6)

Vehicles Density of cars and car segment (11) 2015 ROR

Savings Saving quota of HH 2014 BL

Liabilities Default probability (8) 2015 ROR

Private debtors per 100 inhabitants 2014 ROR

Income Disposable income of private HHs 2014 BL
per inhabitant

Average HH income per inhabitant 2014 ROR

Employment status Unemployment rate, 2014 BL, ROR

percentage of employees, civil 2011 BL
servants and self-employed

Age Age groups (4) 2014 BL, ROR

Youth dependency ratio, 2014 BL
old-age dependency ratio 2014 BL

Household structure Single or couple 2015 ROR

come is received from the national accounts of the federal states. The covariate information for

the planning regions is predominantly provided by the research data center FDZ Ruhr - RWI

(Budde and Eilers, 2014; RWI;microm, 2016a) and complemented by the German database

Indikatoren und Karten zur Raum- und Stadtentwicklung (INKAR) (Bundesinstitut für Bau-,

Stadt-, und Raumforschung, 2017). Information about the rental and purchase prices as well as

the level of interior is delivered by the empirica ag for both regional levels (Empirica ag, 2017).

Most variables are obtained for 2014 which is the year of the survey or for 2015. We assume

that these variables are relatively time consistent on the aggregated level. For the same reason,

we include the variables about the type of employment and ownership rates even though these

are obtained from the German Census in 2011 (Statistische Ämter des Bundes und der Länder,

2011). Other factors that have an essential influence on wealth accumulation are inheritances

and donations. However, data for these variables was not available for this work.

1.3 Statistical method

In this section, the statistical methodology for receiving estimates for the mean of HH net

wealth for the German federal states and planning regions is described. With regard to the
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methodological issues mentioned in Section 1.2.1 and the requirements of institutions that

provide official statistics, the method for the desired application should

• help to increase the accuracy of the direct estimates,

• help to receive estimates for domains with a sample size of zero or confidentiality issues,

• be able to handle the complex survey design and the uncertainty due to MI,

• should return estimates that are consistent with the direct estimates of the regions East

and West and the national direct estimate.

Therefore, we propose a benchmarked Fay-Herriot (FH) estimator (Fay and Herriot, 1979) that

additionally accounts for the variability due to the MI. The FH approach is one out of a wide

range of SAE methods that generally combine information from different data sources. For

an overview of SAE methods we refer to Pfeffermann (2013), Rao and Molina (2015) and

Tzavidis et al. (2018). The main benefit of the FH model compared to other SAE methods is

that it only requires additional information on an aggregated level. This is especially useful

in Germany due to strict data protection rules. The following section explains the method in

detail.

1.3.1 The Fay-Herriot model

In SAE, following setup is generally assumed. A finite population of size N is partitioned into

D domains of sizesN1, . . . , ND, where d = 1, . . . , D refers to a dth domain and i = 1, . . . , Nd

to the ith HH/individual. A sample is drawn from this population using a complex sampling

design with sample sizes n1, . . . , nD.

The FH model assumes two model relations. The sampling model can be expressed as

θ̂Dir
d = θd + ed, d = 1, . . . , D, (1.1)

where θ̂Dird is a design-unbiased direct estimator of the population indicator θd, for example

a mean. It is assumed to be equal to the population value, θd, plus a sampling error ed. The

direct estimator allows the incorporation of sampling weights w and thus the requirement of

handling the survey design is fulfilled. In this work, the indicator of interest is the mean of HH

net wealth. The weighted mean for each domain d is defined as follows

θ̂Dir
d =

∑nd
i=1wdiydi∑nd
i=1wdi

, i = 1, . . . , nd, d = 1, . . . , D,

where ydi is the target variable and wdi are the sampling weights for domain d and HH i.

The second model links the population indicator θd with covariate information x in a linear

relation as follows

θd = x>d β + ud, d = 1, . . . , D, (1.2)
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where xd is a p× 1 vector of area-level covariate information and β is the vector of regression

parameters with dimension p×1. The combination of the models 1.1 and 1.2 leads to a special

linear mixed model that is defined as

θ̂Dir
d = x>d β + ud + ed, d = 1, . . . , D,

ud
iid∼ N(0, σ2

u) ed
ind∼ N(0, σ2

ed
),

with random effects ud that are independent and identically normally distributed with variance

σ2
u and sampling errors ed that are independent normally distributed with variance σ2

ed
. The

two error terms are assumed to be independent. The estimates of the regression parameters

β̂ are the empirical best linear unbiased estimators (EBLUE) of β (Rao and Molina, 2015).

For the estimation of the variance of the random effect σ2
u, several approaches are available,

among others, the FH method-of-moments estimator, the maximum likelihood (ML) and the

residual maximum likelihood (REML) method (Rao and Molina, 2015). A disadvantage of

these approaches is the numerical possibility of a negative variance estimator that is usually

set to 0. This issue may especially arise in the case of a small number of domains. Therefore,

adjusted estimation methods can be preferable when the number of domains is small since

these always provide strictly positive variance estimators (Li and Lahiri, 2010; Yoshimori and

Lahiri, 2014). Yoshimori and Lahiri (2014) propose an adjusted maximum residual likelihood

approach (AMRL.YL).

The resulting FH estimator is an empirical best linear unbiased predictor (EBLUP) of θd. It can

be expressed as a weighted average of the direct estimator θ̂Dir
d and a synthetic part as follows

θ̂FH
d = x>d β̂ + ûd

= γ̂dθ̂
Dir
d + (1− γ̂d)x>d β̂,

where γ̂d = σ̂2
u

σ̂2
u+σ2

ed

is the ratio of the variance of the random effects and the total variance

and denotes the shrinkage factor for area d. Whenever the variance of the sampling error is

relatively small, γ̂d gets large and more weight lies on the direct estimator. This feature of the

FH model is especially desired in official statistics for justifying a model-based approach since

it uses the direct estimator when it is reasonable. In the other case, when the sampling error

variance is relatively large, less weight lies on the direct estimator. For the domains with zero

sample size or with estimates that are not allowed to be published the prediction shrinks to the

synthetic part

θ̂FH
d,out = x>d β̂.

In order to assess the accuracy of the FH estimates the corresponding mean squared error

(MSE) can be estimated. The composition of the MSE estimator depends on the selected

estimation method for the variance of the random effect (Rao and Molina, 2015). Prasad and

Rao (1990) and Datta and Lahiri (2000) describe the compositions when the REML and ML

approaches are used, respectively. The MSE estimation of out-of-sample domains for both

approaches follows Rao and Molina (2015). For the adjusted estimation methods, the MSE
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needs to be modified as described in Li and Lahiri (2010) and Yoshimori and Lahiri (2014).

1.3.2 The log-transformed Fay-Herriot model

If the relationship between the target variable and the covariate information is nonlinear or the

normality assumption of the error terms is not met the log-transformed FH model can be used

(Rao, 1999). According to Neves et al. (2013), the direct estimator and the sampling error

variance can be transformed as follows.

θ̂Dir*
d = log(θ̂Dir

d ),

var(θ̂Dir*
d ) =

(
θ̂Dir
d

)−2
var(θ̂Dir

d ),

where the ∗ denotes the transformed scale. The FH estimator on the transformed scale can

be obtained by using the log-transformed direct estimator θ̂Dir*
d as dependent variable and the

modified variance var(θ̂Dir*
d ) as estimate for the sampling error variance.

θ̂FH*
d = γ̂∗d θ̂

Dir*
d + (1− γ̂∗d)x>d β̂,

where γ̂∗d = σ̂2
u

σ̂2
u+σ2

ed,∗
with σ2

ed,∗
= var(θ̂Dir*

d ). For an appropriate interpretation of the re-

sults, the FH estimators need to be back-transformed to the original scale. A naive back-

transformation using the exponential function may induce a bias to the estimates because of

Jensen’s inequality (Jensen, 1906). Therefore, several bias-corrected back-transformations are

proposed in the literature. Neves et al. (2013) back-transform θ̂FH∗d based on the properties of

the log-normal distribution which we refer to as crude back-transformation:

θ̂FH, crude
d = exp

{
θ̂FH*
d + 0.5MSE(θ̂FH*

d )
}
,

MSE(θ̂FH, crude
d ) = exp

{
θ̂FH*
d

}2
MSE(θ̂FH*

d ),

where θ̂FH*
d is the FH estimator on the transformed scale and MSE(θ̂FH*

d ) the MSE estimator

on the transformed scale, e.g., the Prasad-Rao MSE.

Slud and Maiti (2006) propose a bias-correction that considers the area-specific effects when

the ML approach is used for the estimation of σ2
u. Chandra et al. (2018) extend this work by fur-

ther taking into account the variability due to parameter estimation. The back-transformation

for the point estimates differs slightly to the crude back-transformation:

θ̂FH, Slud-Maiti
d = exp

{
θ̂FH*
d + 0.5σ̂2

u(1− γ̂∗d)
}
,

θ̂FH, Chandra et al.
d = cd ∗ exp

{
θ̂FH*
d + 0.5σ̂2

u(1− γ̂∗d)
}
,

where cd is a bias term derived in Chandra et al. (2018).

Furthermore, a special MSE estimator for the log-transformed model is developed in Slud and

Maiti (2006). A disadvantage of the latter two bias-corrections is that these are only applicable

for in-sample domains since these are based on the estimated γ̂∗d which is only available for

sampled domains.
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1.3.3 Combination of multiple imputation and the Fay-Herriot approach

As already mentioned, the conducted MI needs to be considered. The imputation for the PHF

is conducted by the data provider that is able to use more information about e.g., the non-

response behavior. Information about the imputation is given in Section 1.2.1 and in Eisele

and Zhu (2013). At this stage, we take the imputed data sets as appropriate and given. In

the PHF, five values are imputed for each missing value which leads to five imputed data sets.

The indicators of interest and its variances are estimated on each of these data sets. In order

to pool these estimates, Rubin’s rule can be applied when the complete data estimates are

approximately normal (Rubin, 1987). Thus, it can be applied for the mean (Marshall et al.,

2009). Consequently, we propose to use the direct estimator and the corresponding variance

after the application of Rubin’s rule defined as θ̂RRDir
d and σ̂2

εd
= var(θ̂RRDir

d ) in the Fay-Herriot

approach. The variance σ̂2
εd

covers the sampling variance and the variance due to missingness

and imputation (Rubin, 1996; Kim et al., 2006). The steps of the analysis are summarized as

follows.

Step 1. Imputation: Impute the missing values. In the case of the PHF data set, the

imputation is already conducted by the Deutsche Bundesbank (Eisele and Zhu, 2013).

Step 2. Analysis (Direct): Obtain θ̂Dir
d,m and var(θ̂Dir

d,m) for m = 1, . . . ,M where M is

the number of imputed data sets. For the PHF data set, M equals to 5.

Step 3. Pooling (Rubin’s rule): Obtain θ̂RRDir
d = 1

M

∑M
m=1 θ̂

Dir
d,m and

σ̂2
εd

=
1

M

M∑
m=1

var(θ̂Dir
d,m) +

(
1 +

1

M

)
1

M − 1

M∑
m=1

(θ̂Dir
d,m − θ̂RRDir

d )2.

Step 4. Analysis (FH): Obtain the Fay-Herriot estimator for multiple imputed data sets

(FH-MI) expressed by:

θ̂FH-MI
d = γ̂dθ̂

RRDir
d + (1− γ̂d)x>d β̂,

where γ̂d = σ̂2
u

σ̂2
u+σ̂2

εd

.

Step 4*. Analysis (log-transformed FH): Log-transform the direct estimator and mod-

ify the variance estimator (here according to Neves et al. (2013)):

θ̂RRDir*
d = log(θ̂RRDir

d ),

σ̂2
εd,∗ =

(
θ̂RRDir
d

)−2
σ̂2
εd
.

Obtain the FH estimator for multiple imputed data sets (FH-MI) on the transformed scale

expressed by:

θ̂FH-MI*
d = γ̂∗d θ̂

RRDir*
d + (1− γ̂∗d)x>d β̂,

where γ̂∗d = σ̂2
u

σ̂2
u+σ̂2

εd,∗
.

Back-transform the estimation results to the original scale.
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Step 5. Computation of the MSE: Obtain the MSE estimate for θ̂FH-MI
d . As discussed in

Section 1.3.1, the choice of the MSE estimator depends on the chosen estimation method

for σ̂2
u in Step 4.

Step 5*. Computation of the back-transformed MSE: Obtain the MSE estimate for

the back-transformed θ̂FH-MI*
d . The MSE estimator depends on the chosen bias-correction

in Step 4*: crude, Slud-Maiti, Chandra et al. (see also Section 1.3.2).

1.3.4 Benchmarking for internal consistency

The aggregated regional FH-MI estimates can differ from the direct estimates on the national

level or on the regional levels East and West. Thus, for meeting the requirement of internal

consistency of the estimates, a benchmark approach following Datta et al. (2011) is utilized.

This approach assumes the following relationship between the benchmark value τ and the

aggregated values of the single regions.

D∑
d=1

ξdθ̂
FH-MI,bench
d = τ

where ξd = Nd
N is the ratio of the population size in each region divided by the total population

size. The benchmark value may be the national estimate or the estimate of larger regions like

the regions East and West. The benchmarked FH-MI estimator can be expressed as

θ̂FH−MI,bench
d = θ̂FH−MI

d +

(
D∑
d=1

ξ2
d

φd

)−1(
τ −

D∑
d=1

ξdθ̂
FH−MI
d

)
ξd
φd
.

Datta et al. (2011) present different ways to define φd. Some depend on the value of the

estimate or on its accuracy estimate. If φd = ξd, all FH-MI estimates are adjusted equally.

When dividing ξd by the corresponding point or MSE estimate the domains with a respectively

larger value are adjusted stronger. Steorts and Ghosh (2013) show that the MSE of the FH

estimators increases only slightly because of the benchmarking. They propose a parametric

bootstrap estimator for the estimation of the MSE of benchmarked estimates.

1.4 Application

In this section, the mean of HH net wealth is estimated for the German federal states and the

planning regions using the FH method (Fay and Herriot, 1979) described in Section 1.3.

1.4.1 Model selection and diagnostic checking

The model presented in Section 1.3 depends on covariate information and several assumptions.

Therefore, the model selection and some diagnostic checks are described before discussing the

estimation results.

In Section 1.2.2, the predictors that can potentially explain HH net wealth and are available

at the desired regional level were introduced. In total, the covariates sum up to 18 for the fed-
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eral states and to 46 for the planning regions. Since the number of possible predictors exceeds

the number of federal states and is high for the planning regions a variable reduction via an

elastic net is conducted. Following Zou and Hastie (2005), an elastic net reduces the number

of variables by eliminating trivial variables and including whole groups of closely related vari-

ables. The variable selection is based on the Kullback symmetric divergence criterion (KICb2)

proposed by Marhuenda et al. (2014) especially for the FH model. Finally, the model with the

lowest value of KICb2 is chosen for our analysis (Marhuenda et al., 2014).

For the federal states, the final model includes two covariates, the saving quota and the youth

dependency ratio, capturing the relation between adolescents up to 19 years of age and indi-

viduals aged 20 to 64, with positive effects on the mean of HH net wealth. Since the number

of domains is small with 16 domains, the REML and the AMRL.YL method are considered.

For both methods, the estimation of σ2
u is similar and far from 0. Thus, the REML approach

and the Prasad-Rao MSE are used since no adjustment is needed to receive a positive variance

estimate. The explanatory power of the selected model measured by the modified R2 for FH

models proposed by Lahiri and Suntornchost (2015) is 92%. The normality assumption of the

two error terms in the FH model is assessed by the Shapiro-Wilk test and is not rejected for

both error terms. For the random effect (RE) the p-value equals 0.06 and for the standardized

realized residuals (RRES) it is 0.85.

For the planning regions, the normality assumption of the error terms does not hold in the

original scale. Thus, a log-transformation on the direct estimates of the mean of HH net wealth

is applied. The transformed variable is used as dependent variable in the variable selection. The

final model includes four covariates, the number of houses that are not for businesses, purchase

price per sqm, the percentage of vans and the percentage of HHs with a default probability

below average. The effect of the variables is positive and the modifiedR2 is 89%. The Shapiro-

Wilk test supports the assumption of normally distributed error terms (RE: p = 0.45, std. RRES:

p = 0.43) in the log-transformed FH model. Thus, the FH and log-transformed FH model is

used for the estimation of the mean of HH net wealth for the federal states and the regional

planning regions, respectively. The FH-MI estimates in the transformed scale for the planning

regions are back-transformed to the original using the crude back-transformation. This choice

is based on the fact that the crude back-transformation is applicable for in- and out-of-sample

domains. Furthermore, the differences between the estimates for in-sample domains using the

crude back-transformation and the back-transformations proposed by Slud and Maiti (2006)

and Chandra et al. (2018) are quite small.

One possibility to assess the quality of the model-based estimates is the comparison with

the direct estimates. Brown et al. (2001) propose a goodness-of-fit test for this assessment. The

null hypothesis of the test assumes that the model-based estimates do not differ significantly

from the direct estimates. The test statistic is defined as

W
(
θFH-MI
d

)
=

D∑
d=1

(
θRRDir
d − θFH-MI

d

)2
var(θRRDir

d ) +MSE(θFH-MI
d )

,

where θFH-MI
d is the FH-MI estimator for the federal states and the back-transformed θFH-MI*

d es-

timator for the planning regions andMSE(θFH-MI
d ) are the corresponding MSE estimates. Note
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Table 1.5: Results for the goodness-of-fit test according to Brown et al. (2001).

Level W df p-value

BL 4.23 16 0.99
ROR 22.84 77 1

Table 1.6: Distribution of the MSE of mean HH net wealth across federal states (BL) and plan-
ning regions (ROR) based on Forschungsdaten- und Servicezentrum (FDSZ) der Deutschen
Bundesbank (2014), Panel on Household Finances (PHF) 2014, own estimations.

Level Estimate Min. 1st Qu. Median Mean 3rd Qu. Max.

BL Direct 140.47 430.41 821.16 1770.58 1906.36 8968.47
FH-MI 143.54 371.31 552.89 592.14 844.02 1169.21

ROR Direct 86.63 941.53 3701.64 19765.09 9610.40 561717.00
FH-MI 81.40 766.19 1434.42 2432.02 3121.08 13846.04

that only the estimates of in-sample domains are compared because direct estimates cannot be

obtained for out-of-sample domains. The test statistic W is χ2-distributed with D degrees of

freedom under the null hypothesis. The results of the test show that the null hypothesis, model-

based estimates do not differ significantly from the direct estimates, cannot be rejected (see

Table 1.5). According to Chandra et al. (2015), a useful diagnostic that measures the adequacy

of the model is the correlation coefficient of the synthetic part of the FH-MI estimates and the

direct estimates. For the federal states this correlation is 0.88 and for the planning regions 0.68.

Both values are comparable or higher to the value in Chandra et al. (2015).

1.4.2 Gain in accuracy

The accuracy of the estimates is measured by the Prasad-Rao MSE for both, the federal states

and the planning regions, since the REML approach is used for the estimation of σ2
u. The MSE

for the planning regions is further back-transformed to the original scale using the crude bias-

correction as described in Section 1.3.2. Table 1.6 shows that the FH-MI estimator is more

accurate than the direct estimator for the mean of HH net wealth for the federal states and

planning regions. The gain in accuracy is especially large for the planning regions. From these

results we can conclude that the FH approach helps to receive more reliable results.

1.4.3 Benchmarking

For the internal consistency the benchmarking approach described in Section 1.3.4 is imple-

mented. The direct estimates in the regions East and West are used as a benchmark. These

estimates also almost sum up to the national estimate with a negligible difference of 0.11%

and 0.20% for the federal states and planning regions, respectively. Thus, benchmarking to

the direct estimates of the regions ensures the consistency with the national estimate. Table

1.7 shows that the aggregated mean of HH net wealth of the FH-MI estimates for the planning

regions overestimates the regional direct estimate for the East and underestimates the corre-

sponding estimate for the West. For the benchmarking specification, φd = ξd/FH-MId is
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Table 1.7: Mean difference of aggregated FH-MI estimates to the regional direct estimates for
East and West in TEUR based on Forschungsdaten- und Servicezentrum (FDSZ) der Deutschen
Bundesbank (2014), Panel on Household Finances (PHF) 2014, own estimations.

Level Benchmark Regional direct estimate Aggregated estimate

BL East 90.23 89.77
West 248.48 230.02

ROR East 90.23 108.41
West 248.48 238.40

Table 1.8: Distribution of the mean HH net wealth across federal states (BL) and planning re-
gions (ROR) in TEUR based on Forschungsdaten- und Servicezentrum (FDSZ) der Deutschen
Bundesbank (2014), Panel on Household Finances (PHF) 2014, own estimations.

Level Estimate Min. 1st Qu. Median Mean 3rd Qu. Max.

BL Direct 69.68 93.19 153.01 175.81 254.63 307.74
FH-MI 74.83 87.23 155.27 159.79 223.51 283.91
FH-MI, bench 75.87 87.67 167.73 170.11 241.44 306.69

ROR Direct 51.45 112.92 178.40 220.68 294.17 621.41
FH-MI 63.79 124.85 174.69 202.26 254.52 512.31
FH-MI, bench 53.09 123.88 179.02 205.37 265.28 533.97

chosen in order to adjust regions with a large estimate stronger. The order/ranks of the regions

with regard to the value of the mean of HH net wealth remains unchanged within the East and

the West. After the application of the benchmarking approach, the aggregated estimates are

equal to the regional direct estimates and thus also equal to the national estimate. Table 1.8

shows the distribution of the mean HH net wealth across the federal states and the planning

regions for the direct, the FH-MI and the benchmarked FH-MI estimates. It can be seen that

most of the benchmarked results are larger than the FH-MI estimates. This is due to the fact

that adjusting the underestimation of the aggregated estimate of the West has the larger effect

on the benchmarked estimates than adjusting the overestimation or slight underestimation of

the aggregated estimates of the East (see Table 1.7). For the discussion in Section 1.5, the

benchmarked FH-MI estimates are used since these fulfill the requirement to sum up to the

regional and national direct estimates.

1.5 Discussion of the estimation results

While the former section discusses the results from a statistical perspective, this section de-

scribes the regional distribution of wealth in Germany and sets the results into relation with

theoretical knowledge.

Figure 1.2 shows the regional distribution of benchmarked FH-MI estimates for the states

and the planning regions. The map for the federal states shows the fairly known pattern of a

clear cut at the former border between East and West. All federal states in the East report an

average private net wealth of TEUR 90, which is more than 50% below of the national mean

reaching from about TEUR 75 in Saxony-Anhalt to TEUR 110 in Brandenburg. As outlined by
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Figure 1.2: Map of the benchmarked FH-MI estimates for the federal states (left) and for the
planning regions (right) of the mean of HH net wealth in TEUR based on Forschungsdaten-
und Servicezentrum (FDSZ) der Deutschen Bundesbank (2014), Panel on Household Finances
(PHF) 2014, own estimations.

the Deutsche Bundesbank (2016), the strong separation with respect to private net wealth can

be attributed to differences in financial wealth (TEUR 30 in the East to TEUR 60 in the West),

home-ownership (35% to 47%) as well as in the average value of owned dwellings (TEUR 145

to TEUR 250). This relationship is in line with the ratio of average sqm-prices for dwelling

provided by bulwiengesa AG (2018). In 2014, the average sqm-price for the purchase of a real

estate in the East was below TEUR 1.2, whereas it was at TEUR 1.9 in the West.

Furthermore, the estimates also provide evidence for heterogeneity of private wealth across

West German federal states. Our estimates confirm the findings by the Deutsche Bundesbank

(2016) reporting that the average net wealth of federal states in the South (Baden-Württemberg,

Bavaria and Hessen with an average of TEUR 284) is about 50% higher than in federal states

located in the West (North Rhine-Westphalia, Rhineland-Palatinate, and Saarland with an aver-

age net wealth of TEUR 193). This difference is mostly driven by the conditional mean value

of owner occupied housing (with TEUR 275 in the South and TEUR 197 in the West), finan-

cial assets (TEUR 73 to TEUR 53) and only slightly by home-ownership rates (48% to 44%).

Furthermore, the federal city state of Berlin reports an average net wealth below TEUR 100.

This observation is reasonable with regard to the home-ownership rates, which are often lower

in the cities. This especially holds for Berlin with a home-ownership rate of 15.6% (Landesamt

für Statistik Niedersachsen, 2014).

The analysis on the level of the planning regions enables further insights. Our results

provide evidence for heterogeneity in West Germany. The regions around economically pros-

perous cities in the West – namely Munich, Frankfurt and Hamburg – report the highest private

wealth levels in Germany. The top two regions (Südostoberbayern and Oberland) are located

in the South of Munich, where average private net wealth is around TEUR 520. The other end

of the distribution in the West predominantly contains regions in the Ruhr Area. This region

was severely affected by the breakdown of the coal and steel industry, which is still reflected

in the highest unemployment rates among West German planning regions. Note that the four

planning regions of the Ruhr Area are listed among the 5 regions with highest unemployment
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rates in West Germany: 1. Emscher-Lippe (11.7%), 2. Dortmund (11.5%), 3. Bremen (10.4%),

4. Duisburg/Essen (10.3%), and 5. Bochum/Hagen (9.1%) (Bundesinstitut für Bau-, Stadt-,

und Raumforschung, 2017). The results show that average private net wealth in these four

planning regions are quite similar reaching from TEUR 115 in Dortmund to TEUR 125 in

Duisburg/Essen.

The consideration of the 22 planning regions in East Germany including Berlin also cap-

tures regional differences of the distribution of private wealth. The four regions with the lowest

estimates for private wealth in East Germany are geographically dispersed across four differ-

ent federal states: Westsachsen in Saxony (TEUR 53), Südthüringen in Thuringia (TEUR 62),

Uckermark-Barmin in Brandenburg (TEUR 66) and Halle/Saale in Saxony-Anhalt (TEUR 66).

The regions with highest private wealth are located in the South-West of Berlin (Havelland-

Fläming: TEUR 130), at the Baltic Sea (Vorpommern: TEUR 143) as well as in the region

around the city of Dresden (Oberes Elbtal/Osterzgebirge: TEUR 154).

The results for German planning regions show that wealth is geographically dispersed in

both parts of the country. Furthermore, we can show that private wealth in all East German

planning regions still remains far below the national average. However, the wealthiest planning

regions in the East report higher private wealth figures than the West German regions with

lowest private wealth estimates.

1.6 Conclusion

The concentration of private income and wealth and the presence of financial support schemes

among countries and regions motivate the assessment of the regional distribution of financial

resources. While data sources for the estimation of regional income indicators are comprehen-

sive, the current best source for the estimation of private wealth is, in most countries, survey

data. In this context, the European Central Bank launched the HFCS in 2010, which is con-

ducted in each country of the euro area. While the HFCS is, so far, used to report national

estimates for private wealth, this work shows how to estimate average HH net wealth for low

regional levels, namely the 16 federal states and 96 planning regions in Germany. We con-

tribute to the literature by estimating the regional distribution of private wealth in Germany by

means of a modified FH model, which

a) accounts for the skewness of the wealth distribution by means of a log-transformation in

the estimation,

b) accounts for multiple imputation, and

c) ensures internal consistency of the estimates with a national benchmark.

The results of the estimation are very insightful and contribute to the discussion on the distri-

bution of private wealth, which has strikingly gained attention in the scientific literature as well

as in the public debate in recent years. Even 25 years after the German reunification, there is

a clear cut at the former border with respect to private wealth. However, the wealthiest plan-

ning regions in the East report higher private wealth figures than the West German regions with

lowest private wealth estimates. This important finding is highly relevant in the context of the
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discussion of a prolongation of the Solidarity Pact II assigning support exclusively to regions

located in the East.

Even though the application in this work concentrates on Germany, the theory is easily

transferable to the data of other countries attending the HFCS as well as other surveys that

use multiple imputation in order to account for item non-response and have a similar data

structure. For the imputation, considering the survey design and the explanation of domain

differences is important. Furthermore, the approach can also improve the country results for

single components of net wealth in the cross-country comparison of the HFCN. For instance,

estimates for various financial assets are either not reported for some countries because the

sample size is below 25 or are very imprecise (Household Finance and Consumption Network,

2016b).

For further research, it is of interest if the proposed FH approach can also be used for

other indicators. The application of the mean enables the usage of Rubin’s rule. However, it

is unclear if the rule can also be applied for non-linear poverty and inequality indicators like

the headcount ratio (Foster et al., 1984) or the Gini coefficient (Gini, 1912). One way could

be to use a transformation for indicators that do not fulfill the normality requirement before

applying Rubin’s rule as supposed in Marshall et al. (2009). A suitable transformation for

the headcount ratio might be the arcsin transformation which is also used in the FH approach

when the dependent variable is between 0 and 1 (Casas-Cordero et al., 2016; Schmid et al.,

2017). In this work, we propose an easy-to-apply approach by using the log-transformation

for meeting the model assumptions. Another approach to handle the skewed data could be

assuming a skewed normal distribution in the FH model (Moura et al., 2017). Furthermore,

future approaches could consider the panel structure of the survey.
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Supplementary material A

Household balance sheet

Table A.1: A household balance sheet.

Assets Liabilities

Real assets - Outstanding amount of household main
- Household main residence (HMR) residence mortgages and other real
- Other real estate property estate property mortgages
- Vehicles - Outstanding amount of debt on credit
- Valuables cards and credit lines/bank overdrafts
- Self employment business wealth - Outstanding amounts of other,
Financial assets non-collateralized, loans (including loans
- Deposits (sight accounts, saving accounts) from commercial providers and private loans)
- Mutual funds
- Bonds
- Shares (publicly traded)
- Managed investment accounts
- Money owed to household
- Voluntarily private pensions/

Whole life insurance
- Other financial assets: options, futures,

index certificates, precious metals, oil
and gas leases, future proceeds from a
lawsuit or estate that is being settled,
royalties or any other
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Data sources

Table A.2: Variables that potentially help to predict HH net wealth with corresponding refer-
ences. The numbers in parenthesis state the number of variables for this group.

Variables Year Level Source

Ownershiprate 2011 BL Landesamt für Statistik Niedersachsen (2014)

Rental and purchase prices 2014 BL Empirica ag (2017)
per sqm, level of interior (3) ROR

Number of houses (2) and 2015 ROR RWI;microm (2016c)
types of buildings (6)

Density of cars and 2015 ROR RWI;microm (2016b)
car segment (11)

Saving quota of HH 2014 BL Statistische Ämter des Bundes und der Länder (2014d)

Default probability (8) 2015 ROR RWI;microm (2016e)

Private debtors per 100 inhabitants 2014 ROR Bundesinstitut für Bau-, Stadt-, und Raumforschung (2017)

Disposable income of private 2014 BL Statistische Ämter des Bundes und der Länder (2014e)
HHs per inhabitant

Average HH income per inhabitant 2014 ROR Bundesinstitut für Bau-, Stadt-, und Raumforschung (2017)

Unemployment rate, 2014 BL Statistische Ämter des Bundes und der Länder (2014a)
2014 ROR Bundesinstitut für Bau-, Stadt-, und Raumforschung (2017)

percentage of employees, civil 2011 BL Statistische Ämter des Bundes und der Länder (2011)
servants and self-employed

Age groups (4) 2014 BL Statistische Ämter des Bundes und der Länder (2014c)
Age groups (4) 2014 ROR Bundesinstitut für Bau-, Stadt-, und Raumforschung (2017)

Youth dependency ratio, 2014 BL Statistische Ämter des Bundes und der Länder (2014b)
old-age dependency ratio 2014 BL

Single or couple 2015 ROR RWI;microm (2016d)
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Labels for the regional levels
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BL Name

1 Schleswig-Holstein

2 Hamburg

3 Niedersachsen

4 Bremen

5 Nordrhein-Westfalen

6 Hessen

7 Rheinland-Pfalz

8 Baden-Württemberg

9 Bayern

10 Saarland

11 Berlin

12 Brandenburg

13 Mecklenburg-Vorpommern

14 Sachsen

15 Sachsen-Anhalt

16 Thüringen

Figure A.1: Official municipality keys for the planning regions within its polygon and names
of the federal states in Germany.
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Figure A.2: Official municipality keys for the planning regions within its polygon.
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Table A.3: Official municipality keys for the planning regions and corresponding names.

ROR Name ROR Name

101 Schleswig-Holstein Mitte 806 Neckar-Alb
102 Schleswig-Holstein Nord 807 Nordschwarzwald
103 Schleswig-Holstein Ost 808 Ostwürttemberg
104 Schleswig-Holstein Süd 809 Schwarzwald-Baar-Heuberg
105 Schleswig-Holstein Süd-West 810 Stuttgart
201 Hamburg 811 Südlicher Oberrhein
301 Braunschweig 812 Rhein-Neckar (BW)
302 Bremen-Umland 901 Allgäu
303 Bremerhaven 902 Augsburg
304 Emsland 903 Bayerischer Untermain
305 Göttingen 904 Donau-Iller (BY)
306 Hamburg-Umland-Süd 905 Donau-Wald
307 Hannover 906 Industrieregion Mittelfranken
308 Hildesheim 907 Ingolstadt
309 Lüneburg 908 Landshut
310 Oldenburg 909 Main-Rhön
311 Osnabrück 910 München
312 Ost-Friesland 911 Oberfranken-Ost
313 Südheide 912 Oberfranken-West
401 Bremen 913 Oberland
501 Aachen 914 Oberpfalz-Nord
502 Arnsberg 915 Regensburg
503 Bielefeld 916 Südostoberbayern
504 Bochum/Hagen 917 Westmittelfranken
505 Bonn 918 Würzburg
506 Dortmund 1001 Saar
507 Duisburg/Essen 1101 Berlin
508 Düsseldorf 1201 Havelland-Fläming
509 Emscher-Lippe 1202 Lausitz-Spreewald
510 Köln 1203 Oderland-Spree
511 Münster 1204 Prignitz-Oberhavel
512 Paderborn 1205 Uckermark-Barnim
513 Siegen 1301 Mecklenburgische Seenplatte
601 Mittelhessen 1302 Mittleres Mecklenburg/Rostock
602 Nordhessen 1303 Vorpommern
603 Osthessen 1304 Westmecklenburg
604 Rhein-Main 1401 Oberes Elbtal/Osterzgebirge
605 Starkenburg 1402 Oberlausitz-Niederschlesien
701 Mittelrhein-Westerwald 1403 Südsachsen
702 Rheinhessen-Nahe 1404 Westsachsen
703 Rheinpfalz 1501 Altmark
704 Trier 1502 Anhalt-Bitterfeld-Wittenberg
705 Westpfalz 1503 Halle/S.
801 Bodensee-Oberschwaben 1504 Magdeburg
802 Donau-Iller (BW) 1601 Mittelthüringen
803 Heilbronn-Franken 1602 Nordthüringen
804 Hochrhein-Bodensee 1603 Ostthüringen
805 Mittlerer Oberrhein 1604 Südthüringen
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Chapter 2

The fayherriot command for
estimating small-area indicators

2.1 Introduction

Various national and international institutions including the United Nations (Leadership Coun-

cil of the Sustainable Development Solutions Network, 2015) and the Organisation for Eco-

nomic Co-operation and Development (OECD) (Piacentini, 2014) collect comprehensive in-

dicator sets for monitoring purposes. Many indicators refer to sub-national areas or domains:

federal states, economic sectors, societal groups, etc.

In the socio-economic context, domain-level indicators are usually derived from population

surveys by direct estimation. Direct estimates are only based on the survey data and therefore,

small sample sizes can limit their precision. For this reason, institutions that provide these kinds

of indicators usually require a minimum number of observations per domain or impose limits

on the variability of the estimates (eurostat, 2013a; Tzavidis et al., 2018). Furthermore, direct

estimates cannot be obtained for out-of-sample domains, i.e., domains without any observation

in the sample.

Small area estimation (SAE) techniques use auxiliary data from additional data sources

to improve the precision of survey-based direct estimates. One popular approach is the Fay-

Herriot model (Fay and Herriot, 1979) due to its moderate data requirements.1 Direct estimates

and auxiliary data are only needed on the domain level.

The command fayherriot provides empirical best linear unbiased predictors (EBLUP),

a linear combination of the domain-level direct estimator and a regression-synthetic component

based on a linear model. The underlying model can also be expressed as a special linear mixed

model. In contrast to a standard linear mixed model (encompassed in mixed (Rabe-Hesketh

and Skrondal, 2012) or gllamm (StataCorp, 2017)), the Fay-Herriot model builds on two error

terms on the same level, the domain level, with domain-specific variances of one error term.

The model assumes linearity and normality of its two error terms.

fayherriot performs the following:
1Applications include, e.g., the estimation of income and poverty rates (Powers et al., 2008; Huang and Bell,

2012) and educational indicators (Schmid et al., 2017).
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• The Fay-Herriot model as described in Rao and Molina (2015, pp. 123-129) with re-

stricted maximum likelihood and maximum likelihood estimation of the variance of the

random effects.

• Estimation of the mean squared error (MSE) as proposed in Datta and Lahiri (2000) and

Prasad and Rao (1990).

• Prediction and MSE estimation for out-of-sample domains (Rao and Molina, 2015, p.

126 and p. 139).

• Adjusted estimation methods as proposed in Li and Lahiri (2010) and Yoshimori and

Lahiri (2014) to deal with non-positive estimates of the variance of the random effects.

• The log-transformed Fay-Herriot model including a bias-correction by Slud and Maiti

(2006) to deal with violations of model assumptions, e.g., non-normality of the error

terms.

2.2 The Fay-Herriot model

2.2.1 Modeling

The main idea of the Fay-Herriot (FH) model (Fay and Herriot, 1979) is to combine domain-

level direct estimators (based on survey data) with aggregated domain-level covariates (e.g.,

from register or administrative data). The direct estimator should be a linear statistic such as

an arithmetic mean or total.

The FH model builds on a sampling and a linking model. According to the sampling model,

θ̂d = θd + ed for d = 1, ..., D,

the observed direct estimator for domains d = 1, ..., D, θ̂d, is composed of the true value, θd,

and a sampling error, ed, with mean zero and variance σ2
ed

. The model assumes that the sam-

pling error variance of each domain is known. In practice, the variance of the direct estimator

is used frequently as an estimate for σ2
ed

(You and Chapman, 2006).

According to the linking model,

θd = x>d β + ud for d = 1, ..., D,

the true value, θd, is explained by domain-specific covariates, xd, a random effect, ud, and

regression parameters β. The random effect is independent identically and normally distributed

with mean zero and variance σ2
u. The model assumes inter-domain correlations to be zero.

Combining the sampling and the linking model gives the FH model, a linear mixed model

of the form,

θ̂d = x>d β + ud + ed for d = 1, ..., D. (2.1)
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The FH estimator (EBLUP) is given by θ̂FH
d = x>d β̂ + ûd. It can also be expressed more

intuitively as a weighted average of the direct and a regression-synthetic estimator,

θ̂FH
d = γ̂dθ̂d + (1− γ̂d)x>d β̂. (2.2)

The estimator γ̂d = σ̂2
u

(σ̂2
u+σ2

ed
)
, the so-called “shrinkage factor”, weights the direct estimator and

the regression-synthetic part. The weight on the direct estimator decreases with the sampling

error variance.

For out-of-sample domains, γ̂d is not defined and the regression-synthetic estimator x>d β̂

is used.

2.2.2 Estimating the variance of the random error

The FH model requires an estimation of the variance of the random error, σ2
u, and of the re-

gression parameters, β. Standard estimation techniques for σ2
u are, among others, restricted

maximum likelihood (REML) and maximum likelihood (MLE). These methods do not guaran-

tee positive variance estimates (Li and Lahiri, 2010; Yoshimori and Lahiri, 2014). Especially

in case of a small number of domains, the variance estimates can be negatively biased or even

below zero. In the latter case, the variance estimate is set to zero. An underestimation of

the variance component could lead to a significant over-shrinkage of the direct estimator to

the regression-synthetic part, i.e., too much weight is put on the regression-synthetic part. Ad-

justed estimation methods such as the adjusted maximum residual likelihood approach (ARYL)

following Yoshimori and Lahiri (2014) and the adjusted maximum profile likelihood (AMPL)

following Li and Lahiri (2010) ensure strictly positive variance estimates.

fayherriot allows the estimation of σ2
u with the REML (as default), MLE, ARYL and

AMPL.2 The method can be specified in the command option sigmamethod. The vector of

regression parameters, β, is estimated by the empirical best linear unbiased estimator β̂ (Rao

and Molina, 2015, p. 124).

2.2.3 Evaluating the precision

The precision of the EBLUP is evaluated by means of the MSE, defined as:

MSE(θ̂FHd ) = E

[(
θ̂FHd − θd

)2
]
.

Since the true value θd is unobserved, MSE(θ̂FHd ) must be estimated. For in-sample domains,

MSE estimators have been proposed for estimates of σ2
u relying on REML (Prasad and Rao,

1990, p. 167), MLE (Datta and Lahiri, 2000, p. 619), ARYL (Yoshimori and Lahiri, 2014),

and AMPL (Li and Lahiri, 2010, p. 886). For out-of-sample domains, MSE estimators have

been proposed for REML and MLE only (Rao and Molina, 2015, p. 139). fayherriot

automatically selects the appropriate MSE estimator.
2See Yoshimori and Lahiri (2014) for a general discussion of the comparative advantages of each of the methods.
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2.2.4 Dealing with model-assumption violations

The FH model assumes linearity and normality of its two error terms. In case of a violation of

these assumptions, a log-transformation of the direct estimator might be an option (Slud and

Maiti, 2006). Choosing this option requires an appropriate transformation of the variance of

the original direct estimator.3 Neves et al. (2013) suggest the transformation,

θ̂∗d = log(θ̂d),

var(θ̂∗d) =
(
θ̂d

)−2
var(θ̂d), (2.3)

with ∗ indicating the transformed scale.

Equation 2.1 is estimated using θ̂∗d as direct estimator and var(θ̂∗d) as estimate for the

sampling error variance. To bring the estimated EBLUP and MSE back from the transformed to

the original scale, a bias-correction is advised (Slud and Maiti, 2006; Sugawasa and Kubokawa,

2017). fayherriot includes two back-transformation methods: the “crude” method, shown

in Neves et al. (2013); Rao and Molina (2015), and, as default, the bias-correction proposed by

Slud and Maiti (2006). For the point estimates these are defined as follows:

θ̂FH, crude
d = exp

{
θ̂FH*
d + 0.5MSE(θ̂FH∗d )

}
,

θ̂FH, Slud-Maiti
d = exp

{
θ̂FH*
d + 0.5σ̂2

u(1− γ̂d)
}
,

with ∗ indicating the transformed scale.

The Slud-Maiti back-transformation relies on MLE for the estimation of σ2
u. Since it

requires an estimate of γ̂d, it is only applicable for in-sample domains. The “crude” back-

transformation can be used for in- and out-of-sample predictions.

For estimating the precision of the back-transformed EBLUPs, Slud and Maiti (2006, p.

248) develop an MSE estimator when using the log-transformation. The “crude” method uses

the estimates in the transformed scale and the following back-transformation:

MSE(θ̂FH, crude
d ) = exp

{
θ̂FH*
d

}2
MSE(θ̂FH*

d )

2.2.5 Overview of functionalities

Figure 2.1 gives an overview of the functionalities of the fayherriot command.

3It is not appropriate to take the logarithm of the variance. This is because the variance of a log-transformed
variable is different from the log-transformed variance of the original variable.
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Figure 2.1: Functionalities of the fayherriot command. The two lowest levels describe the estimation methods of σ2
u and the corresponding MSE estimators,

respectively. The default options are written in bold.
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2.3 The fayherriot command

2.3.1 Syntax

fayherriot runs in Stata 12 and later versions. The syntax is:

fayherriot depvar
[

varlist
] [

if
] [

in
]

, variance(varname)
[
sigmamethod(method)

logarithm biascorrection(method) initialvalue(#) eblup(name)

mse(name) gamma nolog
]

The command runs on datasets on the domain level with one observation per domain. depvar

is the direct estimator, θ̂d (in documentation theta), and varlist corresponds to the auxiliary

explanatory variables, xd (in the documentation X).

2.3.2 Options for fayherriot

variance(varname) determines the variable containing the sampling error variances,

sigma2_e. This variance is assumed to be known in the model. However, it often needs

to be estimated from the data. One possibility is the usage of the estimated variance of the

direct estimator theta specified in depvar for each domain. Whenever the direct estima-

tor needs to be logarithmized with theta_log = log(theta), the estimated variance can be

modified as sigma2_e_log = sigma2_e/(theta2) (Neves et al., 2013).

sigmamethod(method) specifies the method for the estimation of the variance of the ran-

dom effect: reml, mle, ampl, or aryl. The default is the reml method. Another stan-

dard approach is the mle approach. However, whenever a zero estimate is received for

the variance, which occurs more likely when the number of domains is small, an adjusted

maximum likelihood method can help to receive strictly positive values for the variance.

Therefore, the ampl by Li and Lahiri (2010) and the aryl method suggested by Yoshimori

and Lahiri (2014) are additionally provided.

logarithm indicates that the dependent variable in depvar is the log-transformed direct

estimator. A log-transformed Fay-Herriot model is suitable when the linearity or normality

assumption of the error terms is not fulfilled. logarithm automatically back-transforms

EBLUP and MSE to the original scale.

biascorrection(method) determines the method for the back-transformation of EBLUP

and MSE in a log-transformed Fay-Herriot model. The EBLUPs and MSEs in the trans-

formed scale can be back-transformed using the bias-correction proposed by Slud and Maiti

(2006), which is set as a default, and a crude bias-correction (Neves et al., 2013; Rao and

Molina, 2015).

initialvalue(#) sets the initial value of the optimization algorithm for estimating the

variance of the random effect sigma2_u to #. The default value is .0.

eblup(name) stores the EBLUP estimates in the variable name. For in-sample domains, the

EBLUPs are defined as eblup = Xbeta + u, where Xbeta are the estimated fixed effects

and u is the estimated random effect. The EBLUP can also be expressed as weighted

average of the direct estimator and a synthetic part eblup = gamma x theta + (1 −
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gamma)Xbeta. For out-of-sample domains, the EBLUP shrinks to the synthetic part

eblup = Xbeta.

mse(name) stores the MSE estimates in the variable name. The MSE depends on the estima-

tion procedure of sigma2_u. For reml, the MSE estimator relies on Prasad and Rao (1990,

p. 167); for mle on Datta and Lahiri (2000, p. 619); for ampl on Li and Lahiri (2010,

p. 886); and for aryl method on Yoshimori and Lahiri (2014). For the log-transformed

Fay-Herriot model under the Slud-Maiti bias-correction, the MSE is defined as in Slud

and Maiti (2006, p. 248). It is only applicable to in-sample domains. Under the crude

bias correction, for in- and out-of-sample domains: mse(eblup_backtransformed) =

exp(eblup)2 xmse(eblup), where eblup is in the log scale (Neves et al., 2013).

gamma reports summary statistics of the shrinkage factor, gamma = sigma2_u/(sigma2_u

+ sigma2_e), where sigma2_u is the estimated variance of the random effect and

sigma2_e is the sampling error variance of each domain provided in variance().

nolog suppresses the display of the iteration log of the optimization algorithm.

2.3.3 predict after fayherriot:

The syntax for predict following fayherriot is:

predict
[

type
]

newvarname
[

if
] [

in
] [

, eblup mse ehat estandard uhat

gamma cvdirect cvfh
]

Per default predict provides the EBLUPs. Options are:

eblup generates the EBLUPs as defined above, the default.

mse generates estimates for the MSE as defined above.

ehat calculates the residuals. The residuals are defined as e = (1 − gamma) x (theta −
Xbeta), where theta is the direct estimator given in depvar.

estandard calculates the standardized residuals defined as e/sqrt(sigma2_e), where

sigma2_e is the sampling error variance in variance(varname).

uhat calculates the random effects. The random effects are defined as: u = gamma x (theta−
Xbeta).

gamma generates the shrinkage factor as defined above.

cvdirect calculates the coefficient of variation of direct estimates. cvdirect =

100 x sqrt(sigma2_e)/theta, where theta corresponds to depvar and sigma2_e is the

sampling error variance provided in variance(varname). In case logarithm is spec-

ified, cvdirect = 100 x sqrt(sigma2_e′)/theta′ with theta′ = exp(theta_log), and

sigma2_e′ = var(theta_log) x (theta′)2.

cvfh calculates the coefficient of variation based on EBLUPs: cvfh = 100 x sqrt(mse)/

eblup.
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2.3.4 Stored results
Scalars

e(N_in) number of observations
used for estimation of e(b)
and e(sigma2_u)

e(N_out) number of out-of-sample observations for
which EBLUP is calculated

e(sigma2_u) estimated sigma2_u e(r2_a) adjusted R-squared
e(r2_fh) adjusted R-squared according

to Lahiri and Suntornchost (2015)
e(p_e) p-value of Shapiro-Wilk test for normality

of residuals
e(V_e) index of Shapiro-Wilk test

statistic, test for normality
of residuals

e(p_u) p-value of Shapiro-Wilk test statistic, test
for normality of u

e(V_u) index of Shapiro-Wilk test
for normality of u

Macros
e(cmd) fayherriot e(title) Fay-Herriot estimation
e(depvar) name of dependent variable e(variance) name of variance variable
e(sigma_method) e(bias_correction)

sigmau_2 estimation method bias correction method for the back-
transformation of transformed EBLUPs

e(logarithm)Logarithm true or false
e(predict) program to implement predict e(properties)e(b V)

Matrices
e(b) coefficient vector e(V) variance-covariance matrix of coefficients
e(gamma) summary of values of shrinkage factor

gamma

Functions
e(sample) marks estimation sample

2.4 Example

We use the FH model to estimate households’ material well-being in 2015 in Germany: at

the level of federal states (16 divisions), planning regions (96 divisions), and districts (402

divisions). Material well-being is defined as region-specific average equivalent income, i.e.,

household disposable income divided by the OECD modified scale (Hagenaars et al., 1994).

Following the policies used by several statistical agencies to evaluate the precision of the

regional estimates, we rely on the coefficient of variation (CV), the standard error of the esti-

mate divided by the estimate (in percent). For instance, Statistics Canada releases data without

warning about low precision if the CV is below 16.5 percent (Statistics Canada, 2013; eurostat,

2013a).

2.4.1 Data description and direct estimates

We derive the direct estimates from the German Socio-Economic Panel (SOEP), a household

survey covering about 15,000 households per year (Goebel et al., 2018).

Table 2.1 provides the division-specific numbers of SOEP households. Sample sizes by

federal states are large (median: 624), ranging from 114 to 3,159 observations. Sample sizes by

planning regions are considerably smaller (median: 132), ranging from 32 to 665 observations.

Sample sizes by districts range from 10 to 648 observations (median: 32).4 Due to small sample
4For confidentiality issues, we discarded areas with fewer than 10 observations. This left us with 357 out of 402

districts.
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Table 2.1: Number of regions and sample sizes.

Sample size distribution

Regional division Number of regions Min p10 p25 p50 Max

Federal states 16 114 144 444 624 3158
Planning regions 96 32 61 88 132 665
Districts 357 10 14 20 32 648
Note: Data are from SOEP v33.1. Own computations.

Table 2.2: Summary of mean equivalent household income and coefficients of variation by
regional level.

Regional division Min p10 p25 p50 p75 p90 Max

(A) Mean equivalized household income
Federal states 1362 1398 1492 1683 1777 1841 1863
Planning regions 1298 1400 1495 1664 1780 1898 2101
Districts 1023 1311 1463 1641 1847 2049 2976

(B) Coefficient of variation
Federal states 0.6 0.8 1.4 2.2 3.8 6.4 8.0
Planning regions 1.5 3.4 4.1 5.3 7.2 9.0 18.2
Districts 2.2 5.8 7.6 10.2 13.6 16.7 42.5

Note: Data are from SOEP v33.1. Own computations.

sizes, we expect that many direct estimates for planning regions and districts are measured with

high imprecision.

For each regional level, Table 2.2 provides direct estimates of mean equivalent income and

coefficients of variation, our precision indicator.5 The table suggests considerable regional

heterogeneities in material well-being. Across federal states, mean equivalent income ranges

from e1,362 to e1,863; across planning regions from e1,298 to e2,101; and across districts

from e1,023 to e2,976. As expected, coefficients of variation increase as we move to smaller

regional levels. In line with the policy of Statistics Canada, not all estimates could be reported

for the planning regions and the districts without warning of low precision. In the following,

we show how this can be achieved using the FH model. In particular, a) the precision of all

estimates will be improved, and b) estimates for the districts without direct estimator can be

received.

2.4.2 Estimation using fayherriot

For estimating the FH model, we rely on the direct estimates of average equivalent incomes

(Table 2.2), their sampling error variances, σ2
ed

, and region-specific explanatory variables. The

set of explanatory variables in this example includes the unemployment rate, the share of pop-

ulation older than 65 years, and per-capita income tax revenue.6

5We estimated standard errors using the random group estimator to account for the survey sampling design
(Rendtel, 1995).

6The explanatory variables are obtained from INKAR (Bundesinstitut für Bau-, Stadt-, und Raumforschung,
2017), a database of regional indicators derived from high-quality and large-scale national census and register data.
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FH model for the planning regions

In the following, we detail the application of fayherriot at the level of planning regions. In

this example, all regions are sampled and the model assumptions are fulfilled. The underlying

dataset includes 96 observations, one observation per region:

. use dataROR.dta, clear

. summarize

Variable Obs Mean Std. Dev. Min Max

income 96 1658.387 188.7142 1297.915 2100.683

directvari~e 96 11448.52 12856.35 612.4922 96107

unemployment 96 6.259375 2.579212 2.1 12.8

incometax 96 399.2719 105.6913 211.6 705

share65 96 56.48438 .8259385 54.9 58.2

N 96 162.3854 125.7412 32 665

To estimate the FH model, we type:

. fayherriot income unemployment incometax share65, ///

> variance(directvariance) gamma nolog

Sigma2_u estimation method: reml N in sample = 96

Log dependent variable: No N out of sample = 0

EBLUP and MSE bias correction: None Sigma2_u = 4683.7186

Adj R-squared = 0.5769

FH R-squared = 0.7808

Gamma

Min 5% Median 95% Max

0.0465 0.1464 0.3726 0.7307 0.8844

income Coef. Std. Err. z P>|z| [95% Conf. Interval]

unemployment 5.956308 6.664691 0.89 0.371 -7.106247 19.01886

incometax 1.278903 .1365014 9.37 0.000 1.011365 1.546441

share65 -38.88106 18.04844 -2.15 0.031 -74.25536 -3.506763

_cons 3301.427 1013.564 3.26 0.001 1314.878 5287.976

Shapiro-Wilk test for normality:

Residuals e (standardized) V = 0.837 p-value = 0.653

Random effects u V = 0.392 p-value = 0.981

The syntax of the command is in line with the familiar Stata regression syntax: income con-

tains the direct estimates of mean equivalent income and is regressed on the regional explana-

tory variables, unemployment, incometax, and share65. The variance option spec-

ifies the variable containing the sampling error variances, directvariance. We specify

the gamma option to display summary statistics of shrinkage factors γ̂d. nolog suppresses

the iteration log of the optimization algorithm.

N in sample indicates that the full set of 96 planning regions was used in the estimation.

FH R-squared is an indicator for the goodness of fit of the FH model, proposed by Lahiri

and Suntornchost (2015, p. 317,AdjR2
h). Similar to the standardR2, it expresses the explained

variation of income in relation to the total variation, while taking into account that some

variation in income is due to the sampling error. In this example, about 78% of the variation
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is explained.

The variance of the random effects, σ̂2
u = 4, 683.7186, is estimated using the REML ap-

proach (default). Together with the sampling error variances σ2
ed

, it determines the shrinkage

factor γ̂d. The shrinkage factor shows how direct estimates and model predictions are weighted

when calculating the EBLUP. Large values of γ̂d mean that a large weight is given to the direct

estimate θ̂d. In our example, the distribution of γ̂d ranges from 0.0465 to 0.8844 with its me-

dian being 0.3726. So for some regions, the EBLUP relies strongly on the model predictions

(small value of γ̂d), and strongly on the direct estimator for others (large value of γ̂d). The

Shapiro-Wilk test for normality shows that neither normality of the realized residuals, êd, nor

of the random effects, ûd, is rejected. Hence, the model assumptions are not violated.

Log-transformed FH model for the districts

In the district-level analysis, not all regions are sampled and the normality assumption of the

model is violated. Hence, we log-transform equivalent incomes and the variances of the sam-

pling error,

. use dataDistricts.dta, clear

. gen logincome = log(income)

(45 missing values generated)

. gen directlogvariance = directvariance/income^2

(45 missing values generated)

and estimate the log-transformed FH model:

. fayherriot logincome unemployment incometax share65, ///

> variance(directlogvariance) nolog logarithm

Sigma2_u estimation method: mle N in sample = 357

Log dependent variable: Yes N out of sample = 45

EBLUP and MSE bias correction: sm Sigma2_u = 0.0089

Adj R-squared = 0.2891

FH R-squared = 0.4745

logincome Coef. Std. Err. z P>|z| [95% Conf. Interval]

unemployment -.0004102 .003304 -0.12 0.901 -.0068858 .0060655

incometax .0007471 .0000904 8.26 0.000 .0005698 .0009243

share65 -.0063528 .003548 -1.79 0.073 -.0133067 .0006011

_cons 7.241288 .1051244 68.88 0.000 7.035248 7.447328

Shapiro-Wilk test for normality:

Residuals e (standardized) V = 1.614 p-value = 0.128

Random effects u V = 0.830 p-value = 0.670

By specifying the logarithm option, fayherriot transforms the estimated EBLUP and

MSE back to the original scale. Because we did not specify the bias-correction method, the

estimation method is MLE and the bias correction follows Slud and Maiti (2006) (see Fig-

ure 2.1). In this default setting, only estimates for the 357 in-sample districts are calculated.

biascorrection(crude) could be specified to obtain in- and out-of-sample estimates.
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Figure 2.2: Ratio of the EBLUP to the direct estimates plotted against regional sample sizes
for all three regional divisions – federal states, planning regions, and districts. Only in-sample
domains are plotted. Data are from SOEP v33.1. Own computations.

2.4.3 Comparison of direct and FH estimates

Next we compare the direct with the FH point estimates (EBLUP) and assess their precision.

There are two equivalent ways to obtain the EBLUPs and their level of precision (MSE). First,

by specifying the eblup(varname) and mse(varname) option (here done for the planning

regions):

. fayherriot income unemployment incometax share65, ///

variance(directvariance) nolog eblup(eblupROR) mse(mseROR)

Second, by using the post-estimation predict routine directly after the fayherriot com-
mand:

. predict eblupROR, eblup

. predict mseROR, mse

An additional feature of predict is that it provides the CV for the direct and FH estimates.

. predict cvROR_FH, cvfh

. predict cvROR_direct, cvdirect

To assess the magnitude of adjustments, Figure 2.2 presents the ratios of EBLUPs and direct

estimates against region-specific sample sizes.7 For federal states, the ratios are all close to

one, suggesting small adjustments of the direct estimator. For planning regions and districts,

adjustments are larger, an expected result given smaller sample sizes of these domains.

To assess the gain in precision, Figure 2.3 provides boxplots of coefficients of variation for

the direct and FH estimates. The horizontal line indicates the threshold of 16.5 suggested by

Statistics Canada. For the direct estimates, several CVs at the district and planning region level

exceed the threshold. For the FH estimates, in contrast, CVs for all regional levels are under

the threshold.

7For further comparison methods, we refer to Brown et al. (2001).
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Figure 2.3: Boxplots of the distribution of the coefficients of variation for the federal states, the
planning regions, and the districts. The horizontal line indicates the precision threshold of 16.5
percent. Only in-sample domains are plotted. Data are from SOEP v33.1. Own computations.

2.5 Conclusion

SAE techniques are designed to improve the precision of domain indicators. One such tech-

nique is the Fay-Herriot (FH) model. It aims at improving the precision of direct estima-

tors from a survey by using additional domain-level covariate information. We introduce the

fayherriot command and provide an application to regional heterogeneities in material

well-being in Germany. The results show that the precision of the FH model estimates is

markedly higher than that of the direct estimates.

2.6 Acknowledgments

Halbmeier and Schröder thank Johannes König for his valuable remarks and comments as

well as Paul Brockmann, Deborah Anne Bowen, and Fabian Nemeczek for excellent research

assistance. Kreutzmann and Schmid gratefully acknowledge support by the German Research

Foundation within the project QUESSAMI (281573942) and the MIUR-DAAD Joint Mobility

Program (57265468).

47



Part II

Estimation of Disaggregated
Non-Linear Indicators based on

Income and Wealth Data

48



Chapter 3

Estimation of sample quantiles:
Challenges and issues in the context of
income and wealth distributions

3.1 Motivation

The four most popular statistical software packages in terms of the number of scholarly arti-

cles in 2016 are SPSS (IBM Corp, 2013), R (R Core Team, 2018), SAS™ software (SAS
Institute Inc., 2018), and Stata (StataCorp, 2015) (Muenchen, 2017). All of them enable the

estimation of sample quantiles which are a well-known statistical measure that helps to de-

scribe distributions in many research fields. Generally, users would assume the same result

for the quantiles regardless of the statistical software. Table 3.1 shows exemplary results of

the median and the quartiles for household net wealth from the Panel of Household Finances

(PHF) (Forschungsdaten- und Servicezentrum (FDSZ) der Deutschen Bundesbank, 2014) and

for disposable income aggregated at the federal state level, obtained from the national accounts

for the federal states (Bundesinstitut für Bau-, Stadt-, und Raumforschung, 2017).

Table 3.1: Unweighted median and quartiles of household net wealth (left) and disposable
income (right). The measures of household net wealth of households in the German states
Nordrhein-Westfalen, Rheinland-Pfalz and Saarland are estimated from household data based
on Forschungsdaten- und Servicezentrum (FDSZ) der Deutschen Bundesbank (2014), Panel
on Household Finances (PHF) 2014, own estimations. The measures of disposable income are
estimated on aggregated data for the federal states from the database Indikatoren und Karten zur
Raum- und Stadtentwicklung (INKAR) (Bundesinstitut für Bau-, Stadt-, und Raumforschung,
2017).

Household net wealth (n = 1144) Disposable income (n = 16)

0.25 0.5 0.75 0.25 0.5 0.75

R 21275 172780 409383 1532 1672 1798

SAS 20950 172780 409856 1525 1672 1802

SPSS 20300 172780 408910 1512 1672 1793

Stata 20950 172780 409856 1525 1672 1802
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It is noticeable that the results differ across software programs even when the sample size is

relatively large with 1,144 observations. This is due to the fact that the software programs use

different quantile definitions. Attempts to encourage a common quantile definition have so far

not been successful (Hyndman and Fan, 1996; Langford, 2006). Therefore, this work describes

and compares the different quantile definitions that are implemented in the aforementioned

statistical software programs.

In theory, quantiles are defined by the inverse of the cumulative distribution function (cdf),

also called the quantile function, if the distribution function is known and invertible. The

quantile function Q can be expressed as

Q(p) = F−1(p) = inf{x ∈ R : F (x) ≥ p} for p ∈ (0, 1),

where F (x) is the distribution function and p the quantile level. It returns the minimum value

of x from amongst all those values whose cdf value is at least equal to p. In case the theoretical

distribution is not known and data is finite, e.g., when the data source is a survey, quantiles

need to be estimated. We denote X1, ..., Xn as n independent and identically distributed sam-

ple observations where X(1), ..., X(n) are the corresponding order statistics, i.e., the sample

observations in ascending order (David and Nagaraja, 2003). Based on these order statistics,

most quantile definitions can be classified into two categories:

1. Sample quantiles that are defined as order statistics or weighted averages of two order

statistics:

Qp = (1− γ)X(i) + γX(i+1),

where X(i) is the ith order statistic and the value of γ is a weighting factor (often a

function of i).

2. Sample quantiles that make use of a weighted average of all order statistics with different

weighting factors:

Qp =
n∑
i=1

WiX(i),

where X(i) is the ith order statistic and Wi a weighting factor depending on i.

The estimation of the category 1 type of quantiles goes back to at least the 19th century (see

e.g., Galton (1889); Edgeworth (1886) and for a more detailed review see Eubank (2004)).

Many different definitions have been developed since then. They basically differ in the way in

which the two order statistics are weighted, i.e., how γ is defined (Hazen, 1914; Weibull, 1939;

Gumbel, 1939; Parzen, 1979). Among others, Cramér (1946) and Chatterjee (2011) study the

asymptotic properties of sample quantiles and show the asymptotic normality for the inverse

of the empirical cumulative distribution function (ecdf). Along with advances in computa-

tion, quantile estimators of category 2 were introduced (Harrell and Davis, 1982; Yang, 1985;

Sheather and Marron, 1990; Fan et al., 2014), especially in order to improve the efficiency of

50



CHAPTER 3. ESTIMATION OF SAMPLE QUANTILES

quantile estimators regardless of the underlying distribution. Recently, Sfakianakis and Vergi-

nis (2008) introduced a new family of quantile estimators and Makkonen and Pajari (2014)

proposed the usage of the true rank probabilities for defining sample quantiles. The definitions

mentioned above are nonparametric, i.e., no distributional assumption about the population

quantile is made. For semi-parametric and parametric approaches we refer, for instance, to

Hosking (1990), Longford (2011) and Wei et al. (2015). This review of quantile definitions

emphasizes the wide range of definitions. However, by far, not all known definitions are avail-

able in standard statistical software.

This work focuses on the definitions that are implemented in the programs SPSS, R,

SAS™ software, and Stata. Its purpose is

• to draw attention to the different quantile definitions in statistical software,

• to discuss the possibilities for the inclusion of sampling weights and variance estimation,

• to compare the performance of different quantile estimators using a simulation study

based on a theoretical distribution that approximates the German income distribution,

• and to discuss the challenges when evaluating the sample quantiles of a skewed empirical

distribution of net wealth.

The first and the third point extend the work of Parrish (1990), Dielmann et al. (1994) and

Hyndman and Fan (1996). While Parrish (1990) investigates a range of different quantile

definitions available in software when the distribution is normal, Dielmann et al. (1994) also

consider symmetric long-tailed and skewed distributions. Both suggest a quantile estimator

proposed by Harrell and Davis (1982) for symmetric distributions and Parrish (1990) further

states that a quantile definition by Hazen (1914) is least biased. Hyndman and Fan (1996)

advise standardizing the quantile definition in statistical software. Their decision is based on

different theoretical properties of quantiles.

Since many social indicators are based on income and wealth data (Beste et al., 2018; euro-

stat, 2018b), these distributions are used for the evaluation of the different quantile definitions

in this work. In line with the literature (see e.g., Bhat, 1994; Marchetti et al., 2018), income

and wealth distributions are assumed to be continuous in this work. For quantile estimators

of discrete random variables, its properties and implementation in R, see Ma et al. (2011) and

Geraci (2016). In particular, the interest in the disaggregated information of these indicators

has increased in recent decades, i.e., indicators are estimated for regional, sociodemographic

or other subgroups of the population. Even if the sample size is large for the whole population,

the sample size might be small for the subgroup of interest. Therefore, the quantile estimators

are compared in relatively small samples, which is in line with Dielmann et al. (1994). Since

income and wealth data is often provided by surveys, we also discuss the possibilities to in-

corporate sampling weights in the different software programs. This aspect is not covered in

any of the other studies. As a theoretical development, the quantile definition by Harrell and

Davis (1982), that shows convincing results in Parrish (1990) and Dielmann et al. (1994), is

extended in this work in order to account for sampling weights. A short presentation of vari-

ance estimation for quantiles complements this overview of quantile estimation in statistical

software.
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The paper is structured as follows. Section 3.2 introduces the default options of the four

software programs and additional definitions recommended by the literature. Furthermore, the

feasibility of incorporating sampling weights and methods to produce variance estimates are

discussed. In Section 3.3, two simulation studies are conducted for the comparison of the

quantile definitions. The first uses a theoretical distribution that approximates income data

and the second is a design-based simulation based on data from the PHF (Forschungsdaten-

und Servicezentrum (FDSZ) der Deutschen Bundesbank, 2014). Section 3.4 summarizes the

results.

3.2 Quantile definitions in statistical software

In this section, the quantile definitions evaluated in the simulation studies are introduced. As

already mentioned, the default quantile definitions, i.e., the quantile definitions that are cho-

sen when the user does not change it explicitly, in the software programs SPSS, R, SAS™

software and Stata are investigated. Particularly, the focus lies on the function EXAMINE in

SPSS, the quantile function in R, the procedure UNIVARIATE in SAS™ software, and

the pctile command in Stata (see code examples in the online supplementary material of

this paper). These functions allow the use of five, nine, five, and two different quantile defini-

tions, respectively. SPSS allows the quantile definition to be altered in the function EXAMINE

by adding the name of the definition. In R, the quantile definition can be changed by using

the argument type in the quantile function. SAS™ software allows changes to the defini-

tion under the option PCTLDEF. Similarly, the alternative option altdef can be added to the

pctile command in Stata. All quantile definitions implemented in the mentioned functions

are stated in Table 3.2. In the following, the default options of these functions and definitions

suggested by the existing literature are presented.

3.2.1 The default options and suggestions from the literature

Since the theoretical quantile is the inverse of the cdf, an intuitive definition of a sample quantile

is the inverse of the empirical cumulative distribution function (ecdf). Within the definitions

based on the ecdf, the inverse of the ecdf with averaging at discontinuities (Q1) is probably

the most popular quantile definition and is defined as

Q1p =



X(1) if p = 0;

0.5
(
X(i) +X(i+1)

)
if 0 < p < 1 and g = 0;

X(i+1) if 0 < p < 1 and g 6= 0;

X(n) if p = 1,

where i = bnpc and g = np− i. The floor function b·c returns the greatest integer less than or

equal to its argument.

Among others, Cramér (1946) shows the asymptotic normality of the Q1 definition when

np is not an integer. The quantile definition Q1 is the default option of command pctile in

Stata and of the UNIVARIATE procedure in SAS™ software but it is also implemented in the
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Table 3.2: Quantile definitions in the EXAMINE function in SPSS, the quantile function
in R, the UNIVARIATE procedure in SAS™ software and command pctile in Stata. The
defaults are written in bold. Abbreviations are only added when the quantile definition is
explicitly described in the paper. All other definitions can be found in Appendix B.1.

Description and abbreviation SPSS R SAS Stata
EXAMINE quantile UNIVARIATE pctile

Inverse of the ECDF Empirical Type 1 3

Inverse of the ECDF with averaging Q1 Aempirical Type 2 5 default
at discontinuities

Closest to np Round Type 3 2

Linear interpolation of the ECDF Waverage Type 4 1

Piecewise linear function where the Q4 Type 5
knots are the values midway through
the steps of the empirical distribution

Linear interpolation of the expec- Q2 Haverage Type 6 4 altdef
tations for the order statistics for the
uniform distribution on [0,1]

Linear interpolation of the modes Q3 Type 7
for the order statistics for the
uniform distribution on [0,1]

Linear interpolation of the approximate Q5 Type 8
medians for order statistics

Approximation to F (E(Xk)) for the Type 9
normal distribution

other software programs. While this quantile function is a discontinuous function, the default

options in R and SPSS are continuous functions. The latter uses a linear interpolation of
the expectations for the order statistics for the uniform distribution on [0,1] (Q2). In other

words, the vertices split the sample into n + 1 parts with probability 1/(n + 1) on average

(Weibull, 1939). The definition can be expressed by

Q2p =


X(1) if p < 1

n+1 ;

(1− γ)X(i) + γX(i+1) if 1
n+1 ≤ p <

n
n+1 ;

X(n) if p ≥ n
n+1 ,

where i = bnpk + pc, pk = (np+p)
n+1 , γ = npk + p− i.

Instead of using linear interpolation of expectations, the default option in R defines quan-

tiles by the linear interpolation of the modes for the order statistics for the uniform dis-
tribution on [0,1] (Q3). Hyndman and Fan (1996) emphasize that a desired property of this

definition is the division of the sample range into n − 1 intervals of which p100% are on the

left of Q3p and (1− p)100% are on the right. It is defined as follows,

Q3p =

{
(1− γ)X(i) + γX(i+1) if 0 ≤ p < 1;

X(n) if p = 1,

where i = bnpk + 1− pc, pk = (np+1−p)−1
n−1 , γ = npk + 1− p− i.
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In addition to these default options, three more definitions that are available, e.g., in R, are

included in the comparison due to their promising results in existing studies. Since the most

popular statistical software programs use different quantile definitions as a default, Hyndman

and Fan (1996) suggest the usage of one common definition. They define six properties that a

quantile should fulfill (see Appendix B.1.5) and investigate the nine different definitions stated

in Table 3.2 with regard to these properties. Only the piecewise linear function where the
knots are the values midway through the steps of the empirical distribution (Q4) satisfies

all defined properties. Furthermore, Parrish (1990) also determines this quantile definition as

least biased, especially for small samples when the underlying distribution is normal. The Q4

definition that goes back to Hazen (1914) is one option of the quantile function in R and is

defined as

Q4p =


X(1) if p < 0.5

n ;

(1− γ)X(i) + γX(i+1) if 0.5
n ≤ p <

n−0.5
n ;

X(n) if p ≥ n−0.5
n ,

where i = bnpk + 0.5c, pk = (np)
n , γ = npk + 0.5− i.

Nevertheless, Hyndman and Fan (1996) propose the linear interpolation of the approxi-
mate medians for order statistics (Q5) (Johnson and Kotz, 1970) as a common standard even

though this definition only fulfills five of the six properties. The definition is suggested since

Q5 is approximately median-unbiased regardless of the underlying distribution. The definition

is also only available in R and can be expressed by

Q5p =


X(1) if p < 2/3

n+1/3 ;

(1− γ)X(i) + γX(i+1) if 2/3
n+1/3 ≤ p <

n−1/3
n+1/3 ;

X(n) if p ≥ n−1/3
n+1/3 ,

where i = bnpk + (p+1)
3 c, pk =

(
np+

(p+1)
3

)
− 1

3

n+ 1
3

, γ = npk + (p+1)
3 − i.

All of these definitions belong to the first category of quantile definitions (see also Table

3.3). However, one definition of category 2, the Harrell-Davis estimator (Harrell and Davis,

1982), is often mentioned in the literature as one of the most efficient estimators (Parrish, 1990;

Dielmann et al., 1994; Vélez and Correa, 2014). Therefore, the Harrell-Davis estimator (Q6)
which is implemented in function hdquantile in the R package Hmisc (Harrell Jr et al.,

2018) is also considered in this work. The estimator can be expressed as follows,

Q6p =
n∑
i=1

Wn,iX(i),

with weighting factors

Wn,i =
1

β{(n+ 1)p, (n+ 1)(1− p)}

∫ i/n

(i−1)/n
y(n+1)p−1(1− y)(n+1)(1−p)−1dy,

= Bi/n{p(n+ 1), (1− p)(n+ 1)} −B(i−1)/n{p(n+ 1), (1− p)(n+ 1)},
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Table 3.3: Quantile definitions presented in Section 3.2.1 that belong to category 1.

Abbreviation and definition i pk g/γ

Q1p


X(1) if p = 0;

0.5
(
X(i) +X(i+1)

)
if 0 < p < 1, g = 0;

X(i+1) if 0 < p < 1, g 6= 0;

X(n) if p = 1;

bnpc np− i

Q2p


X(1) if p < 1

n+1
;

(1− γ)X(i) + γX(i+1) if 1
n+1

≤ p < n
n+1

;

X(n) if p ≥ n
n+1

;

bnpk + pc (np+p)
n+1

npk + p− i

Q3p

{
(1− γ)X(i) + γX(i+1) if 0 ≤ p < 1;

X(n) if p = 1;
bnpk + 1− pc (np+1−p)−1

n−1
npk + 1− p− i

Q4p


X(1) if p < 0.5

n
;

(1− γ)X(i) + γX(i+1) if 0.5
n
≤ p < n−0.5

n
;

X(n) if p ≥ n−0.5
n

;

bnpk + 0.5c (np)
n

npk + 0.5− i

Q5p


X(1) if p <

2/3
n+1/3

;

(1− γ)X(i) + γX(i+1) if 2/3
n+1/3

≤ p < n−1/3
n+1/3

;

X(n) if p ≥ n−1/3
n+1/3

;

bnpk+
(p+1)

3
c

(
np+

(p+1)
3

)
− 1

3

n+ 1
3

npk+
(p+1)

3
−i

where y = F (x) and Bx(a, b) denotes the incomplete beta function (Majumder and Bhat-

tacharjee, 1973; Phien, 1990). While Harrell and Davis (1982) state that this quantile defini-

tion is, under some assumptions, asymptotically normally distributed for all quantile levels,

Yoshizawa et al. (1985) argue that this is only true for the median.

3.2.2 Incorporation of sampling weights

Most studies that compare quantile definitions do not discuss the incorporation of sampling

weights. However, this is especially important for the representative analysis of surveys since

most surveys are based on a complex sampling design and use weighting procedures to ad-

just for unit non-response and other irregularities (Lohr, 2010; Lavallée and Beaumont, 2015;

Steinhauer et al., 2015). In the following, not all quantile definitions described above are also

shown with sampling weights. This is due to the fact that the inclusion of sampling weights is

not well documented for each definition in the software programs. The function EXAMINE in

SPSS has the option to include weights for all quantile definitions provided. For the default,

Haverage, the weighted quantile can be expressed by

WQ1p =


X(i+1) if g∗1 ≥ 1;

(1− g∗1)X(i) + g∗1X(i+1) if g∗1 < 1 and w(i+1) ≥ 1;

(1− g1)X(i) + g1X(i+1) if g∗1 < 1 and w(i+1) < 1,

where X(i) is the ith order statistic of sample observations X = (X1, ..., Xn) and w =

(w1, ..., wn) are the corresponding sampling weights, i satisfying
∑i

j=1wj ≤
p
(

1 +
∑n

j=1wj

)
<
∑i+1

j=1wj , g
∗
1 = p

(
1 +

∑n
j=1wj

)
−
∑i

j=1wj and g1 =
g∗1∑i+1
j=1 wj

.

In Stata, the default of the command pctile is defined with weights but the alternative

definition (altdef) is not. Similarly, the procedure UNIVARIATE only allows for the in-
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clusion of weights in its default definition. The weighted quantile option used in the SAS™

software and Stata is defined as follows,

WQ2p =


X(1) if w1 < p

∑n
j=1wj ;

1
2

(
X(i) +X(i+1)

)
if

∑i
j=1wj = p

∑n
j=1wj ;

X(i+1) if
∑i

j=1wj < p
∑n

j=1wj <
∑i+1

j=1wj ,

where X(i) is the ith order statistic of sample observations X = (X1, ..., Xn) and w =

(w1, ..., wn) are the corresponding sampling weights.

In the statistical software R, the user cannot continue working with the quantile func-

tion when the usage of sampling weights is required. Weighted quantiles are provided in differ-

ent packages such as, among others, Hmisc (Harrell Jr et al., 2018), laeken (Alfons and Templ,

2013) and survey (Lumley, 2004). However, in contrast to the detailed descriptions of method-

ologies in the licensed software programs, it is not always clear from the package descriptions

how the weights are incorporated. While Alfons and Templ (2013) describe the mathematical

expression implemented in the laeken package that corresponds to WQ2, the documentations

of the other packages only have a verbal description of how the weights are considered. The

function wtd.quantile from the package Hmisc with type quantile is supposed to be a

weighted version of the default definition used in the quantile function (Q3).

Since the original version of the Harrell-Davis estimator does not account for sampling

weights, the weighted version is developed in this work in order to compare it to weighted

versions of category 1 quantiles. The extension can be expressed by

WQ3p =
n∑
i=1

Wwi,iX(i),

with weighting factor

Wwi,i =
1

β{(
∑n
i wi + 1)p, (

∑n
i wi + 1)(1− p)}

∫ si/
∑n
i wi

(i−1)/
∑n
i wi

y(
∑n
i wi+1)p−1(1− y)(

∑n
i wi+1)(1−p)−1dy,

= Bsi/
∑n
i wi
{p(

n∑
i

wi + 1), (1− p)(
n∑
i

wi + 1)} −B(i−1)/
∑n
i wi
{p(

n∑
i

wi + 1), (1− p)(
n∑
i

wi + 1)},

where y = F (x) and Bx(a, b) denotes the incomplete beta function and si = si−1 +wi is the

cumulated sum of ordered sampling weights corresponding to the order statistics. The R code

can be requested from the author and a link to the code is provided in the online supplementary

material of the paper.

3.2.3 Variance estimation

A point estimate that is based on survey data should always be reported with a measure of pre-

cision, e.g., the variance. However, many institutions that are responsible for official statistics

do not provide the variance estimate along with the point estimate (see e.g., Deutsche Bundes-

bank, 2016; eurostat, 2018a). One reason is that the target group for the estimates does not

use the information of the precision estimate. Another reason is that the variance estimates are
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not as easy to obtain as the point estimates. Even though this work focuses on the evaluation

of the point estimates of different quantile definitions, a small overview of variance estimation

methods for quantiles and the availability of variance estimation methods in the software is

provided.

As already mentioned, the distribution of the quantile Q̂p = X(i+1) with i = bnpc is shown

to be asymptotically normal (see e.g., Cramér, 1946; Walker, 1968) and can be expressed by

Q̂p ∼ N

(
Qp,

1

f(Qp)

√
p(1− p)

n

)
,

where Qp is the corresponding population quantile and f(·) is the density of a sample with n

values and one-dimensional distribution F (·).

However, this analytic expression for the variance is rarely used in practice since the un-

derlying distribution of the sample F (·) has to be known or estimated nonparametrically. Fur-

thermore, samples drawn using complex surveys cannot be considered in this expression. In-

stead, resampling methods like the jackknife method, balanced repeated replication (BRR), and

the bootstrap are typically used for the variance estimation of non-linear statistics (Chatterjee,

2011). For sample quantiles, the delete-1 jackknife is known to be inconsistent and only mod-

ifications as proposed by Shao and Wu (1989) can be considered for the variance estimation.

For the BRR method, consistency is shown by Shao and Wu (1992) and for the bootstrap by

Babu (1986). However, several modifications of the latter are suggested (Shao, 1988; Cheung

and Lee, 2005). Note that all of these studies define the quantile by the inverse of the ecdf such

that the results do not need to be universal for all quantile definitions introduced in Section

3.2. For instance, Harrell and Davis (1982) propose a delete-1 jackknife for the Harrell-Davis

estimator but they do not discuss its properties in detail. In the presence of complex surveys,

Rust and Rao (1996) suggest the provision of replicate weights that allow the derivation of the

variance estimates. This lowers the burden of the analyst to report these.

A general overview of computer software for variance estimation is given by Wolter (2007).

Since this work focuses on the functions EXAMINE, quantile, UNIVARIATE, and pctile,

we introduce the options for estimating the variance in these functions. The easiest way to re-

ceive standard errors and confidence intervals obtained by bootstrapping is offered by SPSS
under the bootstrap option in function EXAMINE. The quantile function does not allow for

any variance estimation. Thus, in R the user needs to use a function from another package,

e.g., package survey (Lumley, 2004) or emdi (Kreutzmann et al., 2019). Another way would

be to use a package for bootstrapping or a self-programmed bootstrap for the variance estima-

tion. The UNIVARIATE procedure of SAS™ software allows for confidence intervals which,

however, can only be estimated if no sampling weights are included. For the estimation of the

variance of quantiles, the procedure SURVEYMEANS may be more appropriate. The user of the

command pctile does not have an option for the variance estimation. One option in Stata
is the epctile package (Kolenikov, 2017).
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3.3 Comparison of quantile definitions

The studies that compare quantile definitions with regard to bias and accuracy measured by

the mean squared error (MSE) consider different distributions. Parrish (1990) investigates the

quantiles under a normal distribution. Dielmann et al. (1994) enlarges this work by analyzing

skewed distributions that are common in business applications, such as the log-normal and the

Pareto distribution. Also, the work of Schoonjans et al. (2011) is based on the normal and

log-normal distribution. Harrell and Davis (1982) evaluate their quantile definition through

different forms of the generalized lambda distribution. This work investigates the bias and

accuracy of different quantile definitions for income and wealth data, since sample quantiles

are often used to describe the distribution of these variables (see e.g., Deutsche Bundesbank,

2016; eurostat, 2018a). The first simulation study compares the quantile definitions Q1 − Q6

with the corresponding theoretical quantile. The theoretical distribution from which samples

are drawn is the generalized beta distribution of the second kind (GB2) that is often used

to describe income distributions (McDonald and Bordley, 1996). It is explained in Section

3.3.1 in more detail. The second simulation study is design-based for the comparison of the

weighted quantile definitions WQ1 − WQ3 when the underlying variable is wealth. The

data is obtained from the PHF (Forschungsdaten- und Servicezentrum (FDSZ) der Deutschen

Bundesbank, 2014) (see also Section 3.3.2).

In both studies, the relative bias (RB) and the relative root MSE (RRMSE) are measured

for each quantile definition with different sample sizes based on R = 10, 000 Monte-Carlo

(MC) repetitions. The relative bias for each definition Q and each quantile level p is defined by

RB =
1

R

R∑
r=1

(Q̂pr −Qp)
Qp

,

where Q̂pr is the quantile estimate in run r and Qp is the value of the theoretical or population

quantile.

The relative root mean squared error (RRMSE) can be expressed by

RRMSE =

√√√√ 1

R

R∑
r=1

(
(Q̂pr −Qp)

Qp

)2

.

While simulation results are presented in figures in Sections 3.3.1 and 3.3.2, the results are

shown in tables in the online supplementary material of the paper.

From the theory and the mentioned literature the following hypotheses can be derived:

• The bias oscillates between bounds and the estimation of central quantiles is easier than

the estimation of extreme ones (Okolewski and Rychlik, 2001). This oscillation property

is independent of the sample size. It also follows that there is no monotone increase or

decrease of the bias along quantile levels.

• With increasing sample size, the bias becomes symmetric and thus decreases in absolute

terms (Okolewski and Rychlik, 2001). Also, the accuracy should increase with larger

sample size for all quantile definitions (see Section 3.2.1 and 3.2.2 for the definitions).

58



CHAPTER 3. ESTIMATION OF SAMPLE QUANTILES

Consequently, the quantile definitions show asymptotic equivalence (see e.g., Yoshizawa

et al., 1985; Parrish, 1990; Vélez and Correa, 2014).

These results should also be seen in the following simulations. However, most of these hy-

potheses are derived from the theoretical properties of a simple quantile definition that is only

based on one order statistic. In contrast, different quantile definitions are evaluated empirically

in the following.

3.3.1 Simulation using income type data

In this simulation study, a theoretical distribution is used. Since the aim is to mimic an income

distribution, the GB2 distribution is chosen with parameters following McDonald and Bordley

(1996) and Graf and Nedyalkova (2014). The density of the GB2 distribution is defined as

f(x, θ) =
a

bGB(c, d)

(x/b)ac−1

(1 + (x/b)a)c+d
, x ≥ 0,

where GB(c, d) is the beta function and θ = (a, b, c, d) are the parameters.

Graf and Nedyalkova (2014) fit the GB2 distribution to the equivalised disposable in-

come obtained from the EU Statistics on Income and Living Conditions (EU-SILC) survey

(eurostat, 2013b) using different estimation approaches. Based on the maximum pseudo-

likelihood estimation using the full pseudo-loglikelihoods, they propose the parameters a =

7.481, b = 16351, c = 0.400 and d = 0.468 to closely approximate the German income

distribution. For more information about modeling income via parametric distributions, we

refer to McDonald (1984) and Kleiber and Kotz (2003). From this GB2 distribution, samples

are drawn in every replication via simple random sampling with the different sample sizes

n = 5, n = 6, n = 10, n = 11, n = 15, n = 16, ..., n = 55, n = 56. Thus, an even and

an uneven number of almost the same size is always used. Along the lines of Parrish (1990)

and Dielmann et al. (1994), we use small sample sizes in order to investigate the small sample

properties of the quantile estimators. For each sample, the quantile definitions Q1 − Q6 are

evaluated and compared with the true theoretical quantile. Table 3.4 states the values of the

theoretical quantiles for the considered quantile levels q ∈ (0.1, 0.25, 0.5, 0.75, 0.9, 0.99) and

Figure 3.1 shows the true density and the location of the theoretical quantiles.

Figure 3.2 shows the RB in % for the definitions Q1 − Q6 of the considered quantile

levels and Figure 3.3 the corresponding RRMSE in %. For all quantile definitions and quantile

levels, it can be concluded that the bias decreases and the accuracy increases with increasing

sample size. The theoretical result that the bias is smaller for the central quantile levels is also

confirmed. Furthermore, the larger the sample size, the closer the estimates of the different

quantile definitions are to each other. However, the convergence of the quantile definitions

Table 3.4: Values of the 0.1th, 0.25th, 0.5th, 0.75th, 0.9th, and 0.99th quantile of the GB2
distribution.

0.1 0.25 0.5 0.75 0.9 0.99

8742.18 11956.40 15686.06 20264.09 26661.86 51568.42
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Figure 3.1: Density of the GB2 distribution (shown up to the 0.995th quantile). The dashed
lines show the location of the 0.1th, 0.25th, 0.5th, 0.75th, 0.9th, and 0.99th quantile of the GB2
distribution (from left to right).

is slower for the extreme quantiles than for the central quantiles. For the median, the RB

and the RRMSE is even the same for all quantile definitions of category 1, i.e., Q1 − Q5.

The definition by Hazen (1914), Q4, is not always the least biased definition in contrast to

the findings of Parrish (1990) and Schoonjans et al. (2011) when the underlying distribution

is normal. However, it shows reasonably good results for all quantile levels. For the lower

quantiles, 0.1 and 0.25, it can be seen that definition Q5, which is suggested by Hyndman and

Fan (1996) as a common definition, performs very well (|RB| < 2%) even for reasonably

small sample sizes (from n ≥ 10). Similarly, the definition Q3 (default in R) is especially

good for the 0.75th quantile and definitionQ1 (default in SAS™ software and Stata) fluctuates

around the 0 for the 0.9th quantile. The Harrell-Davis estimator is not the least biased estimator

for any quantile level in this evaluation. Instead, it outperforms all quantile definitions with

regard to accuracy for the quantile levels 0.1, 0.25 and 0.5 when the sample size is above 10.

Furthermore, the definition Q3 shows the lowest RRMSE for almost all sample sizes for the

higher quantiles, 0.75 and 0.9.

Since many researchers are especially interested in the upper end of the income distribution,

results for the 0.99th quantile are shown in Figure 3.4. It is important to notice that the sample

size needs to be larger in order to receive comparable relative biases to the other quantile

levels. The best quantile definition for the 0.99th quantile with regard to the smallest RB is

the definition by Hazen (1914) and the default of SAS™ software and Stata. Regarding the

smallest RRMSE, the default definition of the software R is best.
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Figure 3.2: The plots show the RB in % for six different quantile definitions at the quantile
levels 0.1 (a), 0.25 (b), 0.5 (c), 0.75 (d) and 0.9 (e) for different sample sizes from simulated
data.
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Figure 3.3: The plots show the RRMSE in % for six different quantile definitions at the quantile
levels 0.1 (a), 0.25 (b), 0.5 (c), 0.75 (d) and 0.9 (e) for different sample sizes from simulated
data.
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Figure 3.4: The plots show the RB (left) and the RRMSE (right) in % for six different quantile
definitions at the quantile level 0.99 for different sample sizes from simulated data.
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Table 3.5: Values of the 0.1th, 0.25th, 0.5th, 0.75th,
0.9th, and 0.95th quantile of the synthetic net wealth
distribution.

Figure 3.5: Density of the synthetic net wealth distribution based on Forschungsdaten- und Ser-
vicezentrum (FDSZ) der Deutschen Bundesbank (2014), Panel on Household Finances (PHF)
2014, own estimations (shown up to the 0.98th quantile). The dashed lines show the location
of the 0.1th, 0.25th, 0.5th, 0.75th, 0.9th, and 0.95th quantile (from left to right).

3.3.2 Simulation using wealth data

For the design-based simulation study, the variable household net wealth from the PHF data is

used (Forschungsdaten- und Servicezentrum (FDSZ) der Deutschen Bundesbank, 2014). Net

wealth is defined as the difference between assets and liabilities. Therefore, negative values for

household net wealth are possible when liabilities exceed assets. In order to mimic the German

wealth distribution, the sample is expanded by the final survey weights divided by 1,000 which

leads to a synthetic population of around 37,000 households. The division is conducted to

reduce the computational time of the simulation. Figure 3.5 shows the synthetic population

and Table 3.5 the values of the quantile levels q ∈ (0.1, 0.25, 0.5, 0.75, 0.9, 0.95). From this

close-to-reality population, samples are drawn by stratified sampling in each simulation run.

The sampling design is a simplification of the original sampling design of the PHF (Knerr

et al., 2015). Particularly, the stratum variable that defines the four strata in the simulation –

wealthy small municipalities, other small municipalities, wealthy street sections in large cities,

and other street sections in large cities – is a combination of the two variables in the data that

reflect the first two levels of the sampling design of the PHF. The sample sizes are determined

by the percentages that are drawn from each strata. They equal 36, 44, 54, 90, 128, 166, 202,

239, 296, 556, 741, 926, 1113, 1299.

It should be noted that the empirical distribution of net wealth differs from the theoretical

GB2 distribution in Section 3.3.1. It has a larger standard deviation which induces a larger

bias at the same sample size (Okolewski and Rychlik, 2001). Therefore, larger sample sizes

are chosen for this study. Furthermore, the empirical distribution is not strictly monotone.

Observations are concentrated especially around 0 and low net wealth levels. Thus, the samples

drawn from the synthetic population may be samples with ties and mid-quantiles, a quantile

definition for discrete distributions, might be preferable (Genton et al., 2006; Ma et al., 2011).

However, as already mentioned, variables like wealth are usually assumed to be continuous

and common quantile estimators for continuous variables are used in practice. Therefore, the

evaluation in this work follows these practices.

Figure 3.6 and Figure 3.7 show the results for the RB and the RRMSE for the quantiles

WQ1−WQ3 in %. These relative measures cannot be shown for the 0.1th quantile since the

population quantile is equal to 0. For the other levels, it can be seen that all quantile definitions

show comparable results. Thus, the inclusion of sampling weights has a similar effect as larger
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sample sizes with regard to the equivalence of different quantile definitions. Furthermore, the

evaluation confirms that the sample size needs to be larger than for the GB2 data in order to

achieve a comparable level of RB and RRMSE. It is striking that the estimation of the 0.25th

quantile works worse than the estimation of the quantile level 0.9 in relative terms for sample

sizes below 741. Furthermore, the RB of the 0.9th quantile is comparable to the RB of the

median for n ≤ 166 and the estimation of the 0.75th is best in terms of the RB. Similar

patterns can be seen for the RRMSE.

The findings can be explained with the sampling distribution of the quantile estimators and

the oscillation of the bias. The sampling distribution of the quantile estimators evaluated on

the wealth data is skewed especially for the smaller sample sizes in the simulation. This means

that the 10,000 estimates obtained from the simulation are not distributed symmetrically around

0. Therefore, the relative measures favor the quantile levels with a large population value in

terms of a low RB. With increasing sample sizes, the sampling distribution becomes more

symmetric and the results are closer to what was expected. For instance, the RB of the 0.25th

quantile is below the RB of the 0.9th quantile for n ≥ 741. In order to complement the

findings based on relative measures, we also present the bias in absolute terms, defined as

Bias = 1
R

∑R
r=1(Q̂pr − Qp). Figure 3.8 shows the bias in e for different quantile levels

holding the quantile definition fixed to WQ2 and the sample size fixed to 551. It gives an

exemplary illustration of the oscillation of the bias and shows that it can happen that even the

absolute bias is smaller for, e.g., the 0.75th quantile than for the 0.5th quantile. However, the

tendency that it is more difficult to estimate the extreme quantiles, and here especially the larger

quantiles, can also be seen in this figure.
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Figure 3.6: The plots show the RB in % for three different quantile definitions at the quantile
levels 0.25 (a), 0.5 (b), 0.75 (c), 0.9 (d) and 0.95 (e) for different sample sizes. The dashed
line indicates the sample size of 56 which is the largest sample size in the simulation based
on income data. Furthermore, results that exceed an RB of 20% are not shown in the plot for
consistency with the plots for income data.
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Figure 3.7: The plots show the RRMSE in % for three different quantile definitions at the
quantile levels 0.25 (a), 0.5 (b), 0.75 (c), 0.9 (d) and 0.95 (d) for different sample sizes. The
dashed line indicates the sample size of 56 which is the largest sample size in the simulation
based on income data. Furthermore, results that exceed an RRMSE of 60% are not shown in
the plot for consistency with the plots for income data.
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Figure 3.8: The plot shows the bias in e of the quantile definition WQ2 at different quantile
levels when the sample size is fixed to 551.

3.4 Conclusion

This work compares quantile definitions implemented in the statistical software programs

SPSS, R, SAS™ software, and Stata by evaluating the performance on theoretical income

and empirical wealth data. As a general result, it can be concluded that the performance of

the quantile estimators differs depending on the quantile level, the sample size, and the type of

distribution. This is in line with Parrish (1990) and Dielmann et al. (1994).

Comparing the software programs, the statistical software R provides the highest number of

different quantile definitions. However, not all of these are also viable when sampling weights

have to be considered. In this case, the choice of quantile definitions is limited in all software

programs, except SPSS, that allows for sampling weights in all provided definitions. Further-

more, SPSS offers the simplest way for the estimation of the variance via a bootstrap. This

work, however, only focuses on the standard options in the software programs. Due to the high

number of different packages, especially in R, it is not claimed that all available possibilities

are considered.

The comparison of the different quantile definitions leads to the following results. For

the median, the different quantile definitions return almost equal estimates independent of the

sample size. For the other quantile levels, differences between the definitions are obvious.

However, with increasing sample size the results of the different quantile definitions converge

for all quantile levels. Thus, the higher the sample size, the less important the choice of an

appropriate quantile definition is. The comparison of the weighted quantiles reveals that all

definitions are close to each other, regardless of the sample sizes chosen in the evaluation.

With regard to the different data types, the empirical evaluation of the quantile estimators

shows almost unbiased estimates (|RB| < 3%), even for small sample sizes below 30, when

the underlying distribution is the theoretical GB2 distribution. For the empirical net wealth

distribution, the sample size needs to be larger in order to reach the same level of RB. Thus, at

which sample size and at which quantile level the quantile estimators perform well in terms of

the bias and accuracy strongly depends on the type of distribution. Therefore, for the decision
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in practical applications, it might be reasonable to evaluate different estimators via a design-

based simulation, as proposed e.g., in Tzavidis et al. (2018), in order to get an indicator of

the bias when the quantile is estimated for specific underlying distributions. Furthermore, the

results should also be seen in the different contexts. While a bias of e 1000 might be negligible

when wealth levels are of interest, it makes a huge difference for the analysis of income.

In addition to the bias, the analysis in this work reveals that the variance (as a component

of the MSE) of the quantile estimators is larger, the smaller the sample size is. One way to

handle this issue is with small area estimation (SAE) (Münnich et al., 2013). While many

studies in SAE focus on the estimation of means or ratios (Marchetti et al., 2016; Schmid et al.,

2017), methodology is also developed for other indicators including the median (Datta et al.,

2002; Bell et al., 2016). Consequently, the application of SAE for quantile levels other than the

median could be of interest in future research.

3.5 Supplementary material

The additional online material contains a) a PDF-file with code examples and outputs based

on synthetic data in the different software programs, b) synthetic data and the code used to

obtain the results in the aforementioned PDF-file, and c) tables with results from the simulation

studies.
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Appendix B

B.1 Description of the Appendix

For the sake of completeness, the expressions of quantile estimators that are introduced in Table

3.2 but not mentioned in the text are shown in this Appendix. Furthermore, the six properties

that are used by Hyndman and Fan (1996) are summarized.

B.1.1 Inverse of the empirical cumulative distribution function

Dielmann et al. (1994) states that this quantile estimator is neither mean nor median unbiased.

For a further discussion of its properties, we refer to Juritz et al. (1983)

Qp =


X1 if p = 0;

X(i) if 0 < p ≤ 1 and g = 0;

X(i+1) if 0 < p ≤ 1 and g 6= 0,

where i = bnpc and g = np− i.

B.1.2 Observation closest to np

This definition crucially depends on the rounding. While in R and SAS the rounding takes

place to the next even integer, the definition in SPSS differs from the one below since it uses

simple rounding.

Qp =


X(1) if p ≤ 0.5

n ;

X(i) if 0.5
n < p ≤ 1, i is even and g = 0;

X(i+1) if 0.5
n < p ≤ 1, i is odd and g 6= 0,

where i = bnpc and g = np− 0.5− i.
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B.1.3 Linear interpolation of the empirical distribution function

This definition is proposed by Parzen (1979).

Qp =


X(1) if p < 1

n ;

(1− γ)X(i) + γX(i+1) if 1
n ≤ p < 1;

X(n) if p=1,

where i = bnpkc, pk = np
n , γ = npk − i.

B.1.4 Approximation to F (E(Xk)) for the normal distribution

This definition is especially preferable when the underlying distribution is normal (Blom,

1958). Thus, it is often used for normal quantile-quantile plots.

Qp =


X(1) if p < 5/8

n+1/4 ;

(1− γ)X(i) + γX(i+1) if 5/8
n+1/4 ≤ p <

n−3/8
n+1/4 ;

X(n) if p ≥ n−3/8
n+1/4 ,

where i = bnpk + p
4 + 3

8c, pk =
(np+ p

4
+ 3

8)− 3
8

n+ 1
4

, γ = npk + p
4 + 3

8 − i.

B.1.5 Six desirable properties for sample quantile

Table B.1: Replication of Table 1 in Hyndman and Fan (1996) that shows their definition of
six desirable properties for a sample quantile. For more information about the properties it is
referred to Hyndman and Fan (1996).

P1: Q(p) is continuous.

P2: Freq
(
X(i) ≤ Q(p)

)
≥ pn

P3: Freq
(
X(i) ≤ Q(p)

)
= Freq

(
X(i) ≥ Q(1− p)

)
P4: Where Q−1(x) is uniquely defined,

Q−1(X(i)) +Q−1(X(n−i+1)) for i = 1, ..., n

P5: Where Q−1(x) is uniquely defined,

Q−1(X(1)) > 0 and Q−1(X(n)) < 1

P6: Q(0.5) is equal to the sample median defined by[
X(l) +X(l+1)

]
/2 if n = 2l

X(l+1) if n = 2l + 1
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SPSS: Default (unweighted) quantile definition - Haverage (Q2 in the paper)

SPSS> EXAMINE VARIABLES=income
+ /PLOT NONE
+ /PERCENTILES(5,10,25,50,75,90,95) HAVERAGE
+ /STATISTICS NONE
+ /MISSING LISTWISE
+ /NOTOTAL.

SPSS: Default weighted quantile definition - Haverage (WQ1 in the paper)

SPSS> WEIGHT BY weights.
SPSS> EXAMINE VARIABLES=income
+ /PLOT NONE
+ /PERCENTILES(5,10,25,50,75,90,95) HAVERAGE
+ /STATISTICS NONE
+ /MISSING LISTWISE
+ /NOTOTAL.
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R: Default (unweighted) quantile definition - type = 7 (Q3 in the paper)

R> quantile(data$income, probs = c(0, 0.1, 0.25, 0.5, 0.75,
+ 0.9, 1))

0% 10% 25% 50% 75% 90%
5410.490 8433.516 13249.170 15863.675 16841.675 25146.777

100%
53970.630

R: Hazen (unweighted) quantile definition - type = 5 (Q4 in the paper)

R> quantile(data$income, type = 5, probs = c(0, 0.1, 0.25,
+ 0.5, 0.75, 0.9, 1))

0% 10% 25% 50% 75% 90% 100%
5410.49 8429.86 13106.01 15863.67 16849.31 26563.76 53970.63

R: Hyndman and Fan (unweighted) quantile definition - type = 8 (Q5 in the paper)

R> quantile(data$income, type = 8, probs = c(0, 0.1, 0.25,
+ 0.5, 0.75, 0.9, 1))

0% 10% 25% 50% 75% 90%
5410.490 8428.641 12998.618 15863.675 16929.336 27036.094

100%
53970.630

R: Harrell-Davis (unweighted) quantile definition, package Hmisc (Q6 in the pa-
per)

R> install.packages("Hmisc")
R> library(Hmisc)
R> hdquantile(data$income, probs = c(0, 0.1, 0.25, 0.5, 0.75,
+ 0.9, 1))

0.00 0.10 0.25 0.50 0.75 0.90
5410.490 8163.496 12459.966 15683.526 17788.450 27209.626

1.00
53970.630

R: Weighted quantile in R, e.g., package laeken (WQ2 in the paper)

R> install.packages("laeken")
R> library(laeken)
R> weightedQuantile(data$income, data$weights,
+ probs = c(0, 0.1, 0.25, 0.5, 0.75, 0.9, 1))

[1] 5410.49 9689.61 11486.02 14137.26 16556.75 17809.62
[2] 53970.63
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SUPPLEMENTARY MATERIAL B.

R: Weighted Harrell-Davis quantile definition available from github https://
github.com/akreutzmann/whdquantile/blob/master/whdquantile.
R (WQ3 in the paper)

R> whdquantile(data$income, smp_weight = data$weights,
+ probs = c(0, 0.1, 0.25, 0.5, 0.75, 0.9, 1))

0.00 0.10 0.25 0.50 0.75 0.90 1.00
5410.49 9689.61 11486.02 14125.10 16556.75 17809.62 53970.63

SAS: Default (unweighted) quantile definition - 5 (Q1 in the paper)

SAS> title ’Default (unweighted) quantile definition’;
+ ods select Quantiles;
+ proc univariate data=Data;
+ var income;
+ output out=percentiles_unweighted pctlpre=P_
+ pctlpts= 10 to 90 by 10;
+ run;
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SUPPLEMENTARY MATERIAL B.

SAS: Default weighted quantile definition - 5 (WQ2 in the paper)

SAS> title ’Default weighted quantile definition’;
+ ods select Quantiles;
+ proc univariate data=Data;
+ var income;
+ weight weights;
+ output out=percentiles_weighted pctlpre=P_
+ pctlpts= 10 to 90 by 10;
+ run;

Stata: Default (unweighted) quantile definition - default (Q1 in the paper)

Stata> pctile quant_unweighted = income, nq(10) genp(percent)
Stata> list percent quant_unweighted in 1/10
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SUPPLEMENTARY MATERIAL B.

Stata: Default weighted quantile definition - default (WQ2 in the paper)

Stata> pctile quant_weighted = income [w = weights], nq(10)
Stata> list percent quant_weighted in 1/10

Default definitions of the other programs in R

SPSS default - type 6 (Q2 in the paper)

R> quantile(data$income, type = 6, probs = c(0, 0.1, 0.25, 0.5,
+ 0.75, 0.9, 1))

0% 10% 25% 50% 75% 90%
5410.490 8426.204 12783.833 15863.675 17089.388 27980.753

100%
53970.630

SAS/Stata default - type 2 (Q1 in the paper)

R> quantile(data$income, type = 2, probs = c(0, 0.1, 0.25, 0.5,
+ 0.75, 0.9, 1))

0% 10% 25% 50% 75% 90% 100%
5410.49 8429.86 13106.01 15863.67 16849.31 26563.76 53970.63
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Table B.1: The table shows the RB in % for the quantile levels 0.1, 0.25 and, 0.5 for six different quantile definitions evaluated on the GB2 distribution described
in Section 3.3.1.

0.1 0.25 0.5
n Q1 Q2 Q3 Q4 Q5 Q6 Q1 Q2 Q3 Q4 Q5 Q6 Q1 Q2 Q3 Q4 Q5 Q6

5 9.09 9.09 25.12 9.09 9.09 16.64 9.07 -5.54 9.07 1.76 -0.67 1.67 1.45 1.45 1.45 1.45 1.45 5.02
6 2.74 2.74 21.05 6.41 2.74 11.78 2.10 -4.63 7.27 2.10 -0.14 0.27 1.74 1.74 1.74 1.74 1.74 4.02

10 2.44 -9.37 14.26 2.44 -1.50 2.69 1.33 -2.57 4.57 1.33 0.03 -0.70 0.82 0.82 0.82 0.82 0.82 1.92
11 13.69 -9.44 13.69 2.12 -1.73 1.47 -1.98 -1.98 4.06 1.04 0.04 -0.64 0.70 0.70 0.70 0.70 0.70 1.75
15 2.44 -7.80 9.53 2.44 -0.97 -1.02 -1.57 -1.57 2.99 0.71 -0.05 -0.63 0.62 0.62 0.62 0.62 0.62 1.31
16 0.73 -6.93 9.20 2.43 -0.12 -1.15 0.51 -1.64 2.67 0.51 -0.21 -0.75 0.97 0.97 0.97 0.97 0.97 1.61
20 1.73 -4.54 8.00 1.73 -0.36 -1.37 0.56 -1.16 2.29 0.56 -0.01 -0.50 0.57 0.57 0.57 0.57 0.57 1.04
21 7.69 -4.86 7.69 1.42 -0.68 -1.67 2.06 -1.35 2.06 0.36 -0.21 -0.74 0.42 0.42 0.42 0.42 0.42 0.92
25 1.23 -4.62 5.88 1.23 -0.72 -2.02 1.83 -1.04 1.83 0.39 -0.08 -0.52 0.37 0.37 0.37 0.37 0.37 0.78
26 0.46 -3.96 6.11 1.59 -0.03 -1.61 0.54 -0.88 1.82 0.54 0.06 -0.47 0.36 0.36 0.36 0.36 0.36 0.69
30 1.17 -3.19 5.53 1.17 -0.28 -1.51 0.40 -0.81 1.51 0.40 -0.01 -0.44 0.20 0.20 0.20 0.20 0.20 0.52
31 5.31 -3.28 5.31 1.02 -0.42 -1.53 -0.84 -0.84 1.40 0.28 -0.10 -0.50 0.29 0.29 0.29 0.29 0.29 0.56
35 1.27 -2.79 4.73 1.27 -0.08 -1.22 -0.66 -0.66 1.28 0.31 -0.02 -0.39 0.35 0.35 0.35 0.35 0.35 0.63
36 0.28 -2.80 4.48 1.12 -0.06 -1.33 0.31 -0.68 1.30 0.31 -0.02 -0.34 0.21 0.21 0.21 0.21 0.21 0.43
40 1.04 -2.13 4.20 1.04 -0.02 -1.11 0.10 -0.77 0.96 0.10 -0.19 -0.50 0.24 0.24 0.24 0.24 0.24 0.44
41 3.99 -2.39 3.99 0.80 -0.27 -1.25 1.00 -0.75 1.00 0.13 -0.16 -0.46 0.21 0.21 0.21 0.21 0.21 0.42
45 0.74 -2.45 3.47 0.74 -0.33 -1.30 1.25 -0.35 1.25 0.45 0.19 -0.10 0.26 0.26 0.26 0.26 0.26 0.45
46 -0.24 -2.56 3.19 0.45 -0.50 -1.43 0.28 -0.53 1.02 0.28 0.01 -0.30 0.10 0.10 0.10 0.10 0.10 0.30
50 0.69 -1.93 3.32 0.69 -0.18 -1.08 0.10 -0.61 0.79 0.10 -0.14 -0.41 0.13 0.13 0.13 0.13 0.13 0.29
51 3.32 -1.92 3.32 0.70 -0.17 -0.98 -0.48 -0.48 0.86 0.19 -0.04 -0.32 0.17 0.17 0.17 0.17 0.17 0.32
55 0.67 -1.86 2.94 0.67 -0.18 -0.98 -0.41 -0.41 0.86 0.23 0.01 -0.21 0.20 0.20 0.20 0.20 0.20 0.38
56 -0.01 -1.90 2.83 0.56 -0.22 -1.03 0.25 -0.37 0.88 0.25 0.04 -0.21 0.15 0.15 0.15 0.15 0.15 0.30
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Table B.2: The table shows the RB in % for the quantile levels 0.75 and 0.9 for six different quantile definitions evaluated on the GB2 distribution described in
Section 3.3.1.

0.75 0.9
n Q1 Q2 Q3 Q4 Q5 Q6 Q1 Q2 Q3 Q4 Q5 Q6

5 -3.01 18.46 -3.01 7.73 11.30 12.45 6.05 6.05 -6.75 6.05 6.05 0.46
6 3.57 14.64 -0.95 3.57 7.26 13.02 10.96 10.96 -5.37 7.70 10.96 3.55

10 2.05 6.65 -0.83 2.05 3.59 9.16 10.14 25.08 -4.81 10.14 15.12 11.99
11 5.15 5.15 -0.60 2.27 3.23 8.23 -6.11 24.01 -6.11 8.95 13.97 12.42
15 3.60 3.60 -0.60 1.50 2.20 5.70 3.23 19.76 -3.00 3.23 8.74 14.29
16 1.61 3.72 -0.50 1.61 2.32 5.27 4.77 17.34 -2.92 3.23 6.17 13.89
20 1.05 2.69 -0.60 1.05 1.60 3.90 3.84 10.45 -2.77 3.84 6.04 13.43
21 -0.66 2.64 -0.66 0.99 1.54 3.79 -3.26 10.10 -3.26 3.42 5.65 12.62
25 -0.68 2.03 -0.68 0.67 1.12 2.88 1.73 8.69 -2.19 1.73 4.05 11.00
26 0.73 2.12 -0.42 0.73 1.20 2.98 2.98 8.24 -2.07 1.97 3.56 10.46
30 0.61 1.80 -0.40 0.61 1.00 2.54 2.21 6.37 -1.95 2.21 3.60 9.08
31 1.75 1.75 -0.26 0.74 1.08 2.56 -2.08 6.34 -2.08 2.13 3.53 8.75
35 1.42 1.42 -0.35 0.53 0.83 2.10 1.38 5.73 -1.62 1.38 2.83 7.44
36 0.74 1.64 -0.16 0.74 1.04 2.22 2.56 5.85 -1.27 1.79 2.92 7.59
40 0.55 1.37 -0.27 0.55 0.83 1.93 1.37 4.47 -1.72 1.37 2.40 6.28
41 -0.38 1.27 -0.38 0.45 0.72 1.75 -1.87 4.34 -1.87 1.24 2.27 5.94
45 -0.32 1.16 -0.32 0.42 0.67 1.65 1.19 4.35 -1.16 1.19 2.24 5.60
46 0.46 1.21 -0.23 0.46 0.71 1.67 1.41 3.76 -1.55 0.82 1.67 4.93
50 0.45 1.13 -0.18 0.45 0.67 1.59 1.40 3.85 -1.05 1.40 2.21 5.13
51 1.08 1.08 -0.18 0.45 0.66 1.50 -1.32 3.56 -1.32 1.12 1.94 4.67
55 0.87 0.87 -0.28 0.29 0.48 1.28 0.89 3.38 -1.11 0.89 1.72 4.35
56 0.45 1.03 -0.13 0.45 0.64 1.38 1.40 3.27 -1.03 0.92 1.61 4.24

77



SU
PPL

E
M

E
N

TA
RY

M
A

T
E

R
IA

L
B

.

Table B.3: The table shows the RRMSE in % for the quantile levels 0.1, 0.25 and, 0.5 for six different quantile definitions evaluated on the GB2 distribution
described in Section 3.3.1.

0.1 0.25 0.5
n Q1 Q2 Q3 Q4 Q5 Q6 Q1 Q2 Q3 Q4 Q5 Q6 Q1 Q2 Q3 Q4 Q5 Q6

5 39.34 39.34 42.18 39.34 39.34 39.52 27.81 24.82 27.81 24.61 24.27 23.48 22.32 22.32 22.32 22.32 22.32 22.85
6 35.57 35.57 37.24 34.64 35.57 34.55 24.52 23.42 24.39 24.52 23.81 21.48 19.50 19.50 19.50 19.50 19.50 19.81

10 26.65 30.97 30.50 26.65 27.22 26.23 18.94 18.45 18.71 18.94 18.62 16.63 14.79 14.79 14.79 14.79 14.79 14.29
11 29.77 29.02 29.77 25.32 25.66 24.70 18.37 18.37 17.63 17.53 17.71 15.96 14.59 14.59 14.59 14.59 14.59 13.58
15 24.19 24.38 24.09 24.19 23.42 21.30 15.92 15.92 15.35 15.32 15.45 14.02 12.36 12.36 12.36 12.36 12.36 11.49
16 23.57 23.51 23.31 23.07 23.35 20.51 14.69 15.08 14.89 14.69 14.76 13.60 11.77 11.77 11.77 11.77 11.77 11.30
20 20.52 22.33 22.08 20.52 20.76 18.96 13.16 13.39 13.36 13.16 13.19 12.19 10.52 10.52 10.52 10.52 10.52 9.99
21 21.68 21.41 21.68 19.83 19.98 18.36 13.38 13.09 13.38 13.03 13.00 12.06 10.29 10.29 10.29 10.29 10.29 9.64
25 19.37 19.45 19.06 19.37 19.04 17.10 12.32 12.03 12.32 12.01 11.98 11.08 9.36 9.36 9.36 9.36 9.36 8.76
26 19.23 19.16 18.94 18.93 19.13 16.92 11.89 11.77 11.74 11.89 11.81 10.80 9.19 9.19 9.19 9.19 9.19 8.72
30 17.10 18.18 18.02 17.10 17.25 15.68 11.02 10.93 10.92 11.02 10.96 10.08 8.46 8.46 8.46 8.46 8.46 8.02
31 17.84 17.68 17.84 16.77 16.85 15.44 10.93 10.93 10.70 10.71 10.76 9.86 8.53 8.53 8.53 8.53 8.53 8.00
35 16.42 16.37 16.27 16.42 16.19 14.60 10.46 10.46 10.29 10.29 10.33 9.58 7.99 7.99 7.99 7.99 7.99 7.52
36 16.39 16.34 16.13 16.17 16.33 14.54 10.05 10.17 10.12 10.05 10.07 9.40 7.77 7.77 7.77 7.77 7.77 7.35
40 15.22 15.88 15.77 15.22 15.31 14.06 9.57 9.68 9.62 9.57 9.59 8.96 7.37 7.37 7.37 7.37 7.37 7.04
41 15.68 15.58 15.68 15.00 15.05 13.77 9.53 9.40 9.53 9.38 9.37 8.76 7.28 7.28 7.28 7.28 7.28 6.83
45 14.62 14.65 14.46 14.62 14.48 13.19 9.06 8.93 9.06 8.93 8.91 8.34 7.05 7.05 7.05 7.05 7.05 6.65
46 14.66 14.72 14.41 14.49 14.64 13.27 8.94 8.90 8.88 8.94 8.91 8.31 6.89 6.89 6.89 6.89 6.89 6.54
50 13.61 14.15 14.02 13.61 13.69 12.57 8.52 8.49 8.46 8.52 8.50 7.90 6.57 6.57 6.57 6.57 6.57 6.22
51 14.23 14.21 14.23 13.76 13.81 12.67 8.55 8.55 8.44 8.44 8.46 7.90 6.60 6.60 6.60 6.60 6.60 6.23
55 13.62 13.60 13.46 13.62 13.51 12.31 8.28 8.28 8.19 8.19 8.21 7.67 6.30 6.30 6.30 6.30 6.30 5.97
56 13.28 13.28 13.08 13.15 13.26 11.99 7.93 7.99 7.98 7.93 7.94 7.51 6.14 6.14 6.14 6.14 6.14 5.84
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Table B.4: The table shows the RRMSE in % for the quantile levels 0.75 and 0.9 for six different quantile definitions evaluated on the GB2 distribution described
in Section 3.3.1.

0.75 0.9
n Q1 Q2 Q3 Q4 Q5 Q6 Q1 Q2 Q3 Q4 Q5 Q6

5 24.85 47.80 24.85 32.49 37.11 41.55 51.75 51.75 35.98 51.75 51.75 44.58
6 26.31 35.83 22.75 26.31 28.32 36.40 57.42 57.42 34.29 52.23 57.42 46.61

10 19.63 21.84 17.70 19.63 20.12 23.79 40.32 63.81 25.09 40.32 47.75 44.55
11 20.57 20.57 16.56 18.19 18.91 21.87 24.59 57.87 24.59 35.87 42.67 41.98
15 16.30 16.30 13.78 14.78 15.24 16.30 26.52 42.83 21.09 26.52 29.91 37.32
16 14.38 15.67 13.65 14.38 14.75 15.66 25.95 38.28 19.84 24.41 26.60 36.29
20 12.54 13.42 12.07 12.54 12.79 13.24 21.64 28.69 18.14 21.64 23.72 34.08
21 12.23 13.08 12.23 12.44 12.61 12.96 18.34 27.98 18.34 21.12 23.09 30.33
25 10.92 11.56 10.92 11.07 11.20 11.35 19.16 23.57 16.57 19.16 20.09 26.58
26 11.34 11.67 10.87 11.34 11.41 11.41 19.86 23.14 16.36 18.97 20.08 25.21
30 10.42 10.70 10.02 10.42 10.49 10.43 16.99 20.47 15.39 16.99 17.98 21.64
31 10.69 10.69 9.92 10.22 10.35 10.32 15.18 19.94 15.18 16.52 17.47 20.66
35 9.87 9.87 9.22 9.47 9.58 9.45 15.61 17.97 13.95 15.61 16.13 18.56
36 9.40 9.75 9.22 9.40 9.50 9.45 16.21 17.88 13.99 15.63 16.33 18.42
40 8.85 9.13 8.71 8.85 8.93 8.82 14.13 16.36 13.16 14.13 14.75 16.45
41 8.60 8.89 8.60 8.67 8.73 8.59 13.50 16.29 13.50 14.23 14.79 16.34
45 8.31 8.54 8.31 8.36 8.40 8.24 13.88 15.29 12.67 13.88 14.19 15.32
46 8.31 8.45 8.08 8.31 8.34 8.14 13.65 14.61 12.24 13.27 13.71 14.50
50 7.95 8.07 7.77 7.95 7.98 7.80 12.61 14.21 11.91 12.61 13.06 14.00
51 7.96 7.96 7.53 7.70 7.78 7.61 12.01 13.96 12.01 12.52 12.91 13.66
55 7.61 7.61 7.28 7.41 7.47 7.28 12.46 13.41 11.55 12.46 12.67 13.25
56 7.50 7.68 7.40 7.50 7.55 7.39 12.51 13.20 11.35 12.20 12.56 13.00
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Table B.5: The table shows the RB and RRMSE in % for the 0.99 quantile level and six different quantile definitions evaluated on the GB2 distribution described
in Section 3.3.1.

RB in % RRMSE in %
n Q1 Q2 Q3 Q4 Q5 Q6 Q1 Q2 Q3 Q4 Q5 Q6

100 9.30 26.98 -8.37 9.30 15.19 11.76 40.46 69.76 24.78 40.46 49.68 46.03
150 2.20 21.66 -4.88 2.20 8.69 13.98 26.46 47.52 21.00 26.46 30.79 38.81
200 3.14 10.87 -4.59 3.14 5.72 13.71 21.98 30.11 18.79 21.98 24.32 33.66
250 1.68 10.09 -3.09 1.68 4.49 11.78 19.54 25.37 16.50 19.54 20.75 26.96
300 1.76 6.83 -3.31 1.76 3.45 9.86 17.19 21.54 15.63 17.19 18.40 23.00
350 1.28 6.60 -2.23 1.28 3.05 8.21 16.16 19.23 14.39 16.16 16.81 19.76
400 0.88 4.53 -2.76 0.88 2.10 6.37 14.59 17.15 13.77 14.59 15.28 17.15
450 0.76 4.58 -2.01 0.76 2.03 5.82 14.11 15.95 12.86 14.11 14.50 16.00
500 1.04 3.90 -1.83 1.04 1.99 5.25 12.91 14.72 12.30 12.91 13.40 14.62
550 0.77 3.77 -1.57 0.77 1.77 4.63 12.58 13.83 11.66 12.58 12.84 13.65
600 0.66 3.02 -1.70 0.66 1.45 3.92 11.85 13.20 11.42 11.85 12.21 12.73
650 0.73 3.20 -1.30 0.73 1.55 3.90 11.51 12.52 10.77 11.51 11.73 12.33
700 0.69 2.73 -1.36 0.69 1.37 3.44 10.96 12.08 10.59 10.96 11.26 11.55
750 0.39 2.46 -1.35 0.39 1.08 3.05 10.57 11.27 10.02 10.57 10.72 10.92
800 0.62 2.41 -1.17 0.62 1.21 3.11 10.16 11.06 9.88 10.16 10.40 10.75
850 0.62 2.44 -0.98 0.62 1.23 2.95 10.01 10.65 9.50 10.01 10.15 10.36
900 0.50 2.05 -1.06 0.50 1.02 2.65 9.69 10.43 9.43 9.69 9.89 10.01
950 0.33 1.95 -1.06 0.33 0.87 2.45 9.43 9.95 9.02 9.43 9.54 9.69

1000 0.56 1.99 -0.88 0.56 1.04 2.47 9.14 9.80 8.91 9.14 9.31 9.42
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Table B.6: The table contains the RB in % for three different quantile definitions at the quantile levels 0.25, 0.5, 0.75, 0.9 and 0.95 evaluated on the synthetic
population described in Section 3.3.2.

0.25 0.5 0.75 0.9 0.95
n WQ1 WQ2 WQ3 WQ1 WQ2 WQ3 WQ1 WQ2 WQ3 WQ1 WQ2 WQ3 WQ1 WQ2 WQ3

36 62.73 61.24 62.64 15.88 15.52 15.88 3.43 3.77 4.05 16.47 15.75 16.47 105.22 105.22 105.22
44 44.65 46.85 44.65 12.55 13.29 12.55 2.16 2.62 2.16 7.64 7.97 7.64 19.00 19.00 19.00
54 37.23 37.09 37.23 11.24 11.73 11.24 2.41 2.39 2.41 11.14 10.32 11.14 20.34 20.47 20.34
90 24.52 24.82 24.52 7.32 7.35 7.32 0.62 0.65 0.62 5.52 5.47 5.52 13.07 13.73 13.07

128 16.28 16.87 16.17 5.49 5.21 5.47 0.27 0.36 0.27 5.49 4.70 5.49 14.15 11.79 14.15
166 13.76 13.74 13.71 3.89 3.93 3.89 0.66 0.60 0.66 4.06 4.18 4.07 10.12 9.10 10.12
202 10.64 10.72 10.63 2.44 2.46 2.44 0.64 0.66 0.65 4.37 4.34 4.37 6.81 7.26 6.81
239 9.55 9.55 9.55 2.87 2.80 2.87 0.05 0.13 0.06 3.44 3.54 3.46 6.14 6.54 6.19
296 7.11 7.02 7.10 2.55 2.54 2.55 0.17 0.19 0.18 3.25 3.18 3.26 5.76 5.74 5.78
556 3.84 3.92 3.83 1.53 1.54 1.53 0.25 0.26 0.25 2.59 2.68 2.60 3.57 3.79 3.59
741 1.99 2.05 1.99 0.93 0.96 0.93 0.26 0.27 0.26 2.37 2.40 2.37 3.12 3.09 3.13
926 1.18 1.26 1.17 0.92 0.93 0.92 0.04 0.05 0.05 2.29 2.30 2.30 2.52 2.56 2.54

1113 0.41 0.46 0.40 1.03 1.03 1.03 0.01 0.03 0.01 2.08 2.09 2.09 1.94 2.00 1.95
1299 0.14 0.21 0.13 1.10 1.10 1.10 0.13 0.14 0.14 1.88 1.91 1.89 1.74 1.81 1.75

81



SU
PPL

E
M

E
N

TA
RY

M
A

T
E

R
IA

L
B

.

Table B.7: The table contains the RRMSE in % for three different quantile definitions at the quantile levels 0.25, 0.5, 0.75, 0.9 and 0.95 evaluated on the synthetic
population described in Section 3.3.2.

0.25 0.5 0.75 0.9 0.95
n WQ1 WQ2 WQ3 WQ1 WQ2 WQ3 WQ1 WQ2 WQ3 WQ1 WQ2 WQ3 WQ1 WQ2 WQ3

36 188.96 184.75 188.96 73.72 73.65 73.72 42.35 42.53 42.36 84.00 82.96 84.00 356.94 356.92 356.94
44 149.09 149.57 149.09 67.15 67.11 67.15 37.61 37.71 37.61 52.74 52.76 52.74 89.71 89.71 89.71
54 128.27 126.77 128.27 60.20 60.36 60.20 33.95 33.75 33.95 54.30 52.45 54.30 93.00 92.88 93.00
90 91.63 91.32 91.63 46.58 46.34 46.58 25.25 25.15 25.25 30.94 30.75 30.94 60.48 60.81 60.48

128 72.86 73.46 72.83 39.43 39.42 39.42 21.41 21.24 21.41 25.68 24.92 25.68 49.39 46.45 49.39
166 62.20 62.20 62.13 34.29 34.09 34.28 19.08 18.96 19.08 21.52 21.28 21.52 38.21 36.48 38.21
202 56.07 56.03 56.06 31.17 31.04 31.17 17.15 17.06 17.15 19.67 19.49 19.67 30.81 30.79 30.81
239 52.30 51.82 52.29 28.68 28.48 28.68 15.76 15.72 15.75 17.86 17.92 17.86 27.98 28.36 27.98
296 45.41 45.18 45.40 25.32 25.24 25.32 14.10 14.01 14.10 15.87 15.71 15.87 24.05 24.06 24.08
556 33.11 32.95 33.10 18.67 18.62 18.67 10.68 10.62 10.68 11.82 11.81 11.82 16.41 16.49 16.41
741 27.91 27.79 27.91 15.99 15.93 15.99 9.21 9.15 9.21 10.40 10.34 10.41 13.83 13.71 13.84
926 24.54 24.41 24.54 14.24 14.19 14.24 8.32 8.28 8.32 9.36 9.30 9.36 12.38 12.24 12.41

1113 22.18 22.06 22.18 13.13 13.06 13.13 7.62 7.58 7.62 8.59 8.54 8.60 10.85 10.74 10.87
1299 20.33 20.24 20.33 12.15 12.09 12.15 7.10 7.05 7.10 7.84 7.77 7.84 9.86 9.80 9.87
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Chapter 4

The R package emdi for the estimation
and mapping of regional
disaggregated indicators

4.1 Introduction

In recent years an increased number of policy decisions has been based on statistical informa-

tion derived from indicators estimated at disaggregated geographical levels using small area

estimation methods. Clearly, the more detailed the information provided by official statistics

estimates, the better the basis for targeted policies and evaluating intervention programs. The

United Nations suggest further disaggregation of statistical indicators for monitoring the Sus-

tainable Development Goals. National statistical institutes (NSI) and other organizations across

the world have also recognized the potential of producing small area statistics and their use for

informing policy decisions. Examples of NSI with well-developed programs in the production

of small area statistics include the US Bureau of Census, the UK Office for National Statistics

(ONS) and the Statistical Office of Italy (ISTAT). Although the term domain is more general

as it may include non-geographic dimensions, the term small area estimation (SAE) is the es-

tablished one. We shall follow the custom in this paper and use the terms area/geography and

domain/aggregation interchangeably.

Without loss of generality in this paper we will assume that the primary data sources used to

estimate statistical indicators are national socio-economic household sample surveys. Sample

surveys are designed to provide estimates with acceptable precision at national and possibly

sub-national levels but usually have insufficient sizes to allow for precise estimation at lower

geographical levels. Therefore, direct estimation that relies only on the use of survey data

can be unreliable or even not possible for domains that are not represented in the sample. In

the absence of financial resources for boosting the sample size of surveys, using model-based

methodologies can help to obtain reliable estimates for the target domains.

Model-based SAE methods (Pfeffermann, 2013; Rao and Molina, 2015; Tzavidis et al.,

2018) work by using statistical models to link survey data, that are only available for a part

of the target population, with administrative or census data that are available for the entire
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population. Despite the wide range of SAE methods that have been proposed by academic

researchers, these are so far applied only by a fairly small number of NSI or other practitioners.

This gap between theoretical advances and applications may have several reasons one of which

is the lack of suitable, user friendly statistical software. More precisely, software needs not

only to be available but it also needs to simplify the application of the methods for the user.

The R (R Core Team, 2018) package emdi (Kreutzmann et al., 2018) aims to improve the

user experience by simplifying the estimation of small area indicators and corresponding pre-

cision estimates. Furthermore, the user benefits from support that extends beyond estimation

in particular, evaluating, processing, and presenting the results.

Traditionally model-based SAE methods have been employed for estimating simple, linear

indicators for example, means and totals using for example, mixed (random) effects models

and empirical best linear unbiased predictors (EBLUP). Several software packages exist. In R,

the package JoSAE (Breidenbach, 2015) includes functions for EBLUP using unit-level mod-

els. Functions in the package hbsae (Boonstra, 2012) enable the use of unit- and area-level

models and can be estimated either by using restricted maximum likelihood (REML) or hierar-

chical Bayes methods. The package BayesSAE (Shi and with contributions from Peng Zhang,

2013) also allows for Bayesian methods. The rsae package by Schoch (2014) and package sae-
Robust by Warnholz (2016a) provide functions for outlier robust small area estimation using

unit- or area-level models. Gaussian area-level multinomial mixed-effects models for SAE can

be done with the mme package (Lopez-Vizcaino et al., 2014). In addition, resources in R are

available for Bayesian SAE from the BIAS (Bayesian methods for combining multiple indi-

vidual and aggregate data sources) project (Gómez-Rubio et al., 2010) and from the package

SAE2 (Gómez-Rubio et al., 2008) that provides likelihood-based methods. In Stata, functions

xtmixed and gllamm support the estimation of linear mixed models, which is a popular

basis for model-based SAE. EBLUP can be derived using these functions (West et al., 2007).

Similarly, PROC MIXED and PROC IML can be used for fitting unit- and area-level models

in SAS as shown in Mukhopadhyay and McDowell (2011). Furthermore, several SAS macros

for SAE are provided by the EURAREA (enhancing small area estimation techniques to meet

European needs) project (EURAREA Consortium, 2004).

More recently widespread application of SAE methods involves the estimation of poverty

and inequality indicators and distribution functions (The World Bank, 2007). In this case the

use of methodologies for estimating means and totals is no longer appropriate since such indica-

tors are complex, non-linear functions of the data. As an example, we refer to the Foster-Greer-

Thorbecke indicators (Foster et al., 1984), the Gini coefficient (Gini, 1912) and the quantiles

of the income distribution. Popular SAE approaches for estimating complex indicators include

the empirical best predictor (EBP) (Molina and Rao, 2010), the World Bank method (Elbers

et al., 2003) and the M-Quantile method (Chambers and Tzavidis, 2006; Tzavidis et al., 2010).

Although in this paper we focus exclusively on software for implementing the EBP method

(Molina and Rao, 2010), a future version of the package will include the M-Quantile and

World Bank methods. The World Bank provides a free software for using the World Bank

method called PovMap (The World Bank Group, 2013). However, this focuses exclusively on

poverty mapping. Creating a more general open-source software can help to accelerate the up-
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take of modern model-based methods. Currently, the best known package that also includes the

EBP method is the R package sae (Molina and Marhuenda, 2015). Although the sae package

implements a range of small area methods, it lacks the necessary functionality for supporting

the user beyond estimation for example, for performing model diagnostic analyses, visualiz-

ing, and exporting the results for further processing. In contrast, emdi supports the user by

providing more options and greater flexibility. In particular, package emdi offers the following

attractive features that distinguishes it from the sae package and other R packages for SAE:

• The estimation functions return by default estimates for a set of predefined indicators,

including the mean, the quantiles of the distribution of the response variable and poverty

and inequality indicators. Additionally, self-defined indicators or indicators available

from other packages can be included.

• The user can select the type of data transformation to be used in emdi. Data-driven

transformation parameters are estimated automatically.

• In contrast to other packages that include only a parametric bootstrap for mean squared

error (MSE) estimation, package emdi includes two bootstrap methods, a parametric

bootstrap and a semi-parametric wild bootstrap (see Appendix C.1) for MSE estimation.

Both incorporate the uncertainty due to the estimation of the transformation parameter.

The use of wild bootstrap (Flachaire, 2005; Thai et al., 2013) protects the user against de-

partures from the distributional assumptions of the nested error linear regression model.

This offers additional protection against possible misspecification of the model assump-

tions.

• Customized parallel computing is offered for reducing the computational time associated

with the use of bootstrap.

• Package emdi provides predefined functions for diagnostic analyses of the model as-

sumptions. A mapping tool for plotting the estimated indicators enables the creation of

high quality visualization. The output summarizing the most relevant results can be ex-

ported to Excel™ and to OpenDocument Spreadsheets for presentation and reporting

purposes.

The remainder of this paper is structured as follows. Section 4.2 gives information about

the estimation methods that are included in the package. In Section 4.3 we present the data

sets that we used for illustrating the use of the emdi package. Section 4.4 describes the core

functionality of the package. Examples demonstrate the use of the methods for computing,

assessing and presenting the estimates. Section 4.5 shows how users can extend the set of

indicators to be estimated by including customized options and describes the parallelization

features of the package. Finally, Section 4.6 discusses future potential extensions.

4.2 Statistical methodology

In order to obtain regionally disaggregated indicators, package emdi includes direct estimation

and currently model-based estimation using the EBP approach by Molina and Rao (2010). The
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Measurement Indicator Ii Expression Range

Location Meani
∑Ni
j=1 yij
Ni

R

Qi,q F−1
i (q) = inf{yi ∈ R : Fi(yi) ≥ q} R

Poverty HCRi 1
Ni

∑Ni
j=1 I(yij ≤ z) [0, 1]

PGi
1
Ni

∑Ni
j=1

(
z−yij
z

)
I(yij ≤ z) [0, 1]

Inequality Ginii
2
∑Ni
j=1 jyij

Ni
∑Ni
j=1 yij

− (Ni+1)
Ni

[0, 1]

QSRi
∑Ni
j=1 I(yij>Qi,0.8)yij∑Ni
j=1 I(yij≤Qi,0.2)yij

R

Table 4.1: List of predefined population indicators in emdi. Note that Fi(yi) denotes the
empirical distribution function of the population in domain i and quantiles are generally defined
for q ∈ (0, 1). The predefined quantiles in emdi are q ∈ (0.1, 0.25, 0.5, 0.75, 0.9).

predefined indicators returned by the estimation functions in emdi include the mean and quan-

tiles Qq (10%, 25%, 50%, 75%, 90%) of the target variable as well as non-linear indicators of

the target variable. A widely used family of indicators measuring income deprivation and in-

equality is the Foster-Greer-Thorbecke (FGT) one (Foster et al., 1984). Package emdi includes

the FGT measures of headcount ratio (HCR) and poverty gap (PG). In order to compute the

HCR and PG indicators one must use a threshold z, also known as poverty line. This line is a

minimum level of income deemed adequate for living in a particular country and can be defined

in terms of absolute or relative poverty. For instance, the international absolute poverty line is

currently set to $1.90 per day by the World Bank (The World Bank, 2017). Relative poverty

means a low income relative to others in a particular country – for instance, below a percentage

of the median income in that country. Another family of indicators of interest is the so-called

Laeken indicators, endorsed by the European Council in Laeken, Belgium (Council of the Eu-

ropean Union, 2001). Two examples of Laeken indicators that are well-known for measuring

inequality are the Gini coefficient (Gini, 1912) and the income quintile share ratio (QSR) (euro-

stat, 2004). These two inequality indicators are also available in emdi. Therefore, in total emdi
includes ten predefined indicators Ii – summarized in Table 4.1 – that are estimated at domain

level i using a) direct estimation introduced in Section 4.2.1 and b) model-based estimation via

the EBP method introduced in Section 4.2.2.

In the following sections the notation denotes byU a finite population of sizeN , partitioned

into D domains U1, U2, . . . , UD of sizes N1, . . . , ND, where i = 1, . . . , D refers to an ith

domain and j = 1, . . . , Ni to the jth household/individual. From this population a random

sample of size n is drawn. This leads to n1, . . . , nD observations in each domain. If ni is equal

to 0 the domain is not in the sample. The target variable is denoted by yij .

4.2.1 Direct estimation

Direct estimation relies on the use of sample data only. The definition of direct (point and

variance) estimators in emdi follows Alfons and Templ (2013). The mean and the quantiles

help to describe the level and the distribution of a target variable. Especially for target variables
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with a skewed distribution, quantiles can be more appropriate summary statistics than the mean,

since these are robust to extreme values. Direct estimators of the mean and the quantiles are

defined as follows,

M̂eani =

∑ni
j=1wijyij∑ni
j=1wij

,

Q̂i,q =

1
2 (yik + yik+1) if

∑k
j=1wij = q

∑ni
j=1wij ;

yik+1 if
∑k

j=1wij ≤ q
∑ni

j=1wij ≤
∑k+1

j=1 wij ,

where wij denotes the sample weights and q ∈ (0, 1) defines the corresponding quantile.

The FGT measures HCR and PG are estimated by package emdi as follows,

ĤCRi =
1∑ni

j=1wij

ni∑
j=1

wijI(yij ≤ z),

P̂Gi =
1∑ni

j=1wij

ni∑
j=1

wij

(
z − yij
z

)
I(yij ≤ z),

where the indicator function I(·) equals 1 if the condition is met and 0 otherwise. As already

mentioned, for the computation of the HCR and PG indicators one must use a threshold z, also

known as the poverty line. Package laeken (Alfons and Templ, 2013) uses relative poverty

lines defined as 60% of median equivalized disposable income, which corresponds to the EU

definition for poverty lines and thus in this case the HCR is the At-risk-of-poverty rate. In

contrast, package emdi allows both for absolute and relative poverty lines and the user is free

to set the poverty line. Therefore, the threshold can be given as an argument in emdi or,

alternatively, the user can define an arbitrary function depending on the target variable and

sampling weights. As a default, a relative threshold defined as 60% of the median of the target

variable is used. The HCR describes the proportion of the population below the poverty line and

the PG further takes into account how far, on average, this proportion falls below the threshold.

Both indicators are between 0 and 1.

The two inequality indicators Gini and QSR are estimated in emdi by

Ĝinii =

2
∑ni

j=1

(
wijyij

∑j
k=1wik

)
−
∑ni

j=1w
2
ijyij∑ni

j=1wij
∑ni

j=1wijyij
− 1

 ,
Q̂SRi =

∑ni
j=1 I(yij > Qi,0.8)wijyij∑ni
j=1 I(yij ≤ Qi,0.2)wijyij

,

where I(·) is an indicator function that equals 1 if the target variable is above the weighted 80%

quantile or below the 20% quantile and 0 otherwise. The Gini coefficient is between 0 and 1,

and the higher the value, the higher the inequality is. The extreme values of 0 and 1 indicate

perfect equality and inequality, respectively. QSR is typically used when the target variable is

income and in this case it is defined as the ratio of total income of the 20% richest households

to the 20% poorest households. The higher the value of QSR, the higher the inequality is.

While variance estimation in package laeken (Alfons and Templ, 2013) is only available for
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the poverty and inequality indicators, package emdi also provides a non-parametric bootstrap

method (Alfons and Templ, 2013) for estimating the variance of estimates of the mean and the

quantiles. The variance is, on the one hand, an important measure for measuring the precision

of estimates. On the other hand, it is also important to compute the coefficient of variation

(CV) which is one measure for showing the extent of the variability of the estimate. The CV is

used, for instance, by NSI for quantifying the uncertainty associated with the estimates and is

defined as follows,

CV =

√
M̂SE(Îi)

Îi
,

where Îi is an estimate of an indicator Ii for domain i and M̂SE(Îi) is the corresponding mean

squared error.

4.2.2 Model-based estimation

The implementation of the EBP method in package emdi is based on the theory described in

Molina and Rao (2010) and Rao and Molina (2015). The underlying model is a unit-level

mixed model also known in SAE literature as the nested error linear regression model (Battese

et al., 1988). In its current implementation the EBP method is based on a two-level nested

error linear regression model that includes a random area/domain-specific effect and a unit

(household or individual)-level error term.

In addition to the notation above, here we assume that X = (x0, . . . ,xp)
> is the design

matrix, containing p explanatory variables. The nested error linear regression model is defined

by

T (yij) = x>ijβ+ui+eij , j = 1, . . . , ni, i = 1, . . . , D, ui
iid∼ N(0, σ2

u), eij
iid∼ N(0, σ2

e),

(4.1)

where T denotes a transformation of the target variable yij , xij is a vector of unit-level auxil-

iary variables of dimension (p + 1)× 1, β is the (p + 1)× 1 vector of regression coefficients

and ui and eij denote the random area and unit-level error terms. The EBP approach works

by using at least two data sources, namely a sample data set used to fit the nested error linear

regression model and a population (e.g., census or administrative) data set used for predicting –

under the model – synthetic values of the outcome for the entire population. Both data sources

must share identically defined covariates but the target variable is only available in the sample

data set.

Use of data transformations
Under model (4.1) we assume that the model error terms follow a Gaussian distribution. How-

ever, in certain applications – as is the case when analyzing economic variables – this assump-

tion may be unrealistic. Package emdi includes the option of using a one-to-one transformation

T (yij) of the target variable yij aiming to make the Gaussian assumptions more plausible. A

logarithmic-type transformation is very often used in practice (Elbers et al., 2003; Molina and

Rao, 2010). However, this is not necessarily the optimal transformation, for example, when the
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model error terms do not follow exactly a log-normal distribution. In addition to a logarithmic

transformation, package emdi allows the use of a data-driven Box-Cox transformation (Box

and Cox, 1964). The Box-Cox transformation is denoted by

T (yij) =


(yij+s)

λ−1
λ if λ 6= 0;

log(yij + s) if λ = 0,
(4.2)

where λ is an unknown transformation parameter and s denotes the shift parameter, which is a

constant and chosen automatically such that yij + s > 0. A general algorithm for estimating

the transformation parameter λ is the REML, which is described in detail in Rojas-Perilla et al.

(2017). One advantage of using the Box-Cox transformation is that it includes the logarithmic

and no transformation as cases for specific values of λ. Package emdi currently includes the

following options: no transformation, logarithmic transformation and Box-Cox transformation.

The EBP method is implemented using the following algorithm:

1. For a given transformation obtain T (yij) = y∗ij . If the user selects the Box-Cox transfor-

mation, the transformation parameter λ is automatically estimated by the emdi package.

2. Use the sample data to fit the nested error linear regression model and estimate θ denoted

by θ̂ = (β̂, σ̂2
u, σ̂

2
e). The variance components are estimated by REML using the function

lme from the package nlme (Pinheiro et al., 2015). Also compute γ̂i = σ̂2
u

σ̂2
u+

σ̂2e
ni

.

3. For l = 1, . . . , L:

(a) For in-sample domains (domains that are part of the sample data set), generate a

synthetic population of the target variable by y∗(l)ij = x>ijβ̂ + ûi + v
(l)
i + e

(l)
ij , with

v
(l)
i

iid∼ N(0, σ̂2
u(1− γ̂i)), e(l)

ij
iid∼ N(0, σ̂2

e) and ûi, the conditional expectation of ui
given y∗i .

For out-of-sample domains (domains with no data in the sample) the conditional

expectation of ui cannot be computed, hence for these domains generate a synthetic

population by using y∗(l)ij = x>ijβ̂ + v
(l)
i + e

(l)
ij , with v(l)

i
iid∼ N(0, σ̂2

u), e(l)
ij

iid∼
N(0, σ̂2

e).

For additional details we refer to Molina and Rao (2010).

(b) Back-transform to the original scale y
(l)

i = T−1(y∗
(l)

i ) and calculate the target

indicator I(l)
i (y

(l)

i ) in each domain. Note that I(l)
i is used here as a generic notation

for any indicator of interest.

4. Compute the final estimates by taking the mean over the L Monte Carlo simulations in

each domain, ÎEBPi = 1/L
L∑
l=1

I
(l)
i (y

(l)

i ).

The emdi package fits the nested error linear regression model by using the nlme package and

currently does not permit the use of an alternative package for example lme4 (Bates et al.,

2015). The reason for this choice is that in future developments of emdi we plan to allow for

more complex covariance structures for the unit-level error term and the random effect for ex-

ample, allowing for spatially correlated errors (Pratesi and Salvati, 2009; Schmid et al., 2016).
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To the best of our knowledge, the nlme package offers sufficient flexibility for incorporating

such models.

Measuring the uncertainty of the EBP estimates is done by using bootstrap methods. Here

the uncertainty is quantified by the MSE. Package emdi includes two bootstrap schemes. One

is parametric bootstrap under model 4.1 following Molina and Rao (2010), which additionally

includes the uncertainty due to the estimation of the transformation parameter (Rojas-Perilla

et al., 2017). Using an appropriate transformation often mitigates the departures from normal-

ity. However, even after transformations, departures from normality may still exist in particular

for the unit-level error term. For this reason, emdi also includes a variation of semi-parametric

wild bootstrap (Flachaire, 2005; Thai et al., 2013; Rojas-Perilla et al., 2017) to protect against

departures from the model assumptions. The semi-parametric wild bootstrap is presented in

detail in Appendix C.1. A simulation study comparing the performance of both MSE estima-

tors is presented in Rojas-Perilla et al. (2017). Since the bootstrap schemes presented here are

computationally intensive, emdi includes an option for parallelization that is described in detail

in Section 4.5.2.

4.3 Data sets

The main idea of SAE is to combine multiple data sources. Typically, one data set is obtained

from survey data at unit-level and the other one from census or administrative/register data.

The target variable is available in the survey but not in the census data. The administrative

data contains explanatory variables that are potentially correlated with the target variable and

hence they can be used to assist the estimation. Depending on the model type and the indicator

of interest, census information is needed at the unit-level, i.e., information is available for

every unit in each domain, or it is required at the area-level which means that aggregated

data for each domain is given. If the user is interested in estimating non-linear functions of

the target variable (like indicators discussed in Section 4.2), then access to unit-level census

data is needed. As the EBP approach in package emdi is suitable for estimating non-linear

indicators, one population data set (eusilcA_pop) and one survey data set (eusilcA_smp)

are provided at the household level such that the method can be illustrated. The two data sets

are based on the use of eusilcP from the package simFrame (Alfons et al., 2010). This

data set is a simulated close-to-reality version of the European Union Statistics on Income and

Living Conditions (EU-SILC) in Austria from 2006. Austria is a federal republic in Central

Europe made up of nine states and 94 districts (79 districts headed by commissions and 15

statutory cities) with a total population of about 8.8 million in 2018. The original EU-SILC

data is obtained from an annual household survey that is nowadays conducted in all EU member

states and six other European countries and enables the analysis of income, socio-demographic

factors and living conditions.

For practical reasons, we need to modify the eusilcP data set used in package sim-
Frame. Due to confidentiality constraints the lowest geographical level in this data set includes

the nine states and identifiers for lower regional levels, like the 94 districts, are not included.

However, in the context of SAE the interest is on lower geographical levels like districts or
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municipalities. Therefore, we assigned households to Austrian districts for illustrating the

methodology better. The modified synthetic population is called eusilcA_pop. The assign-

ment is based on two criteria available from external sources: a) the population sizes at state

and district level and b) the income level in each district. From the last register-based census

in 2011 the population sizes in each district and in each state are known and publicly available

(Statistik Austria, 2013). We defined the district population sizes in relation to the state pop-

ulation sizes in the eusilcA_pop data set such that their population ratios mimic the true

ratios in Austria. Furthermore, the Austrian Chamber of Commerce published a ranking of the

districts within the states based on the net per capita income (Wirtschaftskammer Österreich,

2017). Based on this ranking we assigned households to districts such that the ordering of the

districts within states is maintained. One drawback of the population data set is the small num-

ber of households in some districts. For instance, the number of households is only 5 in Rust

(Stadt). This is, however, partly due to the fact that it is also in reality a really small district

with only 1896 inhabitants (Statistik Austria, 2013). Although the eusilcA_pop data set

in emdi mimics some real characteristics in Austria, it is a synthetic population data set for

demonstrating the functionality of the package and conclusions about the levels of inequality

and poverty in the Austrian districts observed from this data are not official estimates. The

documented complete code for the assignment of the households to the districts is available as

supplementary file at the Journal of Statistical Software along with our article.

The target variable in the example is the equivalized household income (eqIncome),

which is defined as the total household disposable income divided by the equivalized house-

hold size determined by the modified scale of the Organisation for Economic Co-operation and

Development (OECD) (Hagenaars et al., 1994). Thus, the indicators in our illustration describe

the distribution of income, poverty and inequality similarly to the analysis in Alfons and Templ

(2013). The remaining variables in eusilcA_pop are variables that identify the regional

levels (state and district) and auxiliary variables that can be used for modeling income.

These explanatory variables are, among others, gender (gender), the equivalized household

size (eqsize) as well as financial resources like the employees cash (cash) or unemployment

benefits (unempl_ben). Table 4.2 gives an overview of possible model covariates.

The sample data set eusilcA_smp is a household sample from the eusilcA_pop pop-

ulation that includes 1945 observations. The sample is drawn by stratified random sampling

where the districts define the strata. For the 75% largest districts (in terms of number of house-

holds) 10% of the households were selected and the maximum number of sampled households

is equal to 200 in any given district. Consequently, the 25% smallest districts do not have

any observation in the sample. Summaries of state and district-specific sample sizes are given

below.

R> data("eusilcA_smp")

R> table(eusilcA_smp$state)

Burgenland Carinthia Lower Austria Salzburg

31 162 387 163

Styria Tyrol Upper Austria Vienna Vorarlberg

337 173 392 200 100
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Variable Meaning Scale level

Target variable
eqIncome The equivalized household income. Numeric

Domain identifiers
state Austrian states. Factor
district Austrian districts. Factor

Explanatory variables
eqsize The equivalized household size according to the Numeric

modified OECD scale.
gender The person’s gender (levels: female and male). Factor
cash Employee cash or near cash income. Numeric
self_empl Cash benefits or losses from self-employment (net). Numeric
unempl_ben Unemployment benefits (net). Numeric
age_ben Old-age benefits (net). Numeric
surv_ben Survivor’s benefits (net). Numeric
sick_ben Sickness benefits (net). Numeric
dis_ben Disability benefits (net). Numeric
rent Income from rental of a property or land (net). Numeric
fam_allow Family/children related allowances (net). Numeric
house_allow Housing allowances (net). Numeric
cap_inv Interest, dividends, profit from capital investments in Numeric

unincorporated business (net).
tax_adj Repayments/receipts for tax adjustment (net). Numeric

Design variable
weight Sampling weight. Numeric

Table 4.2: Variables of the two data sets in package emdi. Note that the population data set
does not contain a variable for the sampling weights.

R> summary(as.numeric(table(eusilcA_smp$district)))

Min. 1st Qu. Median Mean 3rd Qu. Max.

14.00 17.00 22.50 27.79 29.00 200.00

District-specific sample sizes (in contrast to state-specific) are quite small with 25% of districts

having no sample data at all. Hence, the use of SAE methods may be useful in this case. In

Section 4.4 we discuss the estimation of regional indicators based on these data sets in detail.

In addition to SAE methods, package emdi provides a function called map_plot that pro-

duces maps of the estimated indicators. In order to demonstrate the use of the function map_

plot package emdi contains a shape file for the 94 Austrian districts which is downloaded

from the SynerGIS website (Bundesamt für Eich- und Vermessungswesen, 2017). This shape

file is saved in .rda format and the object shape_austria_dis is a SpatialPolygons-

DataFrame. For more information about this class we refer to Bivand et al. (2013).

4.4 Basic design and core functionality

Section 4.2 presented the statistical methodology that uses either direct estimation or the model-

based EBP approach. In package emdi direct and model-based estimation are implemented

92



CHAPTER 4. THE R PACKAGE EMDI

Position Name Short description Available for
direct model

1 ind Point estimates for indicators 3 3
per domain

2 MSE Variance/MSE estimates 3 3
per domain

3 transform_param Transformation and 3
shift parameters

4 model Fitted linear mixed-effects 3
model as lme object

5 framework List with 8 components 3 3
describing the data

6 transformation Type of transformation 3
7 method Estimation method for 3

transformation parameter
8 fixed Formula of fixed effects used 3

in the nested error linear
regression model

9 call Image of the function call that 3 3
produced the object

10 successful_bootstraps A matrix with domains as rows, 3
indicators as columns and
the number of corresponding
successful bootstraps

Table 4.3: Components of emdi objects. All explanations can be found in the documentation
of the emdi object in the package.

with functions direct and ebp, respectively. A key benefit offered by emdi is the flexibility

for producing, assessing, presenting and exploring the estimates. This is achieved by using the

following commands:

1. Estimate domain indicators including MSE estimation: direct and ebp

2. Get summary statistics and model diagnostics: summary and plot

3. Extract and compare the indicators of interest: estimators and compare

4. Visualize the estimated indicators: map_plot

5. Export the results to Excel™: write.excel

The package emdi uses the S3 object system (Chambers and Hastie, 1992). All objects cre-

ated in the package emdi by an estimation function (direct and ebp) share the class emdi.

Objects of class emdi comprise ten components, which are presented in Table 4.3. Some of

these components are specific only to one of the estimation methods, such that they are NULL

for the other one. These components are indicated in the second column of Table 4.3. Depend-

ing on the estimation method, the emdi object is also of class direct or model. Thus, the

commands can be tailored to the estimation method, e.g., model diagnostics (provided by the

command plot) are only suitable when a model-based approach is used. In what follows the

estimation functions are presented and emdi functionalities are illustrated.
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Arguments Short description Default

y Target variable
smp_data Survey data
smp_domains Domain identifier
weights Sampling weights No weights
design Variable indicating strata No design
threshold Threshold for poverty indicators 60% of the median of

the target variable
var Variance estimation No variance estimation
boot_type Type of bootstrap: naive or calibrate Naive
B Number of bootstrap populations 50
seed Seed for random number generator 123
X_calib Calibration variables None
totals Population totals None
custom_indicator Customized indicators None
na.rm Deletion of observations with missing No deletion

values

Table 4.4: Input arguments for function direct. All explanations can also be found in the
documentation of the direct function in the package.

4.4.1 Estimation of domain indicators

As far as possible, the two estimation functions (direct and ebp) have the same structure

and variable names, which helps to simplify their use. For function direct, the user has to

specify three arguments (see Table 4.4), that include the target variable, the sample data set, and

the variable name that defines the domain identifier in the sample data. For the remaining argu-

ments suitable defaults are defined. The EBP approach is implemented in emdi, using function

ebp. As shown in Table 4.5, the user has to specify five arguments that include the structure

of the fixed effects of the nested error linear regression model, the two data sets (population

and sample), and the variable names that define the domain identifiers in each data set. For

the remaining arguments suitable defaults are defined. Following Molina and Rao (2010), the

number of Monte Carlo iterations L and the number of bootstrap populationsB are set to 50 by

default. In practice, we recommend using larger values for example, L ≥ 200 and B ≥ 200.

The choice of a transformation is simplified since the user only has to choose the type of trans-

formation. The shift parameter s and the optimal transformation parameter λ in the case of

using the Box-Cox transformation are automatically estimated. This distinguishes emdi from

package sae (Molina and Marhuenda, 2015) where the user has to select the transformation

parameters manually. Since the Box-Cox transformation includes the no transformation and

logarithmic transformation as special cases, this family of transformations is chosen as the de-

fault option.

Example using Austrian districts:
For illustrating the functions of package emdi we estimate indicators using the data sets de-

scribed in Section 4.3. The target variable is the equivalized income (eqIncome) and the

regional level of interest are Austrian districts included in variable district. For direct

estimation of the indicators the user has to specify these two arguments and the sample data
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Arguments Short description Default

fixed Fixed effects formula of the nested error
regression model

pop_data Census or administrative data
pop_domains Domain identifier for population data,

pop_data
smp_data Survey data
smp_domains Domain identifier for sample data,

smp_data
L Number of Monte Carlo iterations 50
threshold Threshold for poverty indicators 60% of the median of

the target variable
transformation Type of transformation: no, log or Box-Cox

Box-Cox
interval Interval for the estimation of the optimal (-1,2)

transformation parameter
MSE Mean Squared Error (MSE) estimation No MSE estimation
B Number of bootstrap populations 50
seed Seed for random number generator 123
boot_type Type of bootstrap: parametric or wild Parametric
parallel_mode Mode of parallelization Automatic
cpus Number of kernels for parallelization 1
custom_indicator Customized indicators None
na.rm Deletion of observations with missing No deletion

values

Table 4.5: Input arguments for function ebp. All explanations can also be found in the docu-
mentation of the ebp function in the package.

set called eusilcA_smp. In addition, several other arguments are defined as shown below.

We account for the sampling design by including the sampling weights in the estimation. Fur-

thermore, we set the threshold argument to 60% of the median of equivalized income that – in

this example – equals 10885.33 and we are also interested in obtaining the variance estimates

of the indicators.

R> emdi_direct <- direct(y = "eqIncome",

+ smp_data = eusilcA_smp, smp_domains = "district",

+ weights = "weight", threshold = 10885.33, var = TRUE)

The R object emdi_direct is of classes emdi and direct.

An example of using the ebp method for computing point and MSE estimates for the prede-

fined indicators and two custom indicators, namely the minimum and maximum equivalized

income is provided below:

R> emdi_model <- ebp(fixed = eqIncome ~ gender + eqsize +

+ cash + self_empl + unempl_ben + age_ben + surv_ben +

+ sick_ben + dis_ben + rent + fam_allow + house_allow +

+ cap_inv + tax_adj,

+ pop_data = eusilcA_pop, pop_domains = "district",

+ smp_data = eusilcA_smp, smp_domains = "district",

+ threshold = 10885.33, MSE = TRUE,
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+ custom_indicator =

+ list(my_max = function(y, threshold){max(y)},

+ my_min = function(y, threshold){min(y)}))

In contrast to the direct estimation, the user also has to choose the auxiliary variables to be

included in the nested error linear regression model. The variables that are chosen to explain

the equivalized income are demographics as gender and the equivalized household size but

also financial benefits and allowances as for example cash income, unemployment benefits and

capital investement. Furthermore, model-based estimation requires the use of both, population

(eusilcA_pop) and sample (eusilcA_smp) data and the domain identifiers. For enabling

the comparison between direct and model-based estimates of the indicators of interest we use

the same threshold as in the direct estimation. MSE estimates are returned by setting the MSE

argument to TRUE. The final R object emdi_model is of classes emdi and model. For this

object we show in the following sections the emdi functionalities.

4.4.2 Summary statistics and model diagnostics

R-users typically use a summary method for summarizing the results. For emdi objects the

summary outputs differ depending on the two classes. The summary for objects obtained by

direct estimation gives information about the number of domains in the sample, the total and

domain-specific sample sizes. The summary for model-based objects is more extensive. In

addition to information about the sample sizes, information about the population size and the

number of out-of-sample domains is provided. Since model-based SAE relies on prediction un-

der the model, including model diagnostics in emdi is important for users. A first measure to

consider when evaluating the working model is the well known R2. Nakagawa and Schielzeth

(2013) provide a generalization of this measure for linear mixed models. A marginal R2 and a

conditional (a measure that accounts for the random effect) R2 are implemented via function

r.squaredGLMM in package MuMIn (Barton, 2018). The summary method uses this func-

tion to calculate and present both measures. For the EBP and model-based SAE methods in

general the validity of parametric assumptions is crucial. Therefore, emdi also outputs residual

diagnostics. In particular, results include the skewness and kurtosis of both sets of residuals

(random effects and unit-level) and the results from using the Shapiro-Wilk test for normality

(test statistic and p-value). The intra-cluster correlation (ICC) coefficient is further used for

assessing the remaining unobserved heterogeneity. Finally, the summary command gives in-

formation about the selected transformation. If the user opts for a Box-Cox transformation, the

transformation parameter λ and the shift parameter s are reported.

In addition to the diagnostics provided by summary, emdi enables the use of graphical

diagnostics (see Figure 4.1). The plot method outputs graphics of residual diagnostics. The

first set of plots (Figure 4.1a) are normal quantile-quantile (Q-Q) plots of Pearson unit-level

residuals and standardized random effects. Figure 4.1b and 4.1c are kernel density plots of the

distribution of the two sets of residuals contrasted against a standard normal distribution. Out-

liers can have a significant impact on the model fit and hence on prediction. Hence, a Cook’s

distance plot is also available (Figure 4.1d), in which the three largest values of the standard-

ized residuals are identified alongside the case identification number for further investigation.
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Finally, if a Box-Cox transformation is used, a plot of the profile log-likelihood that shows the

value of the transformation parameter for which the likelihood is maximized is also produced

(Figure 4.1e). The user can customize the format of all plots. Method plot accepts the pa-

rameter label with the predefined values blank (deletes all labels) and no_title (axis

labels are given, but no plot titles). In addition, a user-defined list that contains specific labels

for each plot list can be given. Another parameter available is color which accepts a vector

with two color specifications. The first color defines the lines in Figure 4.1a, 4.1d and 4.1e and

the second one specifies the color of the shapes in Figure 4.1b and 4.1c. For the likelihood plot

the range in which the likelihood should be computed can be specified by using the parameter

range. The appearance of the plots benefits from the use of the ggplot2 package (Wickham,

2009). Hence, plot accepts a gg_theme argument that allows for all customization options

of theme that is a tool for modifying non-data components of a plot.

Example using Austrian districts:
In order to check the diagnostics in our example we use the summary and the plot methods.

The summary output of the object emdi_model is presented below.

R> summary(emdi_model)

Empirical Best Prediction

Call:

ebp(fixed = eqIncome ~ gender + eqsize + cash + self_empl +

unempl_ben + age_ben + surv_ben + sick_ben + dis_ben + rent +

fam_allow + house_allow + cap_inv + tax_adj,

pop_data = eusilcA_pop, pop_domains = "district",

smp_data = eusilcA_smp, smp_domains = "district",

threshold = 10885.33, MSE = TRUE,

custom_indicator =

list(my_max = function(y, threshold) {max(y)},

my_min = function(y, threshold) {min(y)}))

Out-of-sample domains: 24

In-sample domains: 70

Sample sizes:

Units in sample: 1945

Units in population: 25000

Min. 1st Qu. Median Mean 3rd Qu. Max.

Sample_domains 14 17.0 22.5 27.78571 29.00 200

Population_domains 5 126.5 181.5 265.95745 265.75 5857
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Explanatory measures:

Marginal_R2 Conditional_R2

0.6325942 0.709266

Residual diagnostics:

Skewness Kurtosis Shapiro_W Shapiro_p

Error 0.7523871 9.646993 0.9619824 3.492626e-22

Random_effect 0.4655324 2.837176 0.9760574 1.995328e-01

ICC: 0.2086841

Transformation:

Transformation Method Optimal_lambda Shift_parameter

box.cox reml 0.6046901 0

This output helps to justify the use of a model-based approach for SAE in this specific example.

On the one hand, 24 out of 94 districts are out-of-sample such that direct estimates cannot be

produced for these districts. Furthermore, the sample sizes in the districts are rather small with

a median of 22.5 households and vary between a minimum of 14 households and a maximum of

200 households. The explanatory power of the selected covariates is high with the conditional

R2, the measure that jointly considers the fixed and the random effect, of around 71%. The

ICC of 20.9% further justifies the inclusion of a random effect. The normality tests show

that normality is rejected for the unit-level error term but not for the random effect. The use of

transformations helps to reduce the skewness of the distribution of the error terms. The optimal

transformation parameter is 0.6 indicating that neither using the untransformed income or the

logarithmic transformation of income would be appropriate for this data set. The plots in Figure

4.1 used for residual analyses of the object emdi_model can be produced as follows,

R> plot(emdi_model, label = "no_title",

+ color = c("red3", "red4"))

The Q-Q plots and the densities of the two error terms confirm that normality seems to be

reasonable for the random effect but not for the unit-level error term. Furthermore, the Cook’s

distance plot identifies possible outliers. The last plot shows the optimal transformation pa-

rameter, which is the maximum of the profile log-likelihood.

4.4.3 Selection and comparison of indicators

Package emdi returns a set of predefined and customized indicators. The ten predefined indi-

cators are summarized in Table 4.1. However, the user may only be interested in some of these

or only in individually defined (customized) indicators. A function called estimators helps

the user to select the indicator or indicators of interest. This is done by using the indicator

argument that takes a vector of indicator names as an argument, but in addition also accepts

keywords defining predefined groups; for example, the keyword custom returns only user-

defined indicators. In addition to variance and MSE estimates, NSI often use the CV as an
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Figure 4.1: Graphics obtained by using plot(emdi_model). (a) shows normal Q-Q plots
of the unit-level errors and the random effects. (b) and (c) show kernel density estimates of
the distributions of standardized unit-level errors and standardized random effects compared
to a standard normal distribution (black density). The Cook’s distance plot is displayed in (d)
whereby the index of outliers is labeled. The profile log-likelihood for the optimal parameter
value of the Box-Cox transformation is shown in (e).
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additional measure of the quality of the estimates. Estimated CVs as defined in Section 4.2 can

be returned alongside MSE estimates.

It is often important to compare model-based and direct estimates. Direct estimates do not

depend on the use of a model and hence the analyst should be interested in deriving model-

based estimates that are close to direct estimates. Comparing model-based to direct estimates

offers an internal validation procedure for checking whether the use of a model leads to un-

reasonable estimates. Package emdi provides a function called compare_plot that returns

two plots, a scatter plot according to Brown et al. (2001) and a line plot. The scatter plot

shows the direct and model-based point estimates, the fitted regression line, and the identity

line. The closer the regression line is to the identity line, the closer the estimates are. The line

plot is shown for domains ordered by the sample size. Thus, the user can see how the model-

based estimates track the direct estimates across domains. In accordance with the function

estimators the user can choose which indicators are compared by using the indicator

argument. Similarly to the diagnostic plots, the user can modify the layout of the two plots.

The label options are also blank (deletes all labels) and no_title (axis labels are given,

but no plot titles). The color, the shape of the points and the type of the lines can be changed

by using arguments color, shape and line_type, respectively.

Example using Austrian districts:
We illustrate how to estimate the median of equivalized income and the Gini coefficient and

the corresponding CV estimates for the first 6 districts in Austria.

R> head(estimators(emdi_model, indicator = c("Gini", "Median"),

+ MSE = FALSE, CV = TRUE))

Domain Gini Gini_CV Median Median_CV

1 Eisenstadt-Umgebung 0.2214688 0.09790984 25414.07 0.10381883

2 Eisenstadt (Stadt) 0.2872751 0.06110093 49274.84 0.07673551

3 Güssing 0.1906263 0.13046770 16718.13 0.12732081

4 Jennersdorf 0.2098103 0.15371048 12869.55 0.17815504

5 Mattersburg 0.2091353 0.10851693 20102.09 0.12764578

6 Neusiedl am See 0.1865026 0.05934130 18386.83 0.06346778

For these districts, the Gini coefficient and the median income are highest in Eisenstadt (Stadt).

The lowest Gini is in Neusiedl am See and the lowest median in Jennersdorf. Furthermore, it

can be noted that none of the CVs is above 20%. This threshold is used by the ONS in UK in

order to decide if estimates can be reported.

The plots in Figure 4.2 are obtained by

R> compare_plot(emdi_direct, emdi_model,

+ indicator = c("Gini", "Median"), label = "no_title",

+ color = c("red3", "blue"))

The scatter plots highlight that the disparity of the fitted regression line from the identity line

is higher for the Gini coefficient than for the median. The model-based estimates do not track
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Figure 4.2: Graphics obtained by using compare_plot(emdi_model). (a) and (c) show
the scatter plots of the direct and model-based estimates for the Gini coefficient (top) and
the median (bottom), respectively. (b) and (d) are line plots of the same estimates where the
domains are ordered by increasing sample size.
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pop_data_id shape_id

ID of domain 1 in the emdi obj ID of domain 1 in the shape file
ID of domain 2 in the emdi obj ID of domain 2 in the shape file
ID of domain 3 in the emdi obj ID of domain 3 in the shape file

...
...

Table 4.6: Example of a mapping table for argument map_tap in function map_plot in
emdi.

the direct estimates and show also a lower variability across the domains. In contrast, the direct

and model-based estimates for the median are close to each other. Especially for large domains

the difference is negligible.

4.4.4 Mapping of the estimates

In SAE maps are a natural way to present the estimates as they help describing the spatial

distribution of issues like poverty and inequality. Creating maps can be demanding or labo-

rious in practice. Package emdi includes function map_plot that simplifies the creation of

maps. Given a spatial polygon provided by a shape file and a corresponding emdi object

map_plot produces maps of selected indicators and corresponding MSE and CV estimates.

The parameters MSE, CV and indicator correspond to those in the estimators function.

As Wickham (2009) points out the matching of domain identifiers in the statistical data to the

corresponding identifiers in the spatial data (shape file) is challenging and general solutions are

hard to obtain. The function map_plot in emdi allows for an argument map_tab when the

identifiers do not match. The user must define a mapping table (cf. Table 4.6) for the argument

map_tab in the form of a data frame that matches the domain variable in the population data

set with the domain variable in the shape file. If the domain identifiers in both data sources

match, this table is not required. The handling of the spatial shape files can be done using

package maptools (Bivand and Lewin-Koh, 2017) in combination with package rgeos (Bivand

and Rundel, 2017). Alternative approaches are provided by the packages rgdal (Bivand et al.,

2018) and sf (Pebesma, 2018). For general information on how to work with spatial data and

shape files we refer the reader to Bivand et al. (2013).

Example using Austrian districts:
The steps for obtaining a map of median income in Austrian districts and the corresponding

CVs are outlined below. First, the shape file needs to be loaded.

R> load_shapeaustria()

Then, two maps are created (cf. Figure 4.3).

R> map_plot(emdi_model, MSE = FALSE, CV = TRUE,

+ map_obj = shape_austria_dis, indicator = "Median",

+ map_dom_id = "PB")

102



CHAPTER 4. THE R PACKAGE EMDI

10000
20000
30000
40000

(a) Median income.

0.05
0.10
0.15
0.20

(b) CV of the median income estimates.

Figure 4.3: Maps of point estimates and CVs of the median income for 94 districts in Austria.

As the domain identifiers in the data set and shape file already match, the argument map_tab

is not required. For an example where the argument map_tab needs to be specified, we refer

the reader to help(map_plot).

The map of the median equivalized income in Figure 4.3 indicates differences across

Austrian districts. The richest district appears to be Eisenstadt (Stadt) followed by Urfahr-

Umgebung. Furthermore, throughout the country some districts have a relatively low median

income like Zell am See and Schärding. The map of the CVs shows that most districts have a

CV below 20%. The highest CVs occur in the out-of-sample domains.

4.4.5 Exporting the results

Exporting the results from R to other widely used software such as Excel™ is important for

users. For doing so a large set of well established tools already exists. Nevertheless, export-

ing all model information, including the information contained in the summary output is not

straightforward. Function write.excel creates a new Excel™ file that contains the sum-

mary output in the first sheet and the results from the selected estimators in the following sheet.

Again the parameters MSE, CV and indicator correspond to those in the estimators

function. The link with the Excel™ file format is done by using the package openxlsx (Walker,

2017). This package does not require a Java™ installation, which offers an advantage over the

use of the xlsx package (Dragulescu, 2014) because Java™ may be seen as a potential security

threat. Nevertheless, package openxlsx (Walker, 2017) needs a zipping application available

to R. Under Microsoft Windows™ this can be achieved by installing RTools while under

macOS™ or Linux™ such an application is available by default. In addition to exporting the

results to Excel™, emdi also provides an option to export output directly as OpenDocument
Spreadsheets via the function write.ods.

Example using Austrian districts:
Excel™ outputs of model-based estimates for Austrian districts can be obtained by the follow-

ing command.

R> write.excel(emdi_model, file = "excel_output.xlsx",

+ indicator = "Median", MSE = FALSE, CV = TRUE)

The output is presented in Figure 4.4 and shows that also the Excel™ user receives the same

diagnostics from the summary and results for selected estimates. The summary output is de-

scribed in detail in Section 4.4.2.
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Figure 4.4: Export of the summary output and estimates to Excel™.

4.5 Additional features

In addition to those features that are essential for estimating regional indicators, package emdi
offers to incorporate external indicators and increases the computational efficiency of the MSE

estimation by parallel computing. In this section we show how users can bring indicators

from other R packages into emdi and how parallel computing can help with reducing the

computational burden.

4.5.1 Incorporating an external indicator

A feature we should pay attention to is the ease by which indicators of other R packages can

be brought into emdi. This is demonstrated by using the Theil index from the R package ineq
(Zeileis, 2014). The Theil index describes economic inequality and thus can be also used in the

application with the data of this paper. It belongs to a family of generalized entropy inequality

measures and can be expressed by

Theili =
1

ni

ni∑
j=1

yij
ȳ
log

(
yij
ȳ

)
,

where ȳ = 1
ni

∑ni
j=1 yij (Cowell, 2011). The Theil index takes values from 0 to ∞ with 0

indicating equality and higher values increasing inequality (World Bank Institute, 2005). As the

function ineq only requires a numeric vector of the target variable, it can be straightforwardly

wrapped into a form usable within the direct or ebp functions. Using the function direct

the Theil index can be estimated as follows.

First, the package ineq needs to be installed and loaded.

R> install.packages("ineq")

R> library("ineq")

Subsequently, the function ineq with type = "Theil" can be given to the argument

custom_indicator. As the function direct needs the arguments y, weights and

threshold, these arguments have to be also specified in the newly defined function.
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R> my_theil <- function(y, weights, threshold) {

+ ineq(x = y, type = "Theil")

+ }

The argument custom_indicator needs to include a named list of self-defined indicators.

R> my_indicators <- list(theil = my_theil)

R> emdi_direct2 <- direct(y = "eqIncome",

+ smp_data = eusilcA_smp, smp_domains = "district",

+ weights = "weight", var = TRUE,

+ custom_indicator = my_indicators)

As the Theil index is now part of the emdi object, all methods shown in Section 4.4 can be

also used for this newly defined inequality indicator. For instance, by estimating a customized

indicator via function direct a bootstrap variance estimator is used and the subset method

can be applied in order to get results for certain districts.

R> select_theil <- estimators(emdi_direct2,

+ indicator = "theil", CV = TRUE)

R> subset(select_theil, Domain == "Wien")

Domain theil theil_CV

67 Wien 0.1202542 0.1108617

4.5.2 Parallelization

Bootstrapping the MSE can be very costly in terms of computation time and the possibilities

of speeding up are limited when staying within R. Nevertheless, as the bootstrap procedures

described in Section 4.2.2 and Appendix C.1 consist of B independent iterations, they are suit-

able for efficient parallel computing. In this particular case, parallelization may be described

as follows:

1. The user predefines how many parallel processes (cpus) and bootstrap iterations (B)

should be used in function ebp.

2. The bootstrap iterations are equally distributed on the parallel processes.

3. In each process the differences between EBP point estimates and the pseudo true values

∆̂Ii,b = ÎEBPi,b − Ii,b (compare e.g., Appendix C.1) are calculated. This is done on

different central processing units (CPU) at the same time (parallel computing).

4. The results ∆̂Ii,b from all processes are combined and the MSE is estimated by

M̂SE
(
ÎEBPi

)
= B−1

∑B
b=1

(
∆̂Ii,b

)2
.

In R there are numerous ways and packages for implementing parallel computing. The most

used package in this context is parallel (R Core Team, 2018), which mainly builds on the

work of packages snow (Tierney et al., 2016) and multicore (Urbanek, 2014). These packages

follow two different approaches for parallelization. Package snow launches a new version of

105



CHAPTER 4. THE R PACKAGE EMDI

R on each core. Those versions communicate with the master process through the so-called

“socket". Therefore, we will proceed calling this way of parallelization the socket approach.

The second approach is called “forking" and is the approach developed in the multicore pack-

age. Forking duplicates the entire current version of R and shifts it to a new core. Forking

has one crucial advantage: all slave processes share the same memory with the master process

for any object that is not modified. This feature makes it very fast. Its disadvantage is that it

is not available on Microsoft Windows™ operating systems. The parallel package allows for

both approaches but uses different functions. These functions are given an unified interface by

the package parallelMap (Bischl and Lang, 2015). This interface for parallelization is used

in emdi. In the ebp function the parallelization approach defaults to socket if a Microsoft
Windows™ OS is detected and to forking otherwise. The parallelization is activated by setting

the cpus argument to an integer value larger than 1. In the example below the computation

time is measured when the number of CPU is set equal to 1 and to 2, respectively:

R> system.time(emdi_model1 <- ebp(fixed = eqIncome ~ gender +

+ eqsize + cash + self_empl + unempl_ben + age_ben +

+ surv_ben + sick_ben + dis_ben + rent + fam_allow +

+ house_allow + cap_inv + tax_adj, pop_data = eusilcA_pop,

+ pop_domains = "district", smp_data = eusilcA_smp,

+ smp_domains = "district", threshold = 10885.33,

+ MSE = TRUE, seed = 100, cpus = 1))

user system elapsed

155.86 0.09 157.36

R> system.time(emdi_model2 <- ebp(fixed = eqIncome ~ gender +

+ eqsize + cash + self_empl + unempl_ben + age_ben +

+ surv_ben + sick_ben + dis_ben + rent + fam_allow +

+ house_allow + cap_inv + tax_adj, pop_data = eusilcA_pop,

+ pop_domains = "district", smp_data = eusilcA_smp,

+ smp_domains = "district", threshold = 10885.33,

+ MSE = TRUE, seed = 100, cpus = 2))

user system elapsed

3.62 0.45 89.45

The return value elapsed from function system.time informs the user about the real time

that has passed from submitting the command until completion. Hence, the time comparison

shows that two parallel processes reduce the time that is needed for the ebp function to run

approximately by half. Please note that computation times are not replicable.

Despite the advantages in terms of computation time, parallelization comes with a major

drawback. The reproducibility of results that depends on random number generations is non

trivial. The usual set.seed() command that is used in R to ensure reproducibility is not suf-

ficient due to the different R sessions used in parallel computing. In the socket approach, the
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function clusterSetRNGStream() from the parallel package is used to provide repro-

ducible random number streams to each process that are far apart from each other. Therefore,

all processes would produce different but reproducible random numbers. When using the fork-

ing approach, reproducibility can be more easily achieved by simply using a different random

number generator. In the ebp function, set.seed(seed, kind = "L’Ecuyer") is

used to set the random number generation to L’Ecuyer (L’Ecuyer et al., 2002) which is based

on L’Ecuyer (1999). The multiple substreams of random numbers are created by the rstream
package (Leydold, 2017) in both approaches. Please note that results obtained from parallel

computation are only reproducible if the same number of processes and the same paralleliza-

tion approach are used. The reproducibility is demonstrated below by reproducing the results

with cpus equal to 2.

R> emdi_model22 <- ebp(fixed = eqIncome ~ gender + eqsize +

+ cash + self_empl + unempl_ben + age_ben + surv_ben +

+ sick_ben + dis_ben + rent + fam_allow + house_allow +

+ cap_inv + tax_adj, pop_data = eusilcA_pop,

+ pop_domains = "district", smp_data = eusilcA_smp,

+ smp_domains = "district", threshold = 10885.33,

+ MSE = TRUE, seed = 100, cpus = 2)

R> all.equal(emdi_model2, emdi_model22)

[1] TRUE

4.6 Conclusion and future developments

In this paper we show how the emdi package can simplify the application of SAE methods.

This package is, to the best of our knowledge, the first R SAE package that supports the user

beyond estimation in the production of complex, non-linear indicators. Another important

feature is that data-driven transformation parameters are estimated automatically. Estimating

the uncertainty of small area estimates is achieved by using both parametric bootstrap and

semi-parametric wild bootstrap. The additional uncertainty due to the estimation of the trans-

formation parameter is also captured in MSE estimation. Customized parallel computing is

included for reducing the computational time. The complexity in applying SAE methods is

considerably reduced, useful diagnostic tools are incorporated and the user is also supported

by the availability of tools for presenting, visualizing and further processing the results. For

instance, the model summary and results can be exported to Excel™ and to OpenDocument
Spreadsheets. Since emdi makes the application of SAE methods in R almost as simple as

fitting a linear or a generalized linear regression model, it also has the potential to close the gap

between theoretical advances in SAE and their application by practitioners.

Additional features will be integrated in future versions of the package. Firstly, the imple-

mentation of alternative SAE methods will increase the usage of the package. For example, the

World Bank (Elbers et al., 2003) and M-Quantile (Chambers and Tzavidis, 2006; Tzavidis et al.,

107



CHAPTER 4. THE R PACKAGE EMDI

2010) methods complement the EBP approach (Molina and Rao, 2010) for estimating disaggre-

gated complex, non-linear indicators. Secondly, including additional evaluation and diagnostic

tools for comparing direct and model-based estimates will assist the user with deciding which

estimation method should be preferred. Thirdly, currently emdi includes only some possible

types of transformations and one estimation method for the transformation parameter, namely

REML. Future versions of the package will include a wider range of transformations (e.g., log

shift and dual power transformations) and alternative estimation methods (minimization of the

skewness or measures of symmetry) for the transformation parameter.
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Appendix C

C.1 Semi-parametric wild bootstrap

The semi-parametric wild bootstrap is implemented as follows,

1. Fit model 4.1 (using an appropriate transformation for yij) to obtain estimates β̂, σ̂2
u, σ̂

2
e , λ̂.

2. Calculate the sample residuals by êij = yij − x>ijβ̂ − ûi.

3. Scale and center these residuals using σ̂e. The scaled and centered residuals are denoted

by ε̂ij .

4. For b = 1, ..., B

(a) Generate u(b)
i

iid∼ N(0, σ̂2
u).

(b) Calculate the linear predictor η(b)
ij by η(b)

ij = x>ijβ̂ + u
(b)
i .

(c) Match η(b)
ij with the set of estimated linear predictors {η̂k|k ∈ n} from the sample

by using

min
k∈n

∣∣∣η(b)
ij − η̂k

∣∣∣
and define k̃ as the corresponding index.

(d) Generate weights w from a distribution satisfying the conditions in Feng et al.

(2011) where w is a simple two-point mass distribution with probabilities 0.5 at

w = 1 and w = −1, respectively.

(e) Calculate the bootstrap population as T (y
(b)
ij ) = x>ijβ̂ + u

(b)
i + wk̃|ε̂

(b)

k̃
|.

(f) Back-transform T (y
(b)
ij ) to the original scale and compute the bootstrap population

value Ii,b.

(g) Select the bootstrap sample and use the EBP method as described above.

(h) Obtain ÎEBPi,b .

5. M̂SEWild

(
ÎEBPi

)
= B−1

∑B
b=1

(
ÎEBPi,b − Ii,b

)2
.

A simulation study assessing the performance of the semi-parametric wild bootstrap is pre-

sented in Rojas-Perilla et al. (2017).
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C.2 Reproducibility

The results presented in this paper were obtained under R version 3.4.4 on a 64-bit platform

under Microsoft Windows 7™. The installed packages are listed in Table C.1. A snapshot of

the corresponding repository was created with the package packrat (Ushey et al., 2018) and is

available from the authors’ GitHub folder (https://github.com/SoerenPannier/

emdi.git). To make use of this repository Git must be installed. The authors recommend

the following workflow:

• Use the new project functionality from RStudio.

• Choose checkout from version control and select Git.

• Enter the repository URL: https://github.com/SoerenPannier/emdi.git.

• Wait until packrat finishes the initialization process.

• Restart RStudio.

• Enter the R command packrat::restore().

• After the package installation has finished all packages are installed as documented in

Table C.1.
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APPENDIX C.

Package Version Package Version Package Version

assertthat 0.2.0 mgcv 1.8-23 stringi 1.1.7
backports 1.1.2 mime 0.5 stringr 1.3.0
BBmisc 1.11 minqa 1.2.4 testthat 2.0.0
BH 1.66.0-1 moments 0.14 tibble 1.4.2
boot 1.3-20 MuMIn 1.40.4 utf8 1.1.3
brew 1.0-6 munsell 0.4.3 viridisLite 0.3.0
cellranger 1.1.0 nlme 3.1-131.1 whisker 0.3-2
checkmate 1.8.5 nloptr 1.0.4 withr 2.1.2
cli 1.0.0 openssl 1.0.1 xml2 1.2.0
colorspace 1.3-2 openxlsx 4.0.17 base 3.4.4
commonmark 1.4 packrat 0.4.9-1 boot 1.3-20
crayon 1.3.4 parallelMap 1.3 class 7.3-14
curl 3.1 pillar 1.2.1 cluster 2.0.6
desc 1.1.1 pkgconfig 2.0.1 codetools 0.2-15
devtools 1.13.5 plyr 1.8.4 compiler 3.4.4
dichromat 2.0-0 praise 1.0.0 datasets 3.4.4
digest 0.6.15 R.cache 0.13.0 foreign 0.8-69
emdi 1.1.3 R.methodsS3 1.7.1 graphics 3.4.4
foreign 0.8-69 R.oo 1.21.0 grDevices 3.4.4
ggplot2 2.2.1 R.rsp 0.42.0 grid 3.4.4
git2r 0.21.0 R.utils 2.6.0 KernSmooth 2.23-15
glue 1.2.0 R6 2.2.2 lattice 0.20-35
gridExtra 2.3 RColorBrewer 1.1-2 MASS 7.3-49
gtable 0.2.0 Rcpp 0.12.16 Matrix 1.2-12
HLMdiag 0.3.1 RcppArmadillo 0.8.400.0.0 methods 3.4.4
hms 0.4.2 RcppEigen 0.3.3.4.0 mgcv 1.8-23
httr 1.3.1 readODS 1.6.4 nlme 3.1-131.1
ineq 0.2-13 readr 1.1.1 nnet 7.3-12
jsonlite 1.5 rematch 1.0.1 parallel 3.4.4
labeling 0.3 reshape2 1.4.3 rpart 4.1-13
laeken 0.4.6 rgeos 0.3-26 spatial 7.3-11
lattice 0.20-35 rlang 0.2.0 splines 3.4.4
lazyeval 0.2.1 RLRsim 3.1-3 stats 3.4.4
lme4 1.1-15 roxygen2 6.0.1 stats4 3.4.4
magrittr 1.5 rprojroot 1.3-2 survival 2.41-3
maptools 0.9-2 rstudioapi 0.7 tcltk 3.4.4
MASS 7.3-49 scales 0.5.0 tools 3.4.4
Matrix 1.2-12 simFrame 0.5.3 utils 3.4.4
memoise 1.1.0 sp 1.2-7

Table C.1: Packages installed while producing the results presented in this paper.
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Part III

Transformations for Achieving Model
Assumptions in Linear and Linear

Mixed Models
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Chapter 5

A guideline of transformations in
linear and linear mixed regression
models

5.1 Introduction

The linear regression model is perhaps the simplest and most common model used in statisti-

cal analysis. The linear mixed regression model is similarly useful for cluster or longitudinal

data types. The estimation and inference methods employed with these kinds of models typi-

cally rely on a set of assumptions; some of them inherent to the functional form of the model

(e.g., linearity), and others related to the nature of the error terms, the response variable, and

the covariates (e.g., homoscedasticity). However, empirical data does not always satisfy these

assumptions and, therefore, one must decide how to carry on with the analysis. According

to Sakia (1992), there are many available options for such cases, which may be summarized

as: (i) ignore the violation(s) and proceed; (ii) use a method that allows for the correspond-

ing violation(s); (iii) redesign the model e.g., by properly transforming the data, and (iv) use

a distribution-free method. Instead of developing new theories, applying complex methods or

extending software functions, using transformations (option (iii)) is a parsimonious way to deal

with model assumption violations under both linear and linear mixed regression models. The

set of model assumptions that are commonly satisfied by properly transforming the data are

normality, homoscedasticity, and linearity. Furthermore, using transformations allows prac-

titioners to apply the most powerful methods available for parametric statistics and to make

analysis simpler than otherwise possible. For instance, transformations can allow us to easily

get rid of high order terms and work only with first-order linear relationships, which is often

preferred in several branches of knowledge (Draper and Hunter, 1969). But how and where are

transformations usually used in practice?

The use of transformations has received much attention in the last century in both theo-

retical knowledge and practical applications (e.g., Edgeworth (1900); Bartlett (1947); Box and

Cox (1964)), and is still of great concern in many investigations (e.g., Gurka et al. (2006);

Watthanacheewakul (2014)). In the literature of transformations, we find linear, monotonic,
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accelerating, and decelerating, power and two-bend transformations, among others. The most

discussed type of transformations is the power family, which includes as a particular case both

the Box-Cox transformation and the logarithmic function. General overviews about apply-

ing transformations under the linear regression model are published by Kruskal (1968); Hoyle

(1973); Tukey (1977); Sakia (1992) and Fink (2009). Zarembka (1974a) provides an overview

of variable transformations in econometrics. He paid special attention to the problem of het-

eroscedasticity and illustrated the transformations theory employing elasticity and demand

studies. Volatility studies, functional form of demand equations, and economic depreciations

have been analyzed mainly using the logarithmic transformation, and also the Box-Cox method

(Gemmill et al., 1980; Hulten and Wykoff, 1981; Boylan et al., 1982; Goncalves and Meddahi,

2011). Hossain (2011) gives an analytical review in economic sciences about the importance of

the Box-Cox transformation regarding estimation, model selection, and testing. In education,

social, biological, and ecological studies, the logarithm is certainly the most relevant transfor-

mation and the Box-Cox is also becoming a standard method for variable transformations in

these fields (Buchinsky, 1995). In the medical sciences, special attention is paid to dealing with

non-normal data (Bland and Altman, 1996). Snedecor and Cochran (1989); Sokal and Rohlf

(1995); Keene (1995); Zar (1999) and Armitage et al. (2008) give an introductory literature

for medical researches about using transformations, focusing on the logarithmic, Box-Cox,

square root, and arcsine transformations. Since biological and medical studies often use lon-

gitudinal data, linear mixed regression models for repeated measures analysis are commonly

applied (Miller, 2010). In order to deal with model assumption violations under these models,

the logarithmic and Box-Cox transformations are preferred (Gurka et al., 2006; Maruo et al.,

2017). Furthermore, renowned applications of the Box-Cox transformation in this context are

described in Solomon (1985); Piepho and McCulloch (2004); Gurka et al. (2006) and Lo and

Andrews (2015).

As we can see, the literature of transformations in theoretical statistics and practical case

studies is very rich. However, some important considerations for using them in linear and linear

mixed regression models are still broadly discussed: for example, at which stage of the analysis

a transformation should be applied, which transformation is suitable for a specific problem and

how the results should be interpreted. Practitioners often automatically and routinely apply

transformations without considering the questions mentioned above. For this purpose, the

present work extends the work of Medina (2017) and proposes a framework that seeks to help

the researcher to decide if and how a transformation should be applied in practice. It combines

a set of pertinent steps, tables, and flowcharts that guide the practitioner through the analysis

of transformations in a friendly and practical manner. This guideline is structured as follows:

• Defining relevant assumptions depending on the research goals

• Choosing a suitable transformation and estimation method according to model assump-

tion violations

• Providing a proper inference analysis and interpreting model results more carefully

Furthermore, the paper points out briefly a selection of special issues that need to be considered

when using transformations. To the best of our knowledge, none of the existing reviews for
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transformations provides such a comprehensive overview of transformations in the context

of linear and linear mixed regression models, as well as developing a practical guideline for

researchers.

The remainder of this paper is structured as follows. Section 5.2 guides the reader through

the steps of the framework. Each transformation and estimation method is introduced to its cor-

responding model assumption. Section 5.3 discusses further issues that can arise in modeling

and how these interact with the transformations. We conclude the paper in Section 5.4.

5.2 Transformations step framework

“Although we often hear that data speak for themselves,

their voices can be soft and sly.”

—Frederick Mosteller

5.2.1 Choose the model and be aware of the corresponding assumptions

Linear regression models are one of the most widely used statistical methods in most branches

of knowledge, in particular, the social and natural sciences. It can be expressed in a general

form:

yi = x>i β + ei, ei
iid∼ N(0, σ2

e), (5.1)

where yi is the target variable defined for the ith individual, with i = 1, . . . , n; x>i is a vector

containing deterministic auxiliary information with dimension 1 × (p + 1) and X would be

the corresponding n × (p + 1) matrix where p is equal to the number of predictors; β is the

(p+1)×1 vector of regression coefficients defined asβ> = (β0, . . . , βp) and ei is the unit-level

error term.

In social, behavioral, educational, and medical sciences, data is commonly hierarchically

collected, for instance, as a clustered or longitudinal design (Raudenbush and Bryk, 2002). To

appropriately take this type of data structure into account, the so-called linear mixed regression

models are typically used. These models, handled as a special extension of the linear regression

model, contain additional random-effects depending on the case study and following Laird and

Ware (1983), they can be written as

yj = Xjβ +Zjuj + ej , (5.2)

where yj is a nj × 1 vector of the dependent variable, nj is the sample size in each cluster j

with j = 1, ...,m cluster,Xj is a nj × (p+ 1) matrix, β is the (p+ 1)× 1 vector of regression

coefficients, Zj is the nj × (q + 1) matrix with (q + 1) random effects, uj is a (q + 1) × 1

vector of random effects and ej is the vector of residuals of size nj × 1. The distribution of the
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random effects is given by

uj ∼ N(0,G), whereG =


σ2

0 σ01 . . . σ0q

σ10 σ2
1 . . . σ1q

...
...

. . .
...

σq0 σq1 . . . σ2
q

 ,

and the residuals are distributed with ej ∼ N(0,R) withR = Injσ
2
e where Inj is the nj ×nj

identity matrix and σ2
e is the residual variance. The random effects vj and the residuals ej are

assumed to be independent.

Typically the set of assumptions upon which these models rely can be summarized as be-

low:

(i) The error terms are normally distributed.

(ii) The error terms have (conditional) homoscedastic variances.

(iii) The response variable and explanatory variables have a linear and an additive relation-

ship.

(iv) The error terms are (conditionally) independent.

(v) The error terms have (conditional) mean equal to zero.

Two potential problems that will also be taken into account are multicollinearity and outliers.

However, these are not listed as assumptions for these regression models, since they are not

seen as theoretical constraints (Barry, 1993). As we shall discuss in more detail below, if any

of these assumptions is violated, estimations, predictions, and scientific insights produced by

the linear and linear mixed regression models may be inefficient or, in some cases, severely

biased and misleading. This work mainly focuses on the relevance of assumptions (i) - (iii).

For readers interested in the assumptions (iv) and (v), discussions, diagnostics and potential

solutions are presented in econometric books such as Johnston and DiNardo (1972) and Spanos

(1986).

5.2.2 Choose a suitable transformation that addresses assumption violations

The usage of data transformations is directed towards a twofold aim: to create a useful metric

or to improve model regression assumptions. For the first aim, linear transformations help in

the following ways: information can be easier to understand (e.g., percentage); standardization

can be applied in order to change the scale (e.g., covariances into correlation); and a shift can

be added to the set of points to make variables positive. Furthermore, these can be useful when

transforming qualitative ordinal data into a more convenient and continuous scale, for which

normal scores are recommended (for further details see Hoyle, 1973; Fink, 2009). However,

such linear transformations do no attempt to correct violations of the regression model assump-

tions presented in Section 5.2.1. A linear transformation will change only the intercept of the

regression equation. For instance, using this type of transformation does not help to linearize
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non-linear relations (Brown, 2015). In this work, we focus on transformations that attempt to

correct violations of the assumptions of the linear and linear mixed regression model. These

non-linear transformations are monotonic and shrink or stretch a topological space in an inho-

mogeneous way. That is, the order of the points lying on this space remain unchanged, but the

relative distance between them will be altered (Cohen et al., 2014).

For defining such a transformation, the following notation is used consistently through the

present work. We denote y as the response variable with expected value denoted byE(y) = µy

and variance by V (y) = σ2
y . For a single untransformed observation we use yi, yij where an

additional symbol ∗ denotes that the observation is transformed. The untransformed vector

of the response variable is defined as y. Furthermore, y∗(Θ) represents the vector of the

transformed observations of the response variable and Θ represents the set of parameters upon

which the transformation depends. The transformation parameter is generally denoted by λ,

but it depends on the functional form of the transformation. Some transformations also include

additional parameters. The relationship between original and transformed data is denoted by

T (y) = y∗.

For this section, the following structure is used: we describe the model assumption and

its relevance, we introduce assessment tools to check its fulfillment, we mention alternative

methods to transformations, and we discuss the range of possibilities using transformations

with corresponding estimation methods.

5.2.2.1 Transformations to achieve normality

Why is the normality assumption important?

The fulfillment of the normality assumption is usually twofold: it builds confidence intervals

and for computing statistical tests and appropriately uses the percentage points of customary

tables of χ2, t, F distributions. When this assumption is not fulfilled, practical problems can

arise; as for estimation, the ordinary least square method does not provide best estimators in

terms of efficiency, in case the true distribution of the error term is skewed or has heavy tails.

When the interest lies in inference hypothesis testing, such as a t-test for significance of the co-

efficients, the results of this test seem to be fairly robust for large enough samples. However, its

power may be somewhat affected when, for instance, the true distribution has heavy tails, as σ2
e

is very sensitive to values at the tails of the distribution (Wilcox, 2005). The most common de-

partures from normality are skewed, heavy-tailed, and light-tailed distributions. Additionally,

human errors can contribute to the presence of non-random aspects which lessen the strength of

the assumption that the error term is normally distributed (Zeckhauser and Thompson, 1970).

Some papers related to the consequences when Gaussian assumptions are not satisfied are pub-

lished by Fisher (1922b); Pearson (1931); Bartlett (1935); Hey (1938); Finney (1941), and

Cochran (1947).

How can we check the normality assumption?

Due to the importance of the normality assumption, many methods have been developed to

check its validity: visual methods such as the normal probability plot of the residuals (Cham-
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bers et al., 1983), histograms, and probability plots. The normal probability plot, also known as

normal scores plot, quantile-quantile (Q-Q) plot, quantile comparison plot or rankit plot can be

useful for comparing two probability distributions in terms of the location, scale, and skewness

parameters (Weisberg, 1980; Bock, 1985; Fox, 1997; Hutcheson and Sofroniou, 1999; Johnson,

2009). The histogram is a standard visualization of the empirical distribution form. The proba-

bility plot, also known as probability-probability (P-P) plot or percent-percent plot, is suitable

for analyzing the skewness of a distribution, by plotting two cumulative distribution functions.

Numerical analysis of the distribution moments, such as skewness and kurtosis, is a common

rule-of-thumb for checking the normality assumption. The skewness and kurtosis for a nor-

mal distribution are equal to zero and three, respectively. Therefore, a comparison with this

distribution is often made in practice. Additionally, normality tests such as the Kolmogorov-

Smirnov test (Smirnov, 1948), Anderson-Darling test (Anderson and Darling, 1954) and the

Shapiro-Wilk test (Shapiro and Wilk, 1965) are also widely used.

What are the alternative methods to overcome non-normality?

If any of the aforementioned techniques suggests that the data is not normally distributed, we

could move to non-normal methods or redesign the model. In this case, there are some typically

recommended solutions. The first method and perhaps the most common one is to allow a more

flexible model where the conditions imposed over the error term and independent variables can

be relaxed. This method is known as the generalized linear or generalized linear mixed model

(Nelder and Wedderburn, 1972). A second solution is to work with more robust tests such as

the Kruskal-Wallis (Kruskal and Wallis, 1952) or the Levene’s test (Levene, 1960). Robust and

more efficient estimators have been studied when the error term is not normally distributed (see,

for instance, Huber, 1964). Among these approaches, we find non-parametric maximum like-

lihood theory (Aitkin, 1999; Agresti et al., 2004; Litière et al., 2008), more flexible parametric

distributions (Peng Zhang and Greene, 2008), marginalized mixed effects models (Heagerty

and Zeger, 2000), and h-likelihood approaches that can be adapted to fit different distributions

(Lee et al., 2004). Also possible are methods based on mixtures of normal distributions (Lesaf-

fre and Molenberghs, 1991) and “smooth" non-parametric fits (Zhang and Davidian, 2001).

How can transformations help to improve normality?

The use of transformations is considered as a parsimonious alternative to complex methodolo-

gies when dealing with the departure from normality, a feature seldom observed in raw data.

A significant part of the effort put into transformations has been focused on achieving approxi-

mate normally distributed errors. To ensure normality, it is common to use a proper one-to-one

transformation on the target variable (Thoni, 1969; Hoyle, 1973). A standard practice in ap-

plied work is transforming the target variable by computing its logarithm. That means using

a transformation of the form log(y). Due to its effectiveness in turning highly right-skewed

or log-normal distributions into more symmetrical ones, it is commonly used in practice for

this purpose. Furthermore, the logarithmic transformation is used in parallel for achieving nor-

mality, homoscedasticity, and linearity (Bartlett and Kendall, 1946; Bartlett, 1947; Anscombe,

1948; Kleczkowski, 1949; Moore, 1958). However, the ease of its use and its popularity often
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induce an imprudent application (Feng et al., 2014). One drawback of the logarithmic trans-

formation is the lack of ability to deal with negative values. Thus, some adjustments based on

the logarithm have been proposed. A simple shifted version includes a fixed term s such that

y + s > 0. The logarithmic transformation is often recommended when dealing with substan-

tially positive skewness. For a left-skewed distribution, the log neg transformation is suggested.

It includes a fixed parameter p for which every observation of the target variable is subtracted

so that the smallest score is 1 (Tabachnick and Fidell, 2007). Furthermore, the generalized

logarithm, also known as the glog transformation allows for negative values, but it is recom-

mended for low values rather than high ones (Durbin et al., 2002; Huber et al., 2003). Even

though it is suitable for correcting non-normality, it is more widely used as a variance stabi-

lizing transformation. Another transformation used particularly for dealing with non-negative

variables such as the non-central chi-square is suggested by Moschopoulos (1983). He bases

his work on the theory developed by Jensen and Solomon (1972), including the moments of

the distribution as transformation parameters. Square roots and inverse transformations are

commonly used for dealing with right-skewed distributions (Bartlett, 1937). The square root is

also used for dealing with data having zero inflation problems or containing extremely small

values. The cube-root transformation, also known as the Wilson-Hilferty (Wilson and Hilferty,

1931) transformation, is particularly suitable for symmetrizing gamma-distributed data forms.

The exponential, square, and cube root transformations are commonly used for negative skewed

data. A quasi generalization of this problem is made in practice in the transformation exponent:

right-skewed distributions tend to be more symmetrical by applying a transformation with an

exponent smaller than one, and left-skewed distributions, with an exponent greater than one

(Hoaglin et al., 2000). When comparing the square-root transformation with the logarithm,

Garson (2012) states that the latter is more useful in case symmetry in the central distribution

is needed. Meanwhile the square root is suggested in case symmetry in the tails is more impor-

tant. Finally, in the case of negative skewness, the reciprocal transformations may be useful as

an appropriate variance stabilizing transformation (Hoyle, 1973) for certain distributions.

The transformations mentioned so far have in common that they do not adjust to the un-

derlying data. To find a data-driven transformation, an adjustment is done by including a data-

driven transformation parameter, denoted by λ. This parameter should be estimated and this

estimate changes according to the data, the assumption violations or to a specific researcher cri-

teria. For instance, an advanced log-shift opt transformation used in practice (e.g., Feng et al.,

2016) includes an optimal transformation parameter as follows y∗(λ) = log(y + λ). Tukey

(1957) proposed a family of power transformations based on monotonic functions. The general

form of this family is defined as: yλ if λ 6= 0 and log(y) if λ = 0. The power transforma-

tions are also commonly denoted as single- or one-bend transformations (Box and Cox, 1964;

Montgomery, 2008; Fink, 2009; Cohen et al., 2014). To avoid the discontinuity at λ = 0, Box

and Cox (1964) modified this family. The straightforward manner in which the interpretation

of this parameter is made makes the Box-Cox method one of the most widely used transfor-

mations. For instance, when λ = −1, it means the reciprocal transformation is needed, λ = 0

means the logarithmic transformation is recommended, λ = 1/2 implies the use of the square

root and λ = 1 suggests that no transformation is necessary. The Box-Cox transformation
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is the simplest single-bend transformation (Fink, 2009) and is more appropriate when dealing

with skewed distributions than symmetric but non-normal distributions. It has been extensively

implemented in different branches of knowledge. For detailed information about renowned ap-

plications, see Draper and Cox (1969), Mills (1978), Poirier (1978), Machado and Mata (2000),

Chen (2002), Chen and Deo (2004) and Yang and Tsui (2004).

Since the Box-Cox transformation is not defined for negative values, the data must be

shifted to the positive side by incorporating a shift parameter. This method is known as the

shifted power transformation. It overcomes the difficulties encountered in the Box-Cox trans-

formation due to the restriction y > 0. This is done by incorporating a constant, denoted by

s, for accommodating negative values of the target variable. The parameter s is chosen such

that y + s > 0. Moore (1957) studies the benefits of adding this shift parameter in the power

family of transformations. However, Hill (1963); Atkinson (1987) and Yeo and Johnson (2000)

state that shifting the data is not always an optimal way to deal with negative values. Different

modifications have been proposed in the literature to address this issue. The first proposal to

avoid this difficulty was made by Manly (1976), who proposes the Manly transformation, an

exponential power transformation family. This transformation family is considered to nearly

normalize unimodal skewed distributions, but it is not suitable for bimodal or U-shape distribu-

tions. In case the data also presents a symmetric but non-normal error distribution, the modulus

power transformation proposed by John and Draper (1980) should be used. It can manage neg-

ative values and is claimed to be effective for somewhat symmetrical or bimodal distributions.

In the same way, the neglog transformation, proposed by Whittaker et al. (2005) is developed

especially to deal with negative values. In order to avoid the non-negativity restriction of the

Box-Cox transformation, Bickel and Doksum (1981) introduced the Bickel-Docksum power

transformation which is defined on the whole real line. This transformation is especially useful

for handling kurtosis rather than skewness, in particular for leptokurtic and platykurtic dis-

tributions. However, as Yeo and Johnson (2000) point out, one should avoid the use of this

transformation when dealing with skewed data that takes negative and positive values. As

another alternative to the Box-Cox transformation, Kelmansky et al. (2013); Kelmansky and

Ricci (2017) recently proposed an extension of the glog transformation, also known as gpower

transformation. It allows for negative values, heavier tails and peaked sample modes (Tsai

et al., 2017). The work of MacKinnon and Magee (1990) proposes a scale-invariant family of

transformations, which deals with variables with zero or negative values.

Zwet (1964) emphasizes that for reaching near symmetry when the response variable has

positive and negative values, the transformation should be concave. One could say that a trans-

formation has the quality of reducing left-skewness if such a transformation is non-decreasing

convex or upward bending, and a transformation is needed to symmetrize right-skewness if

such a transformation is non-decreasing concave or downward bending. Under this motto,

different transformations have been proposed for kurtosis adjustments in order to deal with

non-normality. This is also achieved by the convex-to-concave Yeo-Johnson transformation

(Yeo and Johnson, 2000) for different ranges of λ. The transformation is convex in y for

λ > 1, and concave for λ < 1. Nevertheless, this transformation is not suitable when data

has a platykurtic, leptokurtic or bimodal form. Analogously, the power transformations family
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is convex in case λ > 1 and concave when λ < 1. Following Tsai et al. (2017), transforma-

tions that are suitable for data with a peaked mode are the signed power (Bickel and Doksum,

1981), the modulus (John and Draper, 1980), the sinh-arcsinh (Jones and Pewsey, 2009), the

gpower (Kelmansky et al., 2013) and the inverse hyperbolic sine (Johnson, 1949; Burbidge

et al., 1988). The signed transformation is convex-concave as the outcome variable changes

the sign, which is an effect that is difficult to predict. Therefore, it is recommended to use it for

a kind of symmetric distribution in order to deal with the kurtosis, rather than skewness (Zwet,

1964; Oja, 1981).

Another difficulty of the Box-Cox transformation is the truncation on the transformation

parameter determined by λ. If λ is positive, y∗ has an upper-bound at −1
λ and if λ negative y∗

has also a lower-bound at −1
λ . Thus, achieving exact normality is not possible if λ 6= 0. In order

to deal with this problem, Yang (2006) recently proposed the dual power transformation. It is

defined only for strictly positive values. In the case that the outcome variable is bounded above

as well as below, the previous transformations are not suitable. Therefore, the appropriate

transformation based on an interval [0, b] is the folded-power transformation (Mosteller and

Tukey, 1977; Atkinson, 1982). However, if the outcome scores are close to 0 or b the behavior

would be like the Box-Cox transformation (Cook and Weisberg, 1982). A practical application

of the shifted version of the dual transformation is shown, for instance, in Rojas-Perilla et al.

(2017).

Besides the power transformations presented above, the multi-parameter transformation

families have been suggested in order to estimate different transformation parameters, account-

ing for scale, location, and shape (skewness and tailweight). For this purpose, Johnson (1949)

proposes three normalizing transformations, which include shape, scale, and location parame-

ters, where a system of curves represents the empirical distributions (Edgeworth, 1900). Fur-

thermore, for continuous empirical forms, this method has the particular advantage that many

distributions can be fitted into the system, which delivers a high flexibility that can be advanta-

geous for dealing with complicated data sets (George, 2007). As a special case of the Johnson

transformation, the one-parametric inverse hyperbolic sine is suitable for dealing with negative

and positive values (Burbidge et al., 1988). This transformation contains the Pearson system

of frequency curves (Pearson, 1894). These curves properly represent data which exhibit de-

partures from normality or with considerable skewness, that means non-normal forms. In con-

trast, the sinh-arcsinh transformations are applied for heavy-tailed and light-tailed distributions

(Jones and Pewsey, 2009).

As mentioned before, in many branches of knowledge, cross-sectional data are widely

used. However, little attention has been paid to the study of techniques in the literature of

linear mixed regression models, which assess or improve the validity of the multiple distribu-

tional assumptions by departures from normality of the error terms expressed in Equation 5.2.

In order to improve the assumptions of the model by parametrically transforming the outcome

variable in linear mixed regression models, single-bend transformations, such as the logarith-

mic and square root transformations, have been applied in particular case studies (McCulloch

and Neuhaus, 2001; Piepho and McCulloch, 2004; West et al., 2007; Lo and Andrews, 2015).

Solomon (1985) and Lipsitz et al. (2000) have furthermore studied the application of the Box-
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Table 5.1: Transformations for achieving normality.

Transformation Source Formula Support N H L

Log Tukey (1977) log(y) y > 0 7 7 7

Log (shift) Box and Cox (1964) log(y + s) y ∈ R 7 7 7

Log neg Tabachnick and Fidell (2007) log(p− y) y ∈ R 7 7 7

Glog Durbin et al. (2002) log(y +
√
y2 + 1) y ∈ R 7 7 7

Moschopoulos Moschopoulos (1983)
(
y+a
µ

)b
y > 0 7

Square Root Bartlett (1937)
√
y y > 0 7 7

Square root neg Tabachnick and Fidell (2007)
√
p− y y ∈ R 7 7

Wilson-Hilferty Wilson and Hilferty (1931) y1/3 y ∈ R 7 7

Reciprocal Tukey (1977) 1
y

y 6= 0 7 7

Log-shift opt Feng et al. (2016) log(y + λ) y ∈ R 7 7 7

Folded Mosteller and Tukey (1977) yλ − (1− y)λ if λ 6= 0. y > 0 7 7

Box-Cox Box and Cox (1964)

{
yλ−1
λ

if λ 6= 0;

log(y) if λ = 0.
y > 0 7 7 7

Box-Cox (shift) Box and Cox (1964)

{
(y+s)λ−1

λ
if λ 6= 0;

log(y + s) if λ = 0.
y ∈ R 7 7 7

Manly Manly (1976)

{
eλy−1
λ

if λ 6= 0;

y if λ = 0.
y ∈ R 7 7

Modulus John and Draper (1980)

{
Sign(y)

(|y|+1)λ−1
λ

if λ 6= 0;

Sign(y)log (|y|+ 1) if λ = 0.
y ∈ R 7

Neglog Whittaker et al. (2005) Sign(y) log(|y|+ 1) y ∈ R 7 7

Bickel-Docksum Bickel and Doksum (1981) |y|λSign(y)−1
λ

for λ > 0 y ∈ R 7 7

Gpower Kelmansky et al. (2013)

{
(y+
√
y2+1)λ−1
λ

if λ 6= 0;

log(y +
√
y2 + 1) if λ = 0.

y ∈ R 7

Mackinnon-Magee MacKinnon and Magee (1990) h(λy)
λ

y ∈ R 7 7

Yeo-Johnson Yeo and Johnson (2000)


(y+1)λ−1

λ
if λ 6= 0, y ≥ 0;

log(y + 1) if λ = 0, y ≥ 0;
(1−y)2−λ−1

λ−2
if λ 6= 2, y < 0;

−log(1− y) if λ = 2, y < 0.

y ∈ R 7 7

Dual Yang (2006)

{
(yλ−y−λ)

2λ
if λ > 0;

log(y) if λ = 0.
y > 0 7

Tukey Tukey (1957)

{
yλ if λ 6= 0;

log(y) if λ = 0.
y > 0 7 7

Johnson Johnson (1949) κ+ νh
(
y−ξ
η

)
y ∈ R 7 7

Sinh-arcsinh Burbidge et al. (1988) sinh[θ sinh−1(y − γ1)] y ∈ R 7

Note: Normality, homoscedasticity, and linearity are denoted as N,H,L, respectively. Additional to the notation that is used
throughout the paper, for some transformations further parameters need to be defined. The parameters s and p are fixed parameter
and chosen such that the smallest score is equal to 1. In the Moschopoulos transformation µ is the first moment of the distribution,
and a and b are determined from the first three moments of the distribution. The known fixed values that work for this transfor-
mation are b = 1/3 (Wilson and Hilferty, 1931) and b = 1/2 (Fisher, 1922a). In the transformation by MacKinnon and Magee
(1990), h(·) is a monotonically increasing function that satisfies the following properties: h(0) = 0, h‘(0) = 1 and h“(0) 6= 0.
One common function is defined as h(·) = sinh−1(y). According to Johnson (1949), η and ν are the scale parameters and
κ and ξ the location parameters. h(·) is a monotonic function of y. In the sin-arcsinh transformation, γ1 ∈ R represents the
skewness parameter and θ > 0 controls the tail weight.
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Cox transformation to cover all linear mixed regression models and some longitudinal datasets,

while the work of Gurka et al. (2006) formally extended the use of the Box-Cox method for

these kinds of models.

Finally, as Box and Cox (1964) state, several transformations are suitable to improve not

only one model assumption, but many. This is also expressed in Table 5.1, which contains

transformations that help to achieve normality. Additionally, it is indicated which further as-

sumption can be often improved by these transformations. We exhaustively examine the lit-

erature on transformations and present it in Table 5.1 and subsequent tables as a condensed

version of the research work.

How can we estimate the transformation parameter to normality?

In addition to the selection of a suitable transformation, different methodologies for the estima-

tion parameter have been introduced. The estimation method partly depends on which model

assumption we want to enforce. Please notice that some of the estimation methods are, so far,

only developed for the Box-Cox transformation. In general, the approaches for estimating the

optimal transformation parameter to normality are classified in maximum likelihood-based ap-

proaches (A), analytical considerations (B), robust adaptations (C), and Bayesian approaches

(D). The methods are described below and the mathematical formulation is presented in detail

for these ones, which are more commonly applied.

A: Maximum likelihood-based approaches

A.1: Maximum likelihood (ML) approach

The ML-based method is also known as the profile log-likelihood approach. It is the most com-

monly cited approach under the linear regression model and is described in detail in Box and

Cox (1964). It has been studied by Draper and Cox (1969); Andrews (1971); Atkinson (1973);

Carroll (1980) and Bickel and Doksum (1981). The goal is to find the transformation param-

eter λ for which the expected value E[y∗(λ)] is equal to Xβ meeting the model assumptions

listed in the previous chapter. If the normality assumption y∗i (λ) ∼ N(xiβ, σ
2
e) is fulfilled, the

probability density function for y∗i (λ) is written as

f(y∗i (λ)) =
1√

2πσ2
e

exp

{
− (y∗i (λ)− xiβ)2

2σ2
e

}
. (5.3)

The probability density function for the untransformed observations, and thus the likelihood for

the whole (transformed) model in relation to those observations, is computed as the likelihood

of Equation 5.3 multiplied by the Jacobian of the transformation, explicitly:

L(y, λ | θ) =
1

(2πσ2
e)

n
2

exp

{
− (y∗(λ)−Xβ)>(y∗(λ)−Xβ)

2σ2
e

}
J(λ,y),

where

J(λ,y) =
n∏
i=1

∣∣∣∣∂y∗i (λ)

∂yi

∣∣∣∣
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is the Jacobian of the transformation from y to y∗(λ) and θ are the unknown parameters β and

σ2
e . This property comes from the transformation theorem defined as:

Theorem 1 (Transformation theorem). Let y be a continuous random variable with density

function f(y), taking values in Rn. Let T (y) = y∗ a continuous transformation T (y) : Rn −→
Rn, for which the inverse T−1(y∗) is also continuous. Suppose that the inverse of the trans-

formation is differentiable for all values of Rn and the Jacobian is not equal to zero. Then

fT (y)(y), the density function of the transformed target variable, is given by:

fT (y)(y) = f
[
T−1(y∗)

]
|J(y)|.

The maximum likelihood estimates are found in two stages. First, for fixed λ, the estimates

for β and σ2
e are computed. When the Jacobian does not depend on β or σ2

e this is the likeli-

hood for a least-square problem with response y∗(λ). Hence

β̂(λ) = (X>X)−1X>y∗(λ),

and

σ̂2
e(λ) =

y∗(λ)>Ay∗(λ)

n
=
S(λ)

n
,

where A = In −X(X>X)−1X> and S(λ) is the residual sum square in the transformed

model. Holding λ as fixed and substituting β̂(λ) and σ̂2
e(λ) into the logarithm, we obtain, apart

from a constant,

lmax(λ) = −n
2

log σ̂2
e(λ) + log J(λ,y). (5.4)

The λ that maximizes the profile log-likelihood in Equation 5.4 will be selected. For the under-

lying optimization process by using the ML estimation method, the Newton-Raphson iterative

procedure and its modifications are commonly used (Nelder and Mead, 1965; Lagarias et al.,

1998).

A.2: Restricted maximum likelihood estimation method (REML)

As mentioned before, little attention has been paid in the literature to the study of data-driven

transformations for linear mixed regression models: in particular, the improvement of the va-

lidity of model assumptions by departures from normality of both sources of randomness and

the transformation parameter estimation methods are still under research. The work of Gurka

et al. (2006) extends the use of the Box-Cox transformation under maximum likelihood theory

for the estimation of the transformation parameter to the linear mixed regression models theory.

For the estimation of λ under the linear mixed regression model presented in Equation 5.2

and described in Gurka et al. (2006), we assume that the vectors y∗j are independent and normal

distributed for some unknown λ as follows:

y∗j (λ) ∼ N(µj ,Vj) for j = 1, . . . ,m,

with

µj = Xjβ and Vj = ZjGZ
>
j +R.

124



CHAPTER 5. A GUIDELINE OF TRANSFORMATIONS

Let J(λ,y) be the Jacobian of the transformation from y to y∗j (λ), defined as

J(λ,y) =
m∏
j=1

nj∏
i=1

∣∣∣∣∣dy∗ij(λ)

dyij

∣∣∣∣∣
=

m∏
j=1

nj∏
i=1

yλ−1
ij ,

then, the log-likelihood function in relation to the original observations is obtained by multi-

plying the normal density by J(λ,y) as:

lML(y, λ|θ) = −n
2

log(2π)− 1

2

m∑
j=1

log|Vj |

− 1

2

m∑
j=1

[y∗j (λ)−Xjβ̂]>V −1
j [y∗j (λ)−Xjβ̂] + log J(λ,y).

The maximization process of lML(θ) leads to ML estimators of the unknown parameters θ =

(β, σ2
e ,G). However, the REML theory is recommended when more accurate estimators of the

variance components are needed (Verbeke and Molenberghs, 2000). This function is calculated

by maximizing the ML of a set of error contrasts stemming from the fixed effects design matrix

(Gurka et al., 2006). As a result, the REML function, in which the maximum possible number

of linearly independent contrasts is n− p (Harville, 1974), does not depend on β as follows:

lREML(y, λ|θ) = −n− p
2

log(2π) +
1

2
log

∣∣∣∣∣
m∑
j=1

X>j Xj

∣∣∣∣∣− 1

2

m∑
j=1

log|Vj |

− 1

2
log

∣∣∣∣∣
m∑
j=1

X>j V
−1
j Xj

∣∣∣∣∣− 1

2

m∑
j=1

[y∗j (λ)−Xjβ̂]>V −1
j [y∗j (λ)−Xjβ̂]

+ n(λ− 1)log(ȳ),

in which ȳ, is the geometric mean, defined as

ȳ =

(
m∏
j=1

nj∏
i=1

yij

)1/n

.

Bickel and Doksum (1981) studied the estimation properties of the parameters while using

the Box-Cox transformation, whereby the inference about β, σ2
u, σ

2
e is conditioned on λ = λ̂.

They conclude that the asymptotic marginal unconditional variance of β̂ can be inflated for a

fixed λ. The standard solution to this problem is to include the geometric mean of the response

variable in the denominator of the Box-Cox transformation
y∗ij(λ)

J(λ,y)1/n
, which converts it in a

scaled transformation Z(λ), whereby the unit is preserved and the interpretation is simplified,

due to the fact that the units do not change as λ changes and the conditional variance of β is

reduced. The Jacobian of this transformation is equal to one and the ML theory can be used for
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the linear mixed regression model. It is defined as follows:

Z(λ) =


yλij−1

ȳλ−1λ
if λ 6= 0;

ȳlog(yij) if λ = 0,

for yij > 0. Gurka et al. (2006) recommend this scaled transformation in order to take advan-

tage of procedures for estimating λ already computationally implemented.

B: Analytical considerations

Other analytical considerations have also been proposed in the literature as alternatives to ML-

based methods. It consists of the use of distances or divergence measures, fit tests, and distri-

bution moments (Hernandez and Johnson, 1980; Yeo and Johnson, 2000; Vélez et al., 2015).

These approaches have also been studied in the context of linear mixed regression models

(see e.g., Rojas-Perilla et al., 2017). For some multiparameter transformations, such as the

Johnson’s System (Johnson, 1949), the method of moments of percentile points is proposed

(George, 2007; Forbes et al., 2011). It is based on a simple selection rule introduced by Slifker

and Shapiro (1980). Therefore, Chung et al. (2007) recommend the method of percentiles over

the profile log-likelihood due to its simplicity. The hyperbolic power transformation is another

example of a multi-parameter transformation. For this, the matching quantile approach (Tsai

et al., 2017) is used for estimating the transformation parameters. Finally, in case the outcome

variable is truncated, Poirier (1978) introduced a methodology as alternative of the ML method.

B.1 Estimators based on goodness of fit tests

In simple words, a goodness of fit test compares the empirical distribution, g, of a random

sample against a theoretical distribution, f . Typically, a null hypothesis, H0, is tested that

assumes that f and g are statistically equal. If the hypothesis is rejected, we say that there is

ground for believing that the sample is not f distributed. If we fail to reject H0, the hypothesis

that the sample is f distributed cannot be discarded. In the frame of the present work, f is

the density function of the normal distribution. The goodness of fit tests can be employed

to estimate the transformation paramater. The main idea is to maximize the statistic of such

tests. Rahman (1999) employs the Shapiro-Wilk test. Rahman and Pearson (2008) make use

of the Anderson-Darling test. Both focus on the Box-Cox transformation and use the Newton-

Raphson algorithm to estimate the transformation parameter. However, these methods can

also be applied to all one-parameter transformations mentioned in the present work. Yang

and Abeysinghe (2003) make use of two score tests to determine transformation parameter

for the Box-Cox transformation. Applications for multiple parameters transformations such

as the Johnson transformation need to be further studied. Asar et al. (2017) extend the work

of Rahman (1999) and Rahman and Pearson (2008) by utilizing seven goodness of fit tests,

proposing a new algorithm. For a more detailed description about their method see Asar et al.

(2017). Ruppert and Aldershof (1989) introduce an estimator for λ, σ2
e and β based on a

test which depends on the correlation of the fitted values with the squared residuals. Other

versions of this type of estimator are based on the Levene’s test and Anscombe test. Finally,
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the work of Vélez et al. (2015) makes a selection of different normality type tests, classified in

regression/correlation-,empirical distribution function-,and measure of moments-based tests.

They develop a grid-search method for choosing the transformation where the combined p-

value is the highest.

B.2: Estimators based on distribution moments: skewness and kurtosis

Skewness and kurtosis are major characteristics of the shape of distributions (Rosenthal, 2011).

The former is a measure of the degree to which a distribution departs from symmetry; if it is

negative, the left tail is long and the right short and thick. Positive values of skewness mean

the contrary: a large right tail and a stubby left tail. The normal distribution has a skewness

equal to zero. For a random variable z with mean µz and variance σ2
z the skewness is defined as

γ1(z|µz, σ2
z) = E

[(
z − µz
σz

)3
]
.

Kurtosis is a measure of the degree of “tailedness" or “peakedness" concerning the normal

distribution. A leptokurtic distribution has high kurtosis, which means that the probability

of falling in the center is greater compared to that of the normal distribution. In contrast, a

platykurtic distribution has more area, and therefore, more probability in the tails. The kurtosis

for a standard normal distribution is equal to 3. Typically, the interest lies in the excess of

kurtosis, which for the random variable z is defined as follows:

γ2(z|µz, σ2
z) =

[ (
E[z − µz]

)4(
E[(z − µz)2]

)2
]
− 3.

Even though the skewness is considered more important than the kurtosis when dealing with

model assumption violations (Royston et al., 2011), the optimization can be made for both

measures. The parameter of the transformation is then chosen so that the value of skewness or

kurtosis for the error term ei is as close as possible to that of the normal distribution (Carroll

and Ruppert, 1987).

λ̂skew = argmin
λ
|γ1(ei)|,

and

λ̂kurt = argmin
λ
|γ2(ei)|.

where γ1(ei) is the skewness and γ2(ei) denotes the kurtosis of the unit-level error terms.

The parameter could be also selected with the help of a statistical test that accounts for

kurtosis or skewness (see, for instance, Gaudard and Karson (2007)). In the context of linear

mixed regression models, an additional problem arises as there are two independent error terms

to be considered. Therefore, a pooled skewness approach is suggested by Rojas-Perilla et al.

(2017), if skewness minimization is chosen as the target criteria. This ensures that the larger
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the error term variance is, the more importance its skewness in the optimization has.

B.3 Estimators based on divergence or distance optimization

Only considering skewness may ignore many other properties of the distribution. Hence, a

measure describing the distance between two distribution functions as a total might be prefer-

able. A few of these alternatives are based on the minimization of the Kullback-Leibler (KL)

divergence, based on Kullback (1997) and described in Yeo and Johnson (2000) and Hernandez

and Johnson (1980), and on measures of symmetry as the Kolmogorov-Smirnov (KS) and the

Cramér-von Mises (CvM) distances (Carroll, 1980; Bickel and Doksum, 1981; Carroll, 1982a;

Taylor, 1985). For this method the real distribution of the data needs to be known. The exact

formulations of the target measures are given as follows:

λ̂KL = argmin
λ

∫ +∞

−∞
f(y∗(λ)) log

[
f(y∗(λ))

φµ,σ2

]
,

with f the probability density function of the transformed target variable y∗(λ). φµ,σ2 denotes

the probability density function of a normal distribution with mean µ and variance σ2.

λ̂KS = argmin
λ

sup |(F (estd)− Φ|,

λ̂CvM = argmin
λ

∫ 1

0

[
F (estd)− Φ2

]
.

F (·) denotes the empirical cumulative distribution function (ecdf) estimated on the normalized

residuals estd and Φ is the distribution function of a standard normal distribution.

C: Robust adaptations

Draper and Cox (1969) stated that the ML method is robust to non-normal error terms as

long as they are reasonably symmetric. It depends on parametric distributional assumptions

and it is not robust to outliers. Therefore, different robust adaptations are proposed in the

literature. Hinkley (1975, 1977); Hinkley and Runger (1984) and Taylor (1985) introduce and

discuss a non-parametric and symmetry-based adaptation method of the ML procedure. This

quick-choice method uses a symmetric distribution of the error terms about zero rather than the

normal, and is based on an asymmetry measure based on order statistics (Taylor, 1985). It is

also known as the Hinkley’s quick method or quantile-based method because it studies how the

quantiles of the distribution are symmetrically placed about the median. While this approach

is not sensitive to outliers and robust in case the interquartile range is used, it is an inefficient

method. Another similar quantile-based method for assessing the need of transforming data is

suggested in Velilla (1993). Leinhardt and Wasserman (1979) and Emerson and Stoto (1982)

propose the symmetrization of the quartiles around the median. However, Cameron (1984)

pointed out that the method of Emerson and Stoto (1982) is not suitable for highly skewed

data.

In order to access the accuracy of the ML estimator, Carroll (1980) and Bickel and Doksum

(1981) propose another robust modification, also studied in Carroll (1982a) and Hinkley and
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Runger (1984). It generates a famous controversy in the study of transformations (see Doksum,

1984; Rubin, 1984; Johnson, 1984; Carroll and Ruppert, 1984). They propose a robustification

against heavy-tailed distributions in case the normality assumption is not present in the data and

the Box-Cox transformation is required. This method is based on the robust estimator defined

by Huber (1981), but it is not consistent in terms of mean squared error. Please note that these

robust adaptations are made for handling outliers only in the outcome variable and not in the

explanatory ones.

In order to find a consistent and efficient non-parametric method, Han (1987) suggests an

estimator based on the Kendall’s rank correlation (Kendall, 1938). With the aim of covering

some heavy tailed distributions, Carroll and Ruppert (1985, 1987, 1988) proposed a robust

bounded influence method based on Kruskal and Wallis (1952) to a moderate number of out-

lying points in the data. Foster et al. (2001) introduce a consistent semi-parametric estimation

method without assuming parametric assumptions on the error distribution. In general, these

robust adaptations are not suitable for heavy contamination and heteroscedasticity. Therefore,

Marazzi and Yohai (2006) derive a consistent estimation method based on the minimization

of a robust measure of residual autocorrelation with respect to a robust fit of the transformed

outcome variable. This approach is robust to outliers, even if normality and homoscedasticity

are not present in the data (Marazzi and Yohai, 2004).

C.1: A robustified maximum likelihood estimator

Carroll (1980) develop a more robust version of the profile log-likelihood estimator motivated

by a dilemma. On the one hand, as shown by Andrews (1971), the normal maximum likelihood

is usually not robust to deviations from normality or outliers. Andrews (1971) proposes a more

robust method to overcome the sensitivity to outliers of the likelihood methodology based on

the F-test of significance. On the other hand, Atkinson (1973) shows in a Monte Carlo experi-

ment that the original likelihood test proposed in Box and Cox (1964) is more powerful than the

significance method introduced by Andrews (1971). Atkinson (1973) suggests a modified ver-

sion of the ML approach that does not account for robustness. This leads to the situation where

a powerful method delivers no robust results, while a more robust method seems not to be so

powerful. Based on the Huber’s method (Huber, 1992) and the profile log-likelihood methodol-

ogy presented earlier, Carroll (1980) propose an estimator which considers not only the normal

distribution but also distributions with “normal-centre" and “exponential-tails". The method

is powerful for these types of distributions, but also relatively robust to Andrew’s method of

significance. The likelihood function for such distributions is given by

L(λ,β, σ2
e) =

1

(2πσ2
e)

n
2

n∑
i=1

exp

{
− ρ
(
y∗i (λ)− x>i β

2σ2
e

)
+ (1− λ) log yi

}
, (5.5)

where for some k and variable z

ρ(z) =

1
2z

2 if |z| ≤ k;

k(|z| − k
2 ) if |z| > k = 0.
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Typical values of k are 1.5 or 2 (Carroll, 1980). Note that if k =∞, Equation 5.5 is the normal

likelihood for the Box-Cox transformation. λ, σ2
e and β are found in several stages. For further

description of this algorithm please refer to Carroll (1980).

D: Bayesian approaches

As mentioned before, the ML estimator is not consistent in case non-normal errors are present

and it is a non-robust methodology in the presence of outliers. Therefore, some research ef-

fort has been shifted towards alternative Bayesian estimation methods of the transformation

parameter. The paper of Box and Cox (1964) propose a Bayesian estimation method for the

transformation parameter, which uses a non-informative prior distribution of λ but is outcome-

dependent. Pericchi (1981) introduced a solution for choosing a non-outcome-dependent a

priori distribution, with a posterior log likelihood distribution similar in concept to the profile

log likelihood-based on ML theory. Additionally, Sweeting (1984) suggested the use of a non-

outcome-dependent family of non-informative priors distributions, which is closer in concept

to that proposed by Box and Cox (1964).

5.2.2.2 Transformations to achieve homoscedasticity

Why is the homoscedasticity assumption important?

In linear regression analysis, the level of variance is assumed to be constant across the range

of explanatory variables. This so-called homoscedasticity of the error term in the linear model

can be formally written as V (ei|xi0, ..., xip) = σ2
e . It means that the conditional variance of

ei, given the set of values xi0, ..., xip, is not dependent on the xs (Wilcox, 2005). On the other

hand, when the contrary occurs, we talk about heteroscedastic error terms, which can be ex-

pressed as V (ei|xi1, ..., xip) = σ2
e i. What happens when the assumption of homoscedasticity is

violated? As stated in many econometrics textbooks, the ordinary least squares (OLS) estima-

tors for the βs remain unbiased and consistent but are no longer efficient or best linear unbiased

estimator (BLUE) (Williams et al., 2013). This means, the OLS estimator does not provide the

smallest variance or the smallest standard error estimations (see Wooldridge, 2000). Therefore,

if the interest lies only in the estimation of the βs, OLS can be used. However, if the focus is

on inference, then t-tests, F -tests, and confidence intervals are no longer valid since there is a

higher probability of y lying outside the confidence interval, for example, for large values of x.

Heteroscedasticity can arise from different sources: first, as a result of a measurement error, for

instance coming from the fact that some respondents give more precise answers (Berry, 1993);

second, from misspecifications of the model, e.g., when an important variable is omitted and

thus, the error term exhibits idiosyncratic variation (Wooldridge, 2000); third, when the pop-

ulation should be clustered and thus variance changes across subpopulations (Natrella, 2013);

and fourth, if there are outliers which means one or a few observations severely affect the

non-robust variance estimator and induce (apparent) heteroscedasticity (Carroll, 1980). Some

papers related to the consequences when homoscedasticity assumptions are not satisfied are in

Cochran (1947) and Eisenhart (1947).
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How can we check the homoscedasticity assumption fulfillment?

To graphically explore the homoscedastic assumption, let us suppose that we want to regress y

against a vector containing one single explanatory variable, x. If the error term is homoscedas-

tic, we would expect the set of points [x, y] to spread along the regression line on the scatter-

plot exhibiting the same level of variation. A visual inspection of heteroscedasticity is made

by plotting the residuals against the fitted values and the residuals versus a predictor which

is possibly generating the violation of this assumption. There is also a huge range of tests

for assessing homoscedasticity in the literature (Kirk, 1968). For detecting any linear form

of heteroscedasticity, the Glesjer, Breusch-Pagan, Goldfeld-Quandt and Cook-Weisberg tests

are commonly used. Additionaly, the White’s general test is useful when non-linear forms

of heteroscedasticity need to be proved. Other suitable tests are the Hartley’s Fmax (Hartley,

1950) and Cochran’s C (Cochran, 1941), but they are sensitive to Gaussian assumptions, and

the Bartlett’s test (Bartlett, 1937) and Levene’s test (Levene, 1960), among others. Addition-

ally, the Ramsey Regression Equation Specification Error Test (RESET) test (Ramsey, 1969)

can be used for the misspecification of the model.

What are the alternative methods to overcome heteroscedasticity?

If we have tested the correctness of the assumption and found statistical support to believe that

the error term is heterosedastic, a pre-analysis should be carried out before jumping into meth-

ods to correct for heteroscedasticity. First, model misspecification should be left to field experts

for methodological issues. This is because heteroscedasticity arising from model misspecifi-

cation is not genuine heteroscedasticity, but model misspecification since, by re-specifying the

model, one could get rid of it. The need of clustering should be examined as well. It is also

recommended to remove or replace outliers, or just apply an outlier treatment and then test

for heteroscedasticity to verify if the homoscedasticity assumption is being violated by the

influence of one or a few observations.

Alternatively, if the error term exhibits heteroscedasticity, a more robust and efficient esti-

mator can be achieved via modified OLS residuals or generalized least squares (see Wooldridge,

2000). It includes the use of feasible generalized least squares and weighted least squares re-

gression by minimizing a weighted sum of squared residuals (Berry, 1993). The downside of

the latter is that the form of the weights is often unknown. Secondly, techniques for estimating

robust standard errors can be used. They are known as heteroscedasticity-consistent-, Huber-,

Eicker-, White-, Eicker-Huber-White-, Huber-White-standard errors or sandwich estimators

(Eicker, 1967; Huber, 1967; White, 1980). Thirdly and most widely used, is the application of

generalized linear regression models (Nelder and Wedderburn, 1972). These models take spe-

cific heteroscedasticity forms into account and contain different data structures; for instance,

logistic regression for dichotomous (binary) variables or Poisson regression for count data. Ad-

ditionally, Bayesian linear regression approaches can also account for the lack of homoscedas-

ticity.
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How can transformations help to improve homoscedasticity?

According to Johnson (1949) and based on Bartlett (1937) and Bartlett (1947), transforma-

tions might provide a fair correction for heteroscedasticity. When a functional dependence

of the variance of the outcome variable on the mean is present in the data, we may gain the

advantages of using variance-stabilizing transformations. This dependence mostly implies an

underlying distributional process and determines the form of the suitable transformation. Table

5.2 shows different relations between these moments, the corresponding suitable transforma-

tions, some examples of appropriate distributions and the range of the outcome variable that the

transformation supports. According to Ruppert (2001), populations which have larger means

also exhibit the property of larger variances. If we denote the mean of the conditional distri-

bution of the outcome variable given a vector of explanatory variables by E(y|x) = µy(x),

then it is possible that the conditional variance Var(y|x) is a function of µy(x). This relation is

denoted by Var(y|x) = R[µy(x)] for some function R(·). Without loss of generality and fol-

lowing Ruppert (2001), if we use a transformation T (y), this relation holds the delta-method

linear approximation and is denoted as follows (Bartlett, 1947):

V ar
[
T (y)|x

]
≈
{
T
′[
µy(x)

]}2
R
[
µy(x)

]
.

The transformation T (y) will correct the variance assumptions, if
[
T
′
(y)
]2
R(y) is constant.

For instance and following Ruppert (2001), if R(y) ∝ yα, then T (y) ∝ y1−α
2 would be a

variance-stabilizing transformation, with α 6= 2. The transformations that are used most for

the issue of achieving homoscedasticity are square roots, logarithms, reciprocals, and trigono-

metrical transformations (Cohen et al., 2014). Some of these are also known as double bend

transformations, because the data sets for which these are used, are bound at both top and

bottom, such as data sets from the binomial distribution.

Bartlett (1937) proposes the use of the square root transformation to stabilize variances

that are exactly proportional to the mean, which is the case for gamma and exponential dis-

tributed data, as for such a distribution in which the variance is exactly equal to the mean,

which is the case of the Poisson distribution. In this case, α = 1, that means, g(y) ∝ y1, then

T (y) ∝ y1− 1
2 is the square root, which is the variance-stabilizing transformation for Poisson

data sets. In a later work, Bartlett (1947) and Anscombe (1948) suggest the use of
√
y + c1

type transformations, where c1 is a fixed constant. In case of a large sample size this transfor-

mation with a constant c1 is more useful to achieve a constant variance. They propose handling

heteroscedasticity by using c1 = 1/2 or c1 = 3/8, when y takes only small values or when

zeros are common in the data, respectively. Freeman and Tukey (1950) proposes a more so-

phisticated twofold transformation, which is called the Freeman-Tukey deviate or the chordal

transformation and is denoted by
√
y +
√
y + 1. This transformation is particularly suitable in

case y is very small or equal to 0. Similarly, the inverse transformation is recommended for

stabilizing the variance for observations that are mostly close to zero. It stabilizes the variance

when n > 3 (Mosteller and Bush, 1954; Mosteller and Youtz, 2006).

The negative binomial distribution is appropriate to represent for Poisson distributed data un-

der overdispersion, that means, the variance greater than the mean. For this kind of data sets
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Table 5.2: Transformations for achieving homoscedasticity.

Dependence Source Formula Example Support

σ2
y ∝ µy Bartlett (1937)

√
y Poisson(λ) y ≥ 0

σ2
y ∝ µy Bartlett (1947)

√
y + c1 Poisson(λ) y ≥ −c

σ2
y ∝ µy Freeman and Tukey (1950)

√
y +
√
y + 1 Poisson(λ) y ≥ −1

σ2
y ∝ µ2y Fisher and Yates (1949) log(y) lognormal

(
µ, σ2

)
y > 0

σ2
y ∝ µ2y Fisher and Yates (1949) log10(y) lognormal

(
µ, σ2

)
y > 0

σ2
y ∝ µ2y Fisher and Yates (1949) 1

3

√
y lognormal

(
µ, σ2

)
y ≥ 0

σ2
y ∝ 2µy Freeman and Tukey (1950)

√
2y χ2(k) y ≥ 0

σ2
y ∝ 2µy Wilson and Hilferty (1931) y1/3 χ2(k) y ∈ R

σ2
y ∝ µy + λ2µ2y Bartlett (1947) λ log(y) BN

(
r, p, λ = 1√

r

)
y > 0

σ2
y ∝ µy + λ2µ2y Bartlett (1947) log(y) BN

(
r, p, λ = 1√

r

)
y > 0

σ2
y ∝ µy + λ2µ2y Bartlett (1947) λ−1 sinh−1(λ

√
y) BN

(
r, p, λ = 1√

r

)
y ≥ 0

σ2
y ∝ µy + λ2µ2y Bartlett (1947) λ−1 sinh−1

(
λ
√
y + 1

2

)
BN
(
r, p, λ = 1√

r

)
y ≥ − 1

2

σ2
y ∝ µy + λ2µ2y Beall (1942) sinh−1

√
y+c2
r+c3

BN
(
r, p, λ = 1√

r

)
y ≥ 0

σ2
y ∝ µy Ruppert (2001) log(y) BN

(
r, p, λ = 1√

r

)
y > 0

σ2
y ∝ µy Watthanacheewakul (2014)

{
(
√
y+1)λ

λ
if λ 6= 0;

log(
√
y + 1) if λ = 0.

Γ(α, β), Weibull(l, k) y ≥ −1

σ2
y ∝ µy Wilson and Hilferty (1931) y1/3 Γ(α, β) y ∈ R
σ2
y ∝ µy Curtiss (1943)

√
y + c1 Γ(α, β) y ≥ -c

σ2
y ∝ µy Ruppert (2001) log(y) exp(λ) y ≥ 0

σ2
y ∝ µy(1− µy) Bartlett (1937) sin−1√y Bin(n, p) y ≥ 0

σ2
y ∝ µy(1− µy) Bartlett (1937) sin−1

√
y+c4
n+c5

Bin(n, p) y ≥ 0

σ2
y ∝ µy(1− µy) Anscombe (1948)

√
n+ c6 sin−1

√
y+c4
n+c5

Bin(n, p) y ≥ 0

σ2
y ∝ µy(1− µy) Laubscher (1961)

√
n sin−1

√
y
n

+
√
n+ 1 sin−1

√
y+ 3

4

n+ 3
2

Bin(n, p) y ≥ 0

σ2
y ∝ µy(1− µy) Freeman and Tukey (1950)

√
n+ 1

2

(
sin−1

√
y

n+1
+ sin−1

√
y+1
n+1

)
Bin(n, p) y ≥ 0

σ2
y ∝ µy(1− µy) Fisher (1922b) sin−1 y Bin(n, p) 0 ≤ y ≤ 1

σ2
y ∝ µy(1− µy) Fisher (1922b) sin−1

√
y+c4
n+c5

Bin(n, p) y ∈ R

σ2
y ∝ µy(1− µy) Curtiss (1943)

√
n sin−1

√
y + c7

n
Bin(n, p) y > 0

σ2
y ∝ µy(1− µy) Curtiss (1943)

√
n log (y) Bin(n, p) y > 0

σ2
y ∝ µy(1− µy) Curtiss (1943) 1

2

√
n log

(
y

1−y

)
Bin(n, p) y > 0

σ2
y ∝ µ3y Draper and John (1981) 1√

y
- y > 0

σ2
y ∝ 1

µ
Draper and John (1981) y2 - y ∈ R

σ2
y ∝ µ2 Draper and John (1981) log(y) - y > 0

σ2
y ∝ µy Draper and John (1981)

√
y - y ≥ 0

σ2
y ∝ µ4y Draper and John (1981) 1

y
- y 6= 0

Note: Please note that due to lack of different parameter names and conventional definitions of the distributions in column
Example the parameter names can conflict with the notation in the rest of the paper. The parameter c1 = 1 is widely used in
practice. However, Bartlett (1937) and Anscombe (1948) recommend c1 = 1

2
and c1 = 1

3
, respectively. Beall (1942) suggests

c2 = c3 = 0 and Anscombe (1948) c2 = 3
8
, c3 = −3

4
. This author recommends c4 = 3

8
and c5 = 3

4
, meanwhile Bartlett

(1937) c4 = 1
2

and c5 = 0. However, c4 = c5 = 0 are often used in practice. Anscombe (1948) suggests c6 = 1
2

. Curtiss
(1943) suggests c7 equal to 0 or 1

2
, depending on the values of p.
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some transformations based on the logarithm and hyperbolic trigonometric functions are pro-

posed (Bartlett, 1947; Chatterjee and Hadi, 2015). For instance, some modifications of the

inverse hyperbolic sine function, such as sinh−1

√(
y+c2
k+c3

)
, are suitable for the negative bino-

mial data. While Anscombe (1948) suggests values of c2 = 3/8 and c3 = −3/4, Beall (1942)

proposes using c2 = 0 and c3 = 0. Especially recommended for small values is the adjustment
1
λ sinh−1(λ

√
y + 1/2) (Chatterjee and Hadi, 2015).

In order to stabilize the variance of binomial distributed data, different trigonometric trans-

formations are suggested. For instance, the inverse sine root square transformation of the form

sin−1√y, also called the angular transformation (Fisher, 1922b; Bartlett, 1937), is analogous

to the root square transformations for binary data. Thus, this variance-stabilizing transforma-

tion is widely used in practice. Some modifications based in this transformation have been

proposed according to specific values of the parameters of the distribution based on the data set

are proposed in Curtiss (1943) and Anscombe (1948). For instance, sin−1
√

y+c4
n+c5

is then suit-

able for data from the binomial distribution. Researchers commonly use c4 = c5 = 0. However

Bartlett (1937) suggests c4 = 1/2 and c5 = 0 and Anscombe (1948) improves this transfor-

mation further by setting c4 = 3/8 and c5 = 3/4. Unlike similar transformations, the arcsine

is defined for y between 0 and 1. However, research done by Wilson et al. (2013) and Warton

and Hui (2011) have warned about employing this transformation. According to Warton and

Hui (2011) one of the downsides of this transformation is that if the relation between the un-

transformed y and the independent variables xi0, ..., xip is e.g., always increasing, the same

relation is not held after transformation due to the periodicity of arcsin. Sophisticated twofold

transformations are also suggested by Laubscher (1961) and Freeman and Tukey (1950). To

correct for heteroscedasticity of variables contained to a bounded interval, such as proportions

and percentages, two-bend transformations families can be appropriate. For instance, the most

common transformations are the logit, probit, Guerrero-Johnson, Aranda-Oraz, beta, angular

and arsine transformations. For detailed information about transformations for these kinds of

data sets please refer to Kruskal (1968); Atkinson (1987) and Piepho and McCulloch (2004).

This topic falls out of the scope of the present work.

The ordinary power transformations family, in which different powers of the target variable

are applied, are defined according to the functional dependence of the variance on the mean.

If the variance increases proportional to the mean on a square root scale, the stabilization is

made on a logarithmic scale (Bartlett, 1947). This is the case of the log-normal distribution.

Fisher and Yates (1949) proposed some modifications of the logarithmic transformation in case

the values are less than 10 and for larger values. For distributions with constant coefficient of

variation, such the exponential or gamma with constant shape parameter distribution, the loga-

rithm is also recommended (Ruppert, 2001). This transformation is generally suggested when

the range of the outcome variable is very broad but not negative (Fink, 2009). For data from

other distributions as the Gamma or Weibull distribution a variance stabilizing transformation

is recently proposed by Watthanacheewakul (2014). When data is very bunched to the mini-

mum and maximum of the distribution the transformation presented by Fink (2009) can be used

for stretching the data. For selecting the parameters λ and k of this transformation we refer to

Fink (2009); Erickson and Nosanchuk (1977) and McNeil (1977). Additionally, if the data
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presents heteroscedasticity problems and the distributional form is not clear or there are other

violations of assumptions, some of the already mentioned transformations in the beginning of

Section 5.2.2 also help to correct heteroscedasticity, since stabilizing variance and normaliz-

ing errors often goes together (Johnson, 1949). These transformations include in particular the

logarithm, gpower, Box-Cox, Johnson, Manly, and Yeo-Johnson transformations. That means,

the researcher should empirically find the most appropriate transformation that stabilizes the

variance of the data regardless the mean value (Montgomery, 2008). Finally, transforming

both sides helps for both, stabilizing the variance and create more symmetric distributions (see

Section 5.3 for the both sides methodology).

How can we estimate the transformation parameters to homoscedasticity?

In general, the approaches for estimating the optimal transformation parameter to homoscedas-

ticity are ML-based or analytical considerations. Therefore, in case a transformation for si-

multaneous correcting non-normality and heteroscedasticity is selected, then the ML-based

approaches presented already for normality can be used. However, Zarembka (1974b) pointed

out that this method is not robust in the presence of heteroscedastic error terms. Therefore,

Blaylock and Smallwood (1985) propose an alternative adaptation, the robustified maximum

likelihood estimator. Hinkley (1985) suggests the use of an analytical likelihood-based method

for analyzing local deviations. This procedure for estimating the transformation parameter

considers both the homoscedasticity model violation of residuals and the lack of additivity.

Ruppert and Aldershof (1989) propose a method which attempts to deal with non-normality

and heteroscedasticity. It is based on the minimization of the correlation between the fitted

values and the squared residuals.

5.2.2.3 Transformations to achieve linearity and additivity

Why is the linearity assumption important?

As it is implied in its name, the linear regression is an approach to model linear relationships.

The linear regression model is linear in two senses: first, the model is linear in the variables

because each response y is expressed as a weighted sum of the independent variables where

the parameters are the weights (Dougherty, 2011); second, the model is also linear in the pa-

rameters where, this time, the independent variables are the weights. If non-linearity is present

and we decide to follow through with the use of linear techniques as in OLS, the consequences

would be misrepresenting the actual relationship. Therefore, when non-linearity occurs, it is

very likely that estimation and inference techniques based on the linearity of the model yield

misleading conclusions. In addition to linearity, it is important that the additivity assumption

is met. This assumption ensures that the independent variables multiplied by their regressors

can be added together to provide an estimate (Berry, 1993). However, given the complexity of

many empirical relationships, it is sometimes expected that the effect of an independent vari-

able x1 on y may be influenced by a third variable, x2. This interaction not only violates the

implicit assumption of additivity, but it also becomes a practical problem since it leads to mul-

ticollinearity (Friedrich, 1982). Moreover, when a non-additive relationship takes place, and it
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is not detected or is ignored, the linear regression yields unreliable results since the relationship

that is being represented fails to account for the interaction between the independent variables.

Again, as in the presence of non-linearity, estimation and inference techniques based on the

linear regression model provide non-accurate results (Williams et al., 2013).

How can we check the linearity assumption fulfillment?

A useful visual method to examine non-linearity is using scatterplots between the outcome vari-

able and the explanatory variables, which is called added variable plot, also known as partial-

regression- or adjusted plot (Atkinson, 1982). Additionally, a scatter plot of the standardized

residuals and the standardized predicted values of y is also useful. If the relationship appears

to take a line-like form, we do not need to occupy ourselves with correcting for non-linearity.

Additionally, the RESET test, a general test for functional form misspecification proposed by

Ramsey (1969, 1974) can be used as an indicator of lack of linearity.

A technique to detect non-additivity effects is the Tukey’s test (Tukey, 1949; Moore and

Tukey, 1954). As an alternative to Tukey’s test, Barry (1993) introduces a Bayesian test to

check the validity of this assumption.

What are the alternative methods to overcome non-linearity?

If the assessment tools provide evidence for non-linearity and/or non-additivity, a model re-

structuring is a possible solution. For instance, if the relation between the dependent and

independent variables seems to be curvilinear, a curve component could be added and tested

on significance (Osborne and Waters, 2012). For receiving additivity, Friedrich (1982) favors

the use of multiplicative models over dropping interactive variables to use linear regression

techniques. If non-linearity or non-additivity is still present, ridge regression, also known as

linear regularization, is particularly useful. Other alternative methods are Tikhonov regulariza-

tion, Tikhonov-Miller method, Phillips-Twomey method, constrained linear inversion method

or weight decay (Hoerl and Kennard, 1970), lasso regression (Tibshirani, 1996) and Bayesian

linear regression.

How can transformations help to improve linearity?

In general, transformations to linearize data can be divided into two classes: in one class, the

expected response is related to the independent variables by a known non-linear function; in

the other, the relationship between the expected response and the explanatory variables is not

exactly known (Cook and Weisberg, 1982). For the first class, transformations can be easily

selected. Cuthbert et al. (1971) show plots for a comprehensive number of non-linear functions

that can be transformed into linear ones. In the second class fall transformations such as the

Box-Cox transformation, which have the potential to correct non-normality, heteroscedastic-

ity, and non-linearity, so that, after the data is transformed, normal theory methods and linear

regression techniques can be employed. An approach for selecting a suitable power transfor-

mation is given by Mosteller and Tukey (1977), who introduce a trial-and-error heuristic to

linearize data based on the ladder of powers, called the “ladder of transformations", as shown
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Table 5.3: Transformations to achieve linearity when the relation is known for the simple linear
regression model.

Reference Regression form Transformation Linear model

Weisberg (1980) y = β0x
β
1 y∗ = log y, x∗ = log x y∗ = log β0 + β1x

∗

Weisberg (1980) y = β0e
β1x y∗ = log y y∗ = log β0 + β1x

Weisberg (1980) y = β0 + β1 log x x∗ = log x y∗ = β0 + β1x
∗

Weisberg (1980) y = x
β0x−β1 y∗ = 1

y , x
∗ = 1

xx y∗ = β0 − β1x
∗

Chatterjee and Hadi (2015) y = eβ0+β1x

1+eβ0+β1x
y∗ = log

(
y

1−y

)
y∗ = β0 + β1x

Fink (2009) y = β0 + β1

(
1
x

)
x∗ = 1

x y∗ = β0 + β1x
∗

Weisberg (1980) y = 1
β0+β1x

y∗ = 1
y y∗ = β0 + β1x

Johnson (2009) y = β0 + β1
√
x x∗ =

√
x y∗ = β0 + β1x

∗

in Table 5.4 and Table 5.5. This is also known as the “bulging rule" and it determines the value

of the power employed for both the outcome variable and the explanatory variables within the

model. Please follow Brown (2015) for more details about the bulging rule. Power transforma-

tions are useful if the relationship between x and y is a simple monotone. Table 5.3 summarizes

transformations for regression forms that can be linearized since the relation is known for the

simple linear regression model, and is based on Weisberg (1980); Fink (2009); Johnson (2009)

and Chatterjee and Hadi (2015). The generalization of this table for the multiple regression

form can be find in Fink (2009). Additionally, Box and Tidwell (1962) propose an iterative

methodology known as the Box-Tidwell transformation to linearize the relationship between

the dependent variable and the explanatory variables. It is basically based on individually find-

ing the optimal power transformation to transform the set of explanatory variables. A power

transformation test can help to determine which variable should be transformed or not (Brown,

2015). Finally, both sides methodology is also suitable for dealing with non-linearity problems

in the regression model (see Section 5.3). Nevertheless, one should be careful when transform-

ing both sides to induce linearization, since it may produce heteroscedasticity of the error term

(Carroll and Ruppert, 1988). A tentative transformation to linearize multiplicative models is

the logarithmic transformation. For non-additivity, Tukey (1949) recommends the use of the

t-score of added non-linear terms as the transformation criteria. Without loss of generality, the

transformations that are suitable for correcting non-additivity have a restricted form and the

works of Elston (1961) and Anscombe and Tukey (1963) concentrate on the selection of the

power. Rocke (1993) suggests the use of the t-score as a criteria to linearize proportional data.

How can we estimate the transformation to linearity?

For the transformations that fall in the second class, the ML-based methods and analytical con-

siderations that we already introduced are equally applicable for achieving linearity. A special

approach to find the correct power when the regression form is known is given by Mosteller

and Tukey (1977), who introduce a trial-and-error heuristic to linearize data based on the ladder

of powers shown in Table 5.4 and Table 5.5. Tukey (1949) introduces the minimization of the

F -value for the degree of freedom for non-additivity as an estimation method of a transforma-
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Table 5.4: The ladder of powers.

λi -2 -1 -0.5 0 0.5 1 2
z 1

z2
1
z

1√
z

log z
√
z z z2

tion.

The Tukey and Mosteller estimation algorithm

As mentioned before, Mosteller and Tukey (1977) propose a graphical bulging rule for select-

ing a power transformation, which is based on power of ladders. This seeks to guide practi-

tioners to simply select a linearizing relationship transformation. For any random variable z,

the ladders are tabulated as follows: They can be generalized and formally expressed as:

y∗i (λ) =



yλ1i = β0 + β1x
λ2
i if λ1, λ2 6= 0;

log yi = β0 + β1x
λ2
i if λ1 = 0, λ2 6= 0;

yλ1i = β0 + β1 log xi if λ1 6= 0, λ2 = 0;

log yi = β0 + β1 log xi if λ1, λ2 = 0.

The parameters λ1 and λ2 are chosen according to Table 5.4 and Figure 5.5. Examining a

scatterplot of y against x leads us to select a power transformation based on the pattern of the

curvature. We have two options for transforming: transform y by moving up/down the ladder

or up/down the ladder for x depending on the pattern. That means in case the pattern is hollow

upward, one should go down the ladder; and if hollow downward go up the ladder.

Mosteller and Tukey (1977) present a simple numerical algorithm, which is explained as

follows:

1. Plot x against y.

2. Based on Table 5.4, choose λ1 and λ2 according to the shape exhibited by the points on

the scatter plot of x against y.

3. Transform y by yλ1 and x by xλ2 .

4. Plot the transformed predictor against the transformed response variable.

5. If the relationship appears to be linear: stop.

6. Otherwise, choose new values for λ1 and/or λ2 by going up or down the power ladder

based on Table 5.4.
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Table 5.5: The ladder of transformations.

Pattern Transformation Parameter

y∗ = yλ1>1, x∗ = xλ2<1 λ1 up and/or λ2 down

y∗ = yλ1<1, x∗ = xλ2<1 λ1 down and/or λ2 down

y∗ = yλ1>1, x∗ = xλ2>1 λ1 up and/or λ2 up

y∗ = yλ1<1, x∗ = xλ2>1 λ1 down and/or λ2 up

5.2.3 Parameter inference and interpretation

Does a transformation influence the inference on the model parameters?

The inference analysis is a controversial question that arises when a transformation, and es-

pecially a transformation with a transformation parameter, is used under the linear and linear

mixed regression model. One question is whether we should treat the transformation parame-

ters as fixed in case we are making inferences on the model parameters. If the transformation

does not contain a data-driven transformation parameter common model inference can be con-

ducted. In contrast, when using data-driven transformations, one point of discussion concerns

if the transformation parameter can be treated as known or not. Ruppert (2001) and Box and

Cox (1982) stated that the regression parameter estimates strongly depend on the chosen trans-

formation parameter λ. Box and Cox (1964) further pointed out that after selecting a value for

λ via e.g., ML-based methods, this should be treated as known and inference can be carried

out as usual. However, Bickel and Doksum (1981) made a remark on this by studying the joint

distribution of λ̂ and β̂. They found that when the real value of λ is unknown, the estimates for

the variance of the β̂s are inflated and highly dependent on the λ̂ estimate. Box and Cox (1982,

p. 209) replied by saying that this was not only obvious, but also irrelevant, since “the gross

correlation effects would be avoided if, following [their] paper, the investigation had been con-

ducted in terms of [the normalized transformation]". Note that the normalized transformation

is equivalent to the scaled transformation presented in Section 5.2.2. Furthermore, Hinkley and

Runger (1984) carried out a sensitivity analysis where they found that the estimates of contrast
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and scale parameters are quite stable on the scale of the normalized transformation, whereas

the estimates of location parameters, such as the mean, are more dependent on the value of λ̂.

Research on the accuracy of the estimation and inference on the random effects after ap-

plying a transformation under a linear mixed regression model is still necessary. Under this

scenario, the works of Verbeke and Lesaffre (1996) and Gurka et al. (2006) discussed, in a sim-

ulated scenario, the effects of a transformation on the inference process. Gurka et al. (2006)

suggests including a correction factor from the Jacobian of the Box-Cox transformation in the

estimated coefficients.

How is the inference process on the transformation parameters?

Inference about the transformation parameters is also a fundamental step in the transforma-

tion selection process. For testing the hypothesis H0 : λ = λ0, we could use the stan-

dard likelihood-based methods for getting a likelihood ratio test. The test statistic would be

W = 2[Lmax(λ̂) − Lmax(λ)], which is asymptotically chi-squared distributed. Box and Cox

(1964) extend this theory and propose two approaches to make inferences about the parameters

after applying a transformation. In the first approach, large sample maximum likelihood the-

ory is applied, which delivers point estimates of the parameters and provides an approximate

test and confidence intervals based on the chi-squared distribution. In the second approach,

Bayesian theory is applied. For that, the prior distributions for β and σ2 are assumed to be

uniform, obtaining a posterior distribution for λ. For more details about the Bayesian method

please see Box and Cox (1964) and Jeffreys (1998).

Following Box and Cox (1964), an approximate 100(1−α) per cent confidence interval is

Lmax(λ̂)− Lmax(λ) <
1

2
χ2
ν(α),

Lmax(λ) = −1

2
n log

[
σ̂2(λ)

]
+ log

[
J(λ, y)

]
,

where ν is the number of independent components in λ, α denotes the significance level, and

σ̂2(λ) represents the residual sum of squares in the transformed outcome variable.

In the same way, in order to test H0 : λ = λ0, Andrews (1971) proposes a test which

ignores the Jacobian of the applied transformation. However, Atkinson (1973) re-introduces the

Jacobian, developing a score-type statistic, which is not a maximum likelihood-based method.

This is also known as the Atkinson’s score statistic and was further standardized by Lawrance

(1987a,b), the result of which is called Lawrance’s statistic. Some robust versions of these tests

are proposed by Carroll (1980) and Wang (1987).

Last but not least, some studies regarding the consistency and efficiency properties, as

well as the the asymptotic variances of the estimated λ in the Box-Cox transformation, have

been published. See Bickel and Doksum (1981); Carroll and Ruppert (1981); Carroll (1982a);

Doksum and Wong (1983) and Hinkley and Runger (1984) for detailed information.
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How are the model results interpreted when a transformation is applied?

One of the biggest challenges that researchers face when working with transformations is the

interpretation of the results. It implies choosing the scale in which we need to present the

results, depending on the research question. O’Hara and Kotze (2010) summarized this issue

by pointing out that transformations come at some cost to the trade-off between accuracy and

interpretability. When working with the logarithmic transformation, an approximation helps to

obtain a meaningful interpretation of the coefficients as percentages. However, this is a feature

rarely observed when working with other non-linear transformations, such as the Box-Cox

transformation family. In the words of Box and Cox (1964), transformation parameters that are

obtained by maximum likelihood-based methods, which are widely used in practice for finding

a suitable transformation, are “useful as a guide" but “not to be followed blindly". The selection

of transformation parameters could be made based only on the information provided by the

data. However, if a particular value for λ in the Box-Cox transformation is more convenient

regarding interpretability, the selection of the parameter could be adjusted. For instance, if the

output of an estimation suggests that λ should be equal to 0.25 one could work instead with

λ = 0 i.e., the logarithmic transformation, which has an easier interpretation, especially when

this choice is common in the specific research field.

Does the back-transforming process lead to a bias in the predictions?

Researchers interested in predictions face another challenge which is to deal with the back-

transforming bias when applying non-linear transformations. In case, a back-transformation is

used for getting the values in their original measurement scale, an artificial bias comes from

this re-transforming process. Without loss of generality:

T [E(y|x)] 6= E[T (y)|x]

for all non-linear transformations, T (·) applied on the target variable. Although this effect

is not always severe (Sakia, 1992), ignoring the magnitude of the generated bias may lead

to misleading conclusions. Therefore, several methods and empirical work for removing the

back-transforming bias after applying a power transformation, in particular, the logarithmic

and Box-Cox transformations have been proposed in the literature for the linear and the linear

mixed regression model (Neyman and Scott, 1960; Hoyle, 1973; Lee, 1982; Rothery, 1988;

Sakia, 1990, 1992; Newman, 1993; Gurka et al., 2006; da Costa and Crepaldi, 2014).

5.3 Further issues with regards to variable transformations

Additionally to the model assumptions that we discussed in the previous section, special fea-

tures in the data can interact with the transformations or have effects on the usage of transfor-

mations. Thus, this section discusses issues such as model selection, the presence of outliers,

incomplete responses, multimodal data, zero inflated data, and the range of the variable when

using transformations. Note that these issues are a selection of the most common possible

interactions. Furthermore, this section explains how to decide which variables in the model
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should be transformed.

How is the model selection process under transformations?

The strategy for selecting the working model under different transformation is still under dis-

cussion. Sakia (1992, p. 174) states “The selection of a transformation may be properly viewed

as model selection". However, comparing regression models for variable selection under dif-

ferent scale levels has some difficulties. The model selection criterion should be invariant to a

change of scale in the target variable, which is not the case for the Akaike information criterion

(AIC) or the Bayesian information criterion (BIC), two commonly used information criteria

for the linear and linear mixed regression models (Burnham and Anderson, 2004; Müller et al.,

2013). Therefore, the coefficients of determination and their extensions to the linear mixed

regression models are a first approximation for comparing the models in terms of general fit-

ting, since they are scale invariant. Additionally, the working model always depends on which

procedure is done first, variable or transformation selection. Some procedures that have been

implemented for the linear regression model include the combination of these two procedures

in one (Laud and Ibrahim, 1995; Hoeting and Ibrahim, 1998; Hoeting et al., 2002).

How should transformations be used in the presence of outliers?

Without loss of generality an outlier is defined as an atypical observation among a data set,

which can be representative or non-representative (Chambers, 1986). A discussion of the def-

inition of outlying observations for the linear mixed regression models can be find in Bell and

Huang (2006) and Warnholz (2016b). Outliers are not themselves a violation of model assump-

tions. However, their presence could induce skewed distributions and heteroscedasticity that

lead to problems already examined in Section 5.2. Simply excluding an outlier is not always

the right answer since they may contain valuable information about the distribution of our data

(Belsley et al., 2005). If the presence of an outlier has a disproportionate influence on the

estimated model, an analysis with and without such observation is usually recommended.

Carroll and Ruppert (1985) state that proper transformation decision and identification of

outlying observations are interconnected. Thus, Figure 5.1 summarizes the stages in the anal-

ysis where the detection and the handling of outliers interconnects with the usage of a trans-

formation. For the detection of outliers, scatterplots between the outcome variable and the

explanatory variables or a box plot of the outcome variable can be sufficient. More method-

ologies can be found for instance in Cook and Weisberg (1982) and Barnett and Lewis (1984).

The most popular measures of influence are the Cook’s distance (Cook, 1977), the Welsch and

Kuh measure (Belsley et al., 2005) and the Hadi’s Influence Measure (Hadi, 1992). In the

case that the use of a transformation seems suitable after checking model assumptions and out-

liers are detected, a sensitivity analysis is suggested. This includes finding out if the outlying

case in the original scale is also an outlying observation in the transformed scaled. Further-

more, it is important to have an idea about how these observations can influence the need or

utility of a transformation. For instance, if the outliers cause heteroscedasticity, the deletion

of the outlier could make the usage of the transformation unnecessary. Some diagnostics for

studying the contribution of single observations on the need of transformations are presented in
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Cheng (2005) and Atkinson and Riani (2012). A sensitivity analysis under a Box-Cox power

transformation model has been discussed by Bickel and Doksum (1981); Box and Cox (1982);

Hinkley and Runger (1984); Atkinson (1986) and Duan (1993). Atkinson (1986) proposes a

sensitivity analysis by eliminating outlying observations after applying a Box-Cox transfor-

mation. Atkinson (1982) studied the reduction of influential cases and outliers after applying

transformations in some examples. However, Cook and Wang (1983) proposed a method to

detect influential observations under the Box-Cox transformation that is superior to the method

of Atkinson (1982) (Cook and Wang, 1983; Sakia, 1992). Tsai and Wu (1990) and Kim et al.

(1996) studied the influence on the Jacobian of the transformation when single observations

are deleted. If the outliers influence the need of the transformation, different methods are suit-

able to treat the outliers (Hawkins, 1980; Cook and Prescott, 1981; Cook and Weisberg, 1982;

Cook and Wang, 1983; Barnett and Lewis, 1984; Hawkins et al., 1984). In a model context and

for the estimation process, different procedures have been proposed: model reformulations,

downweighting outlying observations (Rousseeuw and Leroy, 2005), use of the winsorization

method (Yale and Forsythe, 1976) and use extreme-value distributions (Withers and Nadarajah,

2007). Furthermore, there has been considerable growing interest in using robust techniques

in recent years for incorporating this effect into the model structure and fitting or bounding

outliers and influential observations (Huber, 1964; Krasker and Welsch, 1982; Hampel et al.,

1986; Rousseeuw and Van Zomeren, 1990). For instance, the M-estimation (Huber, 1964) and

the least trimmed squares (Anscombe and Guttman, 1960) are examples of robust models that

can be used when outliers are present in the data. As alternatives, it is common in practice to

use Bayesian methods (Gelman et al., 2014) and quantile regression (Koenker, 2005).

In the other case, transformations can be useful in the presence of outliers since all infor-

mation can be kept in the data set and, at the same time, skewness and error variance can be

reduced (Osborne and Overbay, 2004). Furthermore, the rank transformation (Conover and

Iman, 1981) replaces the data for their corresponding ranks, and it can be seen as an outlying

observations handling. When a transformation is used without a previous outliers treatment,

it is recommended to use robust methods for the estimation of the transformation parameters

because the maximum likelihood theory is sensitive to outliers. In particular, Carroll (1980)

Carroll (1982b) , Carroll and Ruppert (1985), Bickel and Doksum (1981) and most recently

Marazzi and Yohai (2004) propose different robust methods for the Box-Cox transformation

and Burbidge et al. (1988) for the inverse hyperbolic sine transformation parameters. These

approaches are concerned with a modified likelihood function (see e.g., Krasker and Welsch,

1982). Gottardo and Raftery (2009) developed a Bayesian estimation method for the Box-Cox

transformation that accounts for outlying values. Pericchi (1981) and Sweeting (1984) study

different choices of prior distributions for the Box-Cox linear model. For the same model, Shin

(2008) develops a semi-parametric estimation method. Note that all mentioned methods only

handle outliers in the outcome variable.

How do incomplete responses affect the usage of transformations?

The problem of missing data becomes a fundamental part of almost every research setting.

Rubin (1976) introduced a classification system of missing data which describes the probability
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Figure 5.1: A guide how to handle the interactions between transformations and outliers.
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of missing values in relation to the data. The missing data mechanisms are missing completely

at random (MCAR), missing at random (MAR) and missing not at random data (MNAR). The

effects of missing responses in the data set on the usage of transformations have not yet been

extensively studied. However, if it is reasonable that the missing data mechanism is MAR,

the missing values can be ignored and maximum likelihood theory can be used in combination

with a transformation (Rubin, 1976; Lipsitz et al., 2000).

How can the transformations be used when the data is multimodal?

The transformations presented in this paper most likely do not ensure the correction of assump-

tions when data is multimodal. For instance, a specific variable (e.g., gender or income) can

generate different groups in the data with distinct distributions (Bradley, 1977). Therefore,

before an appropriate transformation is selected, this effect should be removed or corrected by

including a factor as an explanatory variable in the regression model. After this, the residuals

should be unimodal. This conventional technique in general modelling theory is also a type of

transformation (Fink, 2009).

How does the range of the variable limit the choice of transformations?

One of the most important features that we have to know when choosing a transformation is

the range of the variable. Most of the transformations are not mathematically defined for zero

or negative values. In order to deal with this problem, three general solutions regarding the use

of transformations have been published on this topic. Firstly, the researcher can shift the data

with a fixed constant (usually equal to one) or a fixed parameter that makes the data positive.

However, using an arbitrary parameter for making the data positive affects the analysis results

(Fletcher et al., 2005). Osborne (2002) suggests that adding a constant to the outcome variable

only changes the mean and not the other moments of the distribution, and he recommends

its use. Atkinson (1987) dedicates a whole chapter to discussing the implications of using

this family of transformations with a shifted parameter on model fitting, in particular in the

constant parameter and the estimation transformation parameter. Additionally, Hill (1963) and

Yeo and Johnson (2000) suggest that asymptotic results of maximum likelihood theory may not

hold including a shift parameter. Therefore, the second solution is to use a transformation that

includes in its functional form the possibility of using negative and non-negative responses.

Finally, Burbidge and Robb (1985) propose to shrink any zero values toward forward zero,

while holding the rest constant and applying the maximum likelihood theory.

How are the effects of many zeros in the variable on the transformation?

Data containing a substantial proportion of zeros is commonly known as a zero inflation prob-

lem or as an excess zeros problem. If this phenomenon is not correctly handled, the relation

between the conditional variance and the dependent variable is not equal, but greater. This

problem is called overdispersion and this can lead to an underestimation of the standard errors.

Furthermore, when the zero inflated problem is present, transformations may not be applicable

to achieve linearity. Another typical situation occurs when changing negative values in the out-
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come variable to numbers close to zero. Magee (1988) studied the effects of this change in the

outcome variable for the Box-Cox transformation. In this case, the Jacobian of the transforma-

tion (see estimation methods in Section 5.2) usually tends to plus or minus infinity (MacKin-

non and Magee, 1990) and the transformation parameter tends to be also zero. Furthermore,

if a Box-Cox transformation is applied under this condition, the transformed variable will be

bounded from below, which is not optimal, if the aim is to deal with non Gaussian assumptions.

How can we decide which variables should be transformed?

Mosteller and Tukey (1977) propose a ladder of transformations to guide the selection of a

transformation that helps to fulfill the linearity assumption (see Section 5.2). If it becomes

evident that a serious problem in the residuals is present, a transformation in the dependent

variable is suggested. Otherwise, if the residuals are well behaved, transforming the outcome

can artificially lead to a violation of assumptions, especially to heteroscedasticity. In this case,

one or more of the explanatory variables should be transformed (Cohen et al., 2014; Brown,

2015). Box and Tidwell (1962) suggest the use of a power transformation in the explanatory

variables in order to linearize the relationship with the outcome variable. The method is known

as the Box-Tidwell transformation and seeks to find the optimal transformation parameter un-

der a Box-Cox transformation for each variable that can be transformed (e.g., not for dummy

variables). The estimation process is based on maximum likelihood theory and is iterated un-

til convergence. Furthermore, it does not affect the variance stabilization and the Gaussian

assumptions of the error term distribution (Box and Cox, 1964).

It is also possible to transform both sides of the regression model. This can be useful when

there is a fair certainty that the regression model already describes well the studied interaction,

but the assumptions over the error terms are not yet met. In this case, a transformation family

T can be applied on both sides of the equation, which leads to the transform both sides (TBS)

model:

T (yi) = T
[
f(xi, β), λ

]
+ ei,

and for f(·), the error terms are usually assumed to be additive. The transformation function

may take different functional forms. It can simply be the logarithmic transformation, but can

also be a more elaborate family of power transformations, such as the Box-Cox. For instance,

when the logarithmic transformation is applied on both sides, the level-level regression spec-

ification is known as log-log transformation. If done properly, transforming both sides makes

the estimation of β more efficient (Carroll and Ruppert, 1988). If the transformation relies

on a transformation parameter, adjustments for the estimation of this parameter are suggested.

Regarding the Box-Cox transformation, Carroll and Ruppert (1988) propose writing the max-

imum likelihood function in terms of β, σ2
e and λ, and then maximizing it by employing an

optimization technique such as a the Newton algorithm. As they also acknowledge, it is not al-

ways possible to carry out this procedure as it can become computationally expensive. Carroll

and Ruppert (1988) suggest two alternatives. One of them is known as the profile likelihood,

which is based on the same theory proposed in Box and Cox (1964). The second method is

the use of the pseudo-regression model. In terms of parsimony, Carroll and Ruppert (1988)

favor the use of the pseudo-regression model method over the profile likelihood. However,
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the pseudo-regression model method can have irremediable convergence problems, and when

that happens the profile likelihood method is more reliable. Further estimation methods for

the TBS method are also studied by Ruppert and Aldershof (1989), Kettl (1991), Nychka and

Ruppert (1995) and Wang and Ruppert (1995). In order to calculate standard errors, Carroll

and Ruppert (1988) classify six techniques according to the estimation method employed for

σ2
e , λ and β and which model is fitted to the data.

5.4 Conclusions and future research directions

As this review of transformations shows, the application of transformations is a helpful tool for

achieving model assumptions for the linear and linear mixed regression models. In this work,

special attention has been paid to the wide range of transformations useful for achieving model

assumptions and estimation methods that can be used for the estimation of transformation

parameters. We explored the implications of these assumptions, their importance, and the

consequences of their violation in terms of estimation and inference. Moreover, an attempt

was made to present possible solutions to correct in the case that any of these assumptions

is violated. By doing so we showed that transformations can work as a solution for some of

these violations; particularly, for non-normality, heteroscedasticity, and non-linearity. In order

to combat the misuse of transformations, this work also provides a guide for the correct and

thoughtful application.

Because an increasing number of researchers are using the linear and linear mixed regres-

sion models, more theory of transformations for these models should be developed in future.

For instance, one drawback of transformations is still the interpretation of model results. Inter-

preting estimations in the transformed scale is not always desired, and most researchers prefer

to take decisions on the original scale. Manning (1998, p. 285) summarized this issue by point-

ing out that “First Bank will not cash a check for log dollars”. Therefore, further research is

needed to investigate the bias of back-transforming into the original scale an the interpretation

of model results under transformations. Nonetheless, these limitations should be seen as future

opportunities. Finally, more effort should be put into the comparison of different estimations

under diverse data circumstances.
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Chapter 6

The R package trafo for transforming
linear regression models

6.1 Introduction

To study the relation between two or more variables, the linear regression model is one of the

most employed statistical methods. For an appropriate usage of this model, a set of assumptions

needs to be fulfilled. These assumptions are, among others, related to the functional form and

to the error terms, such as linearity and homoscedasticity. However, in practical applications,

these assumptions are not always satisfied. This leads to the question of how the practitioner

can move on with the analysis in such case. One way to proceed is to conduct the analysis ignor-

ing the model assumption violations which is, of course, not recommended as it would likely

yield misleading results. Another solution is to use more complex methods such as generalized

linear regression models or non-parametric methods, as they might fit the data and problem

better. A third method, which also constitutes the focus of the present paper, is the application

of suitable transformations. Transformations have the potential to correct certain violations and

by doing so, enable to continue the analysis with the known (linear) regression model. Due to

its convenience, transformations such as the logarithm or the Box-Cox are commonly applied

in many branches of sciences; for example in economics (Hossain, 2011) and neuroscience

(Morozova et al., 2016). In order to simplify the choice and the usage of transformations in

the linear regression model, the R (R Core Team, 2018) package trafo (Medina et al., 2018)

is developed. The present work is inspired by the framework proposed in Rojas-Perilla (2018,

pp. 9-45) and extends other existing R packages that provide transformations.

Many packages that contain transformations do not focus especially on the usage of trans-

formations (Venables and Ripley, 2002; Fox and Weisberg, 2011; Molina and Marhuenda,

2015; Ribeiro Jr. and Diggle, 2016). Therefore, they often only include popular transforma-

tions like the logarithmic or the Box-Cox transformation family. The package car (Fox and

Weisberg, 2011) expands the selection of transformations. It includes the Box-Cox, the ba-

sic power, and the Yeo-Johnson transformation families, and uses the maximum likelihood

approach for the estimation of the transformation parameter. An exponential transformation

proposed by Manly (1976) is provided in the package caret (Kuhn, 2008) and the multiple pa-

rameter Johnson transformation in the packages Johnson (Fernandez, 2014) and jtrans (Wang,
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2015). While package MASS (Venables and Ripley, 2002) and package car (Fox and Weis-

berg, 2011) only provide the maximum likelihood approach for the estimation of the transfor-

mation parameter for the Box-Cox family, the estimation can be conducted by a wide range of

methods in the AID package (Dag et al., 2017). Most of the provided methods are based on

goodness of fit tests like the Shapiro-Wilk or the Anderson-Darling test. However, the AID
package only contains the Box-Cox transformation.

It is noticeable that none of the above-mentioned packages helps the user in the process of

deciding which transformation is actually suitable according to the users needs. Furthermore,

most packages do not provide tools to see at the first sight if the transformation improves the

untransformed model with regards to fulfilling the model assumptions. Therefore, package

trafo combines and extends the features provided by the packages mentioned above. Addi-

tionally to transformations that are already provided by existing packages, the trafo package

includes, among others, the Bickel-Doksum (Bickel and Doksum, 1981), modulus (John and

Draper, 1980), the neglog (Whittaker et al., 2005) and glog (Durbin et al., 2002) transforma-

tions that are modifications of the Box-Cox and the logarithmic transformation, respectively,

in order to deal with negative values in the response variable. Furthermore, the selection of es-

timation methods for the transformation parameter is enlarged by methods based on moments

and divergence measures (see e.g., Taylor, 1985; Yeo and Johnson, 2000; Royston et al., 2011).

The main benefits of the package trafo can be summarized as follows:

• An initial check can be conducted that helps to decide if and which transformation is

useful for the researchers needs.

• The untransformed model and a model with a transformed dependent variable as well as

two transformed models can be run simultaneously, and thus the models can be easily

compared with regard to the model assumptions.

• Extensive diagnostics are provided in order to check if the transformation helps to fulfill

the model assumptions normality, homoscedasticity, and linearity.

The remainder of this paper is structured as follows. In Section 6.2, the transformations and

estimation methods included in the package are presented. Section 6.3 demonstrates in form of

a case study the functionality of the package. Section 6.4 summarizes the user-defined function

feature of the package. In Section 6.5, some concluding remarks and potential extensions of the

package are discussed. Finally, Appendix D.1 presents the mathematical derivations underlying

the package.

6.2 Transformations and estimation methods

The equation describing and summarizing the relationship between a continuous outcome vari-

able y and different covariates x (either discrete or continuous) is defined by yi = x>i β + ei,

with i = 1, . . . , n. This is also known as the linear regression model and is composed by a

deterministic and a random component, which rely on different assumptions. Among others,

these assumptions can be summarized as follows:
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• Normality (N): The conditional distribution of y given x follows a normal distribution.

This is an optional, but often desired assumption.

• Homoscedasticity (H): The conditional variance of y given x is constant.

• Linearity (L): The conditional expectation of the outcome variable y given the covariates

x is a linear function in x.

As already mentioned, different approaches have been proposed for achieving these model

assumptions. Some of them include using alternative estimation methods of the regression

terms or applying more complex regression models (see e.g., Nelder and Wedderburn, 1972;

Berry, 1993). In this paper, we focus on defining a parsimonious re-specification for the model,

such as the usage of non-linear transformations of the outcome variable. The transformations

implemented in the package trafo basically help to achieve normality. However, most of them

simultaneously correct other assumptions (see also Table 6.1 and Table 6.2).

The transformations can be classified into transformations without a transformation parame-

ter and data-driven transformations with a transformation parameter that needs to be estimated.

The first set of transformations presented in Table 6.1 comprises, among others, the logarithmic

transformation, which is considered due to its popularity and straightforward application. The

Table 6.1: Transformations without transformation parameter.

Transformation Source Formula Support N H L

Log (shift) Box and Cox (1964) log(y + s) y ∈ R 7 7 7

Glog Durbin et al. (2002) log(y +
√
y2 + 1) y ∈ R 7 7 7

Neglog Whittaker et al. (2005) Sign(y) log(|y|+ 1) y ∈ R 7 7

Reciprocal Tukey (1977) 1
y y 6= 0 7 7

data-driven transformations presented in Table 6.2 are dominated by the Box-Cox transforma-

tion and its modifications or alternatives, e.g., the modulus or Bickel-Doksum transformation.

However, more flexible versions of the logarithmic transformation, as the log-shift opt, or the

Manly transformation, which is an exponential transformation, are also included in the package

trafo.

Table 6.1 and 6.2 provide information about the range of the dependent variable that is

supported by the transformation. Some transformations are only suitable for positive values of

y. This is generally true for the logarithmic and Box-Cox transformations. However, in case

that the dependent variable contains negative values, the values are shifted by a deterministic

shift s such that y + s > 0 by default in package trafo. Furthermore, the tables emphasize

which assumptions the transformation helps to achieve. These are general suggestions and the

actual success always also depends on the data. For specific properties of each transformation

we refer to the original references. The square root shift transformation with a data-driven

shift in analogy to the log-shift opt transformation is, to the best of our knowledge, firstly

implemented in this work. In contrast, a square root transformation with deterministic shift,

for example, is suggested in Bartlett (1947).

Since the transformations in Table 6.2 contain transformation parameters that need to be

estimated, package trafo contains different methodologies for this estimation. The benefit of
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Table 6.2: Data-driven transformations.

Transformation Source Formula Support N H L

Box-Cox (shift) Box and Cox (1964)

{
(y+s)λ−1

λ
if λ 6= 0;

log(y + s) if λ = 0.
y ∈ R 7 7 7

Log-shift opt Feng et al. (2016) log(y + λ) y ∈ R 7 7 7

Bickel-Docksum Bickel and Doksum (1981) |y|λSign(y)−1
λ

for λ > 0 y ∈ R 7 7

Yeo-Johnson Yeo and Johnson (2000)


(y+1)λ−1

λ
if λ 6= 0, y ≥ 0;

log(y + 1) if λ = 0, y ≥ 0;
(1−y)2−λ−1

λ−2
if λ 6= 2, y < 0;

−log(1− y) if λ = 2, y < 0.

y ∈ R 7 7

Square Root (shift) Medina et al. (2018)
√
y + λ y ∈ R 7 7

Manly Manly (1976)

{
eλy−1
λ

if λ 6= 0;

y if λ = 0.
y ∈ R 7 7

Modulus John and Draper (1980)

{
Sign(y)

(|y|+1)λ−1
λ

if λ 6= 0;

Sign(y) log (|y|+ 1) if λ = 0.
y ∈ R 7

Dual Yang (2006)

{
(yλ−y−λ)

2λ
if λ > 0;

log(y) if λ = 0.
y > 0 7

Gpower Kelmansky et al. (2013)

{
(y+
√
y2+1)λ−1
λ

if λ 6= 0;

log(y +
√
y2 + 1) if λ = 0.

y ∈ R 7

each estimation method depends on the research analysis and the underlying data. They can be

summarized as follows:

• Maximum likelihood theory

• Distribution moments optimization: Skewness or kurtosis

• Divergence minimization: Following Kolmogorov-Smirnov (KS), Cramér-von-Mises

(KM) or Kullback-Leibler (KL) measurements

The maximum likelihood estimation method finds the set of values for the transformation pa-

rameter that maximizes the likelihood function of the dataset under the selected transformation

(Box and Cox, 1964). This is a standard approach that is also implemented in several of the

mentioned R packages (Venables and Ripley, 2002; Fox and Weisberg, 2011). However, since

the maximum likelihood estimation is rather sensitive to outliers, the skewness or kurtosis opti-

mization might be preferable for the estimation of the transformation parameter in the presence

of such outliers (see e.g., Royston et al., 2011). These methods are especially favorable when

it is important in the analysis to meet these moments. For instance, skewness minimization

should be used when it is important to get a symmetric distribution. Additionally, if the focus

lies on comparing the whole distribution of the transformed data with a normal distribution,

and not only some moments, different divergence measures as the KS, KM or KL can be used

(see e.g., Yeo and Johnson, 2000). For all estimation methods, a lambda range on which the

functions are evaluated needs to be proposed. Therefore, default values are set for the prede-

fined transformations. For more information about different estimation methods we refer to

Rojas-Perilla (2018, pp. 9-45).

Since the user can only decide if the transformation is helpful by checking the above men-

tioned assumptions, the package trafo contains a wide range of diagnostic checks (e.g., Shapiro
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Table 6.3: Diagnostic checks provided in the package trafo.

Assumption Diagnostic check Fast check

Normality Skewness and kurtosis X
Shapiro-Wilk test X
Quantile-quantile plot
Histograms

Homoscedasticity Breusch-Pagan test X
Residuals vs. fitted plot
Scale-location

Linearity Scatter plots between y and x X
Observed vs. fitted plot

and Wilk, 1965; Breusch and Pagan, 1979). A smaller selection is used in the fast check that

helps to decide if a transformation might be useful. Table 6.3 summarizes the implemented

diagnostic checks that are simultaneously returned for the untransformed and a transformed

model or two differently transformed models and indicates which diagnostics are conducted in

the fast check. Additionally, plots are provided that help to detect outliers such as the Cook’s

distance plot and influential observations by the residuals vs leverage plot.

Another feature of the package trafo is the possibility of defining a customized transfor-

mation. Thus, a user can also use the infrastructure of the package for a transformation that

suits the individuals needs better than the predefined transformations. However, in this version

of the package trafo, the user needs to define the transformation and the standardized transfor-

mation in order to use this feature. For the derivation of the standardized transformation of all

predefined transformations, see Appendix D.1.

6.3 Case study

In order to show the functionality of the package trafo, we present – in form of a case study –

the steps a user faces when checking the assumptions of the linear model. For this illustration,

we use the data set called University from the R package Ecdat (Croissant, 2016). This

data set contains variables about the equipment and costs of university teaching and research

and can be obtained as follows:

R> library(Ecdat)

R> data(University)

A practical question for the head of a university could be how study fees (stfees) raise the

universities net assets (nassets). Both variables are metric. Thus, a linear regression could

help to explain the relation between these two variables. A linear regression model can be

conducted in R using the lm function.

R> linMod <- lm(nassets ~ stfees, data = University)

The features in the package trafo that help to find a suitable transformation for this model and

to compare different models are summarized in Table 6.4 and illustrated in the next sections.
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Table 6.4: Core functions of package trafo.

Function Description

assumptions() Enables a fast check which transformation is suitable.
trafo_lm() Compares the untransformed model with a transformed model.

trafo_compare() Compares two differently transformed models.
diagnostics() Returns information about the transformation and different

diagnostics checks in form of tests.
plot() Returns graphical diagnostics checks.

Table 6.5: Arguments of function assumptions.

Argument Description Default

object Object of class lm.
method Estimation method for the transformation parameter. Maximum likeli-

hood
std Normal or scaled transformation. Normal
... Addtional arguments can be added, especially for Default values of

changing the lambda range for the estimation of the para- lambda range of
meter, e.g., manly_lr = c(0.000005,0.00005) each transformation

6.3.1 Finding a suitable transformation

It is well known that the reliability of the linear regression model depends on assumptions.

Amongst others, normality, homoscedasticity, and linearity are assumed. In this section, we

focus on presenting how the user can decide and assess, if and which, transformations help to

fulfill these model assumptions. Thus, a first fast check of these model assumptions can be used

in the package trafo in order to find out if the untransformed model meets these assumptions

or if using a transformation seems suitable. The fast check can be conducted by the function

assumptions. This function returns the skewness, the kurtosis and the Shapiro-Wilk test for

normality, the Breusch-Pagan test for homoscedasticity and scatter plots between the dependent

and the explanatory variables for checking the linear relation. All possible arguments of the

function assumptions are summarized in Table 6.5. In the following, we only show the

returned normality and homoscedasticity tests. The results are ordered by the highest p value

of the Shapiro-Wilk and Breusch-Pagan test.

R> assumptions(linMod)

The default lambdarange for the log shift opt transformation

is calculated dependent on the data range. The lower value is

set to -2035.751 and the upper value to 404527.249

The default lambdarange for the square root shift transformation

is calculated dependent on the data range. The lower value is

set to -2035.751 and the upper value to 404527.249
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Test normality assumption

Skewness Kurtosis Shapiro_W Shapiro_p

logshiftopt -0.4201 4.0576 0.9741 0.2132

boxcox -0.4892 4.2171 0.9621 0.0527

bickeldoksum -0.4892 4.2171 0.9621 0.0527

gpower -0.4892 4.2171 0.9621 0.0527

modulus -0.4892 4.2171 0.9621 0.0527

yeojohnson -0.4892 4.2171 0.9621 0.0527

dual -0.4837 4.2180 0.9619 0.0519

sqrtshift 0.6454 5.2752 0.9504 0.0139

log -1.1653 5.1156 0.9140 0.0004

neglog -1.1651 5.1150 0.9140 0.0004

glog -1.1653 5.1156 0.9140 0.0004

untransformed 2.4503 12.7087 0.7922 0.0000

reciprocal -3.7260 19.0487 0.5676 0.0000

Test homoscedasticity assumption

BreuschPagan_V BreuschPagan_p

modulus 0.1035 0.7477

yeojohnson 0.1035 0.7477

boxcox 0.1035 0.7476

bickeldoksum 0.1036 0.7476

gpower 0.1035 0.7476

dual 0.1128 0.7369

logshiftopt 0.1154 0.7341

neglog 0.7155 0.3976

log 0.7158 0.3975

glog 0.7158 0.3975

reciprocal 1.6109 0.2044

sqrtshift 5.4624 0.0194

untransformed 9.8244 0.0017

Following the Shapiro-Wilk test, the best transformation to fulfill the normality assumption is

the log-shift opt transformation followed by the Box-Cox, Bickel-Doksum, gpower, modulus

and Yeo-Johnson transformation. The similarity or even equality of the test results for differ-

ent transformations is due to the same functional form in the case of a positive λ and positive

values as e.g., the Box-Cox and Bickel-Doksum transformation, or to the rounding at four

decimals. For improving the homoscedasticity assumption, all transformations help except the

square root (shift) transformation. As mentioned before, default values for the lambda range

for all transformations are predefined and these are used in this fast check. Since the default

values for the log-shift opt and square root (shift) transformation depend on the range of the

response variable, the chosen range is reported in the return. The Manly transformation is not

in the list since the default lambda range for the estimation of the transformation parameter

154



CHAPTER 6. THE R PACKAGE TRAFO

Table 6.6: Arguments of function trafo_lm.

Argument Description Default

object Object of class lm.
trafo Selected transformation. Box-Cox

lambda Estimation or a self-selected numeric value. Estimation
method Estimation method for the transformation Maximum likelihood

parameter.
lambdarange Determines lambdarange for the estimation Default lambdarange

of the transformation parameter. for each transformation.
std Normal or scaled transformation. Normal

custom_trafo Add customized transformation. None

is not suitable for this data set. It does not fit since the Manly transformation is an exponen-

tial transformation and therefore it rather fits for flat or left-skewed data in contrast to most of

the other transformations. In the case that the default lambda range does not work, the user

can change the lambda range for the transformations manually. Similarly, the user can change

the estimation methods for the transformation parameter. For instance, if symmetry is of spe-

cial interest for the user the skewness minimization might be a better choice than the default

maximum likelihood method. In this case study, all assumptions are assumed to be equally im-

portant. Thus, we choose the Box-Cox transformation for the further illustrations even though

some other transformations would be suitable as well.

6.3.2 Comparing the untransformed model with a transformed model

For a more detailed comparison of the transformed model with the untransformed model, a

function called trafo_lm (for the arguments see Table 6.6) can be used as follows:

R> linMod_trafo <- trafo_lm(linMod)

The Box-Cox transformation is the default option such that only the lm object needs to be given

to the function. The object linMod_trafo is of class trafo_lm and the user can conduct

the methods print, summary and plot in the same way as for an object of class lm. The

difference is that the new methods simultaneously return the results for both models, the un-

transformed model and the transformed model. Furthermore, a method called diagnostics

helps to compare results of normality and homoscedasticity tests. In the following, we will

show the return of the diagnostics method and some selected plots in order to check the

normality, homoscedasticity and the linearity assumption of the linear model.

R> diagnostics(linMod_trafo)

Diagnostics: Untransformed vs transformed model

Transformation: boxcox

Estimation method: ml

Optimal Parameter: 0.1894257
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Residual diagnostics:

Normality:

Pearson residuals:

Skewness Kurtosis Shapiro_W Shapiro_p

Untransformed model 2.4503325 12.708681 0.7921672 6.024297e-08

Transformed model -0.4892222 4.217105 0.9620688 5.267566e-02

Heteroscedasticity:

BreuschPagan_V BreuschPagan_p

Untransformed model 9.8243555 0.00172216

Transformed model 0.1035373 0.74762531

The first part of the return shows information of the applied transformation. As chosen, the

Box-Cox transformation is used with the optimal transformation parameter around 0.19 which

is estimated using the maximum likelihood approach that is also set as default. The optimal

transformation parameter differs from 0, which would be equal to the logarithmic transfor-

mation, and 1, which means that no transformation is optimal. The Shapiro-Wilk test rejects

normality of the residuals of the untransformed model but it does not reject normality for the

residuals of the transformed model on a 5% level of significance. Furthermore, the skewness

shows that the residuals in the transformed model are more symmetric and the kurtosis is closer

to 3, the value of the kurtosis of the normal distribution. The results of the Breusch-Pagan test

clearly show that homoscedasticity is rejected in the untransformed model but not in the trans-

formed model. These two findings can be supported by diagnostic plots shown in Figure 6.1.

R> plot(linMod_trafo)

In order to evaluate the linearity assumption, scatter plots of the dependent variable against the

explanatory variable can help. Figure 6.2 shows that the assumption of linearity is violated in

the untransformed model. In contrast, the relation between the transformed net assets and the

study fees seems to be linear.

As demonstrated above, the user can receive diagnostics for an untransformed and a trans-

formed model with only a little more effort in comparison to fitting the standard linear re-

gression model without transformation. While we only show the example with the default

transformation, the user can also easily change the transformation and the estimation method.

For instance, the user could choose the log-shift opt transformation with the skewness mini-

mization as estimation method.

R> linMod_trafo2 <- trafo_lm(object = linMod,

+ trafo = "logshiftopt", method = "skew")

6.3.3 Comparing two transformed models

The user can also compare different transformations with regard to meet the model assump-

tions. In many present-day applications, the logarithm is often used without longer considera-
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(a) Normal Q-Q plots of the error terms.
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Figure 6.1: Selection of diagnostic plots obtained by using plot(linMod_trafo). (a)
shows normal Q-Q plots error terms of the untransformed and the transformed model. (b)
shows the residuals against the fitted values of the untransformed and the transformed model.
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Figure 6.2: Selection of obtained diagnostic plots by using plot(linMod_trafo). (a)
shows the scatter plot of the untransformed net assets and the study fees (b) shows scatter plot
of the transformed net assets and the study fees. The numbers specify the correlation coefficient
between the dependent and independent variable.

Table 6.7: Arguments of function trafo_compare.

Argument Description Default

object Object of class lm.
trafos List of objects of class trafo.

std Normal or scaled transformation. Normal
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tions about its usefulness. In order to compare the logarithm, e.g., with the selected Box-Cox

transformation, the user needs to specify two objects of class trafo as follows:

R> boxcox_uni <- boxcox(linMod)

R> log_uni <- logtrafo(linMod)

The utility of trafo objects is twofold. First, the user can use the functions for each trans-

formation in order to simply receive the transformed vector. The print method gives first

information about the vector and the method as.data.frame returns the whole data frame

with the transformed variable in the last column. The variable is named as the dependent

variable with an added t.

R> head(as.data.frame(boxcox_uni))

nassets stfees nassetst

1 3669.71 2821 19.71248

2 12156.00 4037 26.07723

3 185203.00 17296 47.24867

4 323100.00 18800 53.08840

5 32154.00 9314 32.42140

6 41669.00 7388 34.31882

Second, the objects can be used to compare linear models with differently transformed depen-

dent variable using function trafo_compare. The arguments of this functions are shown in

Table 6.7. The user creates an object of class trafo_compare by:

R> linMod_comp <- trafo_compare(object = linMod,

+ trafos = list(boxcox_uni, log_uni))

For this object, the user can use the same methods as for an object of class trafo_lm. In this

work, we only want to show the return of method diagnostics.

R> diagnostics(linMod_comp)

Diagnostics of two transformed models

Transformations: Box-Cox and Log

Estimation methods: ml and no estimation

Optimal Parameters: 0.1894257 and no parameter

Residual diagnostics:

Normality:

Pearson residuals:

Skewness Kurtosis Shapiro_W Shapiro_p

Box-Cox -0.4892222 4.217105 0.9620688 0.0526756632

Log -1.1653028 5.115615 0.9140135 0.0003534879
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Heteroscedasticity:

BreuschPagan_V BreuschPagan_p

Box-Cox 0.1035373 0.7476253

Log 0.7158162 0.3975197

The first part of the return points out that the Box-Cox transformation is a data-driven transfor-

mation with a transformation parameter, while the logarithmic transformation does not adapt

to the data. Furthermore, we can see that normality is rejected for the model with a logarithmic

transformed dependent variable, while it is not rejected when the Box-Cox transformation is

used. The violation of the homoscedasticity assumption can be fixed by both transformations.

6.4 Customized transformation

An additional user-friendly feature in the package trafo is the possibility of using the frame-

work also for self-defined transformations. In the following, we show this option for the glog

transformation.

In a first step, the transformation and the standardized or scaled transformation need to

be defined. The mathematical expression of these two functions is presented in the Appendix

D.1.2.

R> glog_trafo <- function(y) {

+ yt <- log(y + sqrt(y^2 + 1))

+ return(y = yt)}

R> glog_std <- function(y) {

+ zt <- log(y + sqrt(y^2 + 1)) * sqrt(geometric.mean(1 +

+ y^2))

+ return(zt = zt)}

Second, the user inserts the two functions as a list argument to the trafo_lm function. Fur-

thermore, the user needs to specify for the trafo argument if the transformation is without a

parameter ("custom_wo") or with one parameter ("custom_one"). The glog transforma-

tion does not rely on a transformation parameter.

R> linMod_custom <- trafo_lm(linMod, trafo = "custom_wo",

+ custom_trafo = list(glog_trafo = glog_trafo,

+ glog_std = glog_std))

One limitation of this feature is the necessity to insert both the transformation and the scaled

transformation since the latter is often not known by the user. Furthermore, the framework is

only suitable for transformations without and with one transformation parameter.
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6.5 Conclusions and future developments

Even though the development in computing enables the use of complex methods nowadays,

transformations are still a parsimonious way to meet model assumptions in a linear regression

model. In Section 6.3, we demonstrated how the package trafo helps the user to decide easily

if and which transformation is suitable to fulfill the model assumptions normality, homoscedas-

ticity and linearity. To the best of our knowledge trafo is the only R package that supports this

decision process. Furthermore, the package trafo provides an extensive collection of trans-

formations usable in linear regression models and a wide range of estimation methods for the

transformation parameter. In future versions, we plan to enlarge this collection constantly, also

for other types of data, e.g, count data. Additionally, more methods that are available for the

class lm could be developed for objects of class trafo_lm. We would also like to expand the

infrastructure for linear mixed regression models.
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D.1 Likelihood derivation of the transformations

D.1.1 Log (shift) transformation

Let J(y) denote the Jacobian of a transformation from yi to y∗i . In order to obtain z∗i , the

scaled log (shift) transformation, given by y∗i
J(y)1/n

, and for simplicity, we use a modification of

the definition of the geometric mean, denoted by ȳLS. Therefore, the Jacobian, the scaled, and

the inverse of the log (shift) transformation are given below.

The log (shift) transformation presented in Table 6.1 is defined as:

y∗i = log(yi + s).

In case, the fixed shift parameter s would not be necessary, the standard logarithm function

(logarithmic transformation with s = 0) is applied.

The modification of the definition of the geometric mean for this transformation is:

ȳLS =

[
n∏
i=1

yi + s

] 1
n

.

Therefore, the expression of the Jacobian is defined as:

J(y) =

n∏
i=1

dy∗i
dy

=

n∏
i=1

1

yi + s

= ȳ−nLS .

The scaled transformation is given by:

z∗i = log(yi + s)ȳLS .
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The inverse function of the log (shift) transformation is denoted as:

f(yi) = log(yi + s)

y∗i = log(yi + s)

yi = ey
∗
i − s

⇒ f−1(y∗i ) = ey
∗
i − s.

D.1.2 Glog transformation

Let J(y) denote the Jacobian of a transformation from yi to y∗i . In order to obtain z∗i , the

scaled glog transformation, given by y∗i
J(y)1/n

, and for simplicity, we use a modification of the

definition of the geometric mean, denoted by ȳGL. Therefore, the Jacobian, the scaled, and the

inverse of the glog transformation are given below.

The glog transformation presented in Table 6.1 is defined as:

y∗i = log
(
yi +

√
y2
i + 1

)
if λ = 0.

The modification of the definition of the geometric mean for this transformation is:

ȳGL =

[
n∏
i=1

1 + y2
i

] 1
n

.

Therefore, the expression of the Jacobian is defined as:

J(y) =
n∏
i=1

dy∗i
dy

=

n∏
i=1

1

yi +
√
y2
i + 1

(
1 +

2yi

2
√
y2
i + 1

)

=

n∏
i=1

1

yi +
√
y2
i + 1

(
yi +

√
y2
i + 1√

y2
i + 1

)

=

n∏
i=1

1√
y2
i + 1

= ȳ
−n
2
GL .

The scaled transformation is given by:

z∗i = log
(
yi +

√
y2
i + 1

)
ȳ

1
2
GL.
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The inverse function of the glog transformation is denoted as:

f(yi) = log
(
yi +

√
y2
i + 1

)
y∗i = log

(
yi +

√
y2
i + 1

)
ey
∗
i − yi =

√
y2
i + 1

(ey
∗
i − yi)2 = y2

i + 1

ey
∗2
i − 2ey

∗
i yi = 1

yi = −(1− ey∗2i )

2ey
∗
i

⇒ f−1(y∗i ) = −(1− ey∗2i )

2ey
∗
i

.

D.1.3 Neglog transformation

Let J(y) denote the Jacobian of a transformation from yi to y∗i . In order to obtain z∗i , the

scaled neglog transformation, given by y∗i
J(y)1/n

, and for simplicity, we use a modification of the

definition of the geometric mean, denoted by ȳNL. Therefore, the Jacobian, the scaled, and the

inverse of the neglog transformation are given below.

The neglog transformation presented in Table 6.1 is defined as:

y∗i = sign(yi) log (|yi|+ 1) .

The modification of the definition of the geometric mean for this transformation is:

ȳNL =

[
n∏
i=1

(|yi|+ 1)

] 1
n

.

Therefore, the expression of the Jacobian comes to:

J(y) =

n∏
i=1

dy∗i
dy

=

n∏
i=1

sign(yi)
1

|yi|+ 1

= sign
( n∏
i=1

yi

)( n∏
i=1

|yi|+ 1

)−1

= sign
( n∏
i=1

yi

)
ȳ−nNL.

The scaled transformation is given by:

z∗i = sign(yi) log (|yi|+ 1) sign
( n∏
i=1

yi

)
ȳNL.
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The inverse function of the neglog transformation is denoted as:

f(yi) = sign(yi) log (|yi|+ 1)

y∗i = sign(yi) log (|yi|+ 1)

|yi| = esign(y∗i )y∗i − 1

⇒ f−1(y∗i ) = ±
[
esign(y∗i )y∗i − 1

]
.

D.1.4 Reciprocal transformation

Let J(y) denote the Jacobian of a transformation from yi to y∗i . In order to obtain z∗i , the

scaled reciprocal transformation, given by y∗i
J(y)1/n

, and for simplicity, we use a modification of

the definition of the geometric mean, denoted by ȳR. Therefore, the Jacobian, the scaled, and

the inverse of the reciprocal transformation are given below.

The reciprocal transformation presented in Table 6.1 is defined as:

y∗i =
1

yi
.

The definition of the geometric mean is:

ȳR =

[
n∏
i=1

yi

] 1
n

.

Therefore, the expression of the Jacobian is defined as:

J(y) =

n∏
i=1

dy∗i
dy

=

n∏
i=1

− 1

y2
i

= −ȳ−2n
R .

The scaled transformation is given by:

z∗i = − 1

yi
ȳ2
R.

The inverse function of the reciprocal transformation is denoted as:

f(yi) =
1

yi

y∗i =
1

yi

yi =
1

y∗i

⇒ f−1(y∗i ) =
1

y∗i
.
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D.1.5 Box-Cox (shift) transformation

y∗i (λ) =


(yi+s)

λ−1
λ if λ 6= 0 (A);

log(yi + s) if λ = 0 (B).

Box-Cox (shift) transformation case (A)

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ),

the scaled Box-Cox (shift)(A) transformation, given by y∗i (λ)

J(λ,y)1/n
, and for simplicity, we use a

modification of the definition of the geometric mean, denoted by ȳBC. Therefore, the Jacobian,

the scaled, and the inverse of the Box-Cox (shift)(A) transformation are given below.

The Box-Cox (shift)(A) transformation presented in Table 6.2 is defined as:

y∗i (λ) =
(yi + s)λ − 1

λ
if λ 6= 0.

In case, the fixed shift parameter s is not necessary for making the dataset positive, the standard

Box-Cox transformation (with s = 0) is applied.

The definition of the geometric mean is:

ȳBC =

[
n∏
i=1

yi + s

] 1
n

.

Therefore, the expression of the Jacobian comes to:

J(λ,y) =
n∏
i=1

dy∗i (λ)

dy

=
n∏
i=1

λ(yi + s)λ−1

λ

=
n∏
i=1

(yi + s)λ−1

= ȳ
n(λ−1)
BC .

The scaled transformation is given by:

z∗i (λ) =
(yi + s)λ − 1

λ

1

ȳλ−1
BC

.
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The inverse function of the Box-Cox (shift)(A) transformation is denoted as:

f(yi) =
(yi + s)λ − 1

λ

y∗i =
(yi + s)λ − 1

λ

yi = (λy∗i + 1)
1
λ − s

⇒ f−1(y∗i ) = (λy∗i + 1)
1
λ − s.

Box-Cox (shift) transformation case (B)

This case is exactly equal to the log (shift) case.

D.1.6 Log-shift opt transformation

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ),

the scaled log-shift opt transformation, given by y∗i (λ)

J(λ,y)1/n
, and for simplicity, we use a modifi-

cation of the definition of the geometric mean, denoted by ȳLSO. Therefore, the Jacobian, the

scaled, and the inverse of the log-shift opt transformation are given below.

The log-shift opt transformation presented in Table 6.2 is defined as:

y∗i (λ) = log(yi + λ).

The modification of the definition of the geometric mean for this transformation is:

ȳLSO =

[
n∏
i=1

yi + λ

] 1
n

.

Therefore, the expression of the Jacobian is defined as:

J(λ,y) =
n∏
i=1

dy∗i (λ)

dy

=
n∏
i=1

1

yi + λ

= ȳ−nLSO.

The scaled transformation is given by:

z∗i (λ) = log(yi + λ)ȳLSO.
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The inverse function of the log-shift opt transformation is denoted as:

f(yi) = log(yi + λ)

y∗i = log(yi + λ)

yi = ey
∗
i − λ

⇒ f−1(y∗i ) = ey
∗
i − λ.

D.1.7 Bickel-Docksum transformation

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ),

the scaled Bickel-Docksum transformation, given by y∗i (λ)

J(λ,y)1/n
, and for simplicity, we use a

modification of the definition of the geometric mean, denoted by ȳBD. Therefore, the Jacobian,

the scaled, and the inverse of the Bickel-Docksum transformation are given below.

The Bickel-Docksum transformation presented in Table 6.2 is defined as:

y∗i (λ) =
|yi|λsign(yi)− 1

λ
if λ > 0.

The modification of the definition of the geometric mean for this transformation is:

ȳBD =

[
n∏
i=1

|yi|

] 1
n

.

Therefore, the expression of the jacobian comes to:

J(λ,y) =
n∏
i=1

dy∗i (λ)

dy

=
n∏
i=1

sign(yi)λ|yi|λ−1

λ

= sign
( n∏
i=1

yi

)( n∏
i=1

|yi|
)λ−1

= sign
( n∏
i=1

yi

)
ȳ
n(λ−1)
BD .

The scaled transformation is given by:

z∗i (λ) =
|yi|λsign(yi)− 1

λ

1

sign
(∏n

i=1 yi

)
ȳ

(λ−1)
BD

.
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The inverse function of the Bickel-Docksum transformation is denoted as:

f(yi) =
|yi|λsign(yi)− 1

λ

y∗i =
|yi|λsign(yi)− 1

λ

|yi| =
[
sign(y∗i )(y

∗
i λ+ 1)

] 1
λ

⇒ f−1(y∗i ) = ±
[
sign(y∗i )(y

∗
i λ+ 1)

] 1
λ .

D.1.8 Yeo-Johnson transformation

y∗ij(λ) =



(yi+1)λ−1
λ if λ 6= 0, yi ≥ 0 (A);

log(yi + 1) if λ = 0, yi ≥ 0 (B);

− (1−yi)2−λ−1
2−λ if λ 6= 2, yi < 0 (C);

−log(1− yi) if λ = 0, yi < 0 (D).

Yeo-Johnson transformation case (A)

This case is exactly equal to the Box-Cox (shift) case (A), with s = 1.

Yeo-Johnson transformation case (B)

This case is exactly equal to the log (shift) case, with s = 1.

Yeo-Johnson transformation case (C)

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ),

the scaled Yeo-Johnson(C) transformation, given by y∗i (λ)

J(λ,y)1/n
, and for simplicity, we use a

modification of the definition of the geometric mean, denoted by ȳYC. Therefore, the Jacobian,

the scaled, and the inverse of the Yeo-Johnson(C) transformation are given below.

The Yeo-Johnson(C) transformation presented in Table 6.2 is defined as:

y∗i (λ) = −(1− yi)2−λ − 1

2− λ
if λ 6= 2 and yi < 0.

The modification of the definition of the geometric mean for this transformation is:

ȳY C =

[
n∏
i=1

1− yi

] 1
n

.
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Therefore, the expression of the Jacobian comes to:

J(λ,y) =
n∏
i=1

dy∗i (λ)

dy

=
n∏
i=1

(2− λ)(1− yi)1−λ

2− λ

=
n∏
i=1

(1− yi)1−λ

= ȳ
n(1−λ)
Y C .

The scaled transformation is given by:

z∗i (λ) = −(1− yij)2−λ − 1

2− λ
ȳ
n(1−λ)
Y C .

The inverse function of the Yeo-Johnson(C) transformation is denoted as:

f(yi) = −(1− yi)2−λ − 1

2− λ

y∗i = −(1− yi)2−λ − 1

2− λ
−y∗i (2− λ) = (1− yi)2−λ − 1

yi = 1−
[
− y∗i (2− λ) + 1

] 1
2−λ

⇒ f−1(y∗i ) = 1−
[
− y∗i (2− λ) + 1

] 1
2−λ .

Yeo-Johnson transformation case (D)

Let J(y) denote the Jacobian of a transformation from yi to y∗i . In order to obtain z∗i , the scaled

Yeo-Johnson(D) transformation, given by y∗i
J(y)1/n

, and for simplicity, we use a modification of

the definition of the geometric mean, denoted by ȳYD. Therefore, the Jacobian, the scaled, and

the inverse of the Yeo-Johnson(D) transformation are given below.

The Yeo-Johnson(D) transformation presented in Table 6.2 is defined as:

y∗i = − log(1− yi).

The modification of the definition of the geometric mean for this transformation is:

ȳY D =

[
n∏
i=1

1− yi

] 1
n

.
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Therefore, the expression of the Jacobian is defined as:

J(λ,y) =
n∏
i=1

dy∗i
dy

=
n∏
i=1

1

1− yi

= ȳ−nY D.

The scaled transformation is given by:

z∗i = − log(1− yi)ȳY D.

The inverse function of the Yeo-Johnson(D) transformation is denoted as:

f(yi) = − log(1− yi)

y∗i = − log(1− yi)

yi = −e−y∗i + 1

⇒ f−1(y∗i ) = −e−y∗i + 1.

D.1.9 Square root-shift opt transformation

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i ,

the scaled square root-shift opt transformation, given by y∗i (λ)

J(λ,y)1/n
, and for simplicity, we use a

modification of the definition of the geometric mean, denoted by ȳSR. Therefore, the Jacobian,

the scaled, and the inverse of the square root-shift opt transformation are given below.

The square root-shift opt transformation presented in Table 6.2 is defined as:

y∗i (λ) =
√
yi + λ.

The definition of the geometric mean is:

ȳSR =

[
n∏
i=1

yi + λ

] 1
n

.

Therefore, the expression of the Jacobian is defined as:

J(λ,y) =

n∏
i=1

dy∗i
dy

=
n∏
i=1

− 1

2
√
yi + λ

=
1

2
ȳ
−n
2
SR .
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The scaled transformation is given by:

z∗i = − 1

yi
ȳ2
SR.

The inverse function of the square root-shift opt transformation is denoted as:

f(yi) =
√
yi + λ

y∗i =
√
yi + λ

yi = y∗2i − λ

⇒ f−1(y∗i ) = y∗2i − λ.

D.1.10 Manly transformation

y∗i (λ) =

 eλyi−1
λ if λ 6= 0 (A);

yi if λ = 0 (B).

Manly transformation case (A)

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ),

the scaled Manly(A) transformation, given by y∗i (λ)

J(λ,y)1/n
, and for simplicity, we use a modifi-

cation of the definition of the geometric mean, denoted by ȳM. Therefore, the Jacobian, the

scaled, and the inverse of the Manly(A) transformation are given below.

The Manly(A) transformation presented in Table 6.2 is defined as:

y∗i (λ) =
eλyi − 1

λ
if λ 6= 0.

The modification of the definition of the geometric mean for this transformation is:

ȳM =

[
n∏
i=1

eyi

] 1
n

=
[
e
∑n
i=1 yi

] 1
n

= eȳ.
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Therefore, the expression of the Jacobian comes to:

J(λ,y) =
n∏
i=1

dy∗i (λ)

dy

=
n∏
i=1

λeλyi

λ

=

(
n∏
i=1

eyi

)λ
= ȳλnM

= eλnȳ.

The scaled transformation is given by:

z∗i (λ) =
eλyi − 1

λ

1

ȳλM

=
eλyi − 1

λ

1

eλȳ
.

The inverse function of the Manly(A) transformation is denoted as:

f(yi) =
eλyi − 1

λ

y∗i =
eλyi − 1

λ

λy∗i + 1 = eλyi

yi =
log(λy∗i + 1)

λ

⇒ f−1(y∗i ) =
log(λy∗i + 1)

λ
.

Manly transformation case (B)

The variable remains equal, y∗i = yi.

D.1.11 Modulus transformation

y∗i (λ) =

sign(yi)
(|yi|+1)λ−1

λ if λ 6= 0 (A);

sign(yi) log (|yi|+ 1) if λ = 0 (B).

Modulus transformation case (A)

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ),

the scaled modulos(A) transformation, given by y∗i (λ)

J(λ,y)1/n
, and for simplicity, we use a modifi-

cation of the definition of the geometric mean, denoted by ȳMA. Therefore, the Jacobian, the

scaled, and the inverse of the modulus(A) transformation are given below.
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The modulus(A) transformation presented in Table 6.2 is defined as:

y∗i (λ) = sign(yi)
(|yi|+ 1)λ − 1

λ
if λ 6= 0.

The modification of the definition of the geometric mean for this transformation is:

ȳMA =

[
n∏
i=1

|yi|+ 1

] 1
n

.

Therefore, the expression of the Jacobian comes to:

J(λ,y) =
n∏
i=1

dy∗i (λ)

dy

=
n∏
i=1

sign(yi)λ(|yi|+ 1)λ−1

λ

= sign
( n∏
i=1

yi

)( n∏
i=1

|yi|+ 1

)λ−1

= sign
( n∏
i=1

yi

)
ȳ
n(λ−1)
MA .

The scaled transformation is given by:

z∗i (λ) = sign(yi)
(|yi|+ 1)λ − 1

λ

1

sign
(∏n

i=1 yi

)
ȳ

(λ−1)
MA

.

The inverse function of the modulus(A) transformation is denoted as:

f(yi) = sign(yi)
(|yi|+ 1)λ − 1

λ

y∗i = sign(yi)
(|yi|+ 1)λ − 1

λ

|yi| =
[
sign(y∗i )λ+ 1

] 1
λ − 1

⇒ f−1(y∗i ) = ±
[(

sign(y∗i )λ+ 1
) 1
λ − 1

]
.

Modulus transformation case (B)

This case is exactly equal to the neglog transformation case.

D.1.12 Dual power transformation

y∗i (λ) =


yλi −y

−λ
i

2λ if λ > 0 (A);

log(yi) if λ = 0 (B).
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Dual power transformation case (A)

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ),

the scaled dual power(A) transformation, given by y∗i (λ)

J(λ,y)1/n
, and for simplicity, we use a mod-

ification of the definition of the geometric mean, denoted by ȳDA. Therefore, the Jacobian,

the scaled, and the inverse of the dual power(A) transformation are given below. The dual

power(A) transformation presented in Table 6.2 is defined as:

y∗i (λ) =
yλi − y

−λ
i

2λ
if λ > 0.

The modification of the definition of the geometric mean for this transformation is:

ȳDA =

[
n∏
i=1

(
yλ−1
i + y−λ−1

i

)] 1
n

.

Therefore, the expression of the Jacobian comes to:

J(λ,y) =

n∏
i=1

dy∗i (λ)

dy

=

n∏
i=1

λyλ−1
i + λy−λ−1

i

2λ

=
1

2
ȳnDA.

The scaled transformation is given by:

z∗i (λ) =
yλi − y

−λ
i

2λ

2

ȳDA
.
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The inverse function of the dual power(A) transformation is found by solving the quadratic by

completing the square as:

f(yi) =
yλi − y

−λ
i

2λ

y∗i =
yλi − y

−λ
i

2λ

2λy∗i = yλi − y−λi

2λy∗i = yλi −
1

yλi

2λy∗i =
y2λ
i − 1

yλi

2λy∗i y
λ
i = y2λ

i − 1

1 + λ2y∗2i = y2λ
i − 2λy∗i y

λ
i + λ2y∗2i

1 + λ2y∗2i = (yλi − λy∗i )2√
1 + λ2y∗2i + λy∗i = yλi

yi =
[√

1 + λ2y∗2i + λy∗i

] 1
λ

⇒ f−1(y∗i ) =
[√

1 + λ2y∗2i + λy∗i

] 1
λ
.

Dual power transformation case (B)

This case is exactly equal to the Box-Cox (shift) transformation, case (B).

D.1.13 Gpower transformation

y∗i (λ) =


(
yi+
√
y2i+1

)λ
−1

λ if λ 6= 0 (A);

log
(
yi +

√
y2
i + 1

)
if λ = 0 (B).

Gpower transformation case (A)

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain z∗i (λ),

the scaled gpower(A) transformation, given by y∗i (λ)

J(λ,y)1/n
, and for simplicity, we use a modifi-

cation of the definition of the geometric mean, denoted by ȳGA. Therefore, the Jacobian, the

scaled, and the inverse of the gpower(A) transformation are given below.

The gpower(A) transformation presented in Table 6.2 is defined as:

y∗i (λ) =

[
yi +

√
y2
i + 1

]λ
− 1

λ
if λ 6= 0.
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The modification of the definition of the geometric mean for this transformation is:

ȳGA =

[
n∏
i=1

(
yi +

√
y2
i + 1

)λ−1
1 +

yi√
y2
i + 1

] 1
n

.

Therefore, the expression of the Jacobian comes to:

J(λ,y) =

n∏
i=1

dy∗i (λ)

dy

=

n∏
i=1

λ
(
yi +

√
y2
i + 1

)λ−1(
1 + 2yi

2
√
y2i+1

)
λ

= ȳnGA.

The scaled transformation is given by:

z∗i (λ) =

[
yi +

√
y2
i + 1

]λ
− 1

λ

1

ȳGA
.

The inverse function of the gpower(A) transformation is denoted as:

f(yi) =

[
yi +

√
y2
i + 1

]λ
− 1

λ

y∗i =

[
yi +

√
y2
i + 1

]λ
− 1

λ

λy∗i + 1 =
[
yi +

√
y2
i + 1

]λ
(λy∗i + 1)

1
λ = yi +

√
y2
i + 1[

(λy∗i + 1)
1
λ − yi

]2
=
[√

y2
i + 1

]2

(λy∗i + 1)
2
λ − 2yi(λy

∗
i + 1)

1
λ + y2

i = y2
i + 1

−yi(λy∗i + 1)
1
λ =

1− (λy∗i + 1)
2
λ

2

yi = −

[
1− (λy∗i + 1)

2
λ

2(λy∗i + 1)
1
λ

]

⇒ f−1(y∗i ) = −

[
1− (λy∗i + 1)

2
λ

2(λy∗i + 1)
1
λ

]
.

Gpower transformation case (B)

This case is exactly equal to the glog transformation case.
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Summaries

Abstracts in English

Abstract: The Fay-Herriot model for multiply imputed data with an application
to regional wealth estimation in Germany

The increasing inequality of private income and wealth requires the redistribution of financial

resources. Thus, several financial support schemes allocate budget across countries or regions.

This work shows how to estimate private wealth at low regional levels by means of a modi-

fied Fay-Herriot approach that deals with a) unit and item non-response, especially with used

multiple imputation, b) the skewness of the wealth distribution, and c) inconsistencies of the

regional estimates with the national direct estimate. One compelling example for financial

redistribution is the promoted catching-up process of East Germany after the German reuni-

fication. This work shows that 25 years after the reunification differences are more diverse

than just between the East and the West by estimating private wealth at two regional levels in

Germany. The analysis is based on the Household Finance and Consumption Survey (HFCS)

that the European Central Bank launched for all euro area countries in 2010. Although the

application in this paper focuses particularly on Germany, the approach proposed is applicable

to the other countries participating in the HFCS as well as to other surveys that make use of

multiple imputation.

Keywords: small area estimation, non-response, multiple imputation, HFCS

Abstract: The fayherriot command for estimating small-area indicators

The command fayherriot implements the Fay-Herriot model (Fay and Herriot, 1979), a

small-area estimation technique (Rao and Molina, 2015), in Stata. The Fay-Herriot model (Fay

and Herriot, 1979) improves the precision of area-level direct estimates using area-level covari-

ates. It belongs to the class of linear mixed models with normally distributed error terms. The

fayherriot command encompasses options that a) produce out-of-sample predictions, b)

adjust non-positive random effects variance estimates, and c) deal with the violation of model

assumptions.

Keywords: disaggregated indicators, small area estimation, (log-transformed) Fay-Herriot

model, empirical best linear unbiased predictor (EBLUP)

208



Summaries

Abstract: Estimation of sample quantiles: Challenges and issues in the context of
income and wealth distributions

Means, quantiles and extreme values are common statistics for the description of distributions.

However, estimating sample quantiles with the default definition in different software programs

leads to unequal results. This is due to the fact that software programs use different quantile

definitions. Since most practitioners are not aware of this fact and use different quantile def-

initions interchangeably, this work compares the default definitions in the software programs

SPSS, R, SAS™ software, and Stata and additional quantile definitions that are suggested

by the literature. The work especially focuses on how the quantile estimators perform in the

context of describing the distribution of income and wealth. Furthermore, the possibilities of

considering sampling weights in the quantile estimation and methods for producing variance

estimates using the above-mentioned software are discussed.

Keywords: quantile definitions, software comparison, weighted quantile estimator, weighted

Harrell-Davis estimator

Abstract: The R package emdi for estimating and mapping regionally disaggre-
gated indicators

The R package emdi enables the estimation of regionally disaggregated indicators using small

area estimation methods and includes tools for processing, assessing, and presenting the re-

sults. The mean of the target variable, the quantiles of its distribution, the headcount ratio,

the poverty gap, the Gini coefficient, the quintile share ratio, and customized indicators are

estimated using direct and model-based estimation with the empirical best predictor (Molina

and Rao, 2010). The user is assisted by automatic estimation of data-driven transformation

parameters. Parametric and semi-parametric, wild bootstrap for mean squared error estimation

are implemented with the latter offering protection against possible misspecification of the er-

ror distribution. Tools for (a) customized parallel computing, (b) model diagnostic analyses,

(c) creating high quality maps and (d) exporting the results to Excel™ and OpenDocument
Spreadsheets are included. The functionality of the package is illustrated with example data

sets for estimating the Gini coefficient and median income for districts in Austria.

Keywords: official statistics, survey statistics, parallel computing, small area estimation, visu-

alization

Abstract: A guideline of transformations in linear and linear mixed regression
models

Representing a relationship between a response variable and a set of covariates is an essential

part of the statistical analysis. The linear regression model offers a parsimonious solution to

this issue, and hence it is extensively used in nearly all science disciplines. In recent years the

linear mixed regression model has become common place in the statistical analysis. Numer-

ous assumptions are usually made whenever these models are employed in scientific research.

If one or several of these assumptions are not met, the application of transformations can be

useful. This work provides an extensive overview of different transformations and estimation
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methods of transformation parameters in the context of linear and linear mixed regression mod-

els. The main contribution is the development of a guideline that leads the practitioner working

with data that does not meet model assumptions by using transformations.

Keywords: model assumptions, normality, transformation parameters, hierarchical models,

multilevel analysis

Abstract: The R package trafo for transforming linear regression models

The linear regression model has been widely used for descriptive, predictive, and inferential

purposes. This model relies on a set of assumptions, which are not always fulfilled when work-

ing with empirical data. In this case, one solution could be the use of more complex regression

methods that do not strictly rely in the same assumptions. However, in order to improve the

validity of model assumptions, transformations are a simpler approach and enable the user to

keep using the well-known linear regression model. But how can a user find a suitable transfor-

mation? The R package trafo offers a simple user-friendly framework for selecting a suitable

transformation depending on the user needs. The collection of selected transformations and

estimation methods in the package trafo complement and enlarge the methods that are existing

in R so far.

Keywords: power transformations, optimal parameter, model assumptions, normality

Kurzzusammenfassungen auf Deutsch

Zusammenfassung: Das Fay-Herriot Modell für mehrfach imputierte Daten an-
gewendet auf die Schätzung von regionalem Vermögen in Deutschland

Die ansteigende ungleiche Verteilung von privatem Einkommen und Vermögen erfordert die

Umverteilung von finanziellen Ressourcen. Daher wird im Zuge von Plänen zur finanziellen

Unterstützung zwischen Ländern und Regionen Budget verteilt. Ein bekanntes Beispiel in die-

sem Kontext ist der geförderte Aufholprozess Ostdeutschlands nach der Wiedervereinigung.

Allerdings ist 25 Jahre nach der Wiedervereinigung fraglich, ob Unterschiede wirklich nur

zwischen Ost und West bestehen oder ob die Betrachtung von kleineren Regionen nicht ein

genaueres Bild zum Vorschein bringt. Um eine Datengrundlage für die Schätzung von Privat-

vermögen zu haben, erhebt die Europäische Zentralbank seit dem Jahr 2010 die Household

Finance and Consumption Survey (HFCS) in allen Ländern der Eurozone. Diese Arbeit stellt

vor, wie Schätzer für deutsche Regionen (Bundesländer und Raumordnungsregionen) basie-

rend auf der HFCS mit Hilfe eines modifizierten Fay-Herriot Modells berechnet werden kön-

nen. Das vorgestellte Verfahren berücksichtigt a) die Schiefe der Vermögensverteilung, b) Unit

und Item Non-Response, vor allem die angewandte Multiple Imputation, und c) Inkonsistenzen

zwischen den regionalen Schätzern und dem direkten nationalen Schätzer. Obwohl die Arbeit

sich auf Deutschland konzentriert, ist die vorgeschlagene Methode auch für die anderen Län-

der, in denen die HFCS durchgeführt wird, anwendbar, ebenso wie für Befragungen, die eine

ähnliche Datenstruktur aufweisen.

Schlüsselwörter: Small-Area-Methoden, Non-Response, Multiple Imputation, HFCS
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Zusammenfassung: Das fayherriot Kommando zur Schätzung von kleinräumigen
Indikatoren

Das Kommando fayherriot ermöglicht die Anwendung des Fay-Herriot Modells (Fay and

Herriot, 1979), das zu den Small-Area-Methoden gehört, in Stata. Das Fay-Herriot Modell (Fay

and Herriot, 1979) erhöht die Präzision von aggregierten direkten Schätzern durch die Nutzung

von aggregierten Kovariaten. Es gehört zur Klasse von linear gemischten Modellen mit normal-

verteilten Fehlertermen. Das fayherriot Kommando umfasst Optionen, die es ermöglichen

a) Out-of-Sample Prädiktionen zu erhalten, b) negative Varianzschätzungen des zufälligen Ef-

fekts zu vermeiden, und c) Verletzungen von Modellannahmen entgegen zu wirken.

Schlüsselwörter: Disaggregierte Indikatoren, Small-Area-Methoden, (logarithmiertes) Fay-

Herriot Modell, empirisch bester unverzerrter Prädiktor unter den linearen Schätzern (EBLUP)

Zusammenfassung: Die Schätzung von Quantilen: Herausforderungen und Pro-
bleme im Kontext von Einkommens- und Vermögensverteilungen

Mittelwerte, Quantile und Extremwerte sind übliche Statistiken, die zur Beschreibung von Ver-

teilungen genutzt werden. Allerdings sind die Ergebnisse für Quantile, die mit verschiedener

Software berechnet werden, nicht zwingend gleich. Dies ist darauf zurückzuführen, dass Quan-

tilsdefinitionen, die in verschiedenen Software-Programmen genutzt werden, nicht einheitlich

sind. Da diese unterschiedlichen Definitionen vielen Anwendern nicht bewusst sind, vergleicht

diese Arbeit die unterschiedlichen Quantilsdefinitionen der Software-Programme SPSS, R,

SAS™ Software und Stata. Außerdem werden Quantilsdefinitionen betrachtet, die in der Li-

teratur evaluiert und empfohlen wurden. Diese Arbeit betrachtet besonders die Güte der unter-

schiedlichen Quantilsdefinitionen für die Beschreibung von Einkommens- und Vermögensver-

teilungen. Außerdem werden Möglichkeiten zur Berücksichtigung von Survey-Gewichten bei

der Quantilsschätzung, sowie zur Varianzsschätzung in den genannten Software-Programmen

diskutiert.

Schlüsselwörter: Quantilsdefinitionen, Vergleich von Software, gewichtete Quantilsschätzer,

gewichteter Harrell-Davis Schätzer

Zusammenfassung: Das R Paket emdi für die Schätzung und die Erstellung von
Karten für regional disaggregierte Indikatoren

Das R Paket emdi ermöglicht die Schätzung von regional disaggregierten Indikatoren mittels

Small-Area-Methoden und enthält Funktionen für die Erstellung, die Analyse und die Präsen-

tation von Schätzergebnissen. Der Mittelwert, die Quantile der Verteilung, die Armutsquote,

die Armutslücke, der Gini-Koeffizient und das Quintilsverhältnis, sowie individuell definierte

Indikatoren können mit direkter Schätzung oder modellbasierten Verfahren, mit dem Empi-

rical Best Predictor (Molina and Rao, 2010), geschätzt werden. Der Anwender wird dabei

durch die automatische Schätzung von Transformationsparametern für datengetriebene Trans-

formationen unterstützt. Ein parametrischer und ein semi-parametrischer wild Bootstrap für die

Schätzung des mittleren quadratischen Fehlers sind implementiert, wobei der zweite zusätzlich

gegen die mögliche Misspezifikation der Fehlerverteilung schützt. Das Paket ermöglicht (a)
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parallele Berechnungen, (b) die Analyse von Modellannahmen, (c) die Erstellung von Kar-

ten, (d) den Export von Ergebnissen zu Excel™ und zu OpenDocument Spreadsheets. Die

Funktionalität des Pakets wird mit der Schätzung des Gini-Koeffizienten und des Medians für

österreichische Bezirke basierend auf Beispieldatensätzen illustriert.

Schlüsselwörter: Amtliche Statistik, Survey-Statistik, parallele Berechnungen, Small-Area-

Methoden, Visualisierung

Zusammenfassung: Ein Leitfaden für die Nutzung von Transformationen in li-
nearen und linear gemischten Modellen

Ein großer Bestandteil statistischer Analysen besteht darin, den Zusammenhang zwischen einer

abhängigen und mehreren erklärenden Variablen zu beschreiben. Da das lineare Regressions-

modell eine einfache Lösung für die Beschreibung dieses Zusammenhangs ist, wird es in vielen

Wissenschaften angewandt. Seit einiger Zeit werden auch immer häufiger linear gemischte Re-

gressionsmodell genutzt. Beide Modelltypen basieren auf Annahmen, die bei der Anwendung

überprüft werden und erfüllt sein sollten. Wenn eine oder mehrere dieser Annahmen nicht er-

füllt sind, können Transformationen helfen weiterhin die Modellklasse der linearen Modelle

zu nutzen. Dafür bietet diese Arbeit einen umfassenden Überblick über verschiedene Transfor-

mationen und Schätzmethoden für die Schätzung eines optimalen Transformationsparameters

basierend auf den zugrunde liegenden Daten im Kontext von linearen und linear gemischten

Modellen. Der größte Beitrag der Arbeit liegt darin, dem Anwender Leitlinien an die Hand zu

geben, wie man Transformationen nutzen kann, um die Modellannahmen des linearen Modells

zu erfüllen, und was dabei beachtet werden muss.

Stichworte: Modellannahmen, Normalität, Transformationsparameter, hierarchische lineare

Modelle, Mehrebenenanalyse

Zusammenfassung: Das R Paket trafo für die Transformation von linearen Mo-
dellen

Das lineare Regressionsmodell ist eine häufig genutzte statistische Methode, um Zusammen-

hänge zu beschreiben und Vorhersagen durchzuführen. Allerdings beruht das Modell auf An-

nahmen, die in der Anwendung nicht immer erfüllt sind. In diesen Fällen könnten zum einen

komplexere Methoden genutzt werden, die nicht auf den gleichen Annahmen beruhen. Zum

anderen können Transformationen helfen, um die Gültigkeit der Annahmen zu verbessern. Um

eine passende Transformation zu finden, bietet das R Paket trafo einen anwenderfreundlichen

Rahmen. Die Auswahl an Transformationen und Schätzmethoden für den Transformationspa-

rameter in diesem Paket ergänzen die bisher angebotenen Methoden in R.

Stichworte: Power Transformationen, optimaler Transformationsparameter, Modellannahmen,

Normalität
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