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Introduction

In this dissertation we will investigate filters on semigroups and their proper-
ties regarding algebra in the Stone-Čech compactification.

The set of ultrafilters on a set S can be regarded as βS, the Stone-Čech
compactification of S with the discrete topology. If S is a semigroup, we can
define an associative operation on βS extending the operation on S. This can
be done in such a way that the multiplication with a fixed right hand element
is continuous; by the Ellis-Numakura Lemma there exist idempotent elements
in βS, i.e., idempotent ultrafilters. Idempotent ultrafilters play the central role in
the field of algebra in the Stone-Čech compactification especially because they
allow for elegant proofs of Ramsey-type theorems such as Hindman’s Finite
Sums Theorem, the Hales-Jewett Theorem and the Central Sets Theorem.

Although ultrafilters are a natural topic of interest to set theorists, there are
only few independence results regarding idempotent ultrafilters. One of the
basic questions motivating this thesis was whether this is coincidence: are
there other set theoretic constructions, maybe more similar to the different
kinds of forcing reals?

In the first part of the thesis, we give a positive answer to this question. In
Chapter 3, we develop a uniform approach to adjoin idempotent ultrafilters by
means of the forcing method. We are also able to produce a way to discern non-
equivalent forcing notions by associating each forcing for adjoining idempotent
ultrafilters with an already established notion for adjoining set theoretically
interesting, non-idempotent ultrafilters. For these constructions, we study the
notion of idempotent filter in Chapter 2. This notion is based on the natural
generalization of the multiplication of ultrafilters to arbitrary filters.

Idempotent filters are implicit in many applications throughout the field.
Besides the usefulness for our forcing constructions, the notion of idempotent
filter gives rise to a beautiful theory which we develop in Chapter 2. For
example, idempotent filters correspond to subsemigroups of βS with strong
closure properties and the notion is also a generalization of the well known
concept of partial semigroups. The development of the theory of idempotent
filters also enables us to give a simplified proof of Zelenyuk’s Theorem on
finite groups in the Stone-Čech compactification.

When we answer the above question positively, another question arises: what
combinatorial and algebraic properties can these forcing constructions have?
To make progress on this question it is natural to investigate the classical
notions, i.e., the set theoretic and combinatorial properties of union ultrafilters
on the one hand and the algebraic properties of summable ultrafilters on the
other. Union ultrafilters were introduced by Andreas Blass and found to be
equivalent to the already established summable ultrafilters in joint work with
Neil Hindman in 1987.
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In Chapter 4, we answer the open question negatively whether a union ultrafil-
ter is already ordered union if certain images of it are selective ultrafilters. In
Chapter 5, we investigate the algebraic properties of summable ultrafilters. In
particular, we prove that a certain “special” property for summable ultrafilters
is automatic and apply this fact to extend a theorem by Hindman and Strauss
on writing summable ultrafilters as sums.
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Chapter 1

Preliminaries

1.1. Regarding the layout

The layout of this thesis is probably unusual at first. I designed it to enhance
the reading experience as a whole as well as structuring the mathematical
content for easier verification and understanding.

The page layout is inspired by Edward Tufte’s classic [Tuf05]. The purpose of
the design lies in structuring the information in a way suitable for mathematics
without obstructing the flow of reading as much as is often accepted in
mathematical publications. Most prominently a large margin is implemented.
I use it for comments, footnotes and structural remarks as well as useful
repetition of terminology so as to make all of this easily accessible to the
reader. The actual LATEX style is my own modification of the tufte-latex
package developed at [Kle]; I thank Felix Breuer for many ideas and fruitful
discussions on this topic.

In organizing my results and their proofs I base my presentation on the prin-
ciples laid down in Uri Leron’s inspiring paper “Structuring mathematical
proofs”, [Ler83]. There, he develops a structuring that is aimed to produce
a detailed proof accessible to all readers while simultaneously enabling re-
searchers well-versed in the field to skip the details that are unnecessary from
their point of view.

Leron’s idea of a hierarchy of levels within a proof was implemented using
small indentations for the proofs of smaller claims. Additionally, I have
organized those parts of a proof that might be deemed superfluous from a
formal point of view in separate boxes using a sans serif font. I believe that
these additional comments will be useful for comprehending the proofs by
pointing out underlying principles, recapitulating strategies and pointing out
important details so as to improve the mathematical reading fluency as a
whole. With this approach I hope to adapt Leron’s “in the elevator” approach
in a fashion appropriate for a dissertation.

Since this method leads to proofs taking up additional space, I also colour
code definitions, theorems etc. to ease visual sneak previews and to enable
the reader to access quoted theorems and definitions faster while browsing
back and forth.

For further simplicity, the digital version of this document heavily employs
hyperlinks within the document thanks to the capacities of the Portable
Document File format (PDF) and pdfTEX with the hyperref-package. Therefore,
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in the digital format, you will be able to simply click on a linked reference
or label to automatically browse to the appropriate page; the back-button
available in most PDF-viewers will bring you back to the page you visited
before.

In my writing I will employ “we” instead of “I” or “the reader” because
I wish to not just present my results but present them to the reader in an
including fashion. The only exceptions to this convention will be the few
personal remarks, e.g., concerning personal communication. The use of “we”
must not be interpreted as an acclamation of joint work or references to results
by other researchers. All results of others will be referenced properly.

1.2. Basic notions

In this section we wish to informally introduce our basic notation. We intend
to keep everything standard and follow the classical books by Thomas Jech,
Kenneth Kunen and Neil Hindman and Dona Strauss [Jec03], [Kun80] and
[HS98] respectively. Since we are going to quote many papers authored or
co-authored by Neil Hindman and/or Andreas Blass, it may be worthwhile to
mention at this point that their personal homepages [Hin], [Blab] resp. offer
digital copies of many of their published and unpublished papers.

We always work in ZFC, the Zermelo-Fraenkel set theory with choice; other
axioms such as the continuum hypthesis CH will be specifically noted when-
ever we require them. We denote the natural numbers, i.e., the set of finite
ordinals, by ω and let N := ω \ {0}; we frequently use the fact that, as an
ordinal, a natural number is the set of its predecessors. The central notions of
this thesis are “filter” and “ultrafilter”.

A filter on (a set) S is a subset of its power set that contains S and is closedFilters and ultrafilters
under finite intersections and supersets. We will be concerned with filters on
infinite sets. A filter is proper if ∅ /∈ F, and unless specifically noted we always
assume filters to be proper; the power set P(S) is called the improper filter.

A maximal (proper) filter on S is called an ultrafilter; equivalently, an ultrafilter
is a prime filter, i.e., a (proper) filter such that A ∪ B ∈ p implies that A ∈ p
or B ∈ p. By the Boolean Prime Ideal Theorem [Jec03, Theorem 7.10] any
(proper) filter can be extended to an ultrafilter.

We define the Fréchet (or cofinite) filter on S byThe Fréchet filter and free
filters

Fr := Fr(S) := {A ⊆ S | S \ A is finite}.

A filter is free if it contains the Fréchet filter or equivalently its intersection is
empty. Otherwise, the filter is fixed. Free ultrafilters are the main object of our
interest whereas fixed ultrafilters always have the form

ṡ := {A ⊆ S | s ∈ A}

for some s ∈ S and thus embed the original set S into the set of its ultrafilters.
We usually identify the fixed ultrafilters with the elements of S.

As a potentially non-standard notation let us call a filter infinite if it containsInfinite filters
only infinite sets. We sometimes need this notion to differentiate between free
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and infinite filters. Infinite filters are exactly those filters that can be extended
to a free ultrafilter but may still be extendable to fixed ultrafilters if their
intersection is non-empty.1

1 For the simplest example con-
sider any infinite subset and its
supersets.

The set of all ultrafilters on S is denoted by βS. The natural topology on βS The Stone-Čech compact-
ificationis generated by basic sets of the following form: for any A ⊆ S let

A := {p ∈ βS | A ∈ p}.

The generated topology yields a fascinating space with many strange and intri-
cate properties. To name a few, it is compact and Hausdorff, zero-dimensional,
extremally disconnected and S is dense in βS. We will, in general, assume that
S carries the discrete topology, in which case βS is its Stone-Čech compactifi-
cation, i.e., its maximal compactification. We denote the Stone-Čech remainder
by βS \ S =: S∗ and note that it includes exactly those ultrafilters that extend
the Fréchet filter. Note also that for A ⊆ S we have A ∼= βA; hence we will
identify the two sets. For an introduction to the Stone-Čech compactification
see e.g. [HS98, Chapter 3].

We usually denote filters by F, G, H and ultrafilters by p, q, u, often interpreting (Ultra)filter notation
ultrafilters as points and filters as closed sets by the natural correspondences

Correspondence of filters
and closed setsF filter on S 7−→ F :=

⋂
A∈F

A

C ⊆ βS closed, non-empty 7−→
⋂

p∈C
p

between filters and non-empty closed subsets of βS (and of course the im-
proper filter, i.e., the power set, maps to the empty set). These correspondences
are inverse to each other and inclusion-reversing. Thus we will frequently
switch between filters and closed, non-empty subsets. To minimize confusion,
we will usually denote the closure operator for subsets of βS by cl(·).

Any subset of a power set that has the finite intersection property (FIP), i.e., any FIP – the finite intersection
propertyintersection of finitely many elements is non-empty, generates a (proper) filter

by closing it under intersections and supersets.

A base of a filter is a subset of the filter such that any set of the filter contains Filter base, subbase
a set from the base, i.e., closing the base under supersets yields the filter.
Similarly a subbase of a filter is a subset of the filter such that closing it under
finite intersections yields a base. We frequently confuse bases, subbases,
families with the finite intersection property and filters they generate.

Two filters are said to be coherent if their union has the finite intersection
property, i.e., their union generates a (proper) filter.

Given any function f : S→ T and a filter F on S let (Pre)image filters

f (F) :={B ⊆ T | f−1[B] ∈ F}
= the filter generated by { f [A] | A ∈ F}.

When there is no risk of confusion, we call this the image filter of F.

For a filter G on T we let

f−1(G) := the filter generated by { f−1[B] | B ∈ G}.

Section 1.2 – Basic notions 9



We call this filter the preimage filter of F.

The latter filter is proper if and only if f [S] meets every set in G. We will
encounter the latter kind of filters mostly with surjective or similarly well-
behaved functions such that this condition is immediate; hence this should
cause little confusion.

With this we can recall the definition of the Rudin-Keisler order for ultrafilters,Rudin-Keisler order
say p, q on S,

p ≤RK q if there exists f ∈ SS such that f (q) = p.

Given an ultrafilter p on S, a topological space X and f : S → X, we call aTopological limit
point x ∈ X a (topological) limit of f along p (or p-limit) if the preimage of every
neighbourhood of x is in p.

If X is compact and Hausdorff, such a limit always exists and is unique; we
denote it by

p-lim
s∈S

f (s).

It is easy to check that for p ∈ βS and A ∈ p, we get p-lim
s∈S

f (s) = p-lim
s∈A

f (s).

Let us note that we consider the standard topology of P(S), the power setCantor topology
of S, to be the Cantor topology, i.e., the topology derived from the product
topology of 2S. We denote the set of non-empty, finite subsets of S by P f (S).

For completeness let us note that the dual notion of a filter is the notion of an
ideal , i.e., a subset of P(S) closed under finite unions and subsets. We will
discuss ideals only in Section 3.4. For any filter the set of the complements
of the filter elements constitutes the dual ideal and vice versa for an ideal its
dual filter. The terminology for filters such as base, generators etc. applies to
ideals accordingly.

Now that we have quickly reviewed some of the foundations, we can begin to
set the stage for the results of this thesis.

1.3. Algebra in βS and δS

Since we now begin with the notions more critical but less well known outside
the field, we will try to be more formal and exact.

We are interested in ultrafilters with algebraic properties and for this we
need some algebraic structure, namely we always work with a semigroup
structure.

Definition: (partial) semi-
group

Definition 1.1 We define as follows.

• A semigroup (S, ·) is a set S with · an associative operation.

• A partial semigroup (S, ·) is a set S with a partial operation · that fulfills
the associativity law

s · (t · v) = (s · t) · v

in the sense that if one side is defined by the partial operation, then so
is the other and they are equal. We call this strong associativity.

10 Chapter 1 – Preliminaries



• For a partial semigroup S and s ∈ S we denote the set of elements
right-compatible with s by

σ(s) := {t ∈ S | s · t is defined},

whereas left-compatible elements of t ∈ S are the elements of

τ(t) := {s ∈ S | t ∈ σ(s)} = {s ∈ S | s · t is defined}.

When we consider partial subsemigroups we may use σS(s) etc. to
indicate in which partial semigroup we are working.

• A partial semigroup is called adequate if

{σ(s) | s ∈ S}

has the infinite finite intersection property, i.e., generates an infinite
filter.2 We always assume partial semigroups to be adequate. We denote 2 Adequate partial semigroups

were first introduced in [BBH94]
by Blass, Bergelson and Hind-
man. Although the filter σ(S)
is usually not required to be in-
finite, in every example in the
literature it is since the interest
lies in free ultrafilters. Note that
we do not require that the filter
is free.

the generated filter by σ(S) and its corresponding closed subset of βS
by

δS :=
⋂
s∈S

σ(s) = {p ∈ βS | (∀s ∈ S) σ(s) ∈ p}.

• For a semigroup we denote the restriction of the multiplication3 on one

3We do not introduce additional
notation for the partial case since
we have no use for it; cf. Remark
1.2

side by

(∀s ∈ S) ρs : S→ S, t 7→ t · s
(∀s ∈ S) λs : S→ S, t 7→ s · t.

The restriction to partial semigroup is technically not necessary due to the
following and later remarks. However, the restrictions of a partial semigroup
help to focus on those algebraic properties that are of interest to us.

Remark 1.2 Any partial semigroup (S, ·) can be extended to a semigroup.

For example, by adding a two-sided zero ⊥/∈ S and extending the operation
to s, t ∈ S ∪ {⊥} =: S⊥ by

t 6∈ σS(s)⇒ s · t =⊥ .

It is easy to check that this operation is associative.

Note also that we can adjoin an identity to any (partial) semigroup.

This remark may seem a mere technical triviality, however it should also be
noted that all examples of partial semigroup operations in the literature are
restrictions of semigroup operations that are not as trivial as the above by
means of restricting the operation to a subset of S× S. In the first chapter we
will, among other things, investigate this further.

Before we turn to an example, we use the opportunity to introduce a bit more
terminology which we will use in Chapter 2, Theorem 2.17 and Chapter 4.

Section 1.3 – Algebra in βS and δS 11



Definition 1.3 Let S, T be partial semigroups.

• Let S, T be semigroups. A map ϕ : S→ T is a (semigroup) homomorphism
if

(∀s, s′ ∈ S) ϕ(s · s′) = ϕ(s) · ϕ(s′).

As usual, we call a bijective homomorphism an isomorphism.44 Bijectivity is enough to imply
that the inverse map is a homo-
morphism. • A map ϕ : S→ T is a partial semigroup homomorphism if

(∀s ∈ S)(∀s′ ∈ σ(s)) ϕ(s · s′) = ϕ(s) · ϕ(s′).

In particular, the equality is meant to imply t ∈ σ(s)⇒ ϕ(t) ∈ σ(ϕ(s)).

We call a bijective partial semigroup homomorphism a partial semigroup
isomorphism if the inverse map is a partial semigroup homomorphism as
well.55 As opposed to the semigroup

case, we need to differentiate be-
tween bijective homomorphisms
and isomorphisms, since a bi-
jection is not enough to guaran-
tee that compatible images have
compatible preimages.

One of the most important examples of a partial semigroup is the following.

Definition 1.4 • We define

F := {s ⊆ ω | s finite}.

Note that we include ∅.

• We define a partial semigroup structure first on F \ {∅} by

s · t := s ∪ t if and only if max(s) + 1 < min(t).

We extend this to F simply by allowing ∅ to be a two-sided identity.

Since this semigroup is usually defined in a slightly different way, we remark
the following.

Remark 1.5 Note that this definition deviates from the standard operation on
F as found in the literature (cf. [Bla87b]) in two ways: ∅ is usually excluded
and compatibility requires only max(s) < min(t) or simply s ∩ t = ∅.

However, our choice leads to nearly the same filter and hence nearly the
same δF – the filter is not free but infinite, and only ∅ is added to δF. This
complication is compensated by certain advantages of the chosen definition
which we will explore in Chapter 2.66 We should note that our defi-

nition is also present in the liter-
ature; cf. [HS98, Chapter 5, Sec-
tion 1]

Of course it should be noted that all three multiplications are restrictions of
the Boolean group operation on F, i.e., ∆, the symmetric difference of sets.

The theory of the Stone-Čech compactification allows for the (not necessarily
unique) extension of any operation on the set to its compactification, in
particular our semigroup operation. We will restrict this introduction to the
following brute force definition with some additional remarks afterwards.
This definition is the central one for the field. We cannot overemphasize how
important it is to familiarize oneself with this notion – its technical formulation
as well as its mathematical meaning.

For a complete introduction we refer to [HS98, Chapter 4].

12 Chapter 1 – Preliminaries



Definition 1.6 Let (S, ·) be a semigroup.

• For p, q ∈ βS we define an operation

p · q := {A ⊆ S | (∃V ∈ p)(∃(Wv)v∈V in q)
⋃

v∈V
v ·Wv ⊆ A}

= {A ⊆ S | {s ∈ S | s−1 A ∈ q} ∈ p},

where s−1 A := {t ∈ S | st ∈ A}.7 7Note that as usual this does not
mean to imply any kind of in-
verse or cancellativity condition.This notation is standard and should not cause confusion with the

original operation; cf. the remark below.

• Given A ⊆ S and q ∈ βS we denote

A−q := {s ∈ S | s−1 A ∈ q}.

• Given A ⊆ S and q ∈ βS we denote

A∗ := A−q ∩ A.

Note that the A∗ notation will only be used when there is no confusion
regarding the chosen ultrafilter. Similarly we use this notation only
when there is no confusion with the Stone-Čech remainder βA \ A.

This definition seems to appear out of nowhere. However, underneath this
definition lies the basic theory of the field – indispensable for our work yet
in a way a ladder to be cast away after climbing it. Since it is too complex
and long to introduce here, we restrict ourselves to quoting some important
properties of this definition without any details. Instead, we wish to focus
on those aspects that we consider essential for following the results of this
thesis.

Remark 1.7 The operation is well defined, i.e., the product is in fact an
ultrafilter. The operation is associative and ρp is continuous for any p ∈ βS;
we call such a semigroup right- or more generally semi-topological (if instead
the functions λp are continuous). Additionally, λs is continuous for s ∈ S.

The operation extends the operation on S, i.e., ṡ · ṫ = ˙(st). In fact, for any
p, q ∈ βS

p · q = p-lim
s∈S

(q-lim
t∈S

s · t).

In particular, the operation arises from the operation on S by means of the
Stone-Čech compactification’s extension poperties.

For the introduced notation we can immediately check that for A ⊆ S and
p, q ∈ βS

A ∈ p · q⇔ A−q ∈ p.

Among other algebraic aspects, βS always has a unique minimal ideal denoted
by K(βS).

Section 1.3 – Algebra in βS and δS 13



For these and further technical aspects, we refer to [HS98, Chapters 3–4].

Let us quickly observe that in the case of a partial semigroup ultrafilters in δS
in a way multiply as if the partial operation was total.

Proposition 1.8
Let (S, ·) be a partial semigroup and S⊥ its extension from Remark 1.2. Then

p ∈ βS, q ∈ δS⇒ p · q 6=⊥,

i.e., the multiplication on elements of p and q is essentially always well-defined.

Proof. Simply observe that for V ∈ p and (Wv)v∈V in q we may assume (since
q ∈ δS) that Wv ⊆ σ(v). �

For a more thorough analysis, especially of the fact that δS is a semigroup,
see Chapter 2 and Appendix B. Additionally, this also has a kind of converse.
For a partial semigroup S there is a partial semigroup structure on βS that
extends it; this can be found in Section B.1.

We will re-visit this definition and generalize it in Chapter 2. Since there is no
specific notation in the literature for the sets we describe as A−q, we wish to
not only introduce this notation, but allow ourselves to digress and motivate
why this notation is efficient and why we believe that it has the potential to
be adopted more generally.

Proposition 1.9
Let p, q, r ∈ βS, A ⊆ S and s, t ∈ S.

• t−1s−1 A = (st)−1 A

• s−1 A−p = (s−1 A)−p

• (s−1 A)∗ = s−1 A∗ (with respect to the same ultrafilter).

• (A−q)−p = A−pq

• In particular, the multiplication on βS is associative.

Proof. Claim 1: We can simply calculate

t−1s−1 A = {x ∈ S | tx ∈ s−1 A}
= {x | s(tx) ∈ A}
= {x | (st)x ∈ A} = (st)−1 A.

Note that we only used associativity; hence this statement does not imply
any cancellativity. This is a fortunate coincidence of notation rather than a
meaningful observation (as compared to, say, the case of a group).
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Claim 2: We can calculate

s−1 A−p = {t | st ∈ A−p}
= {t | (st)−1 A ∈ p}
!= {t | t−1(s−1 A) ∈ p}
= {t | t ∈ (s−1 A)−p}
= (s−1 A)−p.

Claim 3: We can now calculate for A∗ (with respect to say p)

(s−1 A)∗ = s−1 A ∩ (s−1 A)−p

= s−1 A ∩ s−1 A−p

= s−1(A ∩ A−p)

= s−1 A∗.

Claim 4: We can calculate (with the preceding remark in mind)

(A−q)−p = {s | s−1 A−q ∈ p}
= {s | (s−1 A)−q ∈ p}
= {s | s−1 A ∈ pq}
= A−pq.

Claim 5: Finally, we can observe

A ∈ p(qr)⇔ A−qr ∈ p⇔ (A−r)−q ∈ p⇔ A−r ∈ pq⇔ A ∈ (pq)r. �

The proverbial big bang for the theory of ultrafilter semigroups is the following
theorem.

Ellis-Numakura LemmaTheorem 1.10 (Ellis-Numakura Lemma)
If (S, ·) is a compact, semi-topological semigroup then there exists an idempotent
element in S, i.e., an element p ∈ S such that

p · p = p.

The theorem was proved for topological, i.e., fully continuous, semigroups by
K. Numakura [Num52]8 and A. Wallace [Wal52], but the first proof for semi- 8 A link to a digital copy of the

paper is included in the biblio-
graphic entry.

topological semigroups is attributed to R. Ellis [Ell58], although in that paper
Ellis himself calls the lemma “probably well-known” – however nowhere in
the literature seems to be any indication that this was known earlier and
certainly no evidence that it had been published before Ellis.9 9cf. also [HS98, notes on Chapter

5].
The proof is elegant and simple; we refer the reader to [Ell58], [HS98, Theo-
rem 2.5] or even [org] Wikipedia (under the incorrect label Ellis-Nakamura
Lemma).

For the central application of the Ellis-Numakura Lemma we introduce some
more notation that we will heavily apply throughout this thesis.
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Definition 1.11 • For any sequence x = (xn)n∈ω in a semigroup (S, ·)FP-set
define the set of finite products (the FP-set)

FP(x) := {∏
i∈F

xi | F ∈ P f (ω)}

where products are always taken in increasing order of the indices.

• In the above setting we letFP∞-filter

FPk(x) := FP(x′),

with x′n = xn+k for all n. Additionally, let FP∞(x) be the filter generated
by FPk(x) (k ∈N).

• For an abelian semigroup (S, +) (written additively), we traditionallyFS-set
call the same sets FS(x) etc. accordingly (for finite sums).

• In F we additionally consider sequences s = (si)i∈ω of disjoint elementsFU-set
of F and write similarly

FU(s) = {
⋃
i∈F

si | F 6= ∅ and F ∈ [ω]<ω}.

These kinds of sets are of importance throughout Chapter 4. Note that
FU-sets are not FP-sets with respect to our partial semigroup operation
on F, since that would additionally require the si to be ordered.

We should note that this notation might frequently cause confusion. On the
one hand, we denote elements by s, x, y, on the other hand whole sequences
of elements. However, since we are concerned with the algebraic operations of
the members of such sequences, it would cause more confusion to introduce
yet another notation for sequences; we will naturally try to minimize confusion
by keeping these notations apart, e.g., speak about a sequence s = (si)i∈ω and
x ∈ FP(s).

Let us quickly remark for future reference.

Remark 1.12 For any semigroup, FP-sets (including FU-sets) obtain a natural
partial semigroup structure induced by the map

F→ FP(x), s 7→∏
i∈s

xi.

Similarly, this map induces a partial semigroup epimorphism between any
two FP-sets.

Let us note for later reference one very important observation that is used in
the proof of the Glavin-Glazer Theorem.

Galvin Fixpoint Lemma Lemma 1.13 (Galvin Fixpoint Lemma)
Let p ∈ βS be idempotent.

Then for A ∈ p we have A∗ ∈ p and (A∗)∗ = A∗.
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Proof. Claim 1: A∗ ∈ p simply by Definition 1.6 and since p · p = p.

Claim 2: (A∗)∗ = A∗.

By definition, “⊆” holds. For the reverse inclusion pick any a ∈ A∗. We
wish to show that a ∈ (A∗)∗.

By our choice already a ∈ A∗, so it remains to show that a−1 A∗ ∈ p.

Since a ∈ A∗, we know that a−1 A ∈ p, which by Claim 1 implies

(a−1 A)∗ ∈ p.

But by Proposition 1.9

(a−1 A)∗ = a−1 A∗,

as desired. �

Now we can prove the central tool of the field, the Galvin-Glazer Theorem;
for its history we refer to the notes at the end of this section. We begin with
the central lemma for the proof.

Galvin-Glazer TheoremTheorem 1.14 (Galvin-Glazer Theorem)
Let (S, ·) be a semigroup, p ∈ βS idempotent and A ∈ p.

Then there exists x = (xi)i∈ω in A such that

FP(x) ⊆ A.

Additionally, if p is free, then x can be chosen without repitition.

Spoiler We begin with two easily checked claims about sets of the form A∗ and
proceed to construct the sequence from such sets.

Proof. Let p be idempotent, A ∈ p.

Step 1: A∗ ∈ p and (A∗)∗ = A∗ by Lemma 1.13.

Now we are ready to describe the construction.

Step 2: To get the inductive construction started, we pick any x0 ∈ A∗ = (A∗)∗
and let A0 = A∗ as well as

A1 := x−1
0 A∗ ∩ A∗.

Note that A1 ∈ p.

Step 3: After induction step n we have constructed elements x0, . . . , xn and
sets

Ai+1 =
⋂

y∈FP(x0,...,xi)

y−1 A∗ ∩ A∗ (i ≤ n),

with Ai+1 ∈ p and xi ∈ Ai.

Step 4: So we can pick xn+1 ∈ An+1 and set An+2 as prescribed, hence
satisfying the induction hypothesis.

It is very easy to check by induction on the length that the constructed
sequence x = (xn)n∈ω is as desired.
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Step 5: If p is free, all the Ai are infinite, so we can pick xn+1 to be distinct
from the previously chosen xi. If p is fixed, say p = ṡ, then s · s = s and s ∈ A;
hence the constant sequence xi = s suffices – which would have to be the
output anyway since quite possibly A = {s}. �

A most important corollary to this theorem is Hindman’s Theorem which was
originally proved combinatorially for the semigroup (N, +). We will discuss
its history at the end of this section.

Hindman’s Theorem Theorem 1.15 (Hindman’s Theorem)
Let S = A0∪̇A1. Then there exists i ∈ {0, 1} and a sequence x such that

FP(x) ⊆ Ai.

Proof. By the Ellis-Numakura Lemma 1.10, pick p ∈ βS idempotent. Since p
is a prime filter, there exists i ∈ 2 with Ai ∈ p. Applying the Galvin-Glazer
Theorem 1.14 we find the desired sequence in Ai. �

We note another useful and easily checked corollary which is folklore.

Corollary 1.16
Let p ∈ βS be idempotent, A ∈ p and (Bi)i∈ω a sequence in p.

Then we can find a sequence x = (xi)i∈ω in A such that

(∀i ∈ ω) FPi(x) ⊆ A ∩ Bi.

Proof. In the proof of the Galvin-Glazer Theorem just intersect the sets called
Ai with

⋂
j≤i B∗j – this finite intersection will, of course, still be in p. �

Idempotent ultrafilters are quite abundant and they allow for an interesting
partial ordering.

Definition 1.17 For idempotent p, q ∈ βS we define

p ≤ q if p · q = q · p = p.

The natural generalizations (with only one product equaling p) will not be
relevant for this thesis. This partial order always has minimal elements and
moreover there is a minimal below each idempotent. Minimal idempotents
are extremely interesting objects and their elements are combinatorially rich;
they always lie in the minimal ideals K(βS). We also note the following useful
lemma.

Lemma 1.18
For every idempotent p ∈ (βN, +) we have

(∀n ∈N) n ·N ∈ p.
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Proof. This is [HS98, Lemma 6.6] �

We end the technical observations with a few definitions of special kinds of
ultrafilters which we will encounter throughout this thesis. We introduce only
the basic definitions and discuss variants when they are needed.

Definition: Some Ultrafil-
ters

Definition 1.19 • An ultrafilter p ∈ βω is called selective or Ramsey if

(∀ f ∈ ωω)(∃A ∈ p) f �A is constant or injective.

We will use “selective” throughout this thesis.

• An ultrafilter p ∈ βω is called a P-point (or δ-stable) if

(∀ f ∈ ωω)(∃A ∈ p) f �A is constant or finite-to-one.

• An ultrafilter p ∈ βω is called a strong P-point if for all sequences (Ci)i∈ω

with each Ci ⊆ p a closed subset of P(ω), there exists (ni)i∈ω such that

(∀Xi ∈ Ci)
⋃
i∈ω

Xi ∩ [ni, ni+1] ∈ p.

• An ultrafilter p ∈ βω is called a Q-point if

(∀ f ∈ ωω finite-to-one)(∃A ∈ p) f �A is one-to-one.

• An ultrafilter p ∈ βω is called rapid (or weak Q-point) if the natural
enumerations of its elements constitutes a dominating family in ωω , i.e.,

(∀ f ∈ ωω)(∃A ∈ p)(∀n ∈ ω) |A ∩ f (n)| ≤ n.

• An ultrafilter on F with a base of FU-sets is called a union ultrafilter. union ultrafilter

• An ultrafilter on ω with a base of FS-sets is called a (strongly) summable summable ultrafilter
ultrafilter.

We we will study these kinds of ultrafilters throughout this thesis. As noted
earlier the definition of FU-set and hence of union ultrafilters at first seems
different from that of FS-sets and summable ultrafilters. However, for multiple
reasons which we will also extensively discuss in Chapter 4 this is the natural
definition in the sense that union ultrafilters are in δF and idempotent with
respect to our multiplication on F.10 Nevertheless, the different variants of 10 cf. also Examples 2.6
union ultrafilters that we will discuss in Chapter 4 offer some subtle and
intricate properties in that respect.

Historically, before the connection between idempotency and Hindman’s The-
orem was known, ultrafilters in the closure of all idempotents were called
weakly summable utrafilters. Since idempotency is the established and pre-
ferrable notion, we will never speak about weakly summables and hence
speak only of summable ultrafilters whenever we mean strongly summable
ultrafilters.

The history of Hindman’s Theorem and what is called the Galvin-Glazer
Theorem is intriguing and we would like to discuss it a little. The theorem
itself was conjectured by Graham and Rothschild in [GR71]. According to
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[HS98, notes on Chapter 5] the proof of what is now known as the Galvin-
Glazer Theorem was developed (but never published) by Galvin around 1970,
although he was not aware that idempotent ultrafilters existed (he called
them “almost left translation invariant ultrafilters”). Hindman answered the
reverse question consistently in [Hin72] by constructing a strongly summable
ultrafilter under the assumption of the theorem as well as CH.11 Hindman

11 This assumption was later re-
duced to MA. Nowadays it is
known that the question of the
existence is closely related to the
covering number of the meager
ideal being 2ω ; cf. [Eis02]

afterwards proved the Finite Sums Theorem purely combinatorially [Hin74],
but as he charmingly put it in the abstract of his talk at the UltraMath
conference in 2008:

I never understood the original complicated proof (no, I did not plagiarize
it), so when I was made aware of the above facts, I began a career-long love
affair with the algebraic structure of the set of ultrafilters on a discrete
semigroup S.

N. Hindman

A shorter proof was published soon afterwards by Baumgartner in [Bau74].
In 1975, according to [HS98, notes on Chapter 5], Galvin could ask Glazer,
whether the ultrafilters that Galvin had been looking for existed – whereupon
Glazer almost immediately replied “yes”, apparantly leading to Galvin re-
sponding that it cannot be that simple. However, Glazer knew βN as the
maximal semi-topological semigroup compactification of the natural numbers
and he was well aware of the existence of idempotent elements – which he
could easily check to be “almost translation invariant”.

In [HS98, notes on Chapter 12] it is noted that it took another decade to
renew interest in summable ultrafilters when van Douwen asked if summable
ultrafilters could be constructed using ZFC alone. This turned out not to
be the case, cf. [Bla87b] and [BH87]. We will discuss this fact extensively in
Chapter 4.

1.4. Regarding the forcing method

In Chapter 3 we will work with the forcing method. However, our results
are not very technical from a forcing point of view. Instead we will mostly
work combinatorially, i.e., analyze partial orders and what kind of generic
objects forcing with them would adjoin. Hence we will not deviate in any way
from standard forcing notation and concepts. For an introduction we suggest
[Kun80] and [Jec03].
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Chapter 2

Idempotent Filters

In this chapter we will introduce the central notion of this thesis, idempotent
filters. These filters are implicitly used in many applications of the algebra
in the Stone-Čech compactification. We begin by showing that idempotent
filters induce closed subsemigroups and that the notion is a natural extension
of many concepts of the field. We also develop a basic theory for this notion.
From a set theoretic point of view, idempotent filters can be considered the
natural conditions for forcing constructions when aiming at adjoining an
idempotent ultrafilter; we will investigate that aspect in Chapter 3.

2.1. Idempotent filters

We begin with the definition of our main object of interest, idempotent filters.
The definition for the product of filters is completely analogous to the product
of ultrafilters in Definition 1.6.

Definition: Filter Product,
Idempotent Filter

Definition 2.1 Let (S, ·) be a semigroup.

• For filters F1 and F2 on S let

Combinatorial productF1 · F2 := {A ⊆ S | (∃V ∈ F1)(∃(Wv)v∈V in F2)
⋃

v∈V
v ·Wv ⊆ A}

= {A ⊆ S | {s ∈ S | s−1 A ∈ F2} ∈ F1}

be the combinatorial product or the filter product (of F1 and F2).

• We call a filter F on S with F · F ⊇ F an idempotent filter. Idempotent filter

The notion of idempotent filter is implicit in many important techniques of
the field such as [HS98, Theorems 4.20, 4.21]. Explicitly, the only application
seems to be in characterizing semigroup compactifications, cf. [HS98, Section
21.4].

The filter product was suggested to me as a potential starting point for my
own research by Andreas Blass while I was visiting the University of Michigan,
Ann Arbor, in the winter 2007/2008. The original motivation for this definition
will be developed in Chapter 3, but the notion turned out to have many more
applications and developed into a versatile tool for the analysis of the algebra
in βS.
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As a warm-up exercise we check that this kind of product does indeed lead to
a filter.

Proposition 2.2
Let F1 and F2 be filters on a semigroup (S, ·). Then F1 · F2 is a filter.

Proof. Since F1 · F2 is closed under supersets and clearly does not include the
empty set, we only need to check that it is closed under finite intersections.

For simplicity, let us consider only two sets, A, B ∈ F1 · F2.

We may assume that
⋃

v∈V v ·Wv ⊆ A and
⋃

u∈U u · Tu ⊆ B for appropriate
sets V, U ∈ F1 and Wv, Tu from F2. Then clearly

∅ 6=
⋃

v∈V∩U
v · (Wv ∩ Tv) ⊆ A ∩ B ∈ F1 · F2,

as desired. �

Let us note a corollary with a similarly easy proof that will be extremely
helpful.

Corollary 2.3
Any union of a family of coherent idempotent filters generates an idempotent filter.

Proof. Since the filters are coherent, their union generates a filter.

Hence we just have to check the idempotency. For simplicity, pick only two
sets say A ∈ F1, B ∈ F2 from the union of filters.

By idempotency of F1, F2, we may assume that⋃
v∈V

v ·Wv ⊆ A and
⋃

u∈U
u · Tu ⊆ B

for appropriate sets V, U ∈ F1 and Wv, Tu from F2.

But then (confusing F1 ∪ F2 with the filter it generates)⋃
v∈V∩U

v · (Wv ∩ Tv) ⊆ A ∩ B ∈ (F1 ∪ F2) · (F1 ∪ F2).

Since the sets V ∩U, Wv ∩ Tv are in the generated filter, we have completed
the proof. �

Since the concept of idempotent filters is not used in the literature, it might
not be apparent that there are many examples implicitly available. We state
the most important ones after a basic and important proposition.

The following topological characterization of the filter product suggested
by Andreas Blass indicates in particular that idempotency is considerably
stronger than to be corresponding to a closed subsemigroup.
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Proposition 2.4
Let F1, F2 and F3 be filters on S. The first two of the following statements are
equivalent and imply the third one:

1. For all q ∈ F1 and sequences (ps)s∈S in F2 we have

q-lim
s∈S

(s · ps) ∈ F3.

2. F1 · F2 ⊇ F3, i.e., F1 · F2 ⊆ F3.

3. F1 · F2 ⊆ F3, i.e., for all q ∈ F1 and all p ∈ F2 we have

q · p = q-lim
s∈S

(s · p) ∈ F3.

Proof. Claim 1: (1)→(2). (1)→(2)

For this we pick any A ∈ F3. We want to show that A ∈ F1 · F2, in other words
we need to show that

{s ∈ S | s−1 A ∈ F2} ∈ F1.

Step 1: So let us assume to the contrary, that it is not.

Step 2: Since F1 is a filter, this implies that its complement Fix a "bad" q ∈ F1

V := {v ∈ S | v−1 A /∈ F2}

is compatible with F1. So fix some q ∈ βS extending F1 with V ∈ q.

Step 3: By choice of V, we can similarly find for every v ∈ V some pv ∈ βS Fix "bad" ps ∈ F2
extending F2 but including Wv = S \ v−1 A; additionally, let us fix some
arbitrary ps ∈ F2 for s /∈ V.

Step 4: Now we can calculate the following: Towards a contradiction

V ={v ∈ V | v−1 A /∈ pv} ∈ q

⇒{s ∈ S | s−1 A /∈ ps} ∈ q
iff {s ∈ S | A /∈ s · ps} ∈ q
iff A /∈ q-lim

s∈S
(s · ps).

Step 5: But by our construction of q and (ps)s∈S and assumption (1) this
limit must include A (since it includes all of F3)    a contradiction.

Claim 2: (2)→(1). (2)→(1)

For this let us pick any q ∈ F1 and (ps)s∈S in F2; we then define x := q-lim
s∈S

(s ·
ps).

Claim: For every A ∈ F3 we have A ∈ x.

Step 1: By definition q-lim
s∈S

(s · ps) = {X ⊆ S | {s | s−1X ∈ ps} ∈ q}.

Step 2: But by assumption (2),

{v ∈ S | v−1 A ∈ F2} ∈ F1.

Step 3: Since F1 ⊆ q, F2 ⊆ pv we can deduce A ∈ x.
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Claim 3: Let us finish the proof by arguing that both (1) and (2) imply (3).(1) or (2)→(3)

(3) follows from (1) immediately. Alternatively, (3) follows from (2): if
q ∈ F1 and p ∈ F2, then it is trivially seen by our combinatorial definition of
multiplication in βS, i.e., Definition 1.6, that F3 ⊆ F1 · F2 ⊆ q · p as desired.�

Let us repeat an essential corollary to the proposition.

Corollary 2.5
Every idempotent filter induces a closed subsemigroup; in particular, it can be extended
to an idempotent ultrafilter.

Proof. Let F be idempotent. By the above proposition F is a closed subsemi-
group of βS. Hence by the Ellis-Numakura Lemma 1.10 E(F) 6= ∅ and such
an idempotent by definition of the closure includes F – as desired. �

Now that we have the topological characterization available, we can easily
identify many interesting examples as well as properties of this product. We
will settle the natural question whether (3) of Proposition 2.4 implies (1) or (2)
afterwards.

Example 2.6
• For any sequence x = (xn)n∈ω in a semigroup (S, ·), the filter FP∞(x)FP filters

(cf. Definition 1.11) is idempotent, since⋃
(∏i∈ f xi)∈FPk(x)

(∏
i∈ f

xi) · FPmax( f )+1(x) ⊆ FPk(x).

• In general, for any adequate partial semigroup (S, ·), the filter σ(S)Partial semigroups
corresponding to δS (cf. Definition 1.1) is idempotent, since (by strong
associativity)

⋃
t∈σ(s)

t · σ(s · t) ⊆ σ(s).

• Let I ⊆ βS be a closed left ideal in βS.Closed left ideals

Then the corresponding filter
⋂

I is idempotent – as is easily seen by
Proposition 2.4, part (1). The products s · ps are in the left ideal, as is
their limit, since I is closed.

• Let γS be another right-topological semigroup compactification, e ∈ γSIdempotent from compact-
ifications idempotent. Then the set of preimages of e under the canonical map

from βS corresponds to an idempotent filter; this follows from [HS98,
Theorem 21.31].

As promised we also include two examples that show that Proposition 2.4 and
Corollary 2.5 are optimal.
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Example 2.7
Let F1 := p ∈ K(βN), F2 = {N} and F3 =

⋂
cl(p + βN). Proposition 2.4: (3) 6→ (2)

It is well known, that1 1 cf. [HS98, Chapter 4]

F3 = cl(p + βN) ⊆ cl(K(βN)) 6= N∗

and trivially
F1 + F2 = p + βN ⊆ F3.

On the other hand, the filter product easily calculates to

p + F2 = {A | |N \ A| < ω} = Fr(N).

Thus these filters have property (3) but not property (2) of the preceding
proposition.

We now turn to an example of a closed subsemigroup not derived from an
idempotent filter. It is a well known and natural example; a variant of this
example has been studied in [BH87] and we will study our own variant in
Chapter 4. For the example we work in the semigroup δF, cf. Definition 1.4.
We should recall that FU-sets are not to be confused with FP-sets with respect
to our operation, since for FU-sets we only require the elements to be disjoint,
not ordered.

Example 2.8
Let us denote the following set by H:

{p ∈ δF | (∀A ∈ p)(∀n ∈ ω)(∃s = (s0, . . . , sn) disjoint) FU(s) ⊆ A ∩ σ(n)}.

Then H is a closed subsemigroup of δF, but
⋂

H is not an idempotent filter
on F.

Proof. Claim 1: H 6= ∅, since to include arbitrarily long finite FU-sets is parti-
tion regular by the Graham-Rothschild parameter-sets Theorem; cf. Theorem
4.20.

Claim 2: H is clearly closed since it is defined by a constraint on all members
of its elements.

Claim 3: H is a semigroup.

Given p, q ∈ H, V ∈ p, Wv ∈ q for v ∈ V. We need to show that
⋃

v∈V v ·Wv
contains arbitrarily long finite FU-sets; so fix n ∈ ω.

Step 1: Since V ∈ p ∈ H, we can find s = (s0, . . . , sn) with

FU(s) ⊆ V.

Step 2: Since Wv ∈ q ∈ H for all v ∈ FU(s), we can find t = (t0, . . . , tn)
with

FU(t) ⊆ (
⋂

v∈FU(s)

Wx ∩ σ(s0 ∪ . . . ∪ sn))

Step 3: Then defining zi := si ∪ ti for i < n we can easily check that

FU(z) ⊆
⋃

v∈V
v ·Wv.
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Claim 4:
⋂

H is not an idempotent filter.

We know by Proposition 2.4 that being idempotent is equivalent to

(∀q ∈ H)(∀(ps)s∈F in H) q-lim(s · ps) ∈ H.

We will give a counterexample for this characterization.

Step 4: Let (Bs)s∈F be a disjoint family of infinite subsets of ω with ∅ /∈ B∅.

Step 5: For s ∈ F we define As = P f (Bs), the finite subsets of Bs; clearly,
these sets have arbitrarily long finite FU-sets and elements from different
As are disjoint.

Step 6: For s ∈ F we pick ps ∈ H with As ∈ ps; for better notation let
q := p∅.

Step 7: Then X :=
⋃

s∈A∅
s · (As ∩ σ(s)) ∈ q-lim

s∈F
(s · ps)

We simply calculate

X ∈ q-lim(s · ps) iff {s ∈ F | X ∈ s · ps} ∈ q

iff {s ∈ F |s−1X ∈ ps} ∈ q.

The latter is the case, since by construction s−1X ⊇ (As ∩ σ(s)) ∈ ps.

Step 8: X does not contain a pair v 6= w with v ∪ w ∈ X.

Assume to the contrary that we have v, w ∈ X with v ∪ w ∈ X.

Then there exist s0, s1, s2 ∈ A∅ and ti ∈ Asi such that s0 · t0 = v,
s1 · t1 = w and s2 · t2 = v · w.

It is easily seen that we must have s2 = s0 · s1 = s0 ∪ s1, since s0, s1, s2 ∈
A∅ are disjoint from ti ∈ Asi (i ≤ 2).

But then similarly t2 = t0 ∪ t1    contradicting that t0 and t1 are
disjoint from t2 ∈ As0·s1 .

This concludes the proof. �

With this example we have established that idempotent filter is a stronger
notion than (to be corresponding to a) closed subsemigroup. Additionally, we
should note that the example is not artificial.

Remark 2.9 This example naturally gives rise to a multitude of similar ex-
amples. For example, in Chapter 4 we will encounter a subsemigroup of the
above example where the same argument works.

Conversely, we could define H more generally having only sets in its elements
fulfilling Schur’s Theorem, i.e., including two elements and their product,
instead of the finite version of Hindman’s Theorem and the argument still
works.

Before we continue, we wish to revisit Definition 1.6 that we introduced in the
preliminaries for ultrafilters which – as promised – naturally generalizes to
our setting.
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Definition 2.10 Let F be a filter on a semigroup (S, ·) and A ⊆ S.

• A−F := {s | s−1 A ∈ F}.
• A∗ := A ∩ A−F

This notation works just as well for filters as it does for ultrafilters.

Remark 2.11 Proposition 1.9 holds for filters as well.

In particular, for F, G be filters on ω,

A ∈ F · G ⇔ A−G ∈ F,

and if F is idempotent, then A ∈ F implies (A∗)∗ = A∗ ∈ F.

Proof. We show the second part, the rest is just like the proof of Proposition
1.9.

Clearly, A∗ ∈ F, so we only need to prove the equality.

Step: (A∗)∗ ⊆ A∗ is true by definition of ∗.

Step 1: (A∗)∗ = (A∗)−F ∩ A∗ = (A∗)−F ∩ (A−F ∩ A) by definition of ∗.

Step 2: (A∗)−F = (A ∩ A−F)−F

Claim 1: (A ∩ B)−F = A−F ∩ B−F for any A, B and filter F.

(A ∩ B)−F = {c | c−1(A ∩ B) ∈ F} = {c | c−1 A ∩ c−1B ∈ F}. Now since F
is a filter, this equals {c | c−1 A, c−1B ∈ F} = A−F ∩ B−F – as desired.

Step 3: Just as in Proposition 1.9 we have A−F ∩ (A−F)−F = A−F ∩ A−(F·F).

Claim 2: A−(F·F) ⊇ A−F.

A−F = {c | c−1 A ∈ F} ⊆ {c | c−1 A ∈ F · F} = A−(F·F) – since F ⊆ F · F.

Step 4: Therefore Steps 2 and 4 now yield (A∗)−F = A−F.

Step 5: In particular, Step 1 now yields (A∗)∗ = A−F ∩ A = A∗ – as desired.�

To see that idempotent filters yield the essential part of the ()∗ operation, let
us remark the following.

Remark 2.12 Although it may happen for F ⊆ F′ that A∗ with respect to F
is different from A∗ with respect to F′, this never poses a problem since it is
easy to check that A∗ at most increases with respect to F′.

Hence if F, F′ are idempotent, we may as well restrict ourselves to the smaller
set A∗ with respect to F (since this is in F′ as well).

This observation is especially useful whenever we pass from idempotent filters
via Corollary 2.5 to idempotent ultrafilters that extend them.
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With this definition we can state maybe the most important example of an
idempotent filter.

Galvin filters Lemma 2.13 (Galvin filters)
Let F be an idempotent filter and A ∈ F. Then the sets A∗ and (a−1 A∗)a∈A∗ generate
an idempotent filter (included in F). We call this kind of filter a Galvin filter.

Proof. Step 1: Since A ∈ F and F is idempotent, we know from Remark 2.11

that
A∗ = (A∗)∗ = {a ∈ A∗ | a−1 A∗ ∈ F} ∈ F;

hence the sets A∗, (a−1 A∗)a∈A generate a filter, say G ⊆ F.

Step 2: Therefore it suffices to show that A∗, (a−1 A∗)a∈A are included in G ·G.

For A∗ this is easy, since ⋃
a∈A∗

a · (a−1 A∗) ⊆ A∗;

so we are done.

Now fix some a ∈ A∗. Then for b ∈ a−1 A∗ we have ab ∈ A∗. So⋃
b∈a−1 A∗

b · ((ab)−1 A∗) =
⋃

b∈a−1 A∗
b · (b−1a−1 A∗)) ⊆ a−1 A∗

as desired. �

Let us end this section with a remark regarding partial semigroups since we
will focus on partial semigroups in later chapters.

Remark 2.14 Whenever we consider an adequate partial semigroup S, we
always assume that idempotent filters are coherent with σ(S) and we only
consider extensions of idempotent filters that are coherent with σ(S) as well –
even though there may be other idempotent extensions, especially when our
partial operation is the restriction of a semigroup operation. If we need to
stress this fact, we say that a filter is idempotent with respect to δS.

2.2. Countably generated idempotent filters

We have already seen that partial semigroups induce idempotent filters. These
filters are by definition generated by |S|-many sets – the sets (σ(s))s∈S. Idem-
potent filters behave a lot like σ(S), so it is natural to ask how similar they
really are. Of course, we have already seen in Examples 2.6 an example of a
very complicated idempotent filter, e.g., the filter corresponding to a closed
left ideal, which will in general not be induced by a partial semigroup. In this
section, we will however prove a kind of converse in the case of a countably
generated idempotent filter.

The result we will discuss is related to [HS98, Theorem 6.32] and Yevhen
Zelenyuk’s famous result that there are no non-trivial finite groups in βN. It
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also offers a first insight into the proof of Zelenyuk’s Theorem A.9 which we
give in the appendix.

To simplify our notation, we introduce a notion which is implicit in [HS98,
Theorem 4.21, Definition 7.23].

Definition: Filter homomor-
phism

Definition 2.15 Let S, T be (partial) semigroups, F an idempotent filter on S
and X ∈ F.

A map h : X → T is an (idempotent) filter or F-homomorphism, if there exist
(Hx)x∈X in F such that

(∀x ∈ X)(∀y ∈ Hx ∩ X) h(xy) = h(x)h(y).

Since F is idempotent, we may assume that X∗ = X and Hx ⊆ x−1X∗ for all
x ∈ X.

To see that this terminology is a sensible one, let us make a few simple
observations.

Remark 2.16 First, it is easy to check that partial semigroup homomorphisms
are always σ(S)-homomorphisms.

Second, whenever h is an F-homomorphism, then the continuous extension

h : F → βT

is a semigroup homomorphism, since

h(p · q) = p-lim
x∈X

q- lim
y∈Hx

h(xy) = p-lim
x∈X

q- lim
y∈Hx

h(x)h(y) = h(p)h(q).

As usual, we will identify h with h.

Third, note for completeness that it is natural to extend this notion to arbitrary
products of filters, i.e. F · G-homomorphisms, but we have no use for this.

We can now proceed to the main result of this section which strengthens the
intuition that countably generated idempotent filters are relatively simple, i.e.,
only as complex as partial semigroups.

For motivation let us approach the result naively. We wish to show that –
given enough cancellativity – any countably generated idempotent filter can
be refined to a filter that looks like σ(F). Now idempotent filters behave a lot
like partial semigroups: given a set A in an idempotent filter, we can look at
A∗ and we know that a−1 A∗ is in the filter for every a ∈ A∗.

If we were to define a partial operation on A∗ simply by restricting the
original operation by letting σ(a) := a−1 A∗ we could already discover many
of the nice properties of partial semigroups. We always get a kind of weak
associativity, i.e., for any a ∈ A∗, b ∈ a−1 A∗ there would be a filter set of c’s
where (ab)c, a(bc) are both defined (and equal). However, this way we would
still be missing strong associativity. To get a partial semigroup structure, and
in fact a rich semigroup structure, we need to handle the construction more
delicately.
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The additional conclusion of the following theorem may be ignored for now
since we will need it only for Zelenyuk’s Theorem A.9 in the appendix. We
strongly suggest to recall the definition of the partial semigroup F with the
notational conventions of σ(s), τ(t) for partial semigroups from Definition 1.1
as well as the special notation s+, s− etc. from Definition 1.4.

Theorem 2.17
Let (S, ·) be a countable, cancellative2 semigroup with identity e.

2 See the corollary for a general-
ization.

Let F be a free, countably generated, idempotent filter on S.

Then there exist X ∈ F and a bijective partial semigroup homomorphism

“There is a partial semi-
group structure on S such
that σ(S) refines F.”

ϕ : F→ X with F ⊆ ϕ(σ(F)).

Moreover, if there is an F-homomorphism h : X → Zz with

(∀A ∈ F) h[A] = Zz,

then we can construct ϕ such that additionally

h = (| · | mod z) ◦ ϕ−1.

Here | · | simply denotes the cardinality function on F. In other words, ϕ allows for h
to be calculated simply by cardinality mod z of the preimage along ϕ.

Spoiler In each step we will construct ϕ on P(n). The strategy is as follows:

For the homomorphic properties, we (just) have to pick appropriate images for the
irreducible elements, i.e., the intervals – which can be done thanks to the idempotency
at hand. To get injectivity we use the cancellativity.

Since at each step we have a new, “inert” element of F, i.e., the interval n = [0, n− 1],
we can ensure surjectivity by mapping it to whatever element we have not yet caught
in the image.

The additional requests for h can be dealt with due to the abundance of arbitrary
preimages in any filter set (and the above).

In the proof, we heavily use the notation for partial semigroups as introduced in
Definition 1.1.

Proof. Step 1: We require some preparations.Preparations

If no h is given, we trivially pick z = 1 and h constant.

We fix a descending base (Vn)n∈ω of F and a well-ordering of S of order
type ω.

Since h is an F-homomorphism, we can pick X and (Hx)x∈X in F as in the
definition; as noted we may assume X∗ = X and additionally that e ∈ X
(changing h(e) to 0 if necessary).

We construct a homomorphic bijectionThe plan

ϕ : F→ X

by induction on n, more specifically on P(n), ensuring the "reconfiguration"
of h. The induced partial semigroup structure on X will suffice for the claim
of the theorem.33 Again we note that this heav-

ily relies on our choice of the
operation on F, especially the ir-
reducible elements.
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Step 2: To start, we have to define ϕ(∅) = e.

Step 3: Assume that we have constructed ϕ�P(n− 1).

We can and must focus on the irreducible elements n \ i and extend ϕ to the
rest of P(n) homomorphically.

We construct ϕ(n \ i) for i < n by induction over i. The construction of ϕ

Step 4: For i = 0 and in the special case that x∗ := min X \ ϕ[P(n− 1)] has Surjectivity of ϕ and "re-
configuration" of h

h(x∗) mod z = n mod z,

we define ϕ(n) := x∗ for aforementioned induction at i = 0 – otherwise we
skip this step and instead choose ϕ(n) as in the next step.

Note that this does not endanger the homomorphic properties of ϕ since4 4 Recall τ(s) from Definition 1.1.

τ(n) = {∅} = {ϕ−1(e)},

and e−1X∗ = X∗.
Also note that this fact implies that no initial segment is contained in any set
σ(s); hence these choices do not have any effect regarding our aim for σ(F) to
be refining F.

Note for the surjectivity of ϕ, that we will have forced x∗ to be in the range of
ϕ after at most z steps, i.e., once in z steps we will choose ϕ(n) as in this step,
not skip it.

Step 5: Now let5 (0 <)i < n and assume we have constructed ϕ(n \ j) for j < i. Getting ready to pick

5 Include 0 if we skipped the last
step.

Then following sets are in F:

X (stay in X = X∗)
Vn (refine F)
X \ ϕ[P(n− 1) ∪ {n, . . . , n \ (i− 1)}] (injectivity)

For all s ∈ τ(n \ i)
Hϕ(s) (care for h)

ϕ(s)−1(X \ ϕ[P(n− 1) ∪ {n, . . . , n \ (i− 1)}]) (compatible)

X \ ϕ(s)−1(ϕ[P(n− 1) ∪P(n− 1) · {n, . . . , n \ (i− 1)}]) (injectivity)

For the last two sets note that by cancellativity of S, the set

ϕ(s)−1 ϕ[P(n− 1)]

is finite.6 6 Cf. the corollary.

Step 6: So by our assumptions on h, we may pick ϕ(n \ i) from the intersection Picking the image
of those sets and such that

h(ϕ(n \ i)) = n− i mod z.
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Step 7: Now we extend ϕ to P(n) homomorphically as follows. For this weExtending as needed
have to abide by the following rule

P(n) = {n, n \ 1} ∪̇
⋃̇

i<n−1
P(i) · n \ (i + 2).

That is for s ∈ P(n) we define77 Recall s+ and s− from Defini-
tion 1.4.

ϕ(s) = ϕ(s−) · ϕ(s+).

Step 8: We check that ϕ is injective.Checking injectivity

So take s, t ∈ F with ϕ(s) = ϕ(t).

Notice that max(s) 6= max(t) is impossible – for if say max(s) < max(t) we
have ϕ(s) 6= ϕ(t) by the choice of ϕ(t+), i.e., the last set in the list from Step
5.

Hence we can argue by induction on max(s) = max(t), i.e., assume that the
claim holds for elements in P(max(s)− 1).

But by our construction of the elements ϕ(n \ i), we know that ϕ(s) = ϕ(t)
implies s+ = t+ (or rather, by construction the contraposition holds) due to
the third set from Step 5.

Hence by right cancellativity, we may cancel this element and apply our
inductive hypothesis.

The rest of the desired properties are immediate from the construction: ϕ is a
partial semigroup homomorphism, it is surjective and σ(n) ⊆ Vn, hence we
refine F. Additionally, we have ensured the connection with h. �

The proof actually yields a little bit more than what we have stated in our
theorem.

Corollary 2.18
In Theorem 2.17 we can weaken the assumptions on S to being a countable, right-
cancellative and weakly left-cancellative semigroup with identity e.

Proof. In Step 5 of the proof, we only need to require that λs is finite-to-one
for s ∈ S (since F is infinite); in Step 8 we required right cancellation. �

Compared to [HS98, Theorem 6.32], our proof is also interesting in terms of
reverse mathematics; in particular, our proof can be carried out without the
help of an ultrafilter. Unfortunately, there seems to be no analogue for filters
generated by uncountably many sets. Although a natural candidate for a
partial semigroup equally nice as F is a Boolean group of higher cardinality,
this question is open, but a positive answer would be surprising.

Now that we have developed a basic theory of idempotent filters, we will
continue by considering a special class of examples. These will be pivotal
in the next chapter. The examples are generated using two very simple
functions.
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2.3. Preimage filters under bmin and bmax

One of the strengths of the partial semigroup F lies in the algebraically useful
identification of the natural numbers with finite subsets of natural numbers
by means of the binary representation; cf. [HS98, Chapter 6, Section 1].

For the rest of this chapter we will focus on the semigroups (ω, +), (N, +)
and the partial semigroup (F, ·). We begin an analysis of two simple functions
which have already proven useful for understanding summable ultrafilters
in [Bla87b], [BH87]. We develop some connections to idempotent filters and
other algebraic aspects which will not only complement our investigation
of idempotent ultrafilters but also prepare for the forcing constructions in
Chapter 3.

Definition 2.19 • We define the binary support as usual

bsupp(n) : ω → [ω]<ω, n 7→ bsupp(n)

defined by ∑
i∈bsupp(n)

2i = n

(with the convention that Σi∈∅ = 0).

• Define the binary maximum and minimum by

bmin : N→ ω, n 7→ min(bsupp(n))
bmax : N→ ω, n 7→ max(bsupp(n)).

• Similarly, we define the maximum and minimum by

F

ω

ω

bm
ax

, b
m

in m
ax,m

in

bsupp

min : F \ {∅} → ω, s 7→ min(s)
max : F \ {∅} → ω, s 7→ max(s)

• We define
H :=

⋂
n∈N

2n ·N =
⋂

n∈N

FSn((2i)i∈ω).

Let us remark some useful facts.

Remark 2.20 Note that bsupp−1 is a partial semigroup homomorphism from
(F, ·) to (N, +). The induced partial semigroup structure on N is defined
accordingly by

k ∈ σ(n) if bmax(n) + 1 < bmin(k).

It is easily checked that the Stone-Čech extension of bsupp−1 is a semigroup
isomorphism between δF and H. By Lemma 1.18 we know that H contains
all idempotent ultrafilters of (βN, +).
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The functions bmax, bmin destroy so much information that the preimages
tend to be very thick – thick enough to guarantee non-empty intersections
and stronger algebraic properties.

We begin by observing the following simple yet important facts telling us that
the preimages under these functions are always rich enough for our future
purposes.

Proposition 2.21
• For any A, B ⊆ ω, A 6= ∅, |B| = ω

bmin−1[A] ∩ bmax−1[B] 6= ∅.

• Accordingly, for free8 filters F1, F2 on ω the union8 Infinite filters, i.e., filters con-
taining only infinite sets, would
suffice here; cf. the preliminar-
ies. bmin−1(F1) ∪ bmax−1(F2)

generates a filter.

• For a free filter F on ω both bmin−1(F) and bmax−1(F) are free idempotent
filters (with respect to addition).

• Accordingly, for free filters F1, F2 on ω the union

bmin−1(F1) ∪ bmax−1(F2)

generates a free idempotent filter.

Proof. We prove the items in order.

Claim 1: By the assumption we find x ∈ A and y ∈ B with x < y. Then
2x + 2y ∈ bmin−1[A] ∩ bmax−1[B].

Claim 2: Claim 1 implies that the union bmin−1(F1) ∪ bmax−1(F2) has the
finite intersection property – as desired.

Claim 3: First we show that bmin−1(F) is idempotent.

Given Y ∈ F we set

V :=bmin−1[Y]

Wv :=bmin−1[Y \ bmax(v) + 1] (for v ∈ V).

Since F is free, these sets are in bmin−1(F); note that the sets Wv imply that
bmin−1(F) is free.

Then for every w ∈Wv we have bmin(w) > bmax(v).

This implies bmin(v + w) = bmin(v) ∈ Y.

Therefore
⋃

v∈Wv(v + Wv) ⊆ bmin−1[Y] as desired.

Now we show that bmax−1(F) is idempotent.
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Given Y ∈ F we set

V :=bmax−1[Y]

Wv :=bmax−1[Y] \ 2bmax(v)+1 (for v ∈ V).

Since F is free and bmax is finite-to-one, these sets are in bmax−1(F); note
that the sets Wv imply that bmax−1(F) is free.

Then for w ∈Wv we have bmin(w) > bmax(v).

This implies bmax(w + v) = bmax(w) ∈ Y.

Therefore
⋃

v∈V(v + Wv) ⊆ bmax−1[Y].

Claim 4: This follows from Claims 2 and 3 and the fact that the union of
coherent, idempotent filters generates an idempotent filter by Corollary 2.3.�

The analogous proposition holds for F.

Proposition 2.22
• For any A, B ⊆ ω, A 6= ∅, |B| = ω

min−1[A] ∩max−1[B] 6= ∅.

• Accordingly, for infinite filters F1, F2 on ω the union

min−1(F1) ∪max−1(F2)

generates a filter.

• For a free filter F on ω both min−1(F) and max−1(F) are free idempotent
filters (with respect to δF).

• Accordingly, for free filters F1, F2 on ω the union

max−1(F1) ∪max−1(F2)

generates an idempotent filter (with respect to δF).

Proof. The proof is completely analogous to, in fact easier than the proof of
the preceding proposition; we include the proof of the third claim.

First we show that min−1(F) is idempotent.

Given Y ∈ F we set

V := min−1[Y]

Wv := min−1[Y \ (max(v) + 2)] (for v ∈ V).

Since F is free, these sets are in min−1(F); note that the sets Wv imply that
min−1(F) extends σ(F).9 9 We need (max(v) + 2) due to

our definition of compatibility
in F; cf. the discussion following
Definition 1.4.

Then for every w ∈Wv we have min(w) > max(v) + 1.

This implies min(v · w) = min(v ∪ w) = min(v) ∈ Y.

Therefore
⋃

v∈Wv(v ·Wv) ⊆ min−1[Y] as desired.
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Now we show that max−1(F) is idempotent.

Given Y ∈ F we set

V := max−1[Y]

Wv := max−1[Y \ (max(v) + 2)] (for v ∈ V).

Since F is free and max is finite-to-one, these sets are in max−1(F); note that
the sets Wv imply that min−1(F) extends σ(S).

Therefore
⋃

v∈V(v ·Wv) ⊆ max−1[Y] – in the sense of our partial operation,
i.e., v ·Wv = v · (Wv ∩ σ(v)). �

With this we have completed the basic development that is needed for the
subsequent chapters. We will use the remainder of this chapter to study
further algebraic properties of these functions. These results are not necessary
for understanding the other results of this thesis, but they are interesting in
their own right since they give us valuable insight into the algebraic structures
of preimage filters for our functions.

Proposition 2.23
Given infinite A ⊆N we have the following.

(bmin−1[A])∗ is a (closed) right ideal in N∗,

bmax−1[A∗] is a (closed) left ideal in N∗.

Note that here ()∗ denotes the Stone-Čech remainder, i.e., the free ultrafilters on the
set, and in the lower line bmax is identified with its Stone-Čech extension.

Proof. Claim 1: (bmin−1[A])∗ is a right ideal.

For the claim we simply observe that⋃
a∈bmin−1[A]

(a + (N \ (min(a) + 1))) ⊆ bmin−1[A].

This implies that (bmin−1[A])∗ is a right ideal of N∗.

Claim 2: bmax−1[A∗] is a left ideal.

Let p ∈N∗, V ∈ p. Then⋃
v∈V

v + (bmax−1{a ∈ A | bmax(v) < bmin(a)}) ⊆ bmax−1[A].

Since these sets of preimages are almost included in A, this shows that
bmax−1[A∗] is a left ideal of N∗. �

Again we get the analogous result for F.

Proposition 2.24
Given infinite A ⊆N we have the following.

min−1[A] ∩ δF is a (closed) right ideal in δF.

max−1[A] ∩ δF is a (closed) left ideal in δF,
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After this algebraic warm-up it is interesting to see just how rich such preim-
ages are. For this we recall a standard definition.

Definition 2.25 For any semigroup S and A ⊆ S we say that A is piecewise
syndetic (pws) if there exists G ∈ P f (S) such that

{a−1(
⋃

s∈G
s−1 A) | a ∈ S}

has the FIP.

Note that A ⊆N is pws if there exists a bound c such that

(∀n ∈N)(∃i) A ∩ [i, i + n] has gaps of size ≤ c.

In other words, for (N, +) pws sets have “locally small gaps”.

Piecewise syndetic sets are very important in the analysis of the minimal
ideal of βS, however we will only encounter this notion in this section; for an
introductory discussion see [HS98, Section 4.4]. We continue by observing the
following.

Proposition 2.26
For infinite A, B ⊆N

bmin−1[A] ∩ bmax−1[B] is pws.

Spoiler We get a bound from any a ∈ A. To find an arbitrarily long interval with
gaps of this bound, we just pick a large element b ∈ B, such that adding N, a large
multiple of our bound, to does not change the binary minimum and maximum of
2a + N + 2b.

Proof. We start by fixing an element a0 ∈ A as well as some c > a0 and proceed
to show that

Claim: the bound 2c is as desired.10 10 In fact, A 6= ∅ suffices.

Given arbitrary n ∈N we need to choose an interval of length n such that
our set has small gaps on that interval.

Step 1: First we pick x such that

n ≤ x · 2c.

Step 2: To guarantee that we stay in our set, we want to fix a large binary
maximum. For this we simply choose b ∈ B such that

x · 2c < 2b.

Step 3: Then [2a0 + 2b, 2a0 + x · 2c + 2b] has length at least n.

Step 4: Finally, we can observe that

bmin−1[A] ∩ bmax−1[B] ∩ [2a0 + 2b, 2a0 + x · 2c + 2b]
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contains at least

2a0 + 2b, 2a0 + 2c + 2b, . . . , 2a0 + x · 2c + 2b.

So
bmin−1[A] ∩ bmax−1[B] ∩ [2a0 + 2b, 2a0 + x · 2c + 2b]

is of length at most n and has gaps of size at most 2c – as desired. �

We proceed to get an even stronger result. The following definition is very
technical, but is essentially an extension to families of pws sets where the pws
property is very uniform.

Definition 2.27 Let (S, ·) be a semigroup. We call A ⊆ P(S) collectionwise
piecewise syndetic (cwpws) if there exists θ : P f (A)→ P f (S) such that

{y−1(θ(F))−1
⋂

F | y ∈ S, F ∈ P f (A)}

has the FIP – with the convention

y−1(θ(F))−1
⋂

F :=
⋃

t∈θ(F)

y−1t−1
⋂

F =
⋃

t∈θ(F)

(ty)−1
⋂

F.

Note that this implies that A generates a filter of pws sets.

The function θ picks witnesses for the piecewise syndeticity of (finite inter-
sections of) members of A to be uniform in the sense that finitely many sets
locally cover the same area; for (N, +) this means that we can choose the
bound for gaps of finitely many sets in such a way that such gaps appear
at common intervals, i.e., the bound of their finite intersection has locally
bounded gaps on intervals where all of the sets have locally bounded gaps as
well.

Given the comment at the end of the definition, one might suspect “cwpws”
to mean nothing more than “generating a filter of pws sets”. However, this
seems to be an open question which we do not pursue here. Its difficulty
certainly lies in the following problem: even if we have a filter of pws sets, it is
not apparent how to choose θ. Of course, we can pick arbitrary witnesses for
the individual sets, but these might not work well together; cf. the diagram.Figure 2.1: Intersecting pws sets.

A
B
A ∩ B

Even though we know that all finite intersections are pws, we cannot hope
to choose a witness for a given set by ’‘waiting” until all finite intersections
with other sets from the filter have been considered. These problems are
closely related to the difficult questions surrounding the minimal ideal and its
closure.

The following theorem explains the importance of this notion for the algebra
of βS.

Hindman, Lisan Theorem 2.28 (Hindman, Lisan)
Let (S, ·) be a discrete semigroup. Then A ⊆ P(S) is cwpws if and only if there exists
p ∈ K(βS) with A ⊆ p.
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Proof. This is [HS98, Theorem 14.21]; the proof is not difficult, but repeating it
here is not necessary for our purpose. �

We can now prove the following.

Theorem 2.29
For free filters F, G on N the set

{A ∩ B | A ∈ bmin−1(F), B ∈ bmax−1(G)}

is cwpws.

Spoiler The idea of the proof is quite simple, its only difficulty lies in understanding
the definition of cwpws. We use the bound from the proof of Proposition 2.26, but we
have to show more than before: the bound from that proof works uniformly, i.e., given
finitely many members of the filter, the bounded gaps for the intersection appear at
intervals where the original sets have gaps of their chosen bound.

Proof. For convenience let us abbreviate

A := {A ∩ B | A ∈ bmin−1(F), B ∈ bmax−1(G)}.

Step 1: First we define

θ : A→ P f (N)

A ∩ B 7→ [1, 2min(A)+1].

Since the choice of A might not be unique we fix one such choice.

Step 2: Since A is closed under intersections, we can extend θ to P f (A) by

θ({C0, . . . , Ck}) := θ(C0 ∩ . . . ∩ Ck).

Step 3: For simplicity consider just two sets C0 = A0 ∩ B0, C1 = A1 ∩ B1 in A
and a given length n.

Step 4: Fix x, y ∈N such that

n ≤ x · 2θ(C0) = x · 2min(A0)+1

n ≤ y · 2θ(C1) = y · 2min(A1)+1.

Step 5: We can find a ∈ A0 ∩ A1 large enough such that

x · 2min(A0)+1, y · 2min(A1)+1 ≤ 2a,

and we also fix b ∈ B0 ∩ B1 with a < b.

Step 6: Then just as in the proof of 2.26

C0 ∩ [2a + 2b, 2a + 2b + x · 2min(A0)+1]

C1 ∩ [2a + 2b, 2a + 2b + y · 2min(A1)+1]

have gaps of size at most 2min(A0)+1 and 2min(A1)+1 respectively.

Step 7: In particular, both C0 and C1 have bounded gaps (of size θ(C1) and
θ(C0) respectively) on

[2a + 2b, 2a + 2b + n]

Hence A is cwpws. �
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This result is quite surprising since F, G are arbitrary. We give an interesting
example that motivates our final observations.

Example 2.30
Consider p, an idempotent ultrafilter in βN, and its images p1 = bmin(p),
p2 = bmax(p).

We know that the filter generated by bmin−1(p1) ∪ bmax−1(p2) is cwpws by
the above theorem; hence its closure intersects the minimal ideal; in particular,
this intersection is a semigroup, although not necessarily closed.

However, the same holds true using the closure of the minimal ideal instead of
the minimal ideal; hence there exists an idempotent ultrafilter q ∈ cl(K(βN)),
such that

bmin−1(p1) ∪ bmax−1(p2) ⊆ p ∩ q

This scenario indicates just how much information is lost with bmin and
bmax – preimage filters are not even capable of differentiating between say a
right-maximal idempotent (cf. [HS98, Theorem 9.10]) and an idempotent close
to the minimal ideal. The obvious question is, if we can even find a minimal
idempotent in the preimage filter.

We can in fact generalize this special case a little for which we require the
following well-known lemma.

Lemma 2.31
Let p ∈ βN, q ∈H. Then

bmin(p + q) = bmin(p)
bmax(q + p) = bmax(p).

Proof. This is [HS98, Lemma 6.8]. �

Our generalization of the last example is as follows. Recall the partial order of
idempotent elements from Definition 1.17.

Proposition 2.32
Given p ∈ βN idempotent and its images p1 = bmin(p), p2 = bmax(p), for every
idempotent q with q ≤ p or p ≤ q we have

bmin−1(p1) ∪ bmax−1(p2) ⊆ q.

Proof. We prove the statement for q ≤ p; the other case is symmetrical. Re-
member that all idempotent ultrafilters lie in H; hence we can apply Lemma
2.31.

For the proof we just have to calculate

bmin(q)
q≤p
= bmin(p + q)

2.31

= bmin(p)

bmax(q)
q≤p
= bmax(q + p)

2.31

= bmax(p).

�
A corollary yields even more information about the sets in preimage filters.
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Corollary 2.33
For free filters F, G on N, the filter

bmin−1(F) ∪ bmax−1(G)

can be extended to a minimal idempotent ultrafilter. In particular, it consists only of
central sets.

Proof. By Proposition 2.21, we know that the preimage is idempotent, hence it
can be extended to an idempotent ultrafilter by Corollary 2.5.

By the above Proposition, the preimage filter is also included in the minimal
idempotent below any idempotent ultrafilter extending the filter – as desired.�

This proposition yields another point of view for the proof of a well-known
theorem which can be found as [HS98, Theorem 6.7].

Corollary 2.34
In βN there exist 2c many disjoint minimal left ideals, 2c many disjoint minimal
right ideals.

Proof. For all free p ∈ βN, the preimage filter

bmin−1(p) ∪ bmax−1(p)

extends to a minimal idempotent ultrafilter; with the above lemma, no two
minimal ideals generated by such minimal idempotents can intersect. �

2.4. Synopsis

In this chapter we have encountered the central objects of this thesis, idem-
potent filters. We have seen that these filters are abundant, yield closed
semigroups and offer a generalization of many important concepts in the
field. Additionally, we were able to clarify the similarity between “small”
idempotent filters and partial semigroups.

We have also introduced an important tool for later chapters, preimage filters
for minima and maxima. For the functions bmin and bmax we have studied
their rich algebraic properties. Finally, we have seen that such preimage filters
(and other variants using similarly nice functions) might also prove helpful for
the analysis of the partial order of idempotent ultrafilters and quite generally
to discern different kinds of (idempotent) ultrafilters. We will revisit these
aspects shortly in Chapter 3.
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Chapter 3

Forcing Idempotent Ultrafilters

The forcing method has proven to be one of the most versatile tools made
available to mathematicians by the development of modern set theory in the
second half of the twentieth century. However, its applications have been
restricted mostly to those areas naturally close to set theory, such as model
theory, topology and functional analysis.

There are many set theoretic results, especially forcing results, known with
respect to those ultrafilters (on ω) that are classically studied by logicians and
set theorists in general (such as selective ultrafilters and P-points). However,
these ultrafilters have few interesting algebraic properties, or rather "activity",
i.e., they usually cannot even be written as sums of other ultrafilters.1 1 For a lonely exception see PS-

ultrafilters and weakly Ramsey
ultrafilters in Section B.2.In this chapter we will establish a general approach to adjoining idempotent

ultrafilters on ω by means of the forcing method. Even though, for now, these
results may be considered to be a proof of concept which we hope lays a basis
for further applications of set theory in the field of algebra in the Stone-Čech
compactification.

Throughout this chapter we will work in the semigroup (ω, +). Most of the
results naturally transfer to other semigroups similarly to the generalization
of summable ultrafilters in [HPS98], but we have found no evidence for any
deeper application of this fact.

3.1. Forcing summable ultrafilters

As we have seen the notion of idempotent filters is implicitly present in many
concepts of the field. An important example is the most prominent inde-
pendence result in the field: the existence of summable ultrafilters. In the
following section we will sketch the construction in forcing terminology. Com-
pared to the other versions that can be found in the literature, we formulate
the result in our own terminology so as to gain some more practice in dealing
with idempotent filters before we go on to develop our new results.

We repeat the definition for completeness. We will investigate variants of this
definition in the form of union ultrafilters in Chapter 4.

Definition 3.1 An ultrafilter on ω with a base of FS-sets is called summable
ultrafilter.
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Even though forcing ideas are implicit already in [Hin72] and [Bau74] the
following result can be considered classical. It was studied first in [Bla87b],
although in a different form, cf. the remark after the proof of the theorem.

Forcing summable ultrafil-
ters (Blass)

Theorem 3.2 (Forcing summable ultrafilters (Blass))
Consider

P := {F | F free, countably generated, idempotent filter on ω},

partially ordered by ⊇.

Then forcing with P adjoins a summable ultrafilter.

Spoiler We apply a standard argument using the Galvin-Glazer Theorem 1.14 to
show that FS∞-filters are dense in the partial ordering and decide all subsets.

Proof. Claim 1: The partial order is σ-closed, in fact, every countable chain
has an infimum.

On the one hand, the union of countably many countably generated filters
is countably generated – and a filter since comparable filters are coherent.

On the other hand, we noted in Corollary 2.3 that the union of coherent
idempotent filters is always idempotent.

Hence the union of a given countable chain generates (in fact is) a suitable
infimum.

Claim 2: For any A ⊆ ω the set

DA := {FS∞(x) | A ∈ FS∞(x) or ω \ A ∈ FS∞(x)}

is dense in P.

First we recall that any FS∞-filter is idempotent as seen in the examples 2.6,
so DA ⊆ P.

Second we take any F ∈ P. Then by Corollary 2.5 F can be extended to an
idempotent ultrafilter, say p ∈ βω; of course p is free since F was and we
may assume without loss that A ∈ p.

Then fix (A′n)n∈ω, a (decreasing) base of F and define

An := A ∩ A′n (for n ∈ ω).

Now applying Corollary 1.16 we find x = (xn)n∈ω such that

FSk(x) ⊆ Ak for all k ∈ ω.

Then FS∞(x) is in DA and includes F ∪ {A}, i.e., DA is dense in P.

Claim 3: The union over a generic object G ⊆ P is a summable ultrafilter.

Since all elements of the generic are compatible, the union over the generic
is a union of coherent filters, hence a filter.

By Claim 1 the forcing does not adjoin any countable sets, hence the union
over the generic is an ultrafilter if it decides all ground model subsets of ω –
but this follows from Claim 2 with the addition that every set in the generic
object is included in some FS∞-filter, i.e., includes an FS-set that is also a
member of the union over the generic object. �
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We will continue to investigate this proof in more detail since we are are going
to generalize the result over the next few sections. But we briefly remark how
our version is equivalent to the original approach in [Bla87b].

Remark 3.3 The partial order P in the last theorem is forcing equivalent to
the original notion developed in [Bla87b].

The partial order considered in [Bla87b] is defined by

{s | s = (si)i∈ω disjoint sequence in F},

partially ordered by s ≤ t if s ⊆∗ FU(t).

By our above proof we can equivalently restrict our forcing P to its dense set
of FS∞-filters; it is easy to see that

FS∞(x) ⊇ FS∞(y)⇐⇒ x ⊆∗ FS(y),

so we can identify the FS∞-filters with their sequences partially ordered
similarly to Blass’ forcing.

To complete this remark it suffices to see that there is a dense set of sequences
with disjoint binary support – then bsupp yields an isomorphism to Blass’
forcing.

For this recall that idempotent ultrafilters contain all sets of multiples, i.e.,
all sets of the form n ·N. With this we can modify the proof of Corollary
1.16 to pick xn+1 ensuring 2xn |xn+1, in particular guaranteeing disjoint binary
support. Using this to modify our proof of the above theorem, we get the
desired result.

From a set theorist’s point of view, the generic object that the above forcing
adjoins, carries very interesting properties. Most prominently, although such
an ultrafilter is far from being selective, the images under bmin and bmax
are selective ultrafilters. The investigation of this relationship in [Bla87b]
led to the generalization that we are about to investigate. In the remark
we have already seen that the summable ultrafilter adjoined in Theorem
3.2 carries stronger properties than simply being summable. In fact there
is an explicit, combinatorial description of this kind of ultrafilter which we
will investigate in Chapter 4; this description is also optimal in the sense of
complete combinatorics.2

2 This is discussed at the end of
[Bla87b, Section 4]. For the ter-
minology of “complete combina-
torics” cf. also [Laf89].

3.2. Daguenet-Teissier’s topological families

Many questions naturally arise from the classical results in the last section. Is
the relation between the generic object and selective ultrafilters accidental?
Is there a connection in forcing terms? What other idempotent ultrafilters
have interesting images? What kind of algebraic properties do they have?
Our main goal in the remainder of this chapter is to lift the forcing construc-
tion to a general setting. For this we introduce a variant of a definition by
Maryvonne Daguenet-Teissier (née Daguenet) originally found in [Dag75].
We investigate the situation in purely forcing-theoretic ways discussing more
direct interpretations in terms of [Dag75] in Section 3.4.
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Definition: Topological fam-
ily

Definition 3.4 A non-empty family Ξ of filters on ω is called a topological
family (of filters), if

1. For coherent F, G ∈ Ξ the filter generated by F ∪ G is again in Ξ.Closure under union

2. Ξ is closed under images and preimages for every f ∈ ωω (but onlyClosure under (pre)images
including the proper preimage filters).

3. For any increasing sequence (Fn)n∈ω in Ξσ-closed ⋃
n∈ω

Fn ∈ Ξ,

in other words, Ξ is σ-closed.

We should note that in [Dag75] Daguenet-Teissier’s original definition does
not include the closure under images. However, the classical examples that we
will discuss later share this additional property. For our results this addition
is very useful.

We chose the name for this definition because Daguenet-Teissier defines a
Ξ-topology to be the topology on βω having {F | F ∈ Ξ} as a base of open
sets for some similarly defined family Ξ; then the definition guarantees that
this is a topology that has many continuous (open) maps. For these topologies
Daguenet-Teissier proves a strong version of the Baire-category Theorem and
uses the topology to “globally” construct certain kinds of ultrafilters on ω.

Let us begin our investigation with some additional basic properties of topo-
logical families.

Proposition 3.5
Let Ξ be a topological family.

Given F ∈ Ξ and an infinite A ⊆ ω compatible with F, the filter generated by
{A} ∪ F is again in Ξ.

Spoiler We use the closure under maps in ωω to adjoin A to the filter.

Proof. Let f : ω → A be any bijection; of course f ∈ ωω.

Claim: f ( f−1(F)) is the filter we are looking for – and in Ξ by the closure
under preimages and images.

To see this, note that for any X ⊆ ω we have

f [ f−1[X]] = f [ f−1[A ∩ X]] = A ∩ X

by our choice of f ; in particular, the preimage filter is proper.

Recall that f−1(F) is the filter generated by { f−1[X] | X ∈ F}.

Accordingly, f ( f−1(F)) is the filter generated by

{ f [ f−1[X]] = A ∩ X | X ∈ F},

which is exactly the filter generated by F ∪ {A} – as desired. �

Let us add a simple consequence of this proposition.
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Corollary 3.6
Every topological family contains

• The fixed ultrafilters.

• The countably generated filters.

Proof. The first part follows from being closed under images of constant maps
in ωω.

For the second note that reversely the preimage of a fixed ultrafilter under
its constant map produces the filter {ω}. Hence the above proposition yields
that for any A ⊆ ω the filter

{B ⊆ ω | A ⊆ B}

is in every topological family. With the third property of topological families
we can then derive the conclusion. �

The following fact is well known, cf. [Dag75] and [Laf89]. Recall from the
preliminaries that we endow P(ω), the power set of ω, with the usual Cantor
topology, i.e., the product topology of 2ω.

Remark 3.7 The following sets are topological families of filters.

• The set of countably generated filters

• The set of Fσ-filters, i.e., filters that are Fσ subsets of P(ω)

• The set of Σ1
1-filters, i.e., filters that are analytic subsets of P(ω).

• The set of meager filters, i.e., filters that are meager subsets of P(ω).

• The set of completely meagre filters, i.e., filters whose images under
every f ∈ ωω are meager or fixed.

We have seen that topological families contain many filters. Since we are
concerned with forcing, it is necessary to extract the relevant parts from such
families.

We are interested in the following subsets of topological families.

Definition: (Idempotent)
Filter Forcing

Definition 3.8 Given a topological family Ξ we define

• PΞ := {F ∈ Ξ | F free},
• P+

Ξ := {F ∈ Ξ | F is idempotent and free}.

and partially order both sets by ⊇.

With this we can conlude the introduction to topological families. The partial
order PΞ has been studied by Daguenet-Teissier in [Dag75] and Laflamme in
[Laf89]. We will build on their research when investigating the partial order
P+

Ξ in the next section.
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3.3. The forcing construction

We are now ready to formulate and prove our results in this generalized
setting. For the remainder of this section fix a topological family Ξ.

Forcing Idempotent Ultra-
filters

Theorem 3.9 (Forcing Idempotent Ultrafilters)
Forcing with P+

Ξ adjoins a free idempotent ultrafilter on βω.

Spoiler To show that we adjoin an ultrafilter, we use the Galvin filters from Lemma
2.13 as well as the fact that idempotent filters can be extended to idempotent ultrafilters.
The rest follows from the properties of topological families.

Proof. We begin with three simple observations.

Claim 1: Just as we have already seen in Theorem 3.2 the union over theThe generic is a filter
generic object will be a filter on ω since all elements are compatible in the
partial ordering, hence coherent filters.

Claim 2: Additionally, the union over the generic object will be idempotentThe generic is idempotent
since all elments are idempotent, i.e., by Corollary 2.3.

Claim 3: By property (3) of topological families and again Corollary 2.3, theP+
Ξ is σ-closed

forcing is countably closed; in particular it does not add new subsets of ω.

Claim 4: Therefore, as in Theorem 3.2, it suffices to show that for any A ⊆ ω
the set

DA := {F ∈ P+
Ξ | A ∈ F or ω \ A ∈ F}

is dense in P+
Ξ .

We already know that we could add one set to F by Proposition 3.5. However,
this extension will usually not be idempotent; for this we need to add more.

To prove the claim take any F ∈ P+
Ξ .

Since F is free and idempotent, we can extend F to a free idempotentPick an idempotent ultrafil-
ter ultrafilter e ∈ F (by Corollary 2.5).

We may assume without loss that A ∈ e, hence also A∗ ∈ e by Lemma 1.13.

Now let G be the Galvin filter generated by A∗ and the sets {−a + A∗ | a ∈Help from Galvin Filters
A∗}.

Since every topological family contains the countably generated filters,
G ∈ Ξ and by Lemma 2.13 it is idempotent.

But note that F and G are coherent – since (F ∪ G) ⊆ e.

Finally, since topological families are closed under compatible unions, F∪G
generates an idempotent filter in DA. �

Now that we know that every “idempotent filter forcing” P+
Ξ does what

we wanted all along – add a new idempotent ultrafilter – we are bound to
consider the question: is this forcing really new? Indeed, as we noticed early
on, any topological family contains the countably generated filters. Therefore
we might have introduced nothing more than a very complicated partial order
with a separative quotient being isomorphic to the FS-filter forcing from the
classical approach that we discussed after Theorem 3.2.
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Therefore we need to investigate if different forcings actually yield different
results. For now we are ready to give the most general argument which is the
main result of this chapter. This theorem enables us to make the connection
from P+

Ξ to the partial ordering PΞ in a very strong way, namely the images
(of the elements) under bmin and bmax are mutually generic for PΞ.

We will investigate the examples again afterwards which will give us some
understanding of how the forcings differ from each other.

Theorem 3.10
Let G be a generic filter for P+

Ξ . Then

F :=bmin[G]× bmax[G]

={(F, F′) ∈ PΞ ×PΞ | F ∈ bmin[G], F′ ∈ bmax[G]}

is generic for PΞ ×PΞ (with the usual partial order of product forcing).3 3 Note that bmin[G] is meant to
contain the filters of the form
bmin(G) for all G ∈ G; similarly
for bmax[G].Spoiler The difficult part is to prove that F intersects every dense set. Given a dense

set in the product forcing we can give a predense set in the idempotent forcing. As a
generic, G contains a witness from every predense set. This witness will guarantee a
non-empty intersection of F with the original set.

The essential part of the argument utilizes the immense loss of information under
bmin and bmax that we identified in Section 2.3. From the reverse point of view, the
essence lies in the fact that we can have and manipulate much more subtle structures
in the preimage without changing the image.

Proof. We begin with the easier parts.

Claim 1: F is a filter on PΞ ×PΞ. F is a filter

First, F ⊆ PΞ × PΞ since topological families are closed under images.
Second,

bmin(Fr(ω)) = Fr(ω)
bmax(Fr(ω)) = Fr(ω),

so the largest element of the partial order, (Fr(ω), Fr(ω)) is in F.

Third, since each component is derived from elements of G, any two ele-
ments of F are coherent, hence compatible.

To finish the proof of the claim, we check that F is also closed upwards.

Take any (F, F′) ∈ F and (H, H′) with (F, F′) ≤ (H, H′).

Since (F, F′) ∈ F, we can find G, G′ ∈ G such that

bmin(G) = F, bmax(G′) = F′.

Next we can easily check that a simple computation

bmin(G) = F, F ⊇ H ⇒ G ⊇ bmin−1(F) ⊇ bmin−1(H).

Of course, the same holds for G′, F′ and H′ with respect to bmax.4 4 Of course, this holds for all fil-
ters and any other function in
ωω .
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Since G was a filter, we can conclude from the above that

bmin−1(H), bmax−1(H′) ∈ G.

But
H = bmin(bmin−1(H)), H′ = bmax(bmax−1(H′)),

so (H, H′) ∈ F.

Therefore F is a filter on PΞ ×PΞ.

We now check the genericity of the filter F.

Claim 2: F intersects every dense set from the ground model.F is generic

Given any dense subset of PΞ ×PΞ, say D′, we define
The obvious candidate D

D := {bmin−1(F) ∪ bmax−1(F′) | (F, F′) ∈ D′}.

As usual, we confuse bmin−1(F) ∪ bmax−1(F′) and the filter this set gener-
ates.

If we can show that D is predense in P+
Ξ , we are done. For then, by

genericity of G, there exists G ∈ G∩ D and hence

(bmin(G), bmax(G)) ≤ (H, H′) for some (H, H′) ∈ D′.

But since F is a filter, this yields (H, H′) ∈ F.

We will use the techniques for preimage filters that we have developed in
Section 2.3 to show that D is predense in P+

Ξ . Recall that by Proposition
2.21 bmin−1(F) ∪ bmax−1(F′) generate an idempotent filter which is in P+

Ξ
thanks to Ξ being a topological family.

Therefore it suffices to prove the following claim.

Claim: D is predense in P+
Ξ .

Take any G ∈ P+
Ξ . Since D′ is dense there exists

(F, F′) ∈ D′ with (F, F′) ≤ (bmin(G), bmax(G)).

We wish to show that bmin−1(F) ∪ bmax−1(F′) and G are compatible
(in P+

Ξ ).

We already know that compatibility in the partial order only depends on
the finite intersection property, since idempotency is not the issue by
Corollary 2.3 (and neither is membership in the topological family).

Therefore it is enough to prove that the union of these filters has the
finite intersection property.

Step 1: Let A ∈ bmin−1(F), B ∈ bmax−1(F′) and C ∈ G.

We may assume that

A = bmin−1[bmin[A]], B = bmax−1[bmax[B]],

since bmin−1(F) and bmax−1(F′) have a base of such sets.
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Step 2: Since bmin[C] ∈ bmin(G) ⊆ F we have The easy part – not yet
enough

bmin[C] ∩ bmin[A] ∈ F,

and hence this intersection is non-empty. Together with the
assumptions on A from Step 1 this implies

A ∩ C 6= ∅.

Step 3: It is completely analogous to see that B ∩ C 6= ∅ (using
bmax[C] and F′).

But we need to show that C ∩ A ∩ B 6= ∅ – and it is very easy to
come up with an example that C ∩ A and C ∩ B and A ∩ B are
all non-empty while the common intersection is empty. However,
this is not the case here thanks to the idempotency of G.

Step 4: Since C ∈ G and G is idempotent, we have C∗ ∈ G.5
5 with respect to G but cf. Re-
mark 2.12.

Therefore just as in Step 2, C∗ ∩ A 6= ∅; so we can pick The first summand of the
witness

a ∈ C∗ ∩ A.

Then of course −a + C ∈ G.

Step 5: As in Step 3, (−a + C) ∩ B 6= ∅.

So we could find b ∈ B with a + b ∈ C. But in no way does this The extra ingredient
guarantee that a + b ∈ A ∩ B. However, we still know a little bit
more.

Additionally, G ∪ bmax−1(F′) generates an idempotent filter.
Since any idempotent filter can be extended to an idempotent ul-
trafilter, it is compatible with every set of multiples, cf. Corollary
2.5 and Lemma 1.18.

So in fact, we can find The second summand of
the witness

b ∈ (−a + C) ∩ B ∩ 2bmax(a)+1 ·N.

Step 6: Then a + b ∈ C and we can calculate that Finally, the witness

bmin(a + b) = bmin(a), bmax(a + b) = bmax(b).

Therefore a + b ∈ A ∩ B ∩ C as desired. �

Thanks to this theorem, we now know how the forcing notions are related:
the idempotent filter forcing P+

Ξ will always yield two independently generic
objects for the more general filter forcing PΞ. So we can analyze the question
posed after the first theorem – are these forcings new? – by analyzing the
forcing PΞ; for the latter we are able to build upon the results by Daguenet
and Laflamme.

We state the results due to Laflamme in [Laf89] which will enable us to
generalize the classical result of Theorem 3.2.
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Filter forcing (Laflamme) Theorem 3.11 (Filter forcing (Laflamme))
The following holds.

• (Mathias [Mat77]) Forcing with countably generated filters adjoins a selective
ultrafilter.

• Forcing with PFσ adjoins a strong P-point with no rapid P-point ≤RK-below it.

• Forcing with PΣ11
adjoins a an ultrafilter with no ≤RK-predecessor (including

itself) being a P-point or a rapid ultrafilter.

• Forcing with meager filters adjoins an ultrafilter which is neither a P-point nor
rapid but ≤RK-above all ground model ultrafilters.

• Forcing with completely meager filters adjoins an ultrafilter not ≤RK-above any
P-point.

Proof. The first result is classical. The other results can be found in Sections
6,7 and 8 of [Laf89]. �

So we can deduce for our three examples that our forcing notions are indeed
quite different. For completeness we repeat our original motivation – our new
ultrafilters are indeed nothing like the stable ordered union ultrafilters.

Corollary 3.12
No two of the idempotent filter forcing notions corresponding to the forcings in
Theorem 3.11 are equivalent.

Additionally, the question whether the geneneric is a summable ultrafilter has a an
affirmative answer for P+

ctbl , is open for P+
Fσ

and has a negative answer for the other
examples from Remark 3.7.

Proof. The first part is immediate from the above theorem since the partial
orders PΞ are not equivalent (or otherwise their bmin and bmax images would
be, too).

With Lemma 5.18 we will prove that for every summable ultrafilter the image
under bmin is a P-point; the additional claim then follows from Theorems 3.2,
3.10 and 3.11. �

This completes the general forcing construction. We have established a general
method to consistently add new idempotent ultrafilters. Additionally, we
have identified how to connect these new forcing notions to the general filter
forcings derived from topological families. However, we are left with an
open question whether the idempotent filter forcing with Fσ filters adjoins a
summable.
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3.4. A note on Fσ filters

We ended the last section with the knowledge that we have achieved our
main goal to consistently create new kinds of idempotent ultrafilters with
interesting set theoretical properties. However, we were left with the open
question, whether the generic ultrafilter for PFσ is summable.

If it is not, then general forcing considerations imply that there is a dense sub-
set of P+

Fσ
consisting of filters that cannot be extended to summable ultrafilters.

In that case, we would hope for a more hands-on construction of such a filter.
Although we are unable to do this for summable ultrafilters, the aim of the
section is to make progress on this question by studying these phenomena
for union ultrafilters; this also serves as preparation for the investigations in
Chapter 4.

It was shown in [BH87] that max maps union ultrafilters to rapid P-points
and we know from the previous section that the PFσ forcing adjoins a P-point
that is not rapid. Therefore we aim to exploit this connection. Let us recall
from the preliminaries the following part of Definition 1.19.

Definition: Rapid Ultrafil-
ters

Definition 3.13 An ultrafilter p is called rapid, if the natural enumerations of
its sets form a dominating family in ωω, i.e.,

(∀ f ∈ ωω)(∃A ∈ p)(∀n ∈ ω)|A ∩ f (n)| ≤ n.

It is obvious that a dominating family only needs to dominate the strictly
monotone functions.

With this in mind it is sometimes easier to consider the reverse point of view –
instead of strictly monotone functions we look at the “reverse” finite-to-one
functions projecting a number to the immediately smaller number in the
image.

The following proposition is folklore; we include its proof since we will argue
with this characterization.

Proposition 3.14
An ultrafilter p is rapid iff

(∀ f ∈ ωω finite-to-one)(∃A ∈ p)(∀n ∈ ω)|A ∩ f−1[n]| ≤ n.

Proof. Step 1: First we prove the latter characterization assuming that p is
rapid.

Given any finite-to-one f ∈ ωω we define g f ∈ ωω by

g f (n) := 1 + max f−1[n].

By assumption, there is A ∈ p such that |A ∩ g f (n)| ≤ n for n ∈ ω.

But k ∈ f−1[n] implies k < g f (n).

Therefore A ∩ f−1[n] ⊆ A ∩ g f (n) holds, implying |A ∩ f−1[n]| ≤ n.
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Step 2: Next assuming that p has the latter property we prove that p is rapid.

Given f ∈ ωω we may assume that f is strictly increasing.

Define h ∈ ωω by n ∈ ( f (h(n)), f (h(n) + 1)], i.e.,

h(n) := f−1(max( f [ω] ∩ n)).

Then h is finite-to-one since f is injective.

By assumption we can find A ∈ p such that |A ∩ h−1[n]| ≤ n.

Now k < f (n) implies h(k) < n.

Hence A ∩ f (n) ⊆ A ∩ h−1[n] and |A ∩ f (n)| ≤ n. �

After this useful characterization, we are able to describe those Fσ-filters that
cannot be extended to rapid ultrafilters.

Definition 3.15 Fix a finite-to-one function f ∈ ωω such that (| f−1[n]|)n∈ω

grows faster (with respect to ≤∗) than any linear function; let us recall the
function g f from the last proof.

• We defineThe dominating ideal

I f := {A ⊆ ω | (∀n ∈ ω)|A ∩ f−1[n]| ≤ n}.

Note that by assumptions on f the ideal generated by I f is proper and
the sets in I f are those that dominate the function g f .

• We define Ff to be the dual filter of the ideal generated by I f , i.e., theThe dual filter Ff
filter generated by the complements of sets in I f .

Note that Ff cannot be extended to an ultrafilter that includes a set
dominating the function g f .

We should note that the restrictions on f are necessary to guarantee I f to
generate a proper ideal.

The following proposition is folklore; it can be found in [Dag75].

Proposition 3.16
The filter Ff is Fσ.

In particular, there are many Fσ filters that cannot be extended to a rapid filter.

Proof. Let f be as in the statement.

Claim 1: By looking at the definition, the set I f is clearly a closed (hence
compact) subset of P(ω) and it is already closed under subsets.

Claim 2: The ideal generated by I f is Fσ (and proper by assumptions on f )

To generate the ideal we only apply countably many continuous maps on
P(ω), i.e., the maps of “n-fold union”, mapping a compact set to a compact
set. Therefore, the generated ideal is the countable union of closed sets.
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Claim 3: The dual filter Ff is Fσ as well since

c : P(ω)→ P(ω), A 7→ ω \ A

is a homeomorphism of P(ω).

Claim 4: As noted in the definition, Ff is not compatible with a set dominating
the function g f from the last proof. Therefore, Ff cannot be extended to a
rapid ultrafilter. �

We can now state an immediate though rather abstract result regarding idem-
potent Fσ filters.

Proposition 3.17
Given any finite-to-one function f ∈ ωω such that (| f−1(n)|)n∈ω is strictly increas-
ing, the idempotent Fσ filter

bmax−1(Ff )

cannot be extended to an (idempotent) ultrafilter with bmax-image being rapid.

Proof. Clearly, the preimage under the continuous map is again Fσ and idempo-
tent by Proposition 2.21. Trivially, any ultrafilter extending has a bmax-image
refining Ff ; hence the image cannot be a rapid ultrafilter. �

It is analogous to describe an Fσ filter on F that cannot be extended to a union
ultrafilter.

Proposition 3.18
Given any finite-to-one function f ∈ ωω such that (| f−1(n)|)n∈ω is strictly increas-
ing, the idempotent Fσ filter

max−1(Ff )

cannot be extended to a union ultrafilter.

Proof. Assume to the contrary that there is a union ultrafilter u extending
max−1(Ff ).

Then max(u) is a rapid ultrafilter by [BH87, Theorem 2],6 but of course 6 This is also [HS98, Theorem
12.36]. We will discuss union ul-
trafilters in more detail in Chap-
ter 4.

bmax(u) ⊇ Ff – a contradiction to the previous proposition    . �

These two results are of course rather unsatisfying. Instead we would like a
practical, combinatorial explanation of this phenomenon. While this seems
more problematic with summable ultrafilters, we can give such a characteriza-
tion for union (ultra)filters.

We construct a filter on F that cannot even be extended to a union filter, i.e., a
filter with a base of FU-sets, let alone a union ultrafilter.

Proposition 3.19
Given any finite-to-one function f ∈ ωω such that (| f−1(n)|)n∈ω is strictly increas-
ing, the idempotent Fσ filter

max−1(Ff ) ∪min−1(Fr)

cannot be extended to a union filter.
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Spoiler We modify the classical partition argument that is used to show that the
bmax image of a union ultrafilter is rapid, i.e., we give a partition where one part
cannot be in any idempotent filter and the other cannot be refined by an FU-set since
this would dominate the function.

Proof. Given f we abbreviate the relevant filter

G := max−1(Ff ) ∪min−1(Fr).

Recall from Proposition 2.21 that G is idempotent. We will prove the stronger
statement that G cannot be refined to an union filter, i.e., a filter with a base
of FU-sets.

Step: Consider the partition F = A∪̇B with

A :={s ∈ F | f (max(s)) ≤ min(s)}
B :={s ∈ F | f (max(s)) > min(s)}.

Claim 1: A cannot be in any idempotent filter; in particular, A is not in any
union filter extending G.

Assume to the contrary that there is an idempotent filter G′ with A ∈ G′.

Then also A∗ ∈ G′. So pick any s ∈ A∗

Since G′ is idempotent, σ(s) is compatible with G′.77 Recall that we only consider
idempotent filters with respect
to δF; cf. Remark 2.14. Therefore

s−1 A∗ ∩F∩ σ(s) 6= ∅,

so we can pick some t from that intersection.

We can then calculate

f (max(t)) = f (max(s ∪ t)) ≤ min(s ∪ t) = min(s).

But f is finite-to-one, hence

max[s−1 A∗ ∩ σ(s)]

is finite – a contradiction for any filter compatible with δF.    

Therefore every idempotent filter extending G is compatible with B.

Claim 2: B cannot be refined by an FU-set compatible with G, i.e., every
FU-set contained in B has its complement in G.

For this let us take some (pairwise disjoint) s = (si)i∈ω with FU(s) ⊆ B.

Claim: max[FU(s)] ∈ I f , i.e., for every n ∈ ω we have

|max[FU(s)] ∩ f−1[n]| ≤ n.

In particular, ω \max[FU(s)] ∈ Ff , hence F \ FU(s) ∈ G.
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For the claim fix n ∈ ω and consider an arbitrary

k ∈ max[FU(s)] ∩ f−1[n].

Then we can find some j such that max(sj) = k; in particular,

f (max(sj)) = f (k) < n.

Since FU(s) ⊆ B, we get

min(sj) < f (max(sj)) < n.

But since they are disjoint, there can only be at most n-many sj with
min(sj) < n.

Hence there are at most n-many sj with f (max(sj)) < n – as desired.�

It seems natural to extend this proof to summable ultrafilters: just replace
max with bmax in the argument. Unfortunately, we still could not assume
that a summable ultrafilter contains an FS-set for a sequence with disjoint
binary support. Although there is an identification of union and summable
ultrafilters using support with respect to some sequence, this identification
does not allow us to extend the above argument. We will discuss this in detail
in Chapter 4 and Chapter 5.

3.5. A note on FS-filters

We have seen that there are many idempotent Fσ filters that cannot be extended
to union ultrafilters. We wish to conclude this chapter with some observations
for the opposite case. Again this is also useful to prepare for the investigations
of Chapter 4 and Chapter 5. We begin with a standard definition.

Definition 3.20 Given filters F, G on N we say that G dominates F if the natural
enumerating functions of members of G dominate those of F.

Naturally, this definition is closely related to the notion of rapid ultrafilters.
We can make the following observation.

Proposition 3.21
Given free filters F, G on N such that G dominates F, the filter

bmin−1(F) ∪ bmax−1(G)

can be extended to an FS-filter, i.e., a filter with a base of FS-sets.

Proof. By assumption on F and G we can choose for any A ∈ F and B ∈ G
some BA ∈ G such that the natural enumeration of B ∩ BA, say

(bA
n )n∈ω

dominates the enumeration (an)n∈ω of A. Then it is readily seen that

{FS(2an + 2bA
n ) | A ∈ F, B ∈ G}

refines bmin−1(F) ∪ bmax−1(G) – as desired. �
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We can extend this a little further. For the definition of stability cf. Definition
4.2.

Corollary 3.22
Let p1, p2 ∈ βN be P-points and assume that p2 dominates p1. The FS-filter
extending bmin−1(p1)∪ bmax−1(p2) described in the proof of the above proposition
is stable.

Proof. Step 1: Given countably many FS-sets in the filter described in the
proof of the last proposition, we can find without loss of generality sequences
(Aα)α<ω in p1 and (Bα)α<ω in p2 such that the FS-sets are those from the last
proof corresponding to Aα and Bα.

Step 2: Since p1 and p2 are P-points, we can find A ∈ p1 and B ∈ p2 an almost
intersection of the respective sequence.

Step 3: Then it’s easy to see that the FS-set described in the previous proof
corresponding to A and B is an almost condensation of the given FS-sets (and
in the filter) – as desired. �

There is another way of constructing a coarser union filter in the preimage of
two ultrafilters.

Remark 3.23 Given A0, B0 ∈ [ω]ω with B0 dominating A0 we define induc-
tively s = (si)i∈ω by

si := (Ai ∩min Bi) ∪ (Bi ∩min(Ai \min Bi)),

where
Bi+1 = B \ si, Ai+1 = Ai \ si.

Then FU(s) ⊆ min−1[A0] ∩max−1[B0].

We close the chapter with the following natural question.

Question 3.24
When does a (stable, ordered ) union filter extend to a (stable, ordered) union
ultrafilter?

The following example offers some insight into this problem.

Example 3.25
Assuming CH, Zelenyuk in [Zel96] constructs a finite semigroup in δF such
that none of its elements is a union ultrafilter, but its intersection is an FU-
filter. An English translation of the relevant parts of [Zel96] can be found in
Appendix C.

Naturally, there is a cardinal invariant related to this question which has been
implicitly studied by Eisworth in [Eis02], where it is shown that cov(M ) = c
is equivalent to “every union filter of size < c can be extended to a stable
ordered union ultrafilter”.
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3.6. Synopsis

In this chapter we have established our first major result, the general forcing
constructions of idempotent ultrafilters using idempotent filter forcings. We
have seen that this approach does not only allow for idempotent ultrafilters
to be adjoined, but by the connection to the classical forcing constructions
of Daguenet-Teissier and Laflamme we have established rich combinatorial
properties for our examples and a base for the analysis of the adjoined
ultrafilters.

Although the question remains open, our progress with respect to union
filters suggests the conjecture that the forcing with idempotent Fσ filters does
not adjoin a summable ultrafilter; if this conjecture is true then only the
example of countable idempotent filter forcing would be able to adjoin a
summable ultrafilter. If it is false it would be more than interesting to study
the combinatorics of such a summable.

We have also established a direct combinatorial description of filters that
cannot be extended to FU-filters as well as some natural constructions of
non-trivial FS-filters.

Section 3.6 – Synopsis 59



60 Chapter 3 – Forcing Idempotent Ultrafilters



Chapter 4

Union Ultrafilters

In this chapter we study the different notions of union ultrafilters. Our
motivation for this is twofold. On the one hand, our results will help to
clarify the relationships between the different kinds of union and summable
ultrafilters as initially studied in [Bla87b] and further developed in [BH87].
On the other hand, we also investigate these ultrafilters hoping to better
understand the combination of set theoretic, combinatorial and algebraic
properties of union and summable ultrafilters. In this respect, it will also
further our understanding of the forcing constructions from Chapter 3 and the
directions we can and cannot hope to develop these results in the future.

We begin this chapter with some classical definitions related to union ultra-
filters. The motivation for the first and lengthy definition is as follows. By
the Galvin-Glazer Theorem 1.14 every set in an idempotent ultrafilter in δF

contains the FU-set for some disjoint sequence. Conversely, every such FU-set
is contained in an idempotent ultrafilter by Corollary 2.5 together with the
fact that FU-sets are natural partial subsemigroups of F. In particular, given a
partition of an FU-set, we can find a new FU-set in one part of the partition.
To be able to speak about this situation smoothly, we introduce the following
definitions.

Definition: Condensation,
ordered, meshed

Definition 4.1 Given a disjoint sequence s = (si)i<N in F \ { 0} with N ≤ ω
and given some K ≤ ω we define as follows.

• A disjoint sequence t = (tj)j<K in F \ { 0} is called a condensation of
(si)n<N if

{tj | j < K} ⊆ FU(s).

In the case N = K = ω we call t an almost condensation if

{tj | j < K} ⊆∗ FU(s).

• The sequence s is called ordered if

max(si) < min(sj) for all i < j < N.

We abbreviate the latter relation by si < sj. We will also write si � sj
to indicate that max(si) and min(sj) are very far apart, where “very far”
arises from the specific context.

• For v, w ∈ F we say that v meshes with w or v u w if

min(v) < min(w) < max(v)
or min(w) < min(v) < max(w).
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• We define the s-support of v ∈ FU(s) as

s-supp(v) := {si | si ⊆ v}.

• and (allowing confusion) the s-support of A ⊆ FU(s) as

s-supp(A) := {si | (∃x ∈ A) si ⊆ x}.

Note that the s-support of a condensation and its FU-set are the same.

Now that we can easily speak about FU-sets, we introduce the three variants
of union ultrafilters that were first described in [Bla87b].

Definition: union, ordered
union, stable union ultrafil-
ters

Definition 4.2 We define as follows.

• An ultrafilter u on F is called union if it has a base of FU-sets.

• A union ultrafilter u on F is called ordered if it has a base of FU-sets
from ordered sequences.

• A union ultrafilter u on F is called stable if for any sequence (FU(sα))α<ω

in u there exists FU(t) ∈ u such that

(∀α < ω) t v∗ sα,

i.e., t almost condenses all the sequences sα at once.

We should remember that even though our semigroup operation on F requires
gaps between compatible elements, union ultrafilters are still idempotent
elements in δF.

Finally, let us define one more notion which was introduced in [BH87] to
help differentiate union ultrafilters; it is a special form of equivalence in the
Rudin-Keisler order, but one might argue it is the relevant notion for union
ultrafilters.

Definition: Additive isomor-
phism

Definition 4.3 Given semigroups S, T, we say that two ultrafilters p ∈ βS, q ∈
βT are additively isomorphic if there exist FP(s) ∈ p, FU(t) ∈ q such that
the natural partial semigroup homomorphism (cf. Remark 1.12) maps the
ultrafilters to each other.

4.1. A short literature review

We will use this first section to give an overview of the established results
regarding the different notions of union ultrafilters. We will exclude the proofs
except for two results by Andreas Blass, one of which motivates the main
result of this chapter, Theorem 4.29, whereas the other is unpublished.

Let us begin with a diagram of the known implications with the appropriate
references, [Bla87b] and the later [BH87].

Let us quickly note the exact references.
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Figure 4.1: Union ultrafilers

stable ordered union stable unionRamsey properties

ordered union union

min, max is Ramsey min, max is Q-point min, max is (rapid) P-point
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[Bla87b]

[BH87]

[BH87]×

• For ordered union ultrafilters being stable is equivalent to interesting
Ramsey properties; this is [Bla87b, Theorem 4.2] and Theorem 4.12

below.

• For a stable ordered union ultrafilter the images under min and max
are selective ultrafilters which are not ≤RK-equivalent; this is [Bla87b,
Theorem 4.2] and [Bla87b, Corollary 4.3].

• Reversely, under CH, given two selective ultrafilters not ≤RK-equivalent,
there exists a stable union ultrafilter with min and max being the pre-
scribed Ramsey ultrafilters; this is [Bla87b, Theorem 2.4] and Theorem
4.6 below.

• For an ordered union ultrafilter the images under min and max are
Q-points which are not ≤RK-equivalent; this is [Bla87b, Proposition 3.9].

• For a union ultrafilter the image under min is a P-point and the image
under max is a rapid P-point; this is [BH87, Theorem 2]. Blass and
Hindman attribute the discovery of rapidity of the max image to Pierre
Matet, cf. [Mat88], but their own proof immediately implies rapidity as
well.

• Assuming CH there exists a stable union ultrafilter with images under
min and max not being Q-points; in particular, such a union ultrafilter
cannot be ordered. This is [Bla87b, Theorem 4’].

• Additionally, the forcing notion on F consisting of FU-sets partially
ordered by the condensation relation was introduced in [Bla87b]; this is
the forcing that we have already discussed in the remark after Theorem
3.2. Blass remarks in [Bla87b] that stable ordered union ultrafilters have
“complete combinatorics” for this forcing, i.e., in the Lévy collapse of
a Mahlo cardinal the stable ordered union ultrafilters are generic over
the Solovay model, i.e., the submodel consisting of the sets that are
hereditarily ordinal definable from the reals. Therefore, from the point
of view of the Solovay model, all stable ordered union ultrafilters look
alike and are equally complex vis-a-vis generic.

From these results a couple of questions arise naturally.

• Is there a similar characterization of stability in terms of Ramsey proper-
ties for union ultrafilters?

• For stable ordered union ultrafilters having non-isomorphic selective
ultrafilters as min, max images is optimal in the sense that any two such
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Ramsey ultrafilters are the respective images of a stable ordered union
ultrafilter (assuming CH). Is there similarly a (stable) union ultrafilter
for each pair of (rapid) P-points?

• Can we identify orderedness of a union ultrafilter by the properties of
min and max, i.e., can there be unordered union ultrafilters with images
under min, max being Ramsey?

• Can there be (ordered) union ultrafilters that are not stable?

We will make some progress on these questions in the remainder of this
chapter. We begin, however, with the proof of the existence of ordered union
ultrafilters with prescribed min and max non-isomorphic selective ultrafilter
from [Bla87b]; this also serves as a motivation for our main result in this
chapter, Theorem 4.29. We are able to give a shorter proof using the following
result from [Bla88].

Homogeneity (Blass) Theorem 4.4 (Homogeneity (Blass))
Let p0 6∼=RK p1 be selective ultrafilters and let f ∈ 2ω.

If P(ω) is partitioned into an analytic and coanalytic part, we can find sets Xi ∈ pi
(i = 0, 1) such that every increasing sequence

(xn)n∈ω with xn ∈ X f (n)

is homogeneous. We call such sequences f -alternating.Definition: f -alternating

Proof. This is [Bla88, Theorem 7]; we omit the proof since it would take us too
far away from our interests. �

Let us recall the following useful observation from [Bla88].

Remark 4.5 Given any f ∈ 2ω and selective ultrafilters p0 6∼=RK p1, there exists
an f -alternating sequence such that its alternating parts are sets in p0 and p1
respectively.

This homogeneity result is the key in proving the following theorem from
[Bla87b]. Note that the result is optimal in that the min and max images of an
ordered union ultrafilter are 6∼=RK as we will show afterwards.

Prescribing min and max
(Blass)

Theorem 4.6 (Prescribing min and max (Blass))
Assume CH. Given selective ultrafilters p0 6∼= p1, there exists a stable ordered union
ultrafilter u with min(u) = p0, max(u) = p1.

Spoiler The proof is done by transfinite induction. We construct a sequence of
almost condensations of length ω1. Given countably many constructed FU-sets of our
future ultrafilter, we can write down the conditions to continue our induction in the
form of an analytic set. Then we use the Galvin-Glazer Theorem 1.14 to show that the
homogeneous set we can get from Theorem 4.4 allows us to continue our induction.
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Proof. Let (Xα)α<ω1 be an enumeration of P(F). We will construct u by
transfinite induction adding an FU-set included in or disjoint to Xα at each
step α.

Inductive Step: For the induction assume that we have β < ω1 and (sα)α<β

such that the following holds for all γ < α < β:
inductive assumptions

• sα is an ordered sequence in F

• sα v∗ sγ

• FU(sα) ⊆ Xα or FU(sα) ∩ Xα = ∅
• min[FU(sα)] ∈ p0

• max[FU(sα)] ∈ p1.

Claim: There exists an ordered sequence sβ to continue this induction.

Obviously, the resulting FU-sets will generate a stable ordered union ultrafilter
as desired.

Step 1: To begin we choose some cofinal subsequence in β, say (α(n))n∈ω. A countable set of genera-
tors

Then the sets (FU>k(sα(n)))n,k<ω generate an idempotent filter – which is
easily seen to be equal to the one generated by all of (FU(sα))α<β.

Step 2: By inductive assumption this filter and min−1(p0) ∪max−1(p1) are
coherent.

Since both collections generate an idempotent filter compatible with δF, we
can find an idempotent ultrafilter e containing all these sets, i.e.,

FU(sα) ∈ e (α < β)
min(e) = p0,
max(e) = p1.

Without loss of generality, we may assume that Xβ ∈ e.

Step 3: Consider the following set The analytic set

{X ⊆ ω | (∃sβ ordered)

X = min[FU(sβ)] ∪max[FU(sβ)],

(∀n ∈ ω) sβ v∗ sα(n),

FU(sβ) ⊆ Xβ}.

It is easily checked that the set defined above is analytic.1

1 For example, “ordered” is Π0
1

and “condensation” is Σ0
2 and

there are many recursive bijec-
tions from F to ω.

Step 4: Consider the parity function, i.e., f ∈ 2ω with Applying Theorem 4.4

f (n) = n mod 2.

So for our choice of f indeed f -alternating actually means alternating.

Applying Theorem 4.4 we can find

Xi ∈ pi (i = 0, 1)

such that the set of alternating sequences is either disjoint from or included
in the above set.

Step 5: But it cannot be disjoint! Applying Galvin-Glazer

Section 4.1 – A short literature review 65



By our choice of e, we have

min−1[X0] ∩max−1[X1] ∩ Xβ ∈ e.

Then we can apply Corollary 1.16 to the Galvin-Glazer Theorem with
(FU(sα))α<β to find an ordered sequence sβ in Xβ that almost con-
denses the sequences (sα)α<ω.

Therefore, this sequence satisfies the conditions of the analytic set; in
particular, orderedness implies alternating minima and maxima.

Since min[FU(s)] ∪max[FU(s)] ⊆ X0 ∪ X1, we have found a subset of
X0 ∪ X1 that is included in the analytic set.

Therefore we get the "include" case from applying the above theorem 4.4.

Step 6: Finally, we have remarked that since p0 6∼=RK p1 we may assume X0
and X1 themselves to be alternating; in particular such X0 ∪ X1 is in fact a
member of the analytic set itself.

But this means that we can find sβ to continue our inductive construction
as desired. �

In the above result we presumed that the two images of a stable ordered union
ultrafilter have to be non-isomorphic. As mentioned, it was noticed already in
[Bla87b] that this is necessary.

However, when it comes to arbitrary union ultrafilters, the situation becomes
more complicated. Since the images under min and max are not necessarily
selective,2 the strategy from [Bla87b] will not work. To be able to settle the2 Cf. Figure 4.1
question whether such a reverse can be established, it is natural to ask what
additional properties hold for the images of a union ultrafilter. While I visited
Ann Arbor in the winter 2007/2008 Andreas Blass developed an elegant proof
of such a strengthening.

For this we need to introduce a concept from [Bla86].

Definition: NCF Definition 4.7 Two filters F, G on ω are called near coherent, if there exists a
finite-to-one function f ∈ ωω, such that f (F) = f (G). Free filters F and G
are near coherent if there exists a partition of ω into intervals such that for
any two sets from F and G respectively there is one interval that both sets
intersect.

The statement that all filters on ω are near coherent is abbreviated by NCF; it
is independent from ZFC but for example contradicts CH.

The given equivalent reformulation for free filters is easily checked. It is trivial
that being not near coherent implies not being equivalent in the Rudin-Keisler
order; it is obvious that for Q-points, in particular selective ultrafilters, the
converse holds as well.

The question whether any two filters are near coherent is connected to many
fascinating concepts in set theory and beyond it. It was first formulated by
Andreas Blass in [Bla86] and developed further in [Bla87a]; for a simplified
consistency proof of NCF see [BS89]. We should note that the model of NCF
in [BS89] does not contain a union ultrafilter, since it does not contain a rapid
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P-point. However, it does contain a P-point which answers a question from
Neil Hindman if one P-point is enough to have a union ultrafilter.

The following result gives a much stronger answer to this question. It is due
to Andreas Blass and will appear in [Blaa].

Union ultrafilters and NCF
(Blass)

Theorem 4.8 (Union ultrafilters and NCF (Blass))
Let u be a union ultrafilter. Then min(u) and max(u) are not near coherent.

Spoiler We argue indirectly and apply a parity argument for union ultrafilters
towards a contradiction.

Proof. Assume to the contrary that min(u) and max(u) are near coherent.

Step 1: Accordingly, we can find intervals (In)n∈ω such that

FU(s) ∈ u⇒ (∃k ∈ ω)
{

max[FU(s)] ∩ Ik 6= ∅,
min[FU(s)] ∩ Ik 6= ∅.

Step 2: We can now partition F into A parity argument

Ai := {t ∈ F | |{k | Ik ∩ t 6= ∅}| = i mod 2} (i = 0, 1). Figure 4.2: Counting Intersections.

. . . ω
Ik Ik+1 Ik+2

tj tj+1 tj+2tj+3Since u is a union ultrafilter we can pick a homogeneous FU(s) ∈ u.

Step 3: On the one hand, a homogeneous set FU(s) can only be included in Parity of FU-sets must al-
ways be even.A0.

Since the members of s are disjoint, we can always find si � sj such that

|{k | (si ∪ sj) ∩ Ik 6= ∅}| = |{k | si ∩ Ik 6= ∅}|+ |{k | sj ∩ Ik 6= ∅}|.

We simply pick any si and choose some sj with a minimum after the last
interval Ik that meets si.

But then the parity for si ∪ sj is 0, i.e., si ∪ sj ∈ A0; in particular, FU(s) is
not disjoint from A0.

Step 4: On the other hand – by the assumption of near coherence – we can Near coherence implies odd
parity!find k ∈ ω such that

Ik ∩max[FU(s)] 6= ∅, Ik ∩min[FU(s)] 6= ∅.

So choose si and sj with max(si), min(sj) ∈ Ik.

Step 5: Now si = sj is impossible, for otherwise si ⊆ Ik, so si’s parity is odd.

Generally Ik is the last interval meet-
ing si and the first meet-
ing sj – no other interval
meets both.

|{n | (si ∪ sj) ∩ In 6= ∅}|
= |{n | si ∩ In 6= ∅}|+ |{n | sj ∩ In 6= ∅}| − 1

= 1 mod 2, �

since by max(si), min(sj) ∈ Ik in fact k but only k will be counted twice here –
leading again to the desired contradiction.    
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This result immediately implies that for a union ultrafilter to exist, we must at
least have two non-isomorphic P-points.

To end this section we give a proof of a strong partition theorem for not near
coherent P-point. The theorem is in the spirit of Theorem 4.4. For this we
require a small lemma from [Bla87a].

Lemma 4.9
Let F and G be not near coherent filters on ω. Assume that ω is partitioned into
infinitely many intervals. Then there are X ∈ F, Y ∈ G such that no union of two
consecutive intervals meets both X and Y.

Proof. Let h be the monotone, finite-to-one function corresponding to the
partition of ω. Let h+ (h−) be h(x)

2 rounded up (down); note that they are
both monotone as well. Then both functions are finite-to-one and hence by
assumption we find X ∈ F, Y ∈ G such that h+[X]∩ h+[Y] = h−[X]∩ h−[Y] =
∅. It is easy to check that these sets have the desired properties. �

The following theorem shows that not near coherent P-points yield nearly as
strong a partition theorem as non-isomorphic selective ultrafilters.

Theorem 4.10
Let p0, p1 be not near coherent P-points on ω. Let [ω]ω be partitioned into an analytic
and a coanalytic part. Then there exist Xi ∈ pi (i = 0, 1) such that all {xn | n ∈ ω}
with xn < xn+1 and xn ∈ X(n mod 2) are homogeneous.

Proof. Step 1: By [Bla88, Theorem 6’] there exists X′i ∈ pi (i = 0, 1) and a
strictly monotone function g ∈ ωω such that all alternating sequences (xn)n∈ω

with the additional restriction of g(xn) < xn+1 are homogeneous.

Step 2: Let I0 := [0, g(0)] and In+1 := [gn(0) + 1, gn+1(0)] and choose Xi ⊆ X′i
still in pi (i = 0, 1) according to the preceding lemma. We claim that these sets
are as desired.

For let (xn)n∈ω be an increasing sequence alternating between X0 and
X1. Since xn < xn+1 and say xn ∈ Ik for some k ∈ ω we know by the
preceeding lemma that xn+1 > max(Ik+1) = gk+1(0). But by choice of k
and monotonicity of g we have g(xn) ≤ g(gk(0)) = gk+1(0) < xn+1. Hence
{xn | n ∈ ω} is homogeneous. �

This result is not quite as strong as Theorem 4.4 since only selectives will yield
ultrafilter sets alternating themselves; with arbitrary P-points this cannot be
expected.

To generalize the construction of stable ordered union ultrafilters with pre-
scribed min and max to arbitrary (stable) union ultrafilters with prescribed
(rapid) P-points, the above partition theorem could prove to be a useful tool.
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4.2. Characterizing stability

As noted before Andreas Blass laid the foundation for all further research
regarding union and hence strongly summable ultrafilters in [Bla87b]. The
final theorem from that paper gives a potent characterization of the strongest
notion – stable ordered union ultrafilters. The theorem allows the reader to
take a deep look into the core of the involved notions unifying combinatorial
and model theoretic characteristics.

Our interest lies for this section in the question if there could be similar
characterizations for the more general notion of stable union ultrafilters. This
could help to clarify the difference between ordered and unordered union
ultrafilters, as well as identify the general consequences of stability, especially
with respect to a possible construction of a union ultrafilter that is not stable.
We require some definitions that will be relevant for this section only.

Definition 4.11 Consider u ∈ δF.

1. We say that u has the canonical partition property if u-prod(ω) has exactly
5 constellations, i.e., there are five functions in ωω such that for any
function f ∈ ωω there exists bijective g ∈ ωω such that g ◦ f is equal
(mod u) to exactly one of the five.

2. We say that u has the Ramsey property for pairs if for any finite partition
of F2

< := {(s, t) ∈ F2 | s < t} there exists a set A ∈ u such that A2
< is

homogeneous.

3. We say that u has the Ramsey property if for any n and any finite partition
of Fn

< := {(s0, . . . , sn−1) ∈ Fn | si < si+1} there exists a set A ∈ u such
that An

< is homogeneous.

4. We say that u has the infinitary partition property if for every analytic
X ⊆ Fω

< = {s ∈ Fω | s is ordered }3 there exists a set A ∈ u such that 3 As usual, we speak of analytic
sets with respect to the product
topology of Fω .

Aω
< is included or disjoint from X.

We are now ready to state part of the original theorem.

Stable ordered union char-
acterization (Blass)

Theorem 4.12 (Stable ordered union characterization (Blass))
For ordered union ultrafilters the following properties are equivalent.

1. Stability

2. The Ramsey property for pairs

3. The non-standard element [min]u generates an initial segment of u-prod(ω)

4. The canonical partition property

5. The Ramsey property

6. The infinitary partition property.

Proof. This is [Bla87b, Theorem 4.2]. We skip the proof since we wish to
generalize it. �
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The generalization we are about to formulate may seem nearly trivial at first
– we only drop the “ordered” condition and the proof is nearly identical.
However, it settles the first, albeit small, open question: does the Ramsey
property for a union ultrafilter already imply that it is ordered. Additionally,
in the case of ordered union ultrafilters, the orderedness helps simplify the
proof. So although we “only” show that characterization of stability in terms of
the Ramsey property is prima facie the same, there are subtle differences and
implications that arise from it. Of course, we stated the Ramsey properties in
such a way that they naturally generalize to union ultrafilters – we should keep
in mind, though, that stable ordered union ultrafilters can additionally get the
homogeneous set to be an FU-set of an ordered sequence. This suggests (at
least for the Ramsey properties) a considerable strengthening, since ordered
sequences decrease the complexity of the set of excluded pairs dramatically.
Nevertheless, this similarity is quite important as it offers common ground
towards a construction of a union ultrafilter that is not stable – be it ordered or
not; even though we cannot distinguish ordered stable from unordered stable
union ultrafilters by means of the Ramsey property, this is not a completely
negative observation. It is also an open question whether an analogous
characterization in terms of the ultrapower of ω could be found for stable
union ultrafilters.

In the following theorem we only prove the equivalence between stability and
the Ramsey property for pairs, but the different Ramsey properties are in fact
equivalent; cf. the remark after the theorem.

Theorem 4.13
For union ultrafilters the following properties are equivalent.

1. Stability

2. The Ramsey property for pairs.

Spoiler Our strategy is the same as for Theorem 4.12. To show that stability implies
the Ramsey property we argue similarly to the proof of Ramsey’s Theorem using an
ultrafilter, i.e., we (implicitly) use the fact that the tensor product of ultrafilters yields
an ultrafilter. To get a homogeneous set in our ultrafilter we use stability and a refined
parity argument. The reverse conclusion is just as in the original proof by Blass.

Proof. Claim 1: The Ramsey property for pairs implies stability. This is done(2→ 1)
just as in the original proof of Theorem 4.12; we repeat it here for completeness.

Step 1: Given any sequence (FU(sα))α<ω in u we consider the following set
of ordered pairs

{(v, w) ∈ F2
< | w ∈

⋂
α<max(v)

FU(sα)}.

Step 2: Any FU(t) ∈ u will yield some pairs that are in the above set – pick
any v ∈ FU(t) and then take w > v from the appropriate intersection with
FU(t).

Step 3: Therefore by the Ramsey property for pairs, there must be a set
FU(s) ∈ u such that all ordered pairs are included in the above set.

Claim: s v∗ sα for all α < ω.
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Given α < ω, pick si with max(si) > α; then all but finitely many sj
have sj > si.

For such sj we have (si, sj) ∈ FU(s)2
<, hence

sj ∈
⋂

β<max(si)

FU(s),

in particular sj ∈ FU(sα) – as desired.

We now turn to the main part of the proof.

Claim 2: Stability implies the Ramsey property for pairs. (1→ 2)

Assume that A0∪̇A1 = F2
<.

Step 1: Since u is an ultrafilter (in δF) we have We always pick one colour

(∀x ∈ F)(∃i){y ∈ F | (x < y) ∈ Ai} ∈ u.

Step 2: Since u is an ultrafilter, we may assume that the colour i is always Cx – We almost always
pick the same colour.the same; without loss it is 0, i.e., we find A ∈ u such that

(∀x ∈ A) Cx := {y ∈ F | (x < y) ∈ A0} ∈ u.

Step 3: Since u is union we can pick FU(sα) ∈ u for each α < ω such that

FU(sα) ⊆
⋂

max(x)≤α

Cx.

Note that for x ∈ A we now have (by choice of sα)

FU(smax(x)) ⊆ Cx.

Step 4: Since u is stable by assumption, we find FU(s) ∈ u such that Stability – we “nearly” al-
most always pick from the
same sets v∗ sα for all α < ω.

We want to check how many members of s are not included in sα.

Step 5: Let us consider the following function j – Counting where s fails

j : ω → ω, α 7→ max{max(si) | si /∈
⋂

β≤α

FS(sβ)}.

Note that we may assume that j is strictly increasing since without loss
sα+1 v sα for all α < ω.

Step 6: We can now observe that for all x ∈ FU(s)

min(x) > j(α)⇒ x ∈ FU(sα).

For si this follows from the definition of j by contraposition. But if
min(x) > j(α), then by this argument all si ⊆ x are in FU(sα), hence
their union, i.e., x.
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After this observation we will now aim to construct some in A ∈ u for which
v < w in A implies min(w) > j(max(v)). For then w ∈ FU(smax(v)) ⊆ Cv by
Steps 6 and 3 respectively.

Step 7: {x ∈ FU(s) | j(min(x)) < max(x)} ∈ u.Thinning out 1 – bounding
j In any condensation of s we find some x, x′ and x′ ∪ x with x < x′ and

j(min(x)) < max(x′). Then we calculate

j(min(x ∪ x′)) = j(min(x)) < max(x′) = max(x ∪ x′).

Hence any set in u will intersect the above set; so it lies in u.

In particular, we find FU(t) ∈ u included in the above set.

Step 8: For x ∈ FU(t) call ti, tj a splitting pair (of x), wheneverThinning out 2 – splitting
pairs

x = (x ∩max(ti)) ∪̇ (x \min(tj)) and (∃tk) ti < tk < tj.
Figure 4.3: Splitting x at (j, j + 2).
. . . ωx

tj tj+1 tj+2tj+3
Let π(x) be the number of splitting pairs of x, i.e.,

π(x) := |{(i, j) | ti, tj a splitting pair of x}|

The splitting pairs tell us how often we can split v into two ordered parts (the
one up to ti and the one beyond tj) with a gap in between.

Step 9: {x ∈ FU(t) | π(x) = 1 mod (2)} ∈ u.

As in Step 7, any condensation of t will contain some x < y < z and
x ∪ z. So we calculate

π(x ∪ z) = π(x) + π(z) + 1.

Therefore the number must be odd.

In particular, we may pick FU(v) ∈ u contained in the above set.

Step 10: For any w0 < w1 in FU(v), there exists tj with

w0 < tj < w1

Or else we would have an even number of splitting pairs for w0 ∪ w1.

Claim: FU(v) is homogeneous, i.e., FU(v)2
< ⊆ A0.The conclusion

For this pick any w, w′ ∈ FU(v) with w < w′.

By the last step, there exists some tj with w < tj < w′. Therefore we
can calculate

max(w′) > max(tj) > j(min(tj)) > j(max(w)),

where the last inequality holds since j is strictly increasing.

But we already noted just after Step 6 that this implies w′ ∈ Cw, i.e.,
(w, w′) ∈ A0 – as desired. �

After this theorem we might be misled to think that the Ramsey property for
pairs is somewhat special, but of course the Ramsey property for pairs and
the other Ramsey properties are closely connected.
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Remark 4.14 We should note that in the proof of Theorem 4.12 the proof of
the equivalence of the Ramsey property for pairs, the Ramsey property and
the infinitary Ramsey property does not require the witnessing sequence to
be ordered.4 Therefore stability for union ultrafilters is equivalent to these 4But of course we get homogene-

ity only for ordered pairs, tuples
and condensations respectively.

characterizations as well.

The question whether there can be an (ordered) union ultrafilter that is not
stable remains a difficult open question. The construction that we develop in
the next section does seem to adapt to such a construction. However, after
a considerable amount of research in this direction I have not found any
indication towards the contrary either. Therefore I would still conjecture that
such ultrafilters consistently exist.

4.3. Unordered union ultrafilters

We now turn to the question of whether the properties of the min and max can
indicate orderedness of a union ultrafilter. We answer this question negatively
assuming CH.

To construct such an unordered union ultrafilter with (possibly prescribed) How to approach the prob-
lem?selective images, we are bound to analyze if an argument similar to that in the

proof of Theorem 4.6 is possible while preventing the constructed ultrafilter
from becoming ordered. This also arises from the “complete combinatorics” of
selective ultrafilters for the countably generated filter forcing; if a construction
works for one pair, it should work for all pairs. Examining the proof of
Theorem 4.6 we can see that the essential tool besides the Galvin-Glazer
Theorem lies in Theorem 4.4: whenever we have a pair of non-isomorphic
selective ultrafilters we are able to “decide” an analytic subset of the powerset
by an alternating sequence from two sets from the ultrafilters; in our case, the
analytic set corresponded to all FU-sets continuing an inductive construction
of a stable ordered union ultrafilter.

At first sight however, this idea does not seem to extend to a construction of
an unordered union ultrafilter due to the sequences being alternating; we can
easily check that any FU-set with alternating min and max image must be
ordered.5 But to have some hope it is already enough to realize that in fact 5 The smallest min must come

from the same si with the small-
est max – or else some other sj
would have a greater min than
max    and so forth induc-
tively.

two non-isomorphic selective ultrafilters do not concentrate on alternating
sets – or else mapping two alternating sets to each other by picking the next
alternate element would be an isomorphism. And luckily Theorem 4.4 offers
f -alternating sets for every function f ∈ ωω . Therefore we have plenty of sets
available that do not necessarily force an FU-set coming from a homogeneity
argument to be ordered.

But what does an unordered union ultrafilter actually look like? Abstractly What are unordered union
ultrafilters?speaking, to be unordered means that there must be some “special” FU-set in

the ultrafilters that will not be refined to an ordered FU-set in the ultrafilter.
But of course, any disjoint sequence has an ordered subsequence, in particular
an ordered condensation, since only finitely many members can mesh with
any one member. So not refining the “special” FU-set to an ordered FU-set
means that no ordered condensation ends up in our union ultrafilter.6 Of

6 And we should note that we al-
ways have to include some sets
coming from ordered sequences,
e.g., F coming from the sequence
of singletons.
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course, we know by the construction from [BH87] that there exist plenty of
unordered sequences with unordered condensations for any partition, but
we cannot really get a practical idea regarding this. Since the aim of that
construction lies in producing a union ultrafilter with no Q-point as min or
max, the tools that can be used focus on this question, i.e., preventing finite-
to-one functions from becoming injective; it is such an indirect argument, that
there isn’t even the need for consideration of such a “special” set, its existence
only follows indirectly. The question is, can we find unordered sequences that
do not prevent the min and max from being Q-points?

But if a sequence is not ordered, it is meshed in the sense that some ofWhat kind of meshing?
its members must mesh. Since any union ultrafilter is in δF, there must
be “arbitrarily late” meshing. It is also easy to see that union ultrafilters
concentrate on condensations that contain unions of many members of the
sequence, e.g., because the sequence itself will not be in the union ultrafilter;
therefore we cannot have a bound on the number of elements that mesh.
Finally, by parity arguments we can see that we cannot have meshing only
of e.g. the form s2i u s2i+1, since a union ultrafilter will concentrate on those
with an even number of indices – so any union ultrafilter will condense such
a sequence to an ordered sequence. In short, whatever we do, we will have to
get an idea of what an appropriate form of meshing could be.

4.3.1 Formulating the result

We want to construct a union ultrafilter that is not ordered, but has selective
ultrafilters as images under min and max. Let us dig a little deeper into the
problem by formulating a first version of our result.

Unordered Union Ultrafil-
ters

Theorem (Unordered Union Ultrafilters)
Assume CH. There exists a union ultrafilter u with min(u) and max(u) selective,
but u is not additively isomorphic to an ordered union ultrafilter.

In fact, we can prescribe any two non-isomorphic selective ultrafilters for min and
max.

We will need a series of results for the proof, but first let us specify our result
to which the above theorem is a corollary. This should help clarify what we
intend to prove.

Stable Unordered
Union Ultrafilters

Theorem (Stable UnorderedUnion Ultrafilters)
Assume CH. There exists a stable union ultrafilter u with min(u) and max(u)
selective, but there exists FU(s) ∈ u such that for any ordered sequence t

t v s⇒ FU(t) /∈ u.

In fact, we can prescribe any two non-isomorphic selective ultrafilters for min and
max.
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At first this does not seem to be imply the first theorem; although the first
part specifies that u is not ordered we replace the rigidity under additive
isomorphism by stabililty for union ultrafilters.

To see that this suffices for the additional requirement that no additive copy
of u happens to be ordered union, we prove the following lemma.

Stability and Additive Iso-
morphisms

Lemma 4.15 (Stability and Additive Isomorphisms)
Every additively isomorphic image of a stable union ultrafilter is a stable union
ultrafilter and every additively isomorphic image of a stable ordered union ultrafilter
is a stable ordered union ultrafilter.

In particular, if u is as in the above theorem, then u is not additively isomorphic to an
ordered union ultrafilter.

Spoiler Stability is straightforward; for orderedness we use the Ramsey property of
stable ordered union ultrafilters.

Proof. Let u′ and u be additively isomorphic union ultrafilters, i.e., there exist
FU(s) ∈ u, FU(x) ∈ u′ such that

π : FU(s)→ FU(x), ∏
i∈F

si 7→∏
i∈F

xi

additionally has π(u) = u′.

Claim 1: If u is stable, so is u′.

Given a sequence of condensations with FU-sets in u′ we can intersect every
FU-set with FU(x) and from this get a sequence of condensations below x.

But then the preimage of the sequence under π is a sequence of con-
densations in u. So we can apply u’s stability to get a common almost
condensation of these images in u – but its image under π is exactly the
desired common almost condensation in u′.

Claim 2: If u is stable ordered, so is u′.

By Claim 1 we only need to show that u′ is ordered. Pick any A ∈ u′; we
may assume without loss that A ⊆ FU(x) and that s was ordered.

Step 1: Consider Working in u: a partition
for orderedness.

X := {{v < w} ∈ [π−1[A]]2 | max(π(v)) < min(π(w))}.

Step 2: By the Ramsey property from Theorem 4.12, we can find an ordered
sequence t such that FU(t) ∈ u and

FU(t)2
< = {{v < w} | v, w ∈ FU(t)}

is either included in or disjoint from X.

Step 3: But it cannot be disjoint from X.

Since π is injective, we can find ti � tj such that

π(ti) < π(tj).

As usual, given any ti all but finitely many tj have this property.

Then of course {ti, tj} ∈ X ∩ FU(t)2
<.
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Step 4: But this implies that π[FU(t)] = FU(π[t]) is ordered – and of course
in u′ and refining A, i.e., u′ is ordered union. �

We are now ready to begin the series of lemmas that we need for the construc-
tion.

4.3.2 The construction

Let’s recall our goal: however we construct u, we must include a set FU(s),The critical issue – a spe-
cial set FU(s) such that for any ordered condensation t v s we can guarantee FU(t) /∈ u.

Now it would be easy to just inductively put together a union ultrafilter with
a base of not-ordered FU-sets. But this does not suffice, since there might be a
different base of ordered FU-sets.

To prevent this, we must make sure that no sequence that we pick in our
inductive construction will accidentally be, at the same time, a condensation
of some other, ordered condensation of the fixed FU(s) (thus including that
ordered condensation of FU(s) in our ultrafilter u as well).

This means that every sequence we choose must eventually have a high degree
of meshing not just in itself but due to the si that appear in its support. The
following definition prepares us for the right notion of meshing.

Definition: The meshing
graph

Definition 4.16 For a disjoint sequence s = (si)i<N in F (for some N ≤ ω)
and some condensation t = (tj)j<K of s (for some K ≤ N) we define the
following:

The meshing graph Gt is the graph on the vertices {tj | j < K} with edges

E(Gt) = {{ti, tj} | (∃sn ⊆ ti, sm ⊆ tj) sn u sm},

i.e., there is an edge whenever two tj are meshed and this meshing is caused
by single elements from s.

We can now talk about meshing combinatorially in terms of the connectedness
of this graph. On the one hand, it is an obvious advantage to connect to graph
theory; instead of partitions on F we can speak about graph colourings. On
the other hand, we do not know how strongly or weakly connected the graph
should be – and it is not trivial to get Ramsey-type theorems for graphs that
allow a flexible degree of connectedness. Fortunately, it will turn out that we
can work with complete graphs.

To begin our construction, we need a sequence that is thoroughly meshed.

Remark: Fix the meshed
sequence s

Remark 4.17 (Fix the meshed sequence s) From now on fix a sequence s =
(si)i∈ω such that for any n, k there exist k < i0 < . . . < in such that

G(si0 ,...,sin )

is a complete graph with n + 1 vertices.77Here the meshing graph is com-
puted with respect to s itself.
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This simply means that our sequence includes arbitrarily large subsequences
that have the best meshing. For now we shall assume that we pick any such
sequence. After the main theorem we will discuss how to find such a sequence
with respect to two prescribed selective ultrafilters.

The following definition is trying to capture the right kind of meshing that is
needed for sets that might be suitable for our ultrafilter.

Definition: FU-meshedDefinition 4.18 A set A ⊆ F is called FU-meshed (with respect to s) if for any
n ∈ ω there exist (disjoint) t = (ti)i<n such that

• FU(t) ⊆ (FU(s) ∩ A)
• The meshing graph Gt is a complete graph.

We call such a finite sequence an n-witness of A.8 8 Note that an FU-meshed set is
compatible with δF since for any
v ∈ F any disjoint sequence of
length max(v) + 2 must have an
element in σ(v).

A set A is FU-meshed if there are members of A that have a high degree
of meshing and additionally the witnesses for the meshing are given by
arbitrarily large, finite FU-sets where the members of the s-support mesh very
much.

The following observation should support the claim that this is the right notion
for our setting, i.e., such sets do not force us to add ordered condensations to
an ultrafilter.

Proposition 4.19
If A is FU-meshed, then it is not included in FU(t) for any ordered t v s.

Proof. To be an ordered condensation t v s means that Gt has no edges, hence
FU(t) cannot include an FU-meshed set. �

To be able to link the new notion with ultrafilters we need to show that it is
partition regular. For this we require a classical result that we have already
discussed in Example 2.8.

Graham, RothschildTheorem 4.20 (Graham, Rothschild)
For any n there exists h(n) such that for any disjoint sequence x = (xi)i<h(n) in F

the following holds:

Whenever FU(x) is finitely partitioned, there exists a homogeneous condensation of Finite Hindman’s Theorem
length n.

Proof. This is a corollary of the Graham-Rothschild Parameter Sets Theorem,
[GR71, Corollary 3]. For a proof from Hindman’s Theorem by a compact-
ness argument cf. [HS98, Theorem 5.15]; for a more recent overview on the
combinatorial aspects cf. [PV90]. �

We are now ready to prove the first piece of our puzzle.

FU-meshed partition reg-
ular

Lemma 4.21 (FU-meshed partition regular)
The notion of being FU-meshed is partition regular.

In particular, any FU-meshed set is included in an ultrafilter consisting only of sets
that are FU-meshed.
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Spoiler Given a partition of an FU-meshed set, the theorem by Graham and Roth-
schild allows us to find large homogeneous condensations. For n-witnesses we will
find that the homogeneous condensation inherits a complete meshing graph.

Proof. Clearly, F is FU-meshed since it contains FU(s). So let us fix an
arbitrary FU-meshed set A ⊆ FU(s) and let A = A0∪̇A1.

Let us assume to the contrary that both A0 and A1 are not FU-meshed.

Step 1: Then we can find n0, n1 such that there are no ni-witnesses in Ai.

Let us fix n := max(n0, n1).

The theorem by Graham and Rothschild implies that we cannot fail to satisfy
the finite version of Hindman’s Theorem.

Step 2: Since A is FU-meshed, we can apply the theorem by Graham andApplying “Finite Hindman”
Rothschild to find an h(n)-witness t = (ti)i<h(n) in A.

Naturally, the partition of A induces a partition of FU(t), i.e.,

FU(t) = A′0∪̇A′1,

with A′i := FU(t) ∩ Ai.

Since we chose h(n) to be large enough using Theorem 4.20, there exists a
condensation x = (xi)i<n such that FU(x) is included in one A′i ⊆ Ai.

We analyze the meshing graph to see that the finite FU-set must have a
complete graph.

Claim 1: But then FU(x) is an n-witness for Ai.

Gt was complete. Since x is a condensation, its members are disjoint
unions of members of t.

Clearly, the edges between the members of t induce edges between
the members of x that include them. Hence the meshing graph of
x = (xi)i<n is also complete.

But this contradicts the fact that neither A0 nor A1 had an (n, v)-witness
   as desired. �

Now we know that there are ultrafilters containing only FU-meshed sets. But
we need to show that this set is algebraically rich, so that we can get some kind
of induction going akin to the proof of Theorem 4.6. There we just needed the
partial semigroups induced by FU-sets, but for our purpose we need to be
more subtle.

The meshing semigroup Lemma 4.22 (The meshing semigroup)
The set

H := {p ∈ FU∞(s) ∩ δF | (∀A ∈ p) A is FU-meshed}

is a closed subsemigroup of δF.
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Spoiler We argue just like Example 2.8.

Proof. Claim 1: H is a closed subset of δF since it is defined by a constraint
on all members of its elements.

Claim 2: We just showed in Lemma 4.21 that it is non-empty.

Claim 3: H is a subsemigroup.

Step 1: Pick arbitrary p, q ∈ H and V ∈ p, (Wv)v∈V in q; in particular all
these sets are FU-meshed.

We need to show that ⋃
v∈V

(v ·Wv) is FU-meshed.

So let n ∈ ω.

Step 2: By assumption on p we can find an n-witness t = (ti)i<n such that

FU(t) ⊆ V.

Step 3: Similarly by assumption on q, we can find an n-witness t′ = (t′i)i<n
such that

FU(t′) ⊆
⋂

x∈FU(t0,...,tn)

Wv ∩ σ(
⋃
i≤n

ti).

Step 4: But then for z = (zi)i<n with zi := ti ∪ t′i we have

FU(z) ⊆
⋃

v∈V
v ·Wv ∩ σ(a).

Of course Gv is complete since Gt was (or since Gt′ was) – making the sets
“fatter” only increases the chance of being meshed.

In particular, our set is FU-meshed – as desired. �

In fact, we have shown a bit more.

Corollary 4.23
H is a two sided ideal in the closed semigroup from Example 2.8.

The next important step is to show that the preimage filters for certain ul-
trafilters are compatible with H, i.e., contain FU-meshed sets. Remembering
Theorem 2.29 it comes as no surprise that we can show more.

Lemma 4.24
If A ⊆ min[FU(s)], B ⊆ max[FU(s)] are both infinite, then

min−1[A] ∩max−1[B]

is FU-meshed.
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Spoiler We pick three sets of members of s: one set to get the correct minimum,
another set (past those chosen) to get the meshing, and finally (past those chosen) a
set to get the allowed maximum.

Proof. Given n ∈ N we pick three times n-many elements of the sequence
s = (si)i∈ω.

Step 1: First, since A is infinite, we can pick (sik )k<n with min(sik ) ∈ A.

Step 2: Second, by the meshing of s, we can pick (sjk )k<n with a complete
meshing graph but beyond everything chosen so far.99 In other words, with minima

greater than the greatest maxi-
mum so far. Step 3: Third, since B is infinite, we can pick (slk )k<n with max(slk ) ∈ B, again

beyond everything chosen so far.

Then (tk)k<n defined by tk := sik ∪ sjk ∪ slk is an n-witness for min−1[A] ∩
max−1[B]. �

For completeness, we include the following standard proposition about parti-
tion regular notions.

Proposition 4.25
Let ψ be a partition regular property on X.

If F is a filter on X with all sets in F having property ψ, then there exists an ultrafilter
including F with all sets having property ψ.

Proof. Step 1: Consider

G := {A ⊆ X | X \ A does not have property ψ}.

Since ψ is partition regular, G is a filter.

Clearly X ∈ G and G is closed under supersets. Additionally, if (X \ A) ∪
(X \ B) = X \ (A ∩ B) had property ψ, then so would one part, which is
impossible for A, B ∈ G.

Step 2: F and G are coherent.

If A ∈ G and B ∈ F had A ∩ B = ∅, then B ⊆ (X \ A) ∈ F, which is
impossible since F only contains sets with property ψ.

Step 3: Any ultrafilter p extending F ∪ G is as desired.

If A ∈ p did not have property ψ, then X \ A ∈ G ⊆ p, which is absurd. �

After this technicality we can state its corollary needed for the construction.

Corollary 4.26
Let p1 and p2 be ultrafilters including min[FU(s)], max[FU(s)] respectively. Then

min−1(p1) ∩max−1(p2) ∩ H 6= ∅.
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Proof. By Lemma 4.24 all elements of the preimage filter are FU-meshed.
Applying Proposition 4.25 we get an ultrafilter in H extending the preimage
filter. �

4.3.3 Main lemma and theorem

Now we are ready for our final technical lemma that is needed for an inductive
construction in the spirit of the proof of Theorem 4.6.

Main LemmaLemma 4.27 (Main Lemma)
Assume we are given selective ultrafilters p1 6∼=RK p2 with max[FU(s)] ∈ p1 and
min[FU(s)] ∈ p2 and we are also given an arbitrary X ⊆ F.

For every α < ω let tα = (tα
i )i∈ω be a sequence such that

tα+1 v∗ tα

FU(tα) is FU-meshed

FU(tα) ∈ min−1(p1) ∩max−1(p2).

Then there exists z = (zi)i∈ω such that

z v∗ tα for every α < ω,
FU(z) is FU-meshed,
FU(z) ⊆ X or FU(z) ∩ X = ∅,
min[FU(z)] ∈ p1 and max[FU(z)] ∈ p2.

Spoiler With Corollary 1.16 to the Galvin-Glazer Theorem , we can find a common
almost condensation of the given FU-sets and X (or its complement – whichever set is
FU-meshed and compatible). Since all of these are FU-meshed, we can find a sequence
that is FU-meshed. To get an almost condensation with min and max images actually
elements of p1 and p2 respectively, we apply Theorem 4.4.

Proof. Step 1: By our assumptions A helpful idempotent e

H ∩min−1(p1) ∩max−1(p2) ∩
⋂

α<ω

FU(tα) 6= ∅.

As an intersection of closed semigroups it is a closed semigroup. So we can
pick an idempotent e ∈ δF therein. We may assume that X ∈ e; in particular
X is FU-meshed.

We will now apply the homogeneity result 4.4. Instead of the alternating parity
function used in Theorem 4.6, we will10 be considering another function. 10 and have to – cf. the introduc-

tion to this section.

Step 2: Consider the following analytic set in P(ω). An analytic set

{Y ⊆ ω | (∃z = (zi)i∈ω) Y = min[FU(z)] ∪max[FU(z)],
(∀α < ω) z v∗ tα,
FU(z) ⊆ X,
FU(z) is FU-meshed}.
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Let us define f ∈ 2ω inductively to have n-many 0’s followed by n-many 1’s0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, . . .
for each n in increasing order of n’s.

Step 3: We can apply Theorem 4.4 to find Y1 ∈ p1, Y2 ∈ p2 such thatUsing homogeneity

{A ⊆ Y1 ∪Y2 | A f -alternating}

is either contained in or disjoint from the analytic set.

Note that since p1 and p2 are not isomorphic, we can find Y1 ∈ p1, Y2 ∈ p2f -alternating sets from p1
and p2. being f -alternating already; cf. Remark 4.5.

Step 4: But it can only be included!

We will show that this homogeneity can only be “right”, i.e., all f -alternating
sets are included in our analytic set. In particular, given the remarks just
above, we are then able to find a sequence (zi)i∈ω for Y1 and Y2 themselves;
in other words, we find an FU-set with all the properties desired for the
lemma.
Let us recapitulate: We want to show that for every Y1, Y2 as above, the
homogeneous set intersects our analytic set. For this we require an FU-set
with min and max not only mapping it “into” the analytic set but also mapping
it to subsets of Y1 and Y2 respectively.

Claim: For every Y1 ∈ p1, Y2 ∈ p2 we can construct t = (ti)i∈ω a commonApplying Galvin-Glazer to
find t almost condensation of (tα)α<ω with

FU(t) ⊆ X ∩min−1[Y1] ∩max−1[Y2] ∩ FU(s).

Additionally, FU(t) is FU-meshed and the minima and maxima are f -
alternating.

First note that the intersection of the four sets is in e; let us abbreviate
it by Z. As usual, we may assume that Z∗ = Z (with respect to e). We
construct the desired sequence by induction.

At the inductive step, having constructed t0, . . . , tk−1
11 we pick some11To be exact, k = 1

2 n(n− 1) (for
an induction on n). FU-meshing n-witness tk, . . . , tn+k−1 from the following set in e⋂

x∈FU(t0,...,tk)

x−1Z∗ ∩ σ(
⋃
i<k

ti) ∩
⋂

α<n
FU(tα).

The resulting sequence is FU-meshed by construction.

For the f -alternation note that for a sequence of length n with a com-
plete meshing graph, all minima must come before all maxima. Since
we chose our witnesses in an ordered fashion, this implies that our
entire sequence has f -alternating minima and maxima.

Therefore homogeneity can only ever be “right”; in particular, we find a
sequence z for Y1 and Y2 themselves — and with all the desired properties.�

We can now describe the CH-construction.

Theorem 4.28
Assume CH and let p1 6∼=RK p2 be selective ultrafilters including min[FU(s)] andPutting it all together

max[FU(s)] respectively.

Then there is a stable union ultrafilter u including FU(s) with min(u) = p1,
max(u) = p2 such that no ordered condensation t of s has FU(t) ∈ u.
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Proof. Somce we assume CH we can fix (Xα)α<ω1 , an enumeration of P(F).

In the inductive step we have constructed (FU(tα))α<β for some ordinal
ω ≤ β < ω1

12 such that for all γ < α < β 12 fill this sequence with FU(s)
for α ≤ ω

tα v s
tα v∗ tγ

FU(tα) ⊆ Xα ∨ FU(tα) ∩ Xα = ∅
min[FU(tα)] ∈ p1 ∧max[FU(tα)] ∈ p2

FU(tα) FU-meshed

We simply pick a cofinal sequence (α(n))n∈ω in β. Then we can apply Lemma
4.27 to X := Xβ and (FU(tα(n)))n∈ω to get tβ sufficient to continue the induc-
tion.

It should not cause any difficulties to check that the resulting sets will generate
a union ultrafilter as desired. �

Finally let us remark that the choice of the sequence s is not all that special, so
that we can indeed claim to have proved the theorem stated at the beginning
of this section.

Corollary (The main theo-
rem)

Corollary 4.29 (The main theorem)
Assume CH. For any p1, p2 non-isomorphic selective ultrafilters, there exists a stable
union ultrafilter u that is not ordered, such that min(u) = p1 and max(u) = p2.

Spoiler We use Theorem 4.4 to make sure that we always find a sequence with
sufficient meshing to apply the last theorem.

Proof. Step 1: We just need to find a suitably meshed sequence s with

min[FU(s)] ∈ p1, max[FU(s)] ∈ p2,

be able to invoke the last theorem.

Step 2: We consider the analytic set

{X ⊆ ω | (∃s) X = max[FU(s)] ∪min[FU(s)]
and FU(s) is FU-meshed}.

Here we mean FU-meshed with respect to s itself.

We argue similarly to the last proof, but keep it a bit shorter.
To apply Theorem 4.4 as in the last proof, we just check that any

min−1[A] ∩max−1[B]

must include FU(s) for some suitably meshed sequence (which as in the the
proof of the theorem will guarantee f -alternation).
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Step 3: Recall that

min−1(p1) ∪max−1(p2)

generates an idempotent filter, so we can extend it to an idempotent ultrafilter.

So given any A ∈ p1, B ∈ p2 there exists FU(v) ⊆ min−1[A] ∩max−1[B] by
the Galvin-Glazer Theorem 1.14.

Claim: We can condense v to a meshed sequence s, i.e., with FU(s) being
FU-meshed (with respect to itself).

For the inductive step n ∈ ω we assume that for k = 1
2 n(n− 1) we have

picked (si)i<k with increasingly meshed graphs of sizes 1 through n− 1.

We pick 2n-many elements from FU(v) as follows.

First pick (vij)j<n past everything so far and then pick (vij)n−1<j<2n past
additionally the ones just chosen and define

sk+j := vij ∪ vij+n.

Then sk, . . . , sk+n is an (n,
⋃

i<n si)-witness, so s = (si)i∈ω will be as de-
sired. �

Andreas Blass suggested another proof for this last corollary; we include a
sketch.

Remark 4.30 Given selectives p1, p2 we can find a permutation of ω that maps
both p1 and p2 simultaneously to ultrafilters p′1, p′2 with min[FU(s)] ∈ p′1 and
max[FU(s)] ∈ p′2 (which are again selective). Then we can apply Lemma 4.27

to get a suitable u′ for p′1, p′2. But the extension of the permutation to F yields
an additive isomorphism on FU(s) ∈ u′ mapping u′ to a union ultrafilter u
with min(u) = p1 and max(u) = p2; since additive isomorphisms preserve all
the desired properties, this completes the proof.

To conclude this chapter let us remark upon the use of the continuum hypoth-
esis in our proof.

Remark 4.31 In [BH87, Theorem 5], it is shown that union ultrafilters with
min and max not selective can be constructed under MA. In [Eis02] ordered
union ultrafilters are constructed using only cov(M ) = 2ω, i.e., using Cohen
reals.

If we drop the prescribed selectives, Lemma 4.27 can be derived using Cohen
forcing in the form of FU-sets of finite condensations of s; using Lemma 4.24

some additional bookkeeping is possible to ensure that min and max will be
selective.
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4.4. Synopsis

In this chapter we have achieved several insights into the different notions
of union ultrafilters. We found characterizations for stable union ultrafilters
in terms of Ramsey properties and although this result may be considered
negative from the point of view in that we have not helped to differentiate
stable ordered union from stable union, we have established that differences
must be sought elsewhere.

We have also constructed union ultrafilters mapping by min and max to
selective ultrafilters but not being ordered. To do this we had to fuse together
the arguments of 4.6 and [BH87]. Again this may be deemed a negative result,
since we have eliminated one idea of differentiating ordered and unordered
union ultrafilters. However, this is not the case. In fact, it would have been
surprising to have such a strong connection “backwards” from the min and
max image considering how much information is lost with these function.
Indeed, our result is particularly beautiful, becaused we have established an
understanding of the kind of meshing that may occur in unordered union
ultrafilters.

This research is additionally of interest for future research to understand
possible combinatorial algebraical properties of our new forcing constructions
from Chapter 3.
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Chapter 5

Summable Ultrafilters as Sums

After having studied the set theoretic properties of union and therefore
summable ultrafilters1 in the preceding chapter we now turn to the alge- 1 Recall Definition 1.19

braic aspects.

Since the idempotent ultrafilters are so incredibly abundant the summable
ultrafilters could have easily been forgotten, since they were originially con-
structed in [Hin72] as an example of an idempotent ultrafilter. However, Eric
van Douwen became interested in their special property of having a base of
FS-sets. According to [HS98, Notes on Chapter 5] this caused him to ask
Neil Hindman the question if such ultrafilters can be constructed assuming
ZFC alone. This turned out not to be the case, as was first answered by
Andreas Blass with the construction of stable ordered union ultrafilters in
[Bla87b]; in [BH87], a collaboration of Blass and Hindman, they generalized
this independence result to all summable ultrafilters.

However, besides their historical role concerning the development towards
Hindman’s Theorem, summable ultrafilters turned out to carry extraordinary
algebraic properties. They were the first known example of strongly right
maximal idempotent elements, i.e.,p ∈ βN such that the equation p = x +
p has the unique solution p.2 They still are the only known examples of

2 Later Protasov proved the exis-
tence of such ultrafilters under
ZFC alone; cf. [HS98, Theorem
9.10].

idempotents such that their maximal group, i.e.,the maximal subgroup of βN

with neutral element being the idempotent, is isomorphic to Z.3
3 This is also the minimal case,
since by centrality of Z in βN,
every idempotent is contained a
copy of Z.

Hindman and Strauss also showed in [HS95]4 that there is a special kind of

4 cf. [HS98, Chapter 12]

summable ultrafilters having another fascinating and so far unique quality:
they can only be written as a sum in a trivial fashion, i.e., in the form (p + z) +
(p− z) for some z ∈ Z (which due to the centrality of Z is always possible).
In this chapter we will generalize these results.

My personal motivation for the results of this chapter was the same as for the
set theoretic analysis that led me back to union ultrafilters in the preceding
chapter. To gain more insight into the forcing constructions from Chapter 3

it was only natural to study the possible algebraic properties of a generic
idempotent ultrafilter. Even though I was not able to derive consequences for
the arbitrary forcing constructions, this process led me to the results of this
chapter regarding summable ultrafilters.
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5.1. Summable ultrafilters are special

To investigate what was called “special strongly summable” ultrafilters in
[HS95] and [HS98, Chapter 12], we connect this notion with union ultrafil-
ters.

Most of Definition 4.1 for FU-sets5 transfers immediately to arbitrary FP-sets.5 Notably, the notion of a con-
densation and the notion of sup-
port with respect to a given se-
quence

Therefore we will skip repeating these notions for FS-sets. But just as was
the case with FU-sets, we require some extra terminology to acommodate the
particularities of summable ultrafilters.

Definition 5.1 1. We say that (xn)n∈ω (in N) has sufficient growth if forSequences with sufficient
growth some c > 4

(∀n ∈ ω) xn > c ∑
i<n

xi.

Allowing confusion, we often say that FS(x) has sufficient growth in-
stead.

2. A summable ultrafilter p ∈ βN is called special if there exists FS(x) ∈ pSpecial summable ultrafil-
ter with sufficient growth such that

(∀L ∈ [ω]ω)(∃y = (yn)n∈N)FS(y) ∈ p ∧ |L \
⋃

n∈N

x-supp(yn)| = ω.

As noted before the definition x-supp(yn) denotes the finite set F such
that ∑i∈F xi = yn. Given the sequence x we also say that p is special with
respect to x.

3. A union ultrafilter u ∈ βF is called special ifSpecial union ultrafilter

(∀L ∈ [ω]ω)(∃X ∈ u)|L \
⋃

X| = ω.

In [HS95] and [HS98, Chapter 12] the notion of “special” is stronger; we would
say: special with respect to (n!)n∈ω and divisible, i.e., there is a base of sets
FS(x) with xn|xn+1 (for n ∈ ω).

The need for sufficient growth may seem arbitrary. The reason for this
technical condition lies in several practical consequences that we list in the
next remark.

Remark 5.2 Every summable ultrafilter has a base of FS-sets with sufficient
growth, in fact, for any prescribed growth constant c; cf. [HS98, Lemma 12.20].

For a sequence x = (xn)n∈ω, to have growth with constant c ∈ N implies the
following:

• ∑i∈F xi = ∑i∈G xi iff F = G
• ∑i∈F xi + ∑i∈G xi ∈ FS(x) iff F ∩ G = 0
• In fact, any linear combination of the xi with factors 1, . . . , c is unique.
• If for some r, G and y we have y < xr and min(G) > r, then

y + ∑
i∈G

xi ∈ FS(x)⇒ y ∈ FS(x).

This is checked (inductively on |G|); see e.g. [HS98, Chapter 12].
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It is not difficult to see that summable ultrafilters additively isomorphic to
stable ordered union ultrafilters allow for dynamic growth assumptions such
as exponential growth.

The first observation is that special summable and special union ultrafilters
are in fact equivalent notions. Recall Definition 4.3 of additive isomorphism.

Proposition 5.3
Every special summable ultrafilter is additively isomorphic to a special union ultrafilter
(and vice versa).

Proof. Given some special summable ultrafilter, let x = (xn)n∈ω be a sequence
in N with sufficient growth witnessing the specialness.

Consider
ϕ : FS(x)→ F, ∑

i∈F
xi 7→ F.

Then ϕ is bijective and maps special summable to special union ultrafilters
and vice versa.

By Remark 5.2, ϕ is well defined (and bijective).

It is clear that ϕ maps the given special summable ultrafilters to some
special union ultrafilters and vice versa any special union ultrafilter to some
special summable. �

Next we show that union ultrafilters are already special.

Union ultrafilters are spe-
cial

Theorem 5.4 (Union ultrafilters are special)
Every union ultrafilter is special. Accordingly, all summable ultrafilters are special.

Spoiler The main argument of the proof is a parity argument. Assuming that some
set covers the whole of L the parity argument will yield a condensation that misses a
lot of L – this is seen by closely investigating the actual unions and their parity.

Proof. Let L ∈ [ω]ω.

Step 1: We may assume that {s ∈ F | s ∩ L 6= ∅} ∈ u A simple partition

Otherwise, since u is an ultrafilter,

{s ∈ F | s ∩ L = ∅} ∈ u.

So there exists X ∈ u such that (
⋃

X) ∩ L = ∅; in particular L \⋃X = L is
infinite.

Since u is a union ultrafilter we find FU(s) ∈ u such that si ∩ L 6= ∅ for all
i ∈ ω.

We need to find FU(t) ⊆ FU(s), FU(t) ∈ such that L \⋃i∈ω ti is infinite.
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Step 2: If L \ ⋃i∈ω si is infinite, we are done. Otherwise it is finite; we mayAdjusting L if necessary
without loss of generality delete those finitely many elements from L – if we
manage to leave out infinitely many from the remaining set, we will do just
fine.

Therefore we assume that
L \

⋃
i∈ω

si = ∅.

Step 3: Let us consider the functionA parity argument

π : FU(s)→ 2, x 7→ |{i | si, si+1 ⊆ x}| mod 2.

Step 4: An FU-set can only be included in {t ∈ FU(s) | π(t) = 0}.

Given a condensation t = (ti)i∈ω of s, we can find tj � tk such that

π(ti ∪ tk) = π(ti) + π(tk).

In fact, for any ti all but finitely many tk are past the successor of the last sj
included in ti.

Therefore π(tj ∪ tk) = 0 mod 2 and FU(t) intersects the above set

So the above set is included in u and we find FU(t) ∈ u refining it.

Claim: |L \⋃j∈ω tj| = ω.Final step by contradiction.

Assume to the contrary that it is finite.

In particular, since the si are disjoint and

si ∩ L 6= ∅(for i ∈ ω⋃
i∈ω

si ⊇ L

t v s,

we can conclude that only finitely many si are disjoint from
⋃

i∈ω ti. In other
words the s-supp of t “covers” almost all the s –

|{si | (∀j ∈ ω)si /∈ s-supp(tj)}| < ω.

In particular, we find some index k ∈ ω such that all later si are covered,
i.e.,

(∀i ≥ k)(∃ji)si ⊆ tji .

Now consider tjk , i.e., the tj that covers sk, the member of s from which
point on we cover all of s.

Let us pick the “last” element of s-supp(tjk ), i.e., sv with max(sv) =
max(tjk ).

But now sv+1 is contained in some tj; so we can pick t+jk such that sv+1 ⊆ tjk .

Now let

t =
⋃
{tl | tl 6= t+jk , tl contains some si with k ≤ i ≤ v}.

In other words, t ∪ t+jk contains all (si)k≤i≤v+1.
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Now remember that π(tjk ∪ t) is even by our choice of FU(tj). But count
the number of consecutive pairs of si in this union:

π(tj+k
) and π(t) are even; but the pair sv, sv+1 (from tjk , t+jk resp.) ends up in

t∪̇t+jk . Hence π(tjk ∪ t) = π(tjk )+ π(t)+ 1 = 1 mod 2    a contradiction.�

Note that if u had been ordered union, this would have been much easier: then
the ti were ordered, hence only ti+1 can include sv+1 – but then π(ti ∪ ti+1) =
π(ti) + π(ti+1) + 1 = 1 mod 2.

Now that we have eleminated the necessity of the specialness condition, we
can proceed to the main result.

5.2. Summable ultrafilters as sums

We need one more Definition for pursuing our main goal.

Definition 5.5 • A sequence x = (xn)n∈ω (in N) has disjoint binary support
if its elements do; allowing confusion we say that FS(x) has disjoint
binary support.

• We call a summable ultrafilter with disjoint binary support if it contains
the FS-set for a sequence with disjoint binary support and sufficient
growth. In other words, if bsupp maps it to a union ultrafilter.

• We say that an idempotent ultrafilter p can only be written as a sum
trivially if

(∀q, r ∈ βN) q + r = p⇒ q, r ∈ (Z + p)

We are ready to state our main result for this chapter.

Summable ultrafilters with
disjoint support as sums

Theorem (Summable ultrafilters with disjoint support as sums)
Every summable ultrafilter with disjoint binary support can only be written as a sum
trivially.

We will need a series of technical propositions before we can prove this
theorem, but we can immediately deduce the following convenient corollary.

Corollary 5.6
Every summable ultrafilter is additively isomorphic to a summable ultrafilter that can
only be trivially written as a sum.

Proof. Any summable ultrafilter p is additively isomorphic to one as in the
assumptions of the above theorem – just pick FS(x) ∈ p with sufficient growth
witnessing that p is special; in particular, x has unique sums. Then the additive
isomorphism between FS(x) and FS(2n) maps p to a summable ultrafilter
with disjoint binary support. �
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This improves the original result from [HS95]. There it is shown that summable
ultrafilters that are divisible and special with respect to (n!)n∈ω can only be
written as a sum trivially; however, by [HS95, Theorem 5.8] there exist (under
CH) summable ultrafilters that are not divisible.66cf. the comment after Definition

5.1.
We now begin our work towards proving the above theorem, first dealing
with the left summand of a sum equal to a summable ultrafilter. For this part
we do not yet require disjoint binary support, just growth.

We start with some results from [HS95] and [HS98, Chapter 12]. We show
them in detail since we will often argue in a similar fashion.

Proposition 5.7
Given a sequence x = (xn)n∈ω with sufficient growth we have the following.

(∀r, q ∈ βN) r, q + r ∈ FS∞(x)⇒ q ∈ FS∞(x).

Spoiler This is e.g. [HS95, Theorem 2.3].

Proof. Assume r, q + r ∈ FS∞(x).

Claim: For k ∈ ω we have FSk(x) ∈ q.

Step 1: FSk(x) ∈ q + r, so by definition of addition in βN

FSk(x)−r = {a | − a + FSk(x) ∈ r} ∈ q.

Step 2: Then this set is included in FSk(x).

To see this, let us pick a ∈ FSk(x)−r and choose xl > a.

By choice of r, we can picka shifts many elements to
FS(x) y ∈ (−a + FSl(x)) ∩ FSl(x) ∈ r.

In particular, y = ∑i∈F xi with min(F) ≥ l.

But also a + y ∈ FS(x) – so by Remark 5.2, a ∈ FSk(x) – as desired. �Using uniqueness of sums

We can extend this a a little bit, which we will use later.

Corollary 5.8
Given a sequence x = (xn)n∈ω with sufficient growth we have the following.

(∀r, q ∈ βN) r, q + r ∈ Z + FS∞(x)⇒ q ∈ Z + FS∞(x).

Proof. Take z ∈ Z with
r′ = r− z ∈ FS∞(x).

Since FS∞(x) is a semigroup, so is Z + FS∞(x); in particular,

r′ + q = (r + q)− z ∈ Z + FS∞(x).

Therefore, we can find y ∈ Z with

r′ + (q− y) ∈ FS∞(x).

By the above Proposition, q− y ∈ FS∞(x), i.e.,

q ∈ Z + FS∞(x),

as desired. �

Another easy corollary is the following.
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Corollary 5.9
Every summable ultrafilter p is a strongly right maximal idempotent, i.e., the
equation q + p = p has the unique solution p (in βN).

Spoiler This is e.g. [HS98, Theorem 12.39].

Proof. Any summable ultrafilter p has a base of sets FS(x) with additionally
FSk(x) ∈ p for all k ∈ ω; this is e.g. [HS98, Lemma 12.18].

Therefore we can apply the above Proposition to each FS(x) ∈ p and deduce
from q + p = p that FS(x) ∈ q – so q = p as desired. �

We have now practically dealt with the left summand of a sum equal to a
summable ultrafilter. We turn to the right summand.

Similar to the proof in [HS95], our proof for the right summand consists of
two parts. First we show that if one of the summands is “very close” to
the summable ultrafilter, it is already equal. Second we show that writing a
summable ultrafilter with disjoint support as a sum can only be done with
the right summand “very close” to it.

For the first part, we begin with a technical lemma that essentially reflects the
property we desire: under certain conditions, we can write elements of an
FS-set only trivially as sums.

Trivial sums for FS-setsLemma 5.10 (Trivial sums for FS-sets)
Let x = (xn)n∈N be a sequence with disjoint support and enumerated with increasing
bmin, a ∈N and

m := min{i | bmax(a) < bmin(xi)},

Then for every b ∈N with bmax(xm) < bmin(b) we have

a + b ∈ FS(x)⇒ a, b ∈ FS(x).

Spoiler The main idea of the proof is that due to our assumptions neither the sums
of the xi nor the sum a + b will have any (binary) carrying over.

Proof. Assume we have been given appropriate x, a and b.

Step 1: Since a + b ∈ FS(x), we can find some finite, non-empty H ⊆N

~ a + b = ∑
i∈H

xi.

Step 2: Let us define

Ha := {j ∈ H | bsupp(xj) ∩ bsupp(a) 6= ∅}

and Hb similarly.

Claim: H = Ha∪̇Hb.
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By our assumptions on b we have

bsupp(a) ∩ bsupp(b) = ∅.

Of course, x has disjoint support, so we have no carrying over on either side
of the equation ~, i.e.,

H = Ha ∪ Hb.

On the other hand, if bsupp(xi)∩ bsupp(a) 6= ∅, then i ≤ m by choice of m.
This in turn implies bsupp(xi) ∩ bsupp(b) = ∅ by the choice of b; in other
words,

Ha ∩ Hb = ∅.

But by this claim ∑i∈Ha xi = a and ∑i∈Hb
xi = b – just as desired. �

Essentially, the proof of the above lemma can be seen as switching to the
equivalent union ultrafilter and realizing that there will always be some
orderedness. We will discuss the analogue for union ultrafilter at the end of
this chapter.

We now show that this lemma takes us nearly all the way, i.e., if one of the
summands is “very close” to our summable ultrafilter, we are already done.

Trivial sums for H Lemma 5.11 (Trivial sums for H)
For any summable ultrafilter p with disjoint binary support we have

(∀q ∈ βN)(∀r ∈H) q + r = p⇒ q = r = p.

Spoiler The proof is basically a reflection argument. Arguing indirectly, the addition
on βN reflects to elements in the sets of the ultrafilters in such a way that non-trivial
sums of ultrafilters lead to non-trivial sums of the usual FS-set, contradicting Lemma
5.10.

Proof. Step 1: Since any summable ultrafilter is strongly right maximal by
Corollary 5.9, it suffices to show that r = p.77In other words, we have already

dealt with the left summand.
This is the reason why we only
need to ask for r to be “close” to
p.

Let us assume to the contrary that r 6= p.

Step 2: Let us pick a witness for p, i.e., x = (xn)n∈N with sufficient growth
and disjoint binary support; we may assume without loss that FS(x) ∈ p \ r.

Step 3: Since r + q = p, there exists a such that −a + FS(x) ∈ r.; let us pick m
as in the Lemma 5.10, i.e., such that all (xn)n>m have bmax(a)) < bmin(xn)).

Step 4: Let us define M := bmax(xm)) + 1; note that the multiples of 2M have
binary support past the support of xm.

Step 5: Now
(−a + FS(x)) ∩ (N \ FS(x)) ∩ 2MN ∈ r.

So pick b from this intersection.

Step 6: Then a + b ∈ FS(x). But we can apply Lemma 5.10 to get a, b ∈ FS(x)
   contradicting b /∈ FS(x). �

Before we approach our final step, let us quickly note one detail.
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Lemma 5.12
A summable ultrafilter with disjoint binary support is also special with respect to
(2n)n∈ω.

Proof. Let us pick x as a witness for the disjoint binary support of a summable
ultrafilter p; without loss of generality x also witnesses that p is special,
since the members of a condensation have disjoint x-supp by Remark 5.2; in
particular, they have disjoint binary support.

Given L ⊆ ω we consider

L′ := {n | (∃i ∈ L) i ∈ bsupp(xn)}.

Then by specialness we find y v x with FS(y) with L′ \ x-supp(y) infinite –
but this implies L \ bsupp(y) is infinite by choice of L′ and the disjoint x-supp
of members of y. �

As a final step, we prove that if a summable ultrafilter is written as a sum,
then the first component is “close by”.

Nearly trivial sumsLemma 5.13 (Nearly trivial sums)
For any summable ultrafilter p with disjoint binary support we have

(∀q, r ∈ βN) q + r = p⇒ r ∈ Z + H.

Spoiler We basically argue as before, i.e., we show that if r /∈ Z + H, there will
always be a sum a + b that cannot end up in a certain FS-set. Naturally, we will
need a more subtle argument than before. For this we will consider the binary support
as element of the Cantor space 2ω and the image of q under the continuous extension.
Analyzing this image and using that summable ultrafilters are “special”, we will
find that there cannot not be enough carrying over available to always end up in the
FS-set.

Proof. Let us assume to the contrary that r /∈ Z + H.

Step 1: By contraposition of Corollary 5.88 also q /∈ Z + H. 8 Applied to H =
⋂

k∈ω FSk(2n).

Step 2: Let us consider the mapping Def. α

α : N→ 2ω, defined by x = ∑
i∈ω

α(x)(i) · 2i.

As usual, we also denote the continuous extension to βN by α.9

9Here we consider 2ω as the Can-
tor Space with the product topol-
ogy; in particular, this is a com-
pact space, so the (unique) con-
tinuous extension exists.

Step 3: We define the following subset of ω. Def. Q0, Q1 infinite

Q0 := {i ∈ ω | α(q)(i) = 0}
Q1 := {i ∈ ω | α(q)(i) = 1}.

Step 4: Q0 and Q1 are infinite.

Section 5.2 – Summable ultrafilters as sums 95



Claim 1: Let us assume to the contrary that Q1 is finite, i.e., we can pickQ1 finite contradicts Step
1. k ∈ ω such that α(q)(n) = 0 for n > k.

Considering z := ∑i≤k α(q)(i)2i we show thatUsing the non-trivial part
of α(q)

(∀n > k) z + 2nN ∈ q,

   contradicting q /∈ Z + H.

Given n > k we define

Uz,n := {s ∈ 2ω | s�n = α(q)�n = α(z)�n}.

Obviously, Uz,n is a neighbourhood of α(q), hence α−1(Uz) ∈ q. But we
can easily check that α−1[Uz] = z + 2nN, as desired.

Claim 2: Now let us assume to the contrary that Q0 is finite, i.e., we canQ0 finite contradicts Step
1. pick k such that α(q)(n) = 1 for n > k.

This time considering z := 2k+1 −∑i<k α(q)(i)2i we show thatUsing the non-trivial part
of α(q)

(∀n > k) − z + 2nN ∈ q.

   contradicting q /∈ Z + H.

Again, given n > k, we consider α−1[Uz,n]. This time we check that
α−1[Uz,n] = −z + 2nN.

Let w ∈ α−1[Uz,n]. Then for some a we have

w = a · 2n+1 +
n

∑
i>k

2i + ∑
i≤k

α(q)(i)2i,

since by assumption that M is finite, all of α(q)(i) beyond k is 1.

But this impliesTelescope sums

w + z = a · 2n+1 +
n

∑
i>k

2i + 2k+1 = a · 2n+1 + 2n+1 = (a + 1)2n+1,

as desired.

Step 5: Since u is summable with disjoint binary support, we pick a sequenceChoosing FS(x), X
x = (xn)n∈ω with disjoint binary support, sufficient growth and FS(x) ∈ u.
We abbreviate

X :=
⋃

n∈ω

bsupp(xn).

Step 6: By Lemma 5.12 and Theorem 5.4, we may assume without loss that
Q0 \ X is infinite.

We now have to choose a couple of natural numbers in a clever fashion. Let us
preview the reason for our choices and their role in the final calculation.
First we pick some a, then beyond bmax(a) elements from the Qi \ X. With
this we pick b with α(b) ⊆ α(q) up to those elements from the Qi. Then any
y translating both a and b into FS(x) cannot translate b to a multiple of a high
power of 2, because b− a will have a “hole” from Q0 just everything in FS(x)
does.
We will recapitulate this motivation after we made the choices.
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Step 7: By q + r = p we have FS(x)−r ∈ q; so let us pick a with −a + FS(x) ∈ r. Choosing a

Step 8: Next, we pick s1 ∈ Q1 and s0 ∈ Q0 \ X with s0 > s1 > bmax(a). s0 > s1 > bmax(a)

We choose s1 only so that ∑i≤s0
α(q)2i − a > 0.

Note that α(q)(s0) = 0, α(q)(s1) = 1, but every element from z ∈ FS(x) has
α(z)(s0) = α(z)(s1) = 0.

Step 9: By q + r = p we have (2s0+1N)−r ∈ q, so let us pick b from Choosing b

(2s0+1N)−r ∩ (2s0+1N + ∑
i≤s0

α(q)(i)2i) ∈ q.

where the latter set is in q since it is equal to Uq�(s0+1),s0+1; cf. Step 4.

Note that α(b)(si + 1) = α(q)(si + 1) = i, by choice of the si (i < 2). Therefore,
b− a > 0, but more specifically bmax(∑i≤s0

α(b)2i − a) < s0 (and this number
is positive by choice of s1!).

Step 10: Finally, we can also choose y ∈ (−b + 2s0+1N) ∩ (−a + FS(x)) ∈ r. Choosing y

Note that since s0 /∈ X and a + y ∈ FS(x), we have α(a + y)(s0) = 0. But also
y + b ∈ 2s0+1N.

Step 11: Let us recapitulate what we have right now:

(i) si ∈ Qi ⇒ α(q)(si) = i (i < 2)

(ii) s0, s1 > bmax(a) ⇒ 0 < bmax( ∑
i≤s0

α(q)(i)2i − a) < s0.

(iii) b + y ∈ 2s+1N ⇒ ∑
i∈F

2i = b + y for some F > s

(iv) a + y ∈ FS(x) ⇒ ∑
i∈G

2i for some G with s0 /∈ G.

Let us explain the reason for our choices and their role in the final calculation.
The basic idea is that since y translates such a small a into FS(x), it cannot
simultaneously translate elements like b, i.e., elements that agree with α(q) up
to s0, to be divisible by 2s0+1.
This is due to the “hole” of both (y + a) and (b− a) at s0 which simply does not
allow for enough carrying over in their sum (y + b) to get a multiple of 2s0+1.
For this reason we had picked s1 to guarantee that (b − a) > 0 because
∑i<s0

α(q)(i)2i − a > 0; so we really do get “stuck” at some lower power of 2.

Step 12: We first calculate the following:

∑
i∈F

2i = (y + a) + (b− a)

= ∑
i∈G

2i + d · 2s0+1 + ∑
i<s0

εi2i,

for suitable d ∈ N (by our choice of b) as well as some εi ∈ 2 (i < s0) which
are not all 0 by our choice for s1 – but s0 /∈ bsupp(b− a) as noted before.

Section 5.2 – Summable ultrafilters as sums 97



Step 13: Now we can rearrange this equation and calculate further that

∑
i∈F

2i − ∑
i∈G\(s0+1)

2i − d · 2s0+1 = ∑
i∈G∩(s0+1)

2i + ∑
i<s0

εi2i

= ∑
i∈G∩s0

2i + ∑
i<s0

εi2i (s0 /∈ G)

< 2s0 + 2s0 = 2s0+1.

Since 2s+1 divides the left-hand side of the first line, it must be 0, but by
Equation (ii) the middle line is not    we finally have our contradiction. �

After this complicated proof, our main result almost immediately follows.

Trivial sums Theorem 5.14 (Trivial sums)
A summable ultrafilter with disjoint binary support can only be written as a sum
trivially.

Proof. Assume that p is a summable ultrafilter with disjoint binary support
and q, r ∈ βN with

q + r = p.

By the above Lemma 5.13, we deduce that r ∈ Z + H.

Therefore we can find k ∈ Z such that −k + r ∈H; in particular

(k + q) + (−k + r) = p.

But now we can apply Lemma 5.11 with k + q and −k + r to get k + q =
−k + r = p as desired. �

Let us make a short remark regarding the tools that we have actually applied
throughout the proofs of this section.

Remark 5.15 In no part of the proof did we use more than the fact that some
FS(x) ∈ u had disjoint (binary) support and unique sums and that every
natural number has a binary represantation. Therefore, the same proof works
for any other support.

We can therefore claim to have shown the following, more general theorem.

Theorem 5.16
Let u be summable and some FS(x) ∈ u has disjoint support (with respect to some
sensible sequence). Then q + r = u implies q, r ∈ Z + u.

We should note that there is a related result by different means which was
discovered by Lakeshia Legette. In [Leg08] she constructs (among other
things) ultrafilters on a free semigroup using ordered union ultrafilters; these
idempotents p can only be written as p + . . . + p.10

10 I thank Neil Hindman for a
copy of Lakeshia Legette’s dis-
sertation.
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5.3. Revisiting the forcing construction

We include two more results regarding summable ultrafilters. First we show
that “stable ordered” summables have disjoint binary support and second we
complete the proof of Corollary 3.12.

Lemma 5.17
Let p be a summable ultrafilter additively isomorphic to a stable ordered union
ultrafilter. Then p has disjoint binary support and bmin(p), bmax(p) are selective.

Spoiler We use the Ramsey property for pairs.

Proof. Step 1: The latter follows from the former, since then bsupp maps p
to a stable ordered union ultrafilter; in particular, bmin(p) = min(bsupp(p)),
bmax(p) = max(bsupp(p)).

Step 2: For the former claim consider ϕ an additive isomorphism on a suitable
FS(x) ∈ p such that ϕ(p) is stable ordered union.

Step 3: Consider the following set

{(v, w) ∈ ϕ[FS(x)]2< | bmax(ϕ−1(v)) < bmin(ϕ−1(w))}.

Step 4: By Theorem 4.12 we find FU(s) ∈ ϕ(p) such that FU(s)2
< is included

or disjoint from the above set.

Step 5: But it cannot be disjoint.

Given FU(s) ∈ ϕ(p), we have ϕ−1[FU(s)] = FS(y) for some y v x.

But for any z ∈ FS(y) and pick z′ ∈ FS(y) ∩ 2bmax(z)N the pair (ϕ(z), ϕ(z′)
is included in the above set.

Step 6: Therefore the homogeneous FU(s) ∈ ϕ(p) yields ϕ−1[FU(s)] = FS(y)
where y must have disjoint (in fact ordered) binary support. �

We end this chapter providing the lemma needed for Corollary 3.12, i.e., we
prove that bmin of a summable is a P-point.

Lemma 5.18
For every summable ultrafilter p the ultrafilter bmin(p) is a P-point.

Spoiler We modify the proof for union ultrafilters.

Proof. Step 1: Given any f ∈ ωω let us define

ϕ :N→N,

a 7→ |{(i, j) ∈ bsupp(a)2 | j immediate succ. of i and f (j) < i}|.

Note that if bmax(a) < bmin(b), then

ϕ(a + b) = ϕ(a) + ϕ(b) +
{

1 if f (bmin(b)) < bmax(a)
0 if f (bmin(b)) ≥ bmax(a)

Step 2: We know that on some set FS(x) ∈ p the parity of elements of ϕ[FS(x)]
is constant.

Claim 1: If the parity is 1, then f is constant on a set in bmin(p).
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Let us assume that the parity if 1; we consider some fixed xk. Then

FSk(x) ∩ 2bmax(xk)N ∈ p,

so we find FS(y) ∈ p included in this set.

But for a ∈ FS(y) we know that xk + a ∈ FS(x), so we can calculate

ϕ(xk + a) = 1 mod 2,

By our above calculation for ϕ this is only possible if

f (bmin(a)) < bmax(xk).

In other words, f is bounded on bmin[FS(y)] by bmax(xk).

Claim 2: If the parity is 0, then f is finite-to-one on bmin[FS(x)].

Given k ∈ ω fix some b ∈ FS(x) ∩ 2k+1N, so bmax(b) > k.

Then for any a ∈ FS(x) we have

f (bmin(a)) = k⇒ f (bmin(a)) < bmax(b).

This time our calculation for ϕ(a + b) implies bmin(a) ≤ bmax(b) – and
there can only be finitely many such bmin(a). �

This concludes the chapter.

5.4. Synopsis

In this chapter we have seen that the “special” condition introduced in [HS95]
holds for essentially all summable ultrafilters. We have used this result to
extend the Trivial Sums Theorem considerably; we have identified many
more summable ultrafilters satisfying the Trivial Sums Theorem and every
summable is now additively isomorphic to one. Of course, the open question
remains whether every summable ultrafilter satisfies the theorem, but it is
a definite improvement to reduce this question to the question of disjoint
support for some suitable sequence.

We have also seen that besides forcing with FS-filters only the Fσ idempotent
filter forcing could possibly adjoin a summable, thereby concluding our
investigations from Chapter 3.
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Chapter A

A short proof of Zelenyuk’s Theorem

In this chapter we will present a shorter proof of Zelenyuk’s Theorem using
idempotent filters. The original theorem is as follows.

Zelenyuk’s TheoremTheorem (Zelenyuk’s Theorem)
Let G be a countable group without non-trivial finite subgroups.

Then there are no non-trivial finite subgroups in βG.

We have already studied one important techique in Theorem 2.17. But let’s
begin by getting some idea what we are about and have to prove.

First, we migth ask for stronger results. On the one hand, Protasov [Pro98]
proved that for a countable group G every finite group in βG is of the form
p + H for p ∈ βG idempotent and H a finite subgroup of G. On the other hand,
Theorem 2.17 might suggest another generalization, namely to switch from
a group to a right-cancellative, weakly left cancellative semigroup without
non-trivial finite groups. However, this is not as easy as it seems since
e.g. T = N⊕Z2 is a cancellative semigroup without any finite groups and it
is easily seen that any idempotent in βT gives rise to copies of Z2. Hence the
theorem seems rather sharp in this respect, too.1

1 Similarly, for N ⊕n∈N Zn we
find copies of all Zn; I thank
a referee of Fundamenta Mathe-
matica for this example.

Second, we will argue indirectly and for this it is obviously enough to consider Finite cyclic groups suffice.
copies of Zz for some prime z that we would find contained in any given
non-trivial finite group.

Just as in the proof that can be found in [HS98, Chapter 7], our proof consists
of three major steps.

The first step will be to observe that a supposedly simple example is impos-
sible, i.e., to find a copy of Zz in δF having (the continuous extension of)
| · | mod z as isomorphism to Zz.2 Although this is technically not necessary, 2 For the definitions related to F

see Definition 1.4.we include it for better understanding.

In the second step we will identify an idempotent filter with strange properties
included in all elements of the finite group. In the third and final step we will
show that this filter is still rich enough to include a copy of δF. With this at
our disposal, we will be able to translate the proof of the simple case to the
general one, i.e., we are able to prove Zelenyuk’s Theorem.
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A.1. The simple case

This first section deals with what could be considered to be the simplest
scenario for a finite group to occur. It is based on taking a very simple
configuration for a finite group to occur in Z∗, i.e., assume that a copy of the
finite group Zz has a very simple isomorphism. However, we do not want to
do this directly in Z∗.

Instead of working in Z∗, it is easier to work in the countable boolean group.
But this is impossible, since we can find non-trivial finite subgroups there.
To evade this fact we are going to work in our favourite adequate partial
semigroup, F.

This section will only contain the following theorem about the “easy” case.

Lemma A.1
Consider γ : F→ Zz, s 7→ |s| mod z.

Then there is no C ⊆ δF such that γ̃�C isomorphic, unless z = 1.

Proof. Assuming that there is such C for z > 1 we first check that the following
diagram of partial semigroup homomorphisms commutes (with everything
taken appropriately modz or modz2).

Zz

Zz2

F

| ·
|

| · |

id

Hence so does the following commutative diagram of semigroup homomor-
phisms.

Zz

Zz2

δF

|̃ ·
|

˜| · |

id

But then the existence of C ⊆ δF such that | · | mod z is isomorphic on C
implies Zz2 contains an element of order z but equal 1 mod z – which is
absurd, unless z = z2 = 1. �

A.2. Two idempotent filters

We will now describe two idempotent filters that are important for the proof.

Definition A.2 For the rest of this chapter let G be a countable group with
identity e without finite non-trivial subgroups and C = {c0, . . . , cz−1} ⊆ βG a
copy of Zz (with the obvious isomorphism).

We set C′ := {x ∈ βG | xC = C}, F :=
⋂

C, F′ :=
⋂

C′.
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Let us develop some powerful properties of F′.

Proposition A.3
F and F′ are idempotent.

Spoiler We apply the topological characterization of idempotency.

Proof. We prove this for F′.

Step 1: Assume q, (ps)s∈S ∈ C′. We want to show that q-lim(s · ps) ∈ C′.

Step 2: Pick c ∈ C. Then q-lim(sps) · c = q-lim(spsc).

Step 3: Since psc ∈ C and C is finite, there exists cq such that q-lim(spsc) =
q-lim(s · cq) = qcq ∈ C as desired. �

We can now identify a strange, yet powerful base for the filter F′ derived from
F.

Proposition A.4
The sets U−F(U ∈ F) form a base of F′, i.e.,

⋂
U∈F U−F = C′.

Proof. We simply calculate for x ∈ βG

x ∈ C′ ⇔ (∀c ∈ C) xc ∈ C ⇔ (∀U ∈ F)(∀c ∈ C) xc ∈ U

⇔ (∀U ∈ F)(∀c ∈ C) U−c ∈ x ⇔ (∀U ∈ F)
⋂

c∈C
U−c = U−F ∈ x. �

The next lemma enables us to get an almost prime property for F′.

Lemma A.5
Let U ∈ F. Then s /∈ U−F(∈ F′) implies S \ s−1U−F ∈ F′.

Proof. Pick U, s as assumed.

Step 1: Since s /∈ U−F =
⋂

c∈C U−c, there exists c ∈ C with sc /∈ U, i.e., U /∈ sc.

Step 2: Now let any c′ ∈ C′ be given.

Step 3: Since c′C = C by assumptions on C, sc′C = sC. Therefore we find
some d ∈ C with sc′d = sc.

Step 4: In particular U /∈ sc = sc′d, i.e., U−d /∈ sc′.

Step 5: A fortiori, U−F /∈ sc′, i.e., s−1U−F /∈ c′.

Step 6: Since c′ was arbitrary, S \ s−1U−F ∈ F′. �
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A.3. Zelenyuk’s Theorem

We begin the final section by extending the isomorphism between C and Zz
to C′. For this we need to isolate certain sets in the elements of C.

Definition A.6 • For c ∈ C pick pairwise disjoint Uc ∈ c.Splitting up C

• For c ∈ C let1st Approximation of C
Ac :=

⋂
d∈C

(Ucd)−d(∈ c).

• X :=
⋃̇

c∈C Ac (disjoint since Ac ⊆ U−c0
cc0 = Uc).

• f : X → C, a 7→ c with a ∈ Ac; in other words by a ∈ A f (a).

• For c ∈ C, a ∈ X let V(a) :=
⋃

d∈C a−1 A f (a)d ∩ Ad2nd approximation of C

The Ac approximate Ac · d ⊆ Ucd for d ∈ C; the V(a) take this approximation
to the next level, i.e., the elements of X.

The important observation is that the V(a) are included in F′.

Proposition A.7
The sets (V(a))a∈X are in F′.

Additionally, f is an F′-homomorphism3 and f [V(a)] = C for all a ∈ X.3 cf. Definition 2.15

Proof. Step 1: V(a) ∈ F

By definition, a ∈ A f (a) ⊆ U−d
f (a)d; hence a−1 A f (a)d(∩Ad) ∈ d for any d ∈ C.

Therefore V(a) ∈ F.

Step 2: V(a) ∈ F′.

Since V(a) ∈ F and (U−d
cd )c0 = U−c0d

cd = U−d
cd , we can easily check

V(a)−F ⊆ V(a)−c0 =
⋃

d∈C

a−1 A−c0
f (a)d ∩ Ac0

d =
⋃

d∈C

a−1 A f (a)d ∩ Ad.

By Step 1 and the last proposition of the previous section, we conclude
V(a) ∈ F′.

Step 3: f is an F′-homomorphism.

By definition, b ∈ V(a) implies ab ∈ V( f (a) f (b)), so f (ab) = f (a) f (b).

Step 4: For all a ∈ X we have f [V(a)] = C.Richness of f

By the previous claims V(a) ∈ F, in particular

(∀c ∈ C) V(a) ∩ Ac 6= ∅.

By definition, f [V(a) ∩ Ac] = {c} – as desired. �

We are ready for the pivotal step.
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Lemma A.8
There exists ϕ : F→ X bijective, (partially) homomorphic such that

ϕ(σ(F)) ⊆ F′.

Additionally, f ◦ ϕ = | · | mod z.

Spoiler We argue just like for Theorem 2.17. However, this time we can find the
copy of σ(F) in F′ using the powerful observations from the previous section.

Proof. Introduction: We construct ϕ inductively on n (or more precisely on
P(n)). For this fix some well ordering on G of order type ω. At each step we
will fix a set in An ⊆ F′ which will end up being equal to ϕ[σ(n)] (note that
σ(s) = σ(max(s)) for s ∈ F, so these sets suffice for the second part of the
lemma).

Step 1: Naturally, ϕ(0) := e and A0 := X = V(e).

Note that
⋂

F′ = C′ ∩ G is a finite4 subgroup of G and thus trivial. Hence we 4 By [HS98, Lemma 6.28].
have now dealt with the elements common to all sets in F′.

Step 2: For the induction let us assume that we have constructed a homomor-
phic ϕ[P(n)] and (Ai)i≤n in F′ such that

s 6= t =⇒ (ϕ(s) · Amax(s∪t)) ∩ (ϕ(t) · Amax(s∪t)) = ∅.

and Ai ⊆ V(ϕ(s)) for all s ⊆ n.

Step 3: Inductively for i < n + 1 and assuming we have constructed rng(ϕ) :=
ϕ[P(n) ∪⋃j<i P(j− 1) · ((n + 1) \ j)] we choose

ϕ((n + 1) \ i) := min(Ai \ rng(ϕ)) with f (ϕ((n + 1) \ i)) = c(n+1\i) mod z

which is possible by the last proposition. Finally, we extend ϕ homomorphi-
cally to P(i− 1) · ((n + 1) \ i).

Step 4: Now for An+1. Pick U ∈ F with ϕ(s)−1 ϕ(t) /∈ U−F ⊆ An for all s 6= t
(which is possible, since

⋂
F′ = {e} and there are only finitely many such

pairs s, t) and define

An+1 := An ∩U−F ∩
⋂

s 6=t∈P(n+1)

S \ (ϕ(s)−1 ϕ(t))−1U−F ∩
⋂

s∈P(n+1)

V(ϕ(s))

which is in F′ by the last lemma from the previous section.

Step 5: We show that An+1 is as requested for Step 3.

Take s 6= t; we only need to show this for max(s ∪ t) = n + 1.

Then by construction of An+1

ϕ(t)An+1 ⊆ ϕ(t) · S \ ϕ(t)−1 ϕ(s)U−F

⊆ S \ ϕ(s)U−F ⊆ S \ ϕ(s) · An+1.

Step 6: We show that such a ϕ is as desired.
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Claim 1: Surjectivity follows from Step 3 (for i = 0), since after at most z
steps, we will be able to pick the actual minimum; in fact, the second part
of the lemma is immediate from Step 3 as well, i.e., Ai = ϕ[σ(i)].

Claim 2: Clearly, ϕ is a partial homomorphism by construction.

Claim 3: We claim that ϕ is injective.

Consider s 6= t; then there must exist a minimal i such that

s ∩ i = s ∩ i + 1 6= t ∩ i + 1 = t ∩ i.

Then ϕ(s ∩ i) · Ai ∩ ϕ(t ∩ i) · Ai = ∅ by Steps 2 and 5 – in particular,
ϕ(s) 6= ϕ(t).

This completes the proof of the claim.

This completes the proof of the lemma. �

We can now conclude.

Zelenyuk’s Theorem Theorem A.9 (Zelenyuk’s Theorem)
Let G be a countable group without non-trivial finite subgroups.

Then there are no non-trivial finite subgroups in βG.

Proof. Arguing indirectly, we assume we can find a copy of Zz in βG. But
then the preceding lemma tells us that we find a copy of Zz in δF – with
isomorphism | · | mod z    but this is impossible as we saw in the first
section. �
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Chapter B

Miscellaneous results

B.1. The partial semigroup βS

We present a short observation that for a partial semigroup S its Stone-Čech
compactification βS is also a partial semigroup. This is probably folklore but
we have found no presentation in the literature.

Definition B.1 Let (S, ·) be a partial semigroup.

We define a partial operation on βS as usual by

p · q := {A ⊆ S | (∃V ∈ p, (Wv)v∈V in q)
⋃

v∈V
v ·Wv ⊆ A},

if this is an ultrafilter – with the convention that v ·Wv = v · (Wv ∩ σ(v))
(which of course might be empty).

We begin with a simple observation.

Proposition B.2
Let (S, ·) be a partial semigroup and p, q ∈ βS. Then p · q is defined if and only if
there exists A ∈ p such that σ(a) ∈ q for all a ∈ A.

Proof. Step 1: First let us assume that for every A ∈ p there is a ∈ A with
σ(a) /∈ q.

Since p and q are ultrafilters we find A ∈ p such that for all a ∈ A in fact
S \ σ(a) ∈ q.

But then by the definition of p · q we have ∅ =
⋃

a∈A a · (S \ σ(a)) ∈ p · q;
hence p · q is not a filter.

Step 2: Now assume that there exists A ∈ p such that for all a ∈ A we have
σ(a) ∈ q.

Then p · q is easily checked not to include the empty set and, in fact, to be a
filter.

So take A ∈ p · q; we may assume that A =
⋃

v∈V v ·Wv for V ∈ p and some
Wv ∈ q.
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To see that p · q is a prime filter, let A0∪̇A1 = A, and define Wi
v := {w ∈

Wv | v · w ∈ Ai} (for i = 0, 1). Since q is prime, there is a function ε : V → 2
with Wε(v)

v ∈ q. Then let Vi = ε−1(i) and since p is prime, for one i ∈ 2 we get
Vi ∈ p. We conclude that

⋃
v∈Vi v ·Wi

v ⊆ Ai ∈ p · q and that p · q is prime. �

This observation is enough to get the desired result.

Proposition B.3
If (S, ·) is partial semigroup, so is (βS, ·).

Proof. We only need to show that the strong associativity of the multiplication
on S is transferred to βS as well.

Step 1: For this let p, q, r ∈ βS. By the above proposition we can calculate the
following equivalences.

p · (q · r) def.
⇐⇒ (∃V ∈ p)(∀v ∈ V) : σ(v) ∈ q · r and (∃W ∈ q)(∀w ∈W) : σ(w) ∈ r
⇐⇒ (∃V ∈ p)(∀v ∈ V)(∃Wv ∈ q, Zv

w ⊆ σ(w) in r) :
⋃

w∈Wv w · Zv
w ⊆ σ(v).

and
(p · q) · r def.
⇐⇒ (∃V ∈ p)(∀v ∈ V) : σ(v) ∈ q and (∃U ∈ p · q)(∀u ∈ U) : σ(u) ∈ r
⇐⇒ (∃V ∈ p, Wv ⊆ σ(v) in q)(∀v ∈ V, w ∈Wv) : σ(v · w) ∈ r.

Step 2: First assume that p · (q · r) is defined and let V, (Wv)v∈V and (Zv
w)w∈Wv

as in the second equivalence for this case, i.e.,
⋃

w∈Wv w · Zv
w ⊆ σ(v). In

particular, v · (w · z) is defined for every w ∈Wv, z ∈ Zv
w.

By the strong associativity of (S, ·) we can conclude that (v · w) · z is defined
(and equal to v · (w · z)), hence Zv

w ⊆ σ(v · w) ∈ r for every v ∈ V, w ∈Wv.

By the second set of equivalances we conclude that p · (q · r) is defined.

Step 3: Second, assume that (p · q) · r) is define and let V, (Wv)v∈V (each
Wv ⊆ σ(v)) be as in the last equivalence for (p · q) · r and set Zv

w = σ(v ·w) ∈ r.

Then
⋃

w∈Wv w · Zv
w ⊆ σ(v) since for w ∈ Wv, z ∈ Zv

w we know (v · w) · z is
defined, hence by strong associativity v · (w · z) is defined (and equal to it),
which in turn implies w · z ∈ σ(v).

This concludes the proof. �

B.2. PS-Ultrafilters

We present an example of a set-theoretically interesting ultrafilter that lies
in N∗ + N∗. This example is due to I. Protasov in [Pro01]; we give a slight
reformulation.

Definition B.4 We define as follows.

• For A ⊆ S let PS(A) := {x · y | x 6= y both in A}
• An ultrafilter p on a semigroup (S, ·) is called PS-ultrafilter if for every

colouring of S there exists A ∈ p, such that PS(A) is homogeneous.
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Igor Protasov conjectured in [Pro01] that every PS-ultrafilter is either selective
or the translation of a strongly summable ultrafilter on a boolean subgroup of
S.

Theorem B.5
Let u be a selective ultrafilter on N. Then u + u is generated by {PS(A) | A ∈ u}.

Proof. Step 1: We need to show that for V, WV ∈ u, the set
⋃

v∈V v + Wv can
be refined by some PS-set in u + u.

We will find as suitable X ∈ u and use the fact that PS(X) =
⋃

x∈X x + X \ {x}
is clearly in u + u. So we aim to assure that

~
⋃

x∈X
x + X \ {x} ⊆

⋃
v∈V

v + Wv.

Step 2: So fix V, (Wv)v∈V in u. Since u is a P-point, we can find X ⊆ V such
that X ⊆∗ Wv for all v ∈ V, furthermore since u is a Q-point, |X \Wv| ≤ 1.
Since X ∈ u we may assume that X = V.

To see what might go wrong in our approach, define x : V → V, v 7→ xv = the
element in V \Wx (or else 0). The element xv is the problematic one, since
v + V \ {v} will include the additional sum v + xv, which v + Wv did not. We
will show that this is never a problem.

Step 3: Since u is selective we can assume (by going to a subset of V still in u)
that x is 1-to-1 or constant on V.

Step 4: Assume x is constant on V, i.e., there exists a unique w such that
V ⊆Wv ∪ {w}. But then V \ {w} ⊆Wv and of course V \ {w} ∈ u, so

PS(V \ {w}) ⊆
⋃

v∈V\{w}
v + V \ {v, w} ⊆

⋃
v∈V

v + Wv ⊆ A.

Therefore we have ~.

Step 5: Now consider the case that x is 1-to-1 on V. We have three subcases.
By going to a subset of V still in the u, we may assume that x = id or x > id
or x < id on V.

Step 6: If x = id, then we’re done, since v + v is never in PS(V). More
specifically, v + V \ {v} = v + Wv. Therefore

⋃
v∈V v + V \ {v} =

⋃
v∈V v + Wv,

and we have ~.

Step 7: If x > id let us consider some v ∈ V. Then v < xv but of course
xv ∈ V, so let us look at Wxv . Of course again xxv /∈ Wxv by choice of x
– but: v < xv < xxv , so v ∈ Wxv . Hence v + xv = xv + v ∈ Wxv . In total
v + V \ {v} ⊆ (v + Wv ∪ xv + Wxv), so

⋃
v∈V v + V \ {v} ⊆ ⋃v∈V v + Wv and

we have ~ again.

Step 8: The case x < id is symmetrical to x > id.

This concludes the proof. �

Note that this result can be seen from another angle.
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Remark B.6 For a selective ultrafilter u consider the ultrafilter u⊗ u ∈ on N2.
It is well known and essentially what we proved above that this ultrafilter has
a base of sets X× X with X ∈ u. Then the addition maps u⊗ u to u + u and
it is not difficult to show that they are isomorphic.

Additionally, u⊗ u fulfils a weak Ramey property for N2 (reducing colourings
with six colours to five colours) which makes it set theoretically interesting.
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Chapter C

On a result by Y. Zelenyuk

In this chapter we wish to partially reproduce an English translation of [Zel96]
with some additional comments.

When I first became interested in this result, Yevhen Zelenyuk was kind
enough to send me a copy of the paper by mail, since there was no digital
copy available. I sincerely thank Lutz Heindorf who was kind enough to
let me record his on-the-fly translation of the Russian original which I later
typset using LATEX. The complete translation is available from me or Yevhen
Zelenyuk.

In the first section we give the reproduction, to which we added only some
minor comments. We skip the introductory comments to jump right in.

C.1. A translated extract from [Zel96]

C.1.1 The approximation Theorem

Let G be an infinite Group, βG its Stone-Čech-Compactification (taking G
discretely), the elements of βG are the ultrafilters over G, as usual we identify
the elements of G with the principal ultrafilers. The set {A | A ⊆ G} with
A = {p ∈ βG | A ∈ p} yields a (zero-dimensional) base for the topology of βG.
The multiplication on G extends to a multiplication on βG; this multiplication
can be characterized by letting {⋃a∈A a · Ba | A ∈ p, Ba ∈ q} be a base for p · q,
being rightcontinuous.

Remark C.1 There is an inclusion reversing bijection between filters on G and
closed, nonempty subspaces of βG, namely

ϕ 7→ ϕ :=
⋂

A∈ϕ A = {p ∈ βG | ϕ ⊆ p}
∅ 6= C = C ⊆ βG 7→ ⋂

p∈C p.

Thus when we write “ϕ a closed subspace of βG” we assume ϕ to be a filter
on G.
Obviously the character of such a space is the same as the character of the
corresponding filter ϕ, i.e., the minimal cardinality of a filter base. We are
mostly concerned with countably generated filters, i.e., filters with a countable
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base. We call a filter free, if it contains the filter of cofinite subsets of G.
The closed subsemigroups of βG are called ultrafilter semigroups of G. As
compact right-topological semigroups they contain idempotent elements.

Lemma C.2
Let S = {pi | i < m} a finite subsemigroup of ultrafilters on G, Fn(pi) (n < ω) a
descending sequence of elements of pi, so that F0(pi) ∩ F0(pj) = ∅ for i 6= j. Let
p(a) := pi whenever a ∈ Fn(pi) for some n.
Then there is a sequence (an)n∈ω in G, such that

1) an ∈ Fn(pi) whenever i = n mod m
2) an0 · . . . · ank ∈ Fn0(p(an0) · . . . · p(ank )) whenever n0 < . . . < nk.

Proof. We construct the sequence recursively. Let A0 ∈ p0 be such that for
p ∈ S

A0 · p ⊆ F0(p0 · p) (since ρp is continuous)

Let a0 ∈ A0 ∩ F0(p0).
Let l ∈ ω and assume we have constructed {an | n < l} such that:

an ∈ Fn(pi) for i = n mod m,
an0 · . . . · ank ∈ Fn0(p(an0) · . . . · p(ank )) for n0 < . . . < nk < l,
an0 · . . . · ank · p ∈ Fn0(p(an0) · . . . · p(ank ) · p) for n0 < . . . < nk < l

and p ∈ S.

Let j = l mod m. We can choose Al ∈ pj such that

an0 · . . . · ank · Al ⊆ Fn0(p(an0) · . . . · p(ank ) · pj),
Al · p ⊆ Fl(pj · p),
an0 · . . . · ank · Al · p ⊆ Fn0(p(an0) · . . . · p(ank ) · pj · pl),

whenever n0 < . . . < nk < n, p ∈ S – this is again since all ρp, ρpi are
continuous and we only have a finite number of combinations to check.

Then we can choose al ∈ Al ∩ Fl(pj) \ {an | n < l}. Then the three condi-
tions are fulfilled for l + 1. Obviously this inductively chosen sequence is as
required. �

Definition C.3 1. A filter ϕ on G is called elementary FP-filter, if there is a
sequence (an)n∈ω in G, such that

FPm(an) = {an0 · . . . · ank | n ≤ n0 < . . . < nk}

is a base of ϕ. We also call ϕ the FP-Filter induced by (an)n∈ω.

2. The union of an increasing sequence of elementary FP-filters is called
FP-filter.

3. A subgroup of ultrafilters ϕ of G is called (elementary) FP-semigroup, if ϕ
is an (elementary) FP-filter. Obviously every elementary FP-semigroup
has countable character.

If the sequence is unambiguous we sometimes write FPm instead of FPm(an).
If G is abelian, we write FS instead of FP.
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Remark C.4 Note that if G is a boolean group, ϕ FS-Filter than ϕ0 = {F ∪
{0} | F ∈ ϕ} a base of a topology.

The following lemma shows, that (3) of the last definition is indeed justified.

Lemma C.5
If ϕ is FP-filter, then for every U ∈ ϕ there is a V ∈ ϕ, such that

V · ϕ ⊆ U.

So ϕ is a semigroup.

Proof. Let ψ be an elementary FP-filter such that U ∈ ψ ⊆ ϕ, and (an)n∈ω an
increasing sequence in G, such that (FPm)m∈ω is a base for ψ, and finally let k
with FPk ⊆ U. It suffices to show, that FPk · ψ ⊆ Uk ⊆ U.
To see this let F ⊆ ω be finite and consider Σi∈Fai ∈ FPm. Then for all
i > max F we have Σi∈F · FPi ⊆ FPm. It follows Σi∈F ·ψ ⊆ FPmin F, so FPm ·ψ ⊆
FPm. �

Now we are ready for the approximation theorem.

Theorem C.6
Let S = {pi | i < N} be a finite subsemigroup of G∗, ϕi countably generated filters,
such that ϕi ⊆ pi and ϕi ∩ ϕj = ∅ for i 6= j.
Then there exist countably generated filters ψi ⊇ ϕi, such that ψ :=

⋂
i<m ψi is an

elementary FP-filter and additionally ψi · ψj ⊆ ψl whenever pi · pj = pl .

Proof. From every filter ϕi choose a decreasing base {Fn(pi) | n < ω}, such
that F0(pi) ∩ F0(pj) = ∅ for i 6= j. Let (an)n∈ω be as in Lemma C.2, let ψ be
the elementary FP-filter induced by this sequence, i.e., with base FPm, and
finally let ψi be the filter with base FPm ∩ F0(pi) =: Vm(pi). Obviously ψi ⊇ ϕi,
ψ :=

⋂
i<m ψi. We need only to show, that ψi · ψj = ψl for applicable i, j, l. It

suffices to show, that Vm(pi) · ψj ⊆ Vm(pl).
So let F ⊆ ω be finite, Σk∈Fak ∈ Vm(pi). Then for t > max F we have
Σk∈Fak ·Vt(pj) ⊆ Vmin F(pl) by lemma 1. Thus follows Σk∈Fak ·ψj ⊆ Vmin F(pl),
hence VM(pi) · ψj ⊆ Vm(pl). �

Corollary C.7
Every semigroup of free ultrafilters of countable character includes an elementary
FP-semigroup.

Proof. Since such a semigroup is again a compact and rightcontinuous, we
can find an idempotent element in it and apply the theorem with m = 1. �
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C.1.2 Finite semigroups of ultrafilters

Definition: and Remark Definition C.8 On the group G consider some FP-filter ϕ.
For every a ∈ G we define

ϕe := {F ∪ {e} | F ∈ ϕ}
ϕa := {a · F | F ∈ ϕe};

this is again a filter and clearly ϕa = a · ϕe. Additionally for every U ∈ ϕe
there is V ∈ ϕe such that U ∈ ϕa for all a ∈ V.
Therefore there is a topology on G, such that the multiplication is rightcon-
tinuous and ϕe the filter of neighbourhoods of e. We denote this topology by
〈ϕ〉.

Proof. This follows from Lemma C.5 as follows: choose V ∈ ϕ such that
V · ϕe ⊆ U, then a · ϕe = ϕa ⊆ U for alle a ∈ V, i.e., U ∈ ϕa.

Lemma C.9
Every semigroup of free filters ϕ of countable character on G includes an elementary
FP-semigroup ψ, such that 〈ψ〉 is regular.

Proof. By the corollary after Theorem C.6 we may assume, that ϕ is already
an elementary FP-filter generated by, say, (an)n∈ω. It suffices to construct a
subsequence (ank )k∈ω such that

1. For every e 6= g ∈ G there is j ∈ ω such that g /∈ Uj := {e} ∪ FPj(anr ).

2. For all j ∈ ω, e 6= g ∈ G with g /∈ Uj, there exists i ∈ ω with g ·Ui ∩Uj =
∅.

(Firstly it suffices to be regular at e. Then 1. shows, that the antecedens of 2.
can be fulfilled for any g 6= e, consequently the topology has a clopen basis.)

Note that it suffices to show 1. and 2. for the subgroup H generated by
(an)n∈ω , since 1. holds trivially for g /∈ H and the negation of the consequence
of (2) implies g ∈ H.
So let (gi)i∈ω be an enumeration of H. We will construct the subsequence
inductively.
For n = 0, we can choose n0 ∈ ω with g0 · {e, an0} ∩ {e, an0} = ∅ (since H is
cancellable).
For the inductive step define

U(i, k) := {e} ∪ FP(ani , . . . , ank−1)

j(i) :=
{

i if gi ∈ U(j, i) for all j < i
min{j | gi /∈ U(j, i)} else,

and assume we have already constructed {ni | i < k} with

~k ∀i < k : gi ·U(i, k) ∩U(j(i), k) = ∅.
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But then we can find nk > nk−1 with ~k+1. For assume otherwise, then there
by the pigeon hole principle there exists i < k + 1 and infinitely many nk such
that gi ·U(i, k) ∩U(j(i), k) 6= ∅. But then we have three cases to check:

i = k, j(k) = k ⇒ gi · {e, ank} ∩ {e, ank} 6= ∅,
i = k, j(k) < k ⇒ gi · {e, ank} ∩U(j(i), k) · {e, ank} 6= ∅,

i < k ⇒ gi ·U(i, k) · {e, ank} ∩U(j(i), k) · {e, ank} 6= ∅.

Of course, the first case leads to a contradiction. Consider the second case.
Again by the pigeon hole principle, there exists an x ∈ U(j(i), k) such that

gi · y1 = x · y2,

where y1, y2 ∈ {e, ank} are fixed (for infinitely many nk). Then

x−1 · gi = y2 · y−1
1 .

But by induction hypotheses and the choice of j(i) we have y1 6= y2, so wlog
for infinitely many nk we have

x−1 · gi = ank .

But this is of course a contradiction.
For the third case, the argument is basically the same. �

ProtasovLemma C.10 (Protasov)
Let ϕ ≤ βG, p ∈ K(ϕ), the minimal ideal of ϕ. Then for all A ∈ p, U ∈ ϕ there
exists finite K ⊆ U such that K−1 AA−1 ∈ ϕ.

Proof. Let p ∈ K(ϕ). Then there exists L min. left ideal (of ϕ!) with p ∈ L.
Let r ∈ ϕ arbitrary. Then rp ∈ L, so L · rp = L 3 p. Thus there exists tr ∈ L
with tr · r · p = p. Then of course A ∈ tr · r · p and U ∈ tr(∈ ϕ). Therefore we
can choose xr ∈ U with A ∈ xr · r · p, i.e., r · p ∈ x−1

r · A. Finally choose Ar ∈ r
with

~ Ar · p ⊆ x−1
r · A.

Since ϕ is compact and ϕ ⊆ ⋃r∈ϕ Ar, there are r1, . . . , rn with

ϕ ⊆ Ar1 ∪ . . . ∪ Arn .

Rename xri := xi. To see that K := {x1, . . . , xn} suffices, let q ∈ ϕ and show
that K−1 AA−1 ∈ q.
Since q ∈ ϕ, choose i with q ∈ Ari . By ~ we have x−1

i A ∈ q · p, so X :=⋃n
i=1 x−1

i A ∈ q · p. So there exists V ∈ q, (Wv)v∈V in p with
⋃

v∈V v ·Wv ⊆ X;
wlog we may assume Wv ⊆ A for v ∈ V. Then

X · A−1 ⊇
⋃

v∈V
v ·Wv · A−1 ⊇

⋃
v∈V

v · e = V.

So we have: ∀q ∈ ϕ :
⋃n

i=1 x−1
i · A · A

−1 ∈ q, i.e., K · A · A−1 ∈ ϕ. �

Lemma C.11
Every countably generated filter ϕ with ϕ ≤ G∗ extends to an elementary FP-filter ψ

with ψ ∩ K(ϕ) = ∅.
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Proof. By the corollary of Theorem C.6 there exists an elementary FP-filter φ
extending ϕ ; let φ be generated by (an)n∈ω.
By Lemma C.10 it suffices to construct a subsequence (anl )l∈ω such that

∃V ∈ ϕ∀U ∈ ϕ, K ⊆ V finite: U \ K−1 AA−1 6= ∅,

where A = FP(anl ).

Then choose ψ as the elementary FP-filter generated by this sequence. Then
clearly no U ∈ ϕ has U ⊆ K−1 AA−1, so K1−AA−1 /∈ ϕ. Since A ∈ p for every
p ∈ ψ, the contraposition of lemma 4 applies.)

If ϕ consists only of uncountable sets, let nl = l; then |K−1 AA−1| ≤ ω, so for
U ∈ ϕ necessarily U \ K−1 AA−1 6= ∅.
Otherwise choose V ∈ ϕ countable. Let {αn | n ∈ ω} the set of all pairs
α = (Uα, Kα), where Uα is in a fixed countable base of ϕ and Kα ⊆ V finite.
We construct the subsequence inductively.
To start off, fix (by an argument similar to the proof of Lemma C.9) some
n0 ∈ ω and some b0 ∈ Uα0 \ K−1

α0
· {e, an0 , a−1

n0
}.

Assume we have chosen ni, bi for i < l such that with Al = FP(an0 , . . . , anl−1)

bi ∈ Uαi \ K−1
αi

Al A−1
l .

Then we can (again by an argument similar to the proof of Lemma C.9) choose
some nl > nl−1 with

bi ∈ Uαi \ K−1
αi

Al+1 A−1
l+1 (for i < l).

Then simply choose bl ∈ Uαl \ K−1
αl

Al+1 A−1
l+1.

From this construction we have bl ∈ Uαl \ K−1
αl

AA−1 6= ∅ for all l < ω. �

Let’s recall some well known semigroup definitions.

Definition C.12 1. A semigroup S is called right(left)-zero semigroup, if pq =
q (pq = p) for all p, q ∈ S, i.e., every element of S is left(right)-neutral.

2. The semigroup S is called chain of idempotent elements, if pq = qp = p or
qp = pq = q for every p, q ∈ S, i.e., S is a chain in the usual partial order
of idempotents given by

p ≤ q⇐⇒ pq = qp = p⇐⇒ pS ⊆ qS, Sp ⊆ Sq.

Note that all these types of semigroups consist entirely of idempotent elements.

Theorem C.13
For every countably generated filter ϕ with ϕ ≤ G∗ and every m ∈ ω, we find a
right-zero, a left-zero subsemigroup and a chain of idempotents each of cardinality m
contained in ϕ.
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Proof. From the theory of complete simple semigroups (K(ϕ) is such a semi-
group) it follows: to have a right-zero semigroup of cardinality m we need to
find m disjoint left ideals in ϕ.

(Take any minimal right ideal R. Then E(R) is right zero, since p · R = R
for all p ∈ E(R), thus for q ∈ E(R) there is t ∈ R with p · t = q, and so
p · q = p · p · t = p · t = q. Now by e.g. [HS98, 1.61] we have E(R ∩ L) 6= ∅ for
every minimal Leftideal L, so we can find m many idempotents in R.)

Of course, the analogue for left zero-holds as well.
By Lemma C.9 ϕ extends to a FP-filter ψ such that the topology 〈ψ〉 is regular.
Consider G with that topology. We can choose an infinite injective sequence
of elements converging to e; denote the set of these elements by A.
Note that |A∗ ∩ ψ| = 2c.
Claim 1: p 6= q in A∗ ∩ ψ⇒ βG · p ∩ βG · q = ∅
To prove this let H := {hn | n ∈ ω} be the subgroup generated by A and let
{gα | α ∈ A} be representatives of the left-equivalence classes of G mod H,
i.e.,

�⋃
α∈A

gα · H = G.

Then we can inductively construct (Pn)n∈ω in p and (Qn)n∈ω in q such that

Pn, Qn ⊆ A, Pn ∩Qn = ∅, Rn := hn · Pn ∪Qn ⊆ H \
⋃
i<n

Ri.

(Having constructed Pi, Qi for i < n we can choose Pn, Qn ⊆ A accordingly,
since

⋃
i<n Ri ∈ hi · p, hi · q and hi · p 6= hn · p, hi · q 6= hn · q.)

Now let

P :=
⋃
{gαhnPn | n < ω, α ∈ A}, Q :=

⋃
{gαhnQn | n < ω, α ∈ A}.

Then P ∩Q = ∅.

(Else we find gαhn pn = gβhkqk, so gα · (hn pnq−1
k h−1

k ) = gβ, therefore α = β,
so by the choice of the Ri follows n = k and thus pn = qk – contradicting
Pn ∩Qn = ∅.)

Additionally βG · p ⊆ P and βG · q ⊆ Q (which finishes the proof).

(To see this, let g ∈ G and choose gα, hn such that g = gα · hn. Then g · p =
gαhn p ∈ gαhnPn ⊆ P; for q and Q this follows similarly.)

To find the left zero semigroup, we show that p · ψ ∩ q · ψ = ∅. Since 〈ψ〉
is regular there are disjoint open sets U ∈ p, V ∈ q. For every a ∈ A ∩U
choose Wa ∈ ψ with a ·Wa ⊆ U, and for b ∈ V choose Wb ∈ ψ such that
b ·Wb ⊆ V (cf. beginning of this section). If we let P :=

⋃{a ·Wa | a ∈ A ∩U},
Q :=

⋃{b ·Wb | b ∈ A ∩V}, then P ∩Q = ∅, p · ψ ⊆ P, q · ψ ⊆ Q.

(To see p · ψ ⊆ P: r ∈ ψ ⇒ A ∩U ∈ p ∧ (Wa)a∈A∩U ⊆ ψ ⊆ r ⇒ P ∈ p · r by
the above choice. q · ψ ⊆ Q follows similarly.)

To finish the theorem we show that the semigroup ϕ has a chain of idempotents
of length m. By Lemma C.11 we can construct a decreasing sequence of
subgroups ϕ = ϕ1 ⊇ ϕ2 ⊇ . . . ⊇ ϕm all of countable character such that
I(ϕi) ∩ ϕi+1 = ∅ for i < m. Let pm an idempotent in ϕm, L minimal left ideal
of ϕm−1 included in ϕm−1 · pm. Furthermore let R be a minimal right ideal
of ϕm−1 included in pm · ϕm−1, and let pm−1 an idempotent element in R ∩ L.
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Then pm−1 < pm. We repeat this to gain in ϕm−1 the appropriate pm−2 < pm−1
and so forth inductively. �

Question C.14
Is there a finite semigroup of ultrafilters on Z that is neither right-zero nor
left-zero nor chain of idempotetents?

C.1.3 A construction of topological groups with fi-
nite semigroups of ultrafilters

Definition C.15 Let (G, τ) be a topological group. We call the set of free
ultrafilters converging to 0, i.e., {p ∈ G∗ | ∀U ∈ τ : 0 ∈ U ⇒ U ∈ p},
the ultrafilter semigroup of (G, τ) or the ultrafilter semigroup of τ; since G is
topological, this is indeed a semigroup.
If G is boolean, than every FS-semigroup ϕ of free ultrafilters on G defines a
group topology for which it is conversely the semigroup of ultrafilters.

Theorem C.16
Assume CH. Let ϕ a free filter on G with countable base and ϕ ≤ G∗, let m ∈ ω.
Then we can extend ϕ to three FP-Filters whose associated subspaces are of cardinality
m and a left-zero semigroup, a right zero semigroup and a chain of idempotents
respectively.

Proof. We prove the theorem for right-zero semigroups.
By the corollary to Theorem C.6 we may assume that G is countable by
switching to the subgroup generated by the elementary FP-filter.
Let {Xα | α < ω1} be an enumeration of the subsets of G. We construct
inductively.
For ξ = 0: By Theorem C.13 we find a right-zero semigroup of cardinality m
in ϕ, say S0 = {p0

i | i < m}.
Choose pairwise disjoint F0

i ∈ p0
i with either F0

i ⊆ X0 or F0
i ⊆ G \ X0; let φ0

i
denote the filter generated from ϕ ∪ {F0

i }.
By Theorem C.6 there exist filters ϕ0

i ⊇ φ0
i such that ϕ0 :=

⋂
i<m ϕ0

i is an
elementary FP-filter with ϕ0

i · ϕ
0
j ⊆ ϕ0

j (since S0 was right-zero).
Fix ξ < ω1 and assume that we have constructed {ϕα

i | α < ξ} (for i < m)
increasing chains of length ξ consisting of countably generated filters such
that for α < ξ the space ϕα :=

⋂
i<m ϕα

i is an elementary FP-filter satisfying
ϕα

i · ϕα
j ⊆ ϕα

j . Define

ψ
ξ
i :=

⋃
α<ξ

ϕα
i , ψξ :=

⋂
i<m

ψ
ξ
i .

Since we had chains, these are all filters and still ψξ ≤ G∗. So let R be a
minimal right ideal in ψξ .

Then R ∩ ψ
ξ
i 6= ∅ right ideal for ψ

ξ
i .
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(Obviously R · ψξ
i ⊆ R since R is a right ideal. On the other hand let x ∈

R ⊆ ψξ , then there are j, α with x ∈ ϕ
β
j for all ξ > β ≥ α, so in fact since

multiplication behaves nicely and we consider chains we get x · ϕβ
i ⊆ ϕ

β
i for

all β < ξ, so ∅ 6= R · ψξ
i ⊆ ψ

ξ
i .)

So there is an idempotent pξ
i ∈ R ∩ ψ

ξ
i . And then Sξ := {pξ

i | i < m} is a
right-zero semigroup.
We then choose for i < m some Fξ

i ∈ pξ
i with either Fξ

i ⊆ Xξ or Fξ
i ⊆ G \ Xξ ;

let φ
ξ
i denote the filter generated by ψ

ξ
i ∪ {F

ξ
i }. By Theorem C.6 there are

countably generated filters ϕ
ξ
i ⊆ φ

ξ
i such that ϕξ :=

⋂
i<m ϕ

ξ
i is an elementary

FP-filter with ϕ
ξ
i · ϕ

ξ
j ⊆ ϕ

ξ
j .

Now for i < m we define pi :=
⋃

α<ω1
ϕα

i . This finishes the construction.
Then by construction pi is an ultrafilter and S := {pi | i < m} is a right-zero
FP-semigroup. (ϕ

β+1
i decides Xβ and by choice of Sβ it remains a semigroup.)

For left-zero the proof is symmetric.
For chains it is still very similar, so we only shortly note some important
points in that proof. Assuming we have increasing sequences {ϕα

i | α < ξ}
for i < m, such that ϕα (definded as above) is an elementary FP-filter but
now with ϕα

i · ϕα
j ⊆ ϕα

min{i,j} (since in this case we take the Sξ to be chains of

idempotents). Define ψ
ξ
i as above and µ

ξ
i :=

⋂
i≤j<m ψ

ξ
j . Then {µξ

i | i < m} a
decreasing sequence of semigroups such that

K(µ
ξ
i ) ∩ µ

ξ
i+1 = ∅ (i < m− 1).

So we have an increasing chain of idempotents Sξ := {pξ
i | i < m} such that

pξ
i ∈ ψ

ξ
i . �

Corollary C.17
Assume CH. Let B be a countable boolean group, then for every m ∈ ω there exist
group topologies (on B) ρm, λm, κm such that the appropriate ultrafilter semigroups
are left-zero, right-zero and chains of idempotents respectively.

Remark C.18 Theorem C.16 can be proven under MA, with increased techni-
cal work.

C.2. A standard generalization

In this section we shortly describe how to prove Remark C.18, i.e., how we
can construct finite semigroups with intersection being an FP-filter using MA
instead of CH.

All we additionally need is the following lemma, the MA-analogue of Lemma
C.1.
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Lemma C.19
Let S := {pi | i < m} HG in G∗ and (Fα(pi))α<κ a sequence in pi for some κ < 2ω

with F0(pi) ∩ F0(pj) = ∅ for i 6= j. We let p(a) := pi, if there is some α < κ with
a ∈ Fα(pi). Assume MA(κ). Then there exists (an)n∈ω in G such that

1. p(an) = pn mod m (so an ∈ Fα(pn mod m) for some α).

2. p(an0 · . . . · ank ) = p(an0) · . . . · p(ank ) for n0 < . . . < nk.

Proof. Let P := {(s, A0, . . . , Am−1) | s ∈ ω<ω, Ai ∈ pi} and partially order P

by (t, ~B) ≤ (s, ~A) iff t ⊇ s, B ⊆ A, rng(t \ s) ⊆ B and ∀x = tn0 · . . . · tnk ∈
FSle(s)(t) : p(x) = p(tn0) · . . . · p(tnk ).

Then clearly P is ccc, since any incompatible elements can only be incompati-
ble in the first coordinate. We define

DFα(pi) := {(s, ~A) | Ai ⊆ Fα(pi)}
Dn := {(s, ~A) | |s| ≥ n}.

Then (DFα(pi))α<κ is dense in P for i < m since pi is a filter. Also (Dn)n∈ω is
dense – this is what the proof of Lemma C.2 tells us. So by MA(κ) we can
take a filter H on P intersecting all these sets; it is not difficult to see, that the
first coordinates of H yield the required sequence. �

And finally a new version of Theorem C.6

Theorem C.20
Let S = {pi | i < N} be a finite subsemigroup of G∗, ϕi be κ generated filters for
some κ < 2ω, such that ϕi ⊆ pi and ϕi ∩ ϕj = ∅ for i 6= j.
Then there exist countably generated filters ψi ⊇ ϕi, such that ψ :=

⋂
i<m ψi is an

elementary FP-filter and additionally ψi · ψj ⊆ ψl whenever pi · pj = pl .

Proof. The proof is the analogue of the proof of Theorem C.6 using the above
Lemma instead of Lemma C.2. �

Now we can turn to our theorem.

Theorem C.21
Assume MA. Let ϕ be a free filter on G with base less than 2ω and fix m ∈ ω.
Then there are three FP-filters whose associated subspaces are of cardinality m and a
left-zero semigroup, a right-zero semigroup and a chain of idempotents respectively.

Proof. Proceed as in Theorem C.16. At uncountable limit stages simply apply
the above Theorem instead of Theorem C.6 and proceed as before. �

Let us end this section with one further remark.
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Remark C.22 Recall that F with symmetric difference is a countable Boolean
group, which is a topological group with the natural Cantor topology on F.
In particular, converging to 0 means to be in δF. Hence finite subsemigroups
as in the above theorem can be found in H.

Then in fact the (non-trivial) right-zero finite semigroups as in the above
theorem consist of right maximal1 but not strongly right maximal idempotents. 1 p is right maximal, if p ≤R x

(i.e., x + p = p), implies x ≤R p
(i.e., p + x = x).They cannot be strongly right maximal since it is a (non-trivial) right-zero

semigroup, i.e. x + p = p for all x and p from the semigroup.

Right-maximality follows from the additional fact that FS-semigroups are
“nearly prime”, cf. Corollary 5.8: Any ≥R idempotent for a given element of
the semigroup must contain all of the FS-sets, hence it is a member of the
finite semigroup, which in a right-zero semigroup immediately implies ≤R.

In particular, assuming MA we can find right maximal idempotent ultrafilters
in βN which are not strongly right maximal.
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idempotent, 21

image (under function), 9

infinite, 8

meager, 47, 52

preimage, 34, 35

preimage (under function), 9

proper, 8

subbase, 9

ultra,maximal,prime, 8

filter product, 21

finite intersection property, 9

Finite Sums Theorem, see Hindman’s
Theorem

Fréchet filter, 8

Galvin filter, 28

Galvin-Glazer Theorem, 17

graph
meshing, 76

Hindman’s Theorem, 18

homomorphism
F-, 29

idempotent filter, 29

partial semigroup, 12

semigroup, 12

ideal, 10, 54

idempotent filter, 21

infinitary partition property, 69
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Lemma
Ellis-Numakura, 15

lemma
Galvin Fixpoint, 16

meshing graph, 76

near coherent, 67

partial semigroup, 10

piecewise syndetic, 37

power set
product topology, 10, 47

pws, see piecewise syndetic

Ramsey property, 69, 70

Ramsey property for pairs, 69

Rudin-Keisler order, 10

semigroup, 10

δS, 11

H, 33

F, 12

adequate, 11

partial, 10

partial semigroups are semi-
groups, 11

semi-topological, 13

splitting pair, 72

Stone-Čech compactification, 9

Stone-Čech remainder, 9

strongly right maximal, 93

sufficient growth, 88

summable ultrafilter, 19

Theorem
Galvin-Glazer, 17

Graham-Rothschild, 77

Hindman, 18

Zelenyuk, 103, 108

theorem
Galvin-Glazer, 64

topological family, 46, 47

topology
of the power set, 10, 47

ultrafilter, 8

P-point, 19

P-point, 52, 99

Q-point, 19

ordered union, 62

partial order of idempotents,
18, 40

special summable, 88, 89, 95

special union, 88, 89

stable ordered union, 64, 69,
99

stable union, 62, 70

strong P-point, 19, 52

summable, 99

unordered union, 73, 74, 81, 83

Ramsey, 19, 52, 64, 83

rapid, 19, 52, 53

selective, 19, 52, 64, 83, 99

summable, 19, 43, 44, 55

union, 19, 55, 62, 67, 83

union ultrafilter, 19

Zelenyuk’s Theorem, 103, 108

ZFC, 8
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Zusammenfassung

Gegenstand der vorliegenden Arbeit sind Filter auf Halbgruppen und deren
Eigenschaften bezüglich Algebra in der Stone-Čech Kompaktifizierung.

Die Menge der Ultrafilter auf einer Menge S kann mit βS identifiziert werden,
der Stone-Čech Kompaktifizierung von S mit diskreter Topologie. Ist S eine
Halbgruppe, so lässt sich eine assoziative Operation auf βS definieren, die
die ursprüngliche Operation auf S fortsetzt. Dies ist dergestalt möglich, dass
die Operation stetig ist, solange das rechtsseitge Element fixiert ist; nach
dem Lemma von Ellis-Numakura gibt es daher idempotente Elemente in
βS, d.h. idempotente Ultrafilter. Idempotente Ultrafilter stehen im Zentrum
des Forschungsgebiets der Algebra in der Stone-Čech Kompaktifizierung vor
allem, weil sie elegante Beweise für ramseytheoretische Resultate wie den Satz
von Hindman, den Satz von Hales-Jewett und den Satz von zentralen Mengen
ermöglichen.

Obwohl Ultrafilter für Mengentheoretiker von natürlichem Interesse sind,
gibt es nur wenige Unabhängigkeitsresultate zu idempotenten Ultrafiltern.
Eine der grundlegenden Fragen dieser Dissertation besteht deshalb darin, ob
dies Zufall ist oder nicht: Sind jene Ergebnisse isoliert oder gibt es vielfältige
mengentheoretische Konstruktionen analog zu den unterschiedlichen Forc-
ingkonstruktionen reeller Zahlen.

Im ersten Teil dieser Arbeit geben wir eine positive Antwort auf diese Frage.
In Kapitel 3 entwickeln wir eine allgemeine Herangehensweise, um idempo-
tente Ultrafilter mit Hilfe der Forcingmethode zu adjungieren. Außerdem sind
wir in der Lage, die Forcingkonstruktionen zu unterscheiden, indem wir sie
mit bekannten Konstruktionen für mengentheoretisch interessante Ultrafilter
assoziieren. Zu diesem Zweck studieren wir in Kapitel 2 den Begriff des idem-
potenten Filters. Dieser Begriff basiert auf der natürlichen Verallgemeinerung
der Multiplikation von Ultrafiltern zu einer Multiplikation von Filtern.

Idempotente Filter finden sich implizit in vielerlei Anwendungen des Gebietes.
Neben ihrer Nützlichkeit für die Forcingkonstruktionen besitzen idempotente
Filter eine elegante Theorie, die wir in Kapitel 2 entwickeln. So induzieren
idempotente Filter zum Beispiel Halbgruppen mit sehr starken Abschlus-
seigenschaften und sind gleichzeitig eine Verallgemeinerung des Konzepts
der partiellen Halbgruppe. Die Theorie der idempotenten Filter emöglicht
uns außerdem eine vereinfachten Beweis einer Verallgemeinerung des Satz
von Zelenyuk über endliche Gruppen in βS zu formulieren.

Da wir die obige Frage positiv beantworten, stellt sich automatisch eine
weitere: Welche kombinatorischen und algebraischen Eigenschaften können
unsere Forcingkonstruktionen besitzen? Diese Frage motiviert die Analyse
der Mischung von mengentheoretischen und kombinatorischen Eigenschaften
der sogenannten Union Ultrafilter einerseits, sowie der algebraischen Eigen-
schaften des verwandten Begriffs der summierbaren Ultrafilter andererseits.
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Das Konzept der Union Ultrafilter wurde von Andreas Blass 1987 entwick-
elt; in seiner Arbeit mit Neil Hindman wurde die Äquivalenz von Union
Ultrafiltern mit den schon bekannten summierbaren Ultrafiltern sowie die
Unabhängigkeit ihrer Existenz etabliert.

In Kapitel 4 beantworten wir die offene Frage negativ, ob ein Union Ultrafilter
schon Ordered Union ist, falls bestimmte Bilder des Ultrafilters Ramsey
Ultrafilter sind. In Kapitel 5 untersuchen wir die algebraischen Eigenschaften
der summierbaren Ultrafilter. Insbesondere zeigen wir, dass die „special“
Bedingung von allen Summierbaren erfüllt wird, und verallgemeinern mit
Hilfe dieses Resultats einen Satz von Hindman und Strauss über summierbare
Ultrafilter als Summen.
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