
 

 

 

Aus dem Institut für Medizinische Psychologie 

der Medizinischen Fakultät Charité – Universitätsmedizin Berlin 

 

DISSERTATION 

 

Characterization in humans of in vitro leukocyte maximal telomerase activity 

capacity (mTAC) and association with stress 

 

zur Erlangung des akademischen Grades 

Doctor rerum medicinalium (Dr. rer. medic.) 

 

vorgelegt der Medizinischen Fakultät 

Charité – Universitätsmedizin Berlin 

 

von 

 

Karin de Punder 

aus Purmerend 

 

 

Datum der Promotion: 14.09.2018 
 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/199421044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

2 
 

Table of Contents 

 

 

Abstract (German) 3 

Abstract (English) 5 

Affidavit 7 

Excerpt from the Journal Summary List (ISI Web of KnowledgeSM) 9 

Decision Letter 13 

Characterization in humans of in vitro leukocyte maximal telomerase activity capacity 

(mTAC) and association with stress 

14 

Supplemental material 43 

Curriculum Vitae 46 

List of Publications 47 

Acknowledgements 52 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

3 
 

Abstract (German) 

 

Hintergrund: Telomerase, ein zelluläres Transkriptionsenzym, das der Telomerverkürzung 

entgegenwirkt und wichtig ist für gesunde Zellfunktion, ist ein vielversprechender Biomarker 

hinsichtlich pathologischer Folgen von Stress auf zelluläre Alterungsprozesse. Bisherige Studien zur 

Messung von Telomeraseaktivität oder -expression haben dies meistens unter basalen Bedingungen 

durchgeführt. Basale Telomerase-Werte sind jedoch aufgrund der niedrigen Expressionsrate und der 

dynamischen Regulation der Telomerase in Leukozyten sehr schwierig zu messen und zu 

interpretieren. Im Gegensatz zur basalen Expressionsrate kann Telomerase-Aktivität im Rahmen 

eines ökologisch-validen Challenge Tests wie der in vitro Mitogen-Stimulation quantifiziert werden. 

Ein potentieller Vorteil dieses Verfahrens ist, dass dadurch die o.a. Einschränkungen der 

Interpretierbarkeit der basalen Telomerase-Aktivität umgangen werden können, und man somit die 

Möglichkeit hat, individuelle Unterschiede zu erfassen in der Kapazität des Telomersystems auf 

einem immunologischen Stimulus zu reagieren. 

Ziel: Das Ziel der Studie bestand in der Entwicklung und Validierung eines Maßes der maximalen 

Telomerase-Aktivitätskapazität (mTAC) zur Nutzung in Humanstudien im Bereich der Telomer-

Biologie. Außerdem wurde der Zusammenhang dieses Maßes mit Stress bzw. Stressreaktivität 

untersucht.  

Methoden: Zuerst wurde der optimale post-stimulative Zeitverlauf zur mTAC-Charakterisierung mit 

einem in vitro Mitogen-Challenge-Protokoll (PHA ergänzt durch Interleukin(IL)-2) bestimmt. 

Danach wurden sowohl mTAC in Leukozyten und Cortisolkonzentrationen im Speichel von 28 

jungen gesunden Proband/innen zu verschiedenen Messzeitpunkten im Verlauf des Tages und im 

Rahmen eines standardisierten Paradigmas zur Induktion psychosozialen Stresses im Labor 

gemessen. Darüber hinaus wurde in einem Teil der Stichprobe Durchflusszytometrie verwendet, um 

die Immunzell-Verteilung vor Stimulation zu bestimmen. Die wahrgenommene (chronische) 

Stressbelastung wurde durch die Perceived Stress Scale erfasst.  

Resultate: Der optimale Zeitpunkt zur Quantifizierung von mTAC in humanen Leukozyten liegt bei 

72 Stunden nach Mitogen-Stimulation. mTAC weist eine erhebliche Stabilität innerhalb von 

Personen auf und wird nicht durch situationsbedingte Faktoren wie Tageszeit, Cortisol, akute 

Stressexposition und Immunzell-Verteilung beeinflusst. Ein signifikanter Anteil der Varianz 

zwischen Personen in mTAC wird durch chronische Stressbelastung und biologische 
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Stressreaktivität erklärt. Insbesondere waren mTAC-Werte bei Personen mit hoher 

wahrgenommener Stressbelastung um 25% niedriger im Vergleich zu Probanden mit mittlerem oder 

niedriger wahrgenommener Stressbelastung. Außerdem erklärten individuelle Unterschiede in der 

Cortisolreaktion auf Laborstressexposition 32% der Varianz von mTAC. 

Fazit: Basierend auf diesen Ergebnissen kann man schlussfolgern, dass mTAC einen nützlichen 

individuellen Marker für stressbezogene Humanstudien im Bereich der Telomerbiologie darstellt. 
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Abstract (English) 

 

Background: Telomerase, a cellular reverse transcriptase enzyme that can counteract telomere 

shortening and, in addition, preserves healthy cell function, constitutes a promising target for 

research into the pathological effects of stress on cellular aging. Previous studies that have included 

measures of telomerase have typically measured telomerase expression or activity under basal 

(resting) conditions. It is, however, challenging to reliably quantify or interpret these data because 

leukocyte telomerase is typically expressed at very low levels and is dynamic in nature. In contrast 

to basal measures, telomerase activity can be quantified in response to an ecologically-valid 

challenge such as mitogen stimulation in vitro. The potential advantage of this approach is that it 

may bypass the above-mentioned limitations to provide an indicator of individual differences in the 

capacity of the telomere biology system to respond to an immunological challenge.  

Objective: The aim of this study was to validate an in vitro measure of leukocyte maximal 

telomerase activity capacity (mTAC) for use in human studies of telomere biology, and to determine 

its association with measures of stress and stress responsivity.  

Methods: First, the optimal post-stimulation time course to characterize mTAC was established 

using an in vitro mitogen challenge (phytoheamagglutinin (PHA) supplemented with 

interleukin(IL)-2). Next, mTAC was measured in leukocytes and cortisol concentrations were 

assessed in saliva obtained from 28 healthy young women and men at different times of the day and 

before and after a standardized laboratory stressor. In addition, immune cell distributions prior to 

mitogen stimulation were determined by flow cytometry in a subset of the participants. Perceived 

(chronic) stress also was assessed using the Perceived Stress Scale. 

Results: The optimal time point to quantify human leukocyte mTAC was 72 hours after mitogen 

stimulation. mTAC exhibited substantial within-subject stability across time and was not influenced 

by situational factors including time of day, cortisol concentration, acute stress exposure, and 

immune cell distribution. A significant proportion of the between-subject variability in mTAC was 

associated with measures of stress and stress responsivity. Particuarly, there was a 25% difference in 

mTAC between subjects reporting high compared to medium or low levels of perceived (chronic) 

stress. Also, individual differences in the cortisol response to stress-exposure accounted for as much 

as 32% of the variation in mTAC. 
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Conclusion: Based collectively on these findings, it appears that mTAC may represent a potentially 

useful individual difference measure in stress-related studies of the human telomere biology system. 
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Summary 

 

 The goal of the present study was to develop and validate a measure of maximal telomerase activity 

capacity (mTAC) for use in human studies of telomere biology and, to determine its association with 

measures of stress and stress responsivity. The study was conducted in a population of 28 healthy young 

women and men who were assessed serially across two separate days, at multiple time points, and in response 

to a standardized laboratory stressor. Venous blood was collected at each of these multiple assessments and 

an in vitro mitogen challenge (PHA supplemented with interleukin(IL)-2) was used to stimulate telomerase 

activity in leukocytes. After first establishing the optimal post-stimulation time course to characterize mTAC, 

we determined the within-subject stability and the between-subject variability of mTAC. The major findings 

of our study are as follow: 1) The optimal time point to quantify human leukocyte mTAC appears to be at 72 

hours after mitogen stimulation; 2) mTAC exhibits substantial within-subject stability (correlations ranged 

between r’s 0.68 – 0.82) and between-subject variability, with a high intra-class coefficient (ICC = 0.70), 

indicating greater between-subject relative to within-subject variability; 3) mTAC is not influenced by 

situational factors including time of day, cortisol, acute stress exposure, and immune cell distribution in the 

pre-stimulation blood sample; and 4) a significant proportion of the between-subject variability in mTAC is 

associated with measures of stress and stress responsivity (mTAC is lower in subjects reporting higher levels 

of perceived (chronic) stress and exhibiting higher psychophysiological stress reactivity). Based collectively 

on these findings, it appears that mTAC, as proposed and operationalized, empirically meets the key criteria 

to represent a potentially useful individual difference measure of telomerase activity capacity of human 

leukocytes. 

 

1. Introduction 

 

1.1. Overview 

 A substantial and converging body of epidemiological, clinical and experimental evidence supports a 

fundamental role for the telomere biology system in the maintenance of DNA and cellular integrity, with 

important implications for health and disease risk across a wide range of age-related disorders [1-4]. The 

telomere biology system comprises of two closely interlinked components – the length of telomeres (TL; 

non-coding double-stranded repeats of guanine-rich tandem DNA sequences and shelterin protein structures 

that cap the ends of linear chromosomes), and the activity of telomerase (the reverse transcriptase enzyme 

that adds telomeric DNA to telomeres) [5, 6]. The majority of human epidemiological and clinical studies of 

the role of telomere biology in health and disease risk have focused largely on the telomere length component 

of this system. Relatively few studies have considered the role of telomerase. Because the expression and 
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activity of telomerase constitutes a critical and complementary (i.e., non-redundant) component of the 

functional integrity of the telomere biology system, we suggest that it may be important to incorporate 

telomerase-related measures in studies. This, then, leads to the question of how to optimally quantify this 

component of the system in human epidemiological or clinical studies. The relatively few studies that have 

included measures of telomerase have typically measured telomerase expression or activity under basal 

conditions or in terms of its acute (short-term) response to systemic challenges (see, e.g., [7]). It is, however, 

challenging to reliably quantify or interpret these data for several reasons. Firstly, telomerase is typically not 

expressed, or expressed only at very low levels, in most resting cells (including immune cells) [8]. Secondly, 

telomerase levels may vary as a function of cell cycle stage and other factors [9]. And thirdly, differences or 

changes in telomerase may reflect either the direct effects of states or conditions that stimulate telomerase 

expression (e.g., infection), or the secondary (compensatory/counter-regulatory) adaptations to states or 

conditions that reduce telomere length [10]. Thus, in contrast to assessment of basal telomerase, we suggest it 

may be more informative to assess telomerase expression or activity in cells in response to a standardized 

stimulus, such as a mitogen challenge, in well controlled ex vivo conditions. The potential advantage of this 

approach is that it may bypass the above-mentioned limitations to provide an indicator of individual 

differences in the capacity of the telomere biology system to respond to an ecologically relevant challenge. 

This, in principle, is similar to the information provided about the integrity of the glucose homeostatic system 

by serial measures of blood glucose and insulin in response to ingestion of a standardized glucose load. 

Accordingly, we propose that maximal telomerase activity capacity (hereinafter referred to as mTAC) may 

represent an individual difference measure that, by itself, or in combination with measures of telomere length, 

could prove to be potentially and particularly informative in studies of telomere biology, health and disease 

risk. In order for a construct such as mTAC to serve as a potentially useful individual difference measure, it 

should meet at least two criteria: high within-subject stability, and substantial between-subject variability. 

Other considerations in this specific context include selection of the optimal cell population, challenge, its 

dose, and the time course that best captures telomerase expression/activity. 

 Given the importance of stress and stress physiology as a likely regulator of the telomere biology 

system, the observation that many of the previous studies of human telomerase have been conducted in the 

context of stress, and the specific interest of our own research program in the effects of stress and stress 

biology on health and disease risk, we additionally elected to determine within-subject stability and between-

subject variability of mTAC in the context of stress. Accordingly, we used an extensively validated acute 

psychosocial stress challenge (the Trier Social Stress Test; TSST) to examine the within-subject stability of 

mTAC, and we used reliable and previously-validated measures of perceived (chronic) psychological stress 

and individual differences in physiological stress reactivity to examine the between-subject variability of 

mTAC. Since several physiological systems (including stress biology) exhibit chronobiological regulation, 
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we also considered the influences of situational factors such as time of day of blood sample collection and 

cortisol concentration on the within-subject stability of mTAC, and of factors such as sleep quality, 

chronotype and the slope of the diurnal change in cortisol on the between-subject variability of mTAC. Last, 

we determined the extent to which mTAC may be driven by the composition of immune cell subpopulations 

before mitogen stimulation. 

 

1.2. The telomere biology system 

 The telomere biology system is a highly evolutionarily conserved system that plays a central role in 

maintaining the integrity of the genome and cell. As mentioned above, telomere biology refers to the 

structure and function of two closely interlinked entities—telomeres, non-coding double-stranded repeats of 

guanine-rich tandem DNA sequences and shelterin protein structures that cap the ends of linear chromosomes 

[11, 12], and telomerase, the reverse transcriptase enzyme that adds telomeric DNA to telomeres [1, 5, 6]. 

 Because DNA polymerase is unable to fully replicate the 3’ end of the DNA strand, telomeres lose 

approximately 30-150 base pairs (bp) with each cell division and eventually reach a critical short length, 

resulting in decreased recruitment of shelterin proteins to form the protective internal nucleotide loops, 

which, in turn, leads to cellular senescence. Once cells become senescent, they exhibit a variety of 

(epi)genetic and morphological changes that result in loss of cell and tissue function.  Shortened telomeres 

have been linked to several age-related disease risk factors, disease prevalence and progression [1-4, 13-18] 

and early mortality [19, 20]. Moreover, some recent reports have suggested a causal role for telomeres in the 

etiology of many of these adverse health outcomes [21]. 

 The enzyme telomerase is a ribonucleoprotein consisting of a RNA component (TR or TERC) and a 

catalytic protein domain (TERT). Conventional DNA polymerase machinery is unable to fully replicate the 

ends of linear chromosomes. The enzyme telomerase utilizes its own template to add short TG-rich repeats to 

chromosome ends, thus reversing or attenuating their gradual erosion at each round of replication [6, 22]. 

Telomerase is regulated by epigenetic, translational and posttranslational mechanisms [23]. Its expression 

varies during development, cell cycle stage, and across cell types [9, 24]. Typically, telomerase activity is 

diminished or absent in most adult somatic cells, with the exception of cells with a strong potential for 

division, such as germ cells, stem cells of proliferating tissues, and activated immune cells [24]. Of particular 

relevance here, it is well established that activated lymphocytes express high telomerase levels [8, 9, 25, 26]. 

This up-regulation of telomerase is believed to prevent immune cell senescence and facilitate a fast and 

profound clonal cell expansion. Very occasionally cells bypass the cellular senescence and DNA damage 

signaling pathways described above to constitutively express high levels of telomerase, which is a 

characteristic feature in about 90% of all malignancies [27]. This feature of telomerase biology is beyond the 

scope of the current study, and is therefore not addressed here. 
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 Telomerase not only maintains telomere length but also preserves healthy cell function. Telomerase 

promotes proliferation of resting stem cells, modulates signaling pathways during embryogenesis and normal 

adult tissue genesis, protects cellular proliferation capacity and survival under conditions of cellular stress 

[28], and gets excluded from the nucleus to co-localize with mitochondria to protect mitochondrial DNA and 

function [29, 30]. Thus, because the effects of telomerase on cellular function extend beyond, and are 

uncoupled from, those of telomere lengthening [31], measures of telomerase expression and activity could, in 

addition to telomere length, provide valuable insight regarding the role of the telomere biology system in 

health and disease risk. 

  

1.3. Basal leukocyte telomerase 

 Studies of the association of basal leukocyte telomerase with health, disease risk (other than cancer) 

and conditions such as stress have largely yielded inconsistent results. Several but not all studies suggest that 

basal telomerase expression/activity appears to be up-regulated in autoimmune disorders, with differences 

between active and inactive disease [32], and between early-and advanced-stage disease [33], Findings in the 

context of psychiatric disorders such as depression, schizophrenia, and posttraumatic stress disorder (PTSD) 

appear to be more heterogeneous [34-38]. The same pattern of mixed findings is evident in the context of 

chronic stress exposure, with some suggesting suppression [7, 39-41], and others suggesting stimulatory 

effects of stress on telomerase activity [10, 42]. This heterogeneity may be a consequence of the fact that 

telomerase is regulated in response to various factors such as cell cycle stage [9], stress hormones [7], and 

inflammation [43, 44], which, in turn, may introduce bias based on time of day of blood sample collection 

[45], current infections [43, 44], physical exercise [46], or acute stress exposure status [7]. In addition, 

elevations in basal telomerase may reflect the counter-regulatory (compensatory, secondary) adaptations to 

states/conditions that reduce telomere length. For example, high telomerase in conjunction with shorter TL 

may be indicative of a physiologically stressed system [10]. Lastly, because telomerase is normally expressed 

at very low levels in resting cells, the lower limit of detection of many telomerase assays may place 

constraints in terms of reliable quantification [47]. 

 

1.4. Stimulated leukocyte telomerase 

 Hiyama et al [8] were the first to describe the up-regulation of telomerase in leukocytes after in vitro 

mitogen stimulation. Telomerase was detectable in very low levels in isolated peripheral blood mononuclear 

cells (PBMCs), but increased up to 300-1000 fold over a 1 week-period in cultured T-cells stimulated with 

PHA and IL-2, and increased up to 30 fold over a 1 week-period in cultured B-cells stimulated with 

Pokeweed mitogen. Similarly, Yamada et al [26] used PHA and IL-2 to stimulate PBMCs and observed over 

a 96 h period that telomerase activity started to increase after 24 h and peaked at 72 h.  
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 The observation by Son et al [48] that the capacity for induction of telomerase activity in T- or B-

cells after in vitro stimulation varied significantly across subjects but did not change as a function of subject’s 

age (the age of study participants ranged between birth and 94 years age) provides the first indication that this 

measure may reflect a stable individual difference characteristic. This observation has since been replicated 

by other studies [49, 50].  However, to date, only few studies have characterized the association of measures 

of stimulation-induced telomerase with health and disease states [50-54]. Broadly, these studies have reported 

that the mitogen stimulated leukocyte telomerase response appears to be attenuated in subjects with 

autoimmune conditions such as systemic lupus erythematosus [52], rheumatoid arthritis [50, 53], and 

unchanged in conditions such as atopic dermatitis [54] and chronic hepatitis B infection [51]. 

 Two studies have examined the association of stimulated human leukocyte telomerase with chronic 

stress. An in vitro experiment by Choi et al [55] modeled the effect of chronic stress exposure and found that 

co-exposure of human T-cells stimulated with PHA and IL-2 to exogenous cortisol reduced hTERT 

transcription and inhibited telomerase production across a 3-day period. In a study of caregivers of patients 

with Alzheimer’s disease (stress exposure group) and age-matched controls, basal PBMC and T-cell 

telomerase levels were increased in caregivers compared to controls, while no differences were observed 

across a 3-day period in antigen-stimulated telomerase levels (with anti-CD3/CD28 monoclonal antibody) 

[42].  

 

1.5. Maximal Telomerase Activity Capacity (mTAC) measure: key considerations 

 Based on the findings and considerations discussed above, we propose that mTAC may represent an 

individual difference measure that, by itself, or in combination with measures of telomere length, could prove 

to be potentially and particularly informative in studies of telomere biology, health and disease risk.  Several 

considerations guided our development of this measure for possible use in human epidemiological and 

clinical studies, including the following questions: What is the optimal cell population, optimal challenge, its 

optimal dose, and the optimal time course that captures cell capacity for telomerase expression/activity? 

 We selected PBMCs as the cell population of choice because it is relatively easy and convenient to 

obtain blood samples; telomere length in human studies is most commonly measured in peripheral 

leukocytes; and telomere length and telomerase activity are closely associated with immune function due to 

their important role in lymphocyte development, differentiation and replicative capacity. We, therefore, 

reasoned that quantifying mTAC in PBMCs could be particularly informative, and this also would increase 

the feasibility of the use of this measure in clinical studies (as opposed to a single more specific immune cell 

types such as T-cells). 

 PBMCs were stimulated with phytohemagglutinin (PHA, 10 µg/ml) supplemented with IL-2 (50 

units/ml), because it induces lymphocyte (especially T-cell) proliferation. In humans, telomerase is typically 
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expressed in lymphocytes by induction of activating and proliferating pathways (e.g., T-cell clonal expansion 

during a viral infection). We selected the 10 µg/ml PHA dose because maximal lymphocyte proliferation is 

known to occur at this dose [56], and we added IL-2 because of its importance in the maintenance of immune 

cells, including T-cells, B-cells and NK cells, and because it has a synergistic effect on the proliferation of T 

cells and on leukocyte telomerase expression [26, 57]. 

 To establish the optimal time course for characterization of mTAC we considered 3 investigational 

parameters: i) telomerase activity, as quantified by the TeloTAGGG Telomerase PCR ELISA plus assay; ii) 

changes in immune cell populations; and iii) changes in cell viability.  Previous studies have reported that 

across a time period spanning 8 consecutive days after mitogen stimulation, peak leukocyte hTERT mRNA 

expression occurs between 3 to 5 days after stimulation [50]. Most studies to date have used a 3-day 

incubation protocol with and without the addition of IL-2, and have used PHA, [49, 58] CD3-monoclonal 

antibodies [42, 50, 53, 54], or PMA/Ionomycin [48, 52] as a stimulant to induce telomerase activity or 

hTERT mRNA expression in leukocytes or leukocyte subsets.  Our criteria for characterizing the ‘optimal’ 

time was to determine the balance between the time required to enable quantification of the maximal 

telomerase activity capacity without producing major alterations in immune cell subpopulations and cell 

viability (as these changes could, in and of themselves, influence telomerase production and activity [48, 59]. 

 

1.6. Goals 

 Thus, to summarize, the primary goals of our study were to establish the optimal time course to 

characterize human leukocyte maximal telomerase activity capacity (mTAC), determine the within-subject 

stability and between-subject variability of mTAC, and determine its association with measures of stress and 

stress responsivity. To determine the within-subject stability of mTAC, we considered the possible influences 

of situational factors such as time of day of blood sample collection, cortisol concentration, and acute social 

stress exposure. To determine the between-subject variability of mTAC, we considered the possible influence 

of factors including sleep quality, chronotype, the slope of the diurnal change in cortisol, perceived (chronic) 

stress, and psychophysiological stress responsivity. Last, we also determined the extent to which changes in 

mTAC may be driven by (or a reflection of) changes in immune cell subpopulations following mitogen 

stimulation. 

 

2. Materials and Methods 

 

2.1. Participants 

 The study population comprised 28 young adults (14 women and 14 men, mean age 23.8 ± 3.3 (SD) 

years) recruited through announcements at universities in Berlin, Germany, and 5 additional adults who 
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donated a single blood sample for the mTAC optimal time course assessment. All subjects were healthy (no 

acute or chronic health problems), as ascertained by self-report and confirmed by a brief clinical examination. 

All subjects also were non-smokers and medication free, except for oral contraceptives (all female subjects 

were oral contraceptives users). Mean body mass index (BMI) was 20.9 ± 1.7 (SD). The study was approved 

by the medical ethics committee of Charité Universitätsmedizin Berlin and was conducted in accordance with 

the Declaration of Helsinki. All subjects provided written informed consent before participation.  

 

2.2. Study protocol 

 Subjects reported to our research laboratory on two occasions: Test Day 1 – the “chronobiology day”; 

and Test Day 2 – the “Trier Social Stress Test (TSST) day” (see Figure 1), with an approximately one week 

interval between the first and second study visits. On both study days, participants were asked to refrain from 

strenuous physical exercise and consumption of alcoholic beverages 24 h prior the study assessments. 

 On Test Day 1, participants were asked to come to the laboratory after an overnight fast. Venous 

blood and saliva samples were collected at three time points across the day (at 8 a.m., 1 p.m., and 7 p.m.). 

Participants were asked to refrain from eating at least 2.5 h before the 1 p.m. and 7 p.m. blood draws. On Test 

Day 2, participants were asked to come to the laboratory at 2 p.m. and to refrain from eating at least 2.5 h 

before that time. Participants were then exposed to the Trier Social Stress Test (TSST). This laboratory-based 

protocol consists of a free speech task and a mental arithmetic task of 15 min duration performed in front of 

an audience and a camera [60]. This protocol is among the most extensively validated tasks for the induction 

and assessment of acute psychophysiological stress responses, and has been found to induce significant 

endocrine (cortisol, ACTH), and autonomic nervous system (as indexed by heart rate and blood pressure) 

responses in the vast majority of subjects [61]. Blood and saliva samples were obtained before (-10 min) and 

after (+30 min, +90 min) the TSST, whereas heart rate was measured continuously (Actiheart, CamNtech) 

during this period. Saliva was collected by placing cotton swabs (Salivettes, Sarstedt, Nümbrecht, Germany) 

in the participant’s mouth for 2 min, and salivettes were immediately frozen at -80° C. Blood was collected in 

citrate containing vacutainers (BD Vacutainer) and processed as described below for various assays. 

 

2.3. Questionnaires 

 Participants completed several standardized and previously-validated questionnaires. Perceived 

(chronic) psychological stress over the past month was quantified using the 10-item version of the Perceived 

Stress Scale (PSS) [62]. Chronotype was assessed using the Morningness Eveningness Questionnaire (MEQ) 

[63]. Sleep quality (global sleep quality score) was assessed using the Pittsburgh Sleep Quality Index (PSQI) 

[64]. 
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2.4. Cortisol assays 

 Salivary cortisol was determined using a commercial ELISA kit (Salimetrics, 1-3002), with a 

sensitivity of 0.007 μg/dL. Intra-assay and inter-assay coefficients of variability were 5.9% and 7.3%, 

respectively. 

 

2.5. Maximal telomerase activity capacity (mTAC) 

 Peripheral blood mononuclear cell (PBMC) isolation: PBMCs were isolated from peripheral blood 

collected in citrate tubes through a standard Ficoll protocol with SepMate tubes (Stemcell Technologies), and 

live cells were counted with a hemocytometer. Cells were then frozen using a Mister Frosty freezing chamber 

at a concentration of 1 x 107 cells/ml in freezing media of fetal bovine serum (HyClone, Thermo Scientific) 

and 10% DMSO (Sigma-Aldrich) until subsequent stimulation experiments (for more details see 

Supplemental material) 

 

 Mitogen stimulation protocol: Cells were thawed and washed in RPMI 1640 medium (Gibco®) 

containing 10% fetal bovine serum (HyClone, Thermo Scientific). Exactly 1 x 106 PBMCs were stimulated 

with phytohemagglutinin (PHA) (10 µg/ml) (Sigma-Aldrich) (to induce lymphocyte proliferation) [56], 

supplemented with IL-2 (50 units/ml) (Sigma-Aldrich) (for the maintenance of immune cell, including T-

cells, B-cells and NK cells, and its synergistic effect on lymphocyte proliferation and leukocyte telomerase 

expression [26, 57]). Cells were cultured at 37˚C and 5% CO2 for a period of 8 days for the time course 

study, and for a period of 72 h for the other studies. For each individual and each study day, cells obtained at 

each of the three different time points were thawed and stimulated at the same time (in the afternoon) and 

were cultured in the same 12-well plate (for more details see Supplemental material). 

 

 Telomerase activity: Telomerase can be quantified by determining the presence of hTERT and/or 

other proteins of the telomerase enzyme complex, or by measuring the activity of the telomerase enzyme. 

Telomerase activity can be assessed by using the telomeric repeat amplification protocol (TRAP) assay, 

which relies on the ability of the telomerase enzyme to add telomere repeats to specifically designed oligo-

nucleotide primers [65]. Since the induction of telomerase activity in lymphocytes has been previously 

determined to occur independent of changes in mRNA or protein expression [23], we elected to quantify 

activity (instead of expression), and did so using the TeloTAGGG Telomerase PCR ELISA plus kit (Roche), 

which combines a TRAP assay with detection by ELISA. The linear range of this assay was first assessed 

using extracts of various cell numbers (stimulated PBMCs). Cell pellets were lysed in ice-cold CHAPS lysis 

buffer at a concentration of 1000 cells/µl and incubated for 30 min on ice. After incubation, the lysates were 

centrifuged at 16,000 x g for 20 min at 4°C. An extract corresponding to 1,000 cells (1 µl) was added to each 
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PCR reaction. Amplification products were hybridized to a DIG-labelled telomeric repeat-specific probe 

bound to a streptavidin-coated 96-well plate. The binding reaction was detected with an anti-DIG-peroxidase 

antibody, visualized by a color reaction product and quantified photometrically. The absorbance of each 

sample was measured at 450 nm reading against the blank (reference wavelength 620 nm). Each negative 

sample was obtained by heat treatment (30 min at 94 °C). The relative telomerase activities of the samples 

were determined by comparing the signal from the sample to the signal obtained using a known amount of 

control template. 

 In order to determine the optimal stimulation time to characterize human leukocyte mTAC, we 

conducted an in vitro time course study using isolated PBMCs from 5 volunteers. PBMCs were stimulated 

with PHA (10 µg/ml) and IL-2 (50 units/ml) and cultured in 8 separate wells for 8 days. On each day, PBMC 

telomerase activity was assessed and (stimulated) PBMCs were stained with fluorescent antibodies against 

different immune cell subpopulations and analyzed using flow cytometry (see section 2.6.). 

  

2.6. FACS Flow Cytometry 

 In a subset of 13 participants, PBMCs from each of the three assessment time points across Test Day 

1 were stained with fluorescent antibodies against different immune cell subpopulations before in vitro 

stimulation. PBMCs were incubated for 15 min at 4ºC, with antibodies against CD45 (Vioblue) CD3 (APC), 

CD4 (PerCp), CD8 (APC-io770), CD14 (FITC), CD19 (PE-Vio770), CD16 (PE), and CD56 (PE) (Miltenyl 

Biotec). Cells were washed in PBS containing 0.5% bovine serum albumin, fixed in 2% formaldehyde, and 

analyzed using a BD FACSCanto II with FACSDiva 6.1.3. The data analysis was performed with FlowJo 

10.1r5. 

 

2.7. Statistics 

 Repeated measures ANOVAS were computed to assess the effects of time (day) on change in mTAC. 

Greenhouse–Geisser corrections were applied, and adjusted results are reported. Pearson’s correlations were 

used to determine the within-subject variability of mTAC. In addition, the intra-class coefficient (ICC) of 

mTAC was computed to determine the proportion of total variation in mTAC that is attributable to variation 

between subjects relative to variation within subjects. The area-under-the-curve with respect to ground 

(AUCg) was used to quantify total mTAC and cortisol output (see formula 2 in [66]). The slope of the diurnal 

change in cortisol occurring on Test Day 1 was calculated by fitting a linear regression line, which predicted 

the cortisol values from morning to evening. Repeated measures ANOVAS were computed to assess the 

effect of time on change in cortisol and heart rate. Heart rate was measured prior to the TSST (-5 min, with an 

average value of 5 min duration), during the TSST (average value of 15 min duration), and +40 min after the 

beginning of the TSST (average value of 5 min duration). Measures of psychophysiological stress reactivity 
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were determined by calculating the percent change in cortisol from before to 30 min after the TSST, and the 

percent heart rate increase from resting state to average heart rate measured during the TSST phase. mTAC 

may be influenced by the distribution of immune cell subpopulations present in the sample before 

stimulation. Thus, we examined whether mTAC varies as a function of variation in immune cell 

subpopulations. Immune cell subpopulations in pre-mitogen stimulated blood and mTAC (i.e., following 

mitogen stimulation) were characterized in samples from each of the three time points across Test Day 1. 

Linear mixed models were used to predict telomerase activity as a function of each immune cell type percent 

by including the repeatedly measured mTAC as the outcome and each immune cell type percent as varying 

covariates. This model assessed whether total PBMC telomerase activity was, in part, a function of certain 

cell subpopulation frequencies while accounting for within-subject autocorrelations. For all analyses, p-

values < .05 were considered significant. Data analysis was performed using SPSS statistical software (SPSS 

23.0, Inc., Chicago, IL, USA). 

 

3. Results 

 

3.1. Aim 1: Optimal time course to characterize the maximal telomerase activity capacity (mTAC) 

response 

 As shown in Figure 2a, maximal telomerase activity was observed on day 3, 4 and 5 of the time 

course study. Concurrently, the flow cytometry data indicate that changes in immune cell subtypes 

(specifically percentage of CD8+ T cells) started occurring on and after day 4 (Figure 2b), and that the 

amount of cell debris/lysis (as determined by the FCS/SSC signal) also started to increase from day 4 

onwards. Based collectively on these 3 sets of results (maximal telomerase activity, minimal change in 

immune cell subtypes, and minimal cell degradation) we ascertained that a 3-day (72 h) period represents the 

optimal time point at which to determine PBMC mTAC in response to PHA/IL-2 mitogen stimulation 

challenge. 

 

3.2. Aim 2: Within-subject stability of mTAC 

 

3.2.1.  Chronobiological influences on mTAC 

 mTAC (i.e., PBMC telomerase activity 72 h after mitogen stimulation) was not significantly different 

across participants’ blood samples collected serially in the morning, afternoon and evening (8 a.m., 1 p.m., 7 

p.m.; main effect time: F1.5, 40.3 = .48, p = .58, ƞ2 = .018, see Figure 3a), suggesting no influence of 

chronobiology on mTAC. As expected, cortisol concentrations in these serially-collected blood samples 

exhibited a diurnal rhythm and declined significantly from morning to evening (F1.1, 29.8 = 44.1, p < .001, ƞ2 = 
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.62). Cortisol concentration at these three time points was not associated with any of the corresponding 

mTAC measures. Finally, the within-subject correlations of mTAC levels from these serially-obtained blood 

samples was strong and ranged between r’s 0.68 – 0.82 (see Table 1). The intra-class coefficient of mTAC 

across the day (proportion of total variation in mTAC that is attributable to variation between subjects 

relative to variation within subjects) was 0.7, indicating substantially greater between-subject variability 

relative to within-subject across time variability. 

 

3.2.2.  Acute stress exposure and mTAC 

 As expected, exposure to the TSST produced significant changes in cortisol (-10, +30, +90 min, main 

effect time: F1.5, 40.3 = 35.9, p < .001, ƞ2 = .57) and heart rate (average heart rate before, during, and after 

TSST, main effect time: F1.6, 36.6 = 80.7, p < .001, ƞ2 = .78). There was, however, no difference in the mTAC 

levels between the serially-collected blood samples obtained before (1 sample) and after TSST exposure (2 

samples) (main effect time: F2, 48 = 1.4, p = .26, ƞ2 = .054, see Figure 3b), suggesting that on average, mTAC 

was not influenced by acute stress exposure. 

 

3.3. Aim 3: Between-subject variability of mTAC: age, sex, BMI, sleep quality and chronotype 

 The average of the mTAC (AUCg) measures from the serially-collected blood samples across the 

course of the day was not significantly associated with participant age (r = -.27, p = .17, R2 = .073), BMI (r = 

-.11, p = .60, R2 = .012) or sex (r = -.047, p = .81, R2 = .002), and also was not related with either sleep 

quality (PSQI global sleep quality score, r = -.21, p = .29, R2 = .044),chronotype (MEQ score, r = -.10, p = 

.63, R2 = .01) or the slope of the diurnal change in cortisol (r = -.19, p = .35, R2 = .036).  

 

3.4. Aim 3: Between-subject variability of mTAC: Perceived stress and individual differences in 

physiological stress reactivity 

 

3.4.1.  Perceived psychological stress and mTAC 

 Participants’ perceived (chronic) stress score (PSS) was inversely associated with average mTAC 

(AUCg) (Figure 4a, (r = -.34, p = .08, R2 = .12). Since the PSS is not a diagnostic instrument and there are no 

clinical cut-off values, we used our study population-based tertiles to categorize our participants into low, 

moderate and high stress groups. When we compared the high perceived (chronic) stress group (upper tertile 

PSS, mean score = 23 ± 2.8) with the low/medium perceived (chronic) stress group (lower 2 tertiles PSS, 

mean score = 12 ± 3.2) there was a significant group effect of PSS on mTAC (F1, 25 = 5.6, p = .026, ƞ2 = .18), 

with individuals exposed to high perceived stress exhibiting significantly lower mTAC (Figure 4b).  
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3.4.2.  Biological stress-reactivity and mTAC 

Next, we examine the association of individual differences in physiological stress reactivity (endocrine 

(cortisol) and autonomic (heart rate) responses to the TSST) with average mTAC (AUCg). One subject had a 

cortisol response (percent change from before to 30 min after the TSST) more than 3 SD above the mean and 

was therefore excluded from the analysis. The cortisol and heart rate responses to the TSST were moderately 

inter-correlated (r = .60, p =.002, R2 = .36). 

The cortisol response to the TSST was negatively related to mTAC (AUCg) (Figure 5a, r = -.57, p = 

.004, R2 = .32). The heart rate response also was negatively – although not statistically significantly - 

associated with mTAC (AUCg) (Figure 5b, r = -.34, p = .12, R2 = .12). 

 

3.5. Immune cell composition and mTAC 

 Some studies have suggested that basal [47] and stimulated [59] telomerase activities can vary by 

immune cell subtype. We, therefore, determined whether our measure of PBMC mTAC was influenced by 

the distribution of immune cell subpopulations present in the blood sample before mitogen stimulation. On 

Test Day 1, before in vitro stimulation, immune cell type frequencies were obtained from the three serially-

collected blood samples across the day in a subgroup of study participants (n=13) [7]. The B-coefficients of 

the linear mixed models presented in Table 2 reflect the change in mTAC (change in relative telomerase 

activity, RTA) for each percent change in cell type of the different immune cell subtypes modeled 

simultaneously for all three time points. None of the relationships were significant, suggestion that this 

measure of mTAC is not altered as a function of immune cell type distribution present in the sample before 

stimulation. 

 

4. Discussion 

 

 Based on the results of the time course study (i.e., determination of maximal telomerase activity with 

minimal change in immune cell subtypes and minimal cellular degradation), we determined that a 72h post 

mitogen stimulation period appears to represent the optimal time point at which to quantify human leukoctye 

mTAC. Using this optimal time point, our next set of results determined that the mTAC measure exhibits 

substantial within-subject stability across time and does not appear to be influenced by age, sex, BMI, and 

situational factors including time of day, cortisol concentration, acute stress exposure, and immune cell 

distribution prior to mitogen stimulation. The mTAC measure also exhibits substantial between-subject 

variability. Particularly, participants’ perceived (chronic) stress level over the past 1-month period accounted 

for 12% of the variation in the mTAC measure, with a 25% difference in mTAC between subjects reporting 

high compared to medium or low levels of perceived (chronic) stress. Moreover, individual differences in a 
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key stress-related trait – psychophysiological stress responsivity (cortisol response to TSST exposure) – 

accounted for as much as 32% of the variation in mTAC. Finally, the mTAC intra-class coefficient (ICC) 

indicated substantially greater between-subject relative to within-subject variability. Collectively, these 

findings support our premise that the maximal leukocyte telomerase activity capacity construct (mTAC) 

empirically meets the criteria to represent a potentially useful individual difference measure. 

 Our finding that telomerase activity peaks between 3 to 5 days after mitogen stimulation replicates 

previous studies [26, 59]. However, given the changes we observed after day 4 in immune cell subtypes and 

cell debris/lysis, we suggest that a 3-day period represents the optimal time point at which to characterize 

human leukoctye mTAC in response to PHA/IL-2 mitogen stimulation challenge. 

 In our study, mTAC was not associated with participants’ age. While our study was limited in 

exploring this relationship given the relatively restricted age range in our cohort, we note that most previous 

studies of stimulated immune cell telomerase activity responses also did not find a significant effect of age on 

this measure [48-50], suggesting that mTAC may reflect a stable individual difference characteristic. 

Discrepancies between these findings and those of the 2 studies that did find an effect of age on stimulated 

telomerase activity [51, 58] may perhaps be accounted for by differences in the mitogen stimulations 

protocols and the immune cell subpopulations that were assessed. In our study there was also no significant 

effect on mTAC of time of day, basal cortisol concentrations assessed across the day, sex, BMI, sleep quality, 

chronotype and the slope of the diurnal change in cortisol. To the best of our knowledge these factors have 

not been investigated/reported in previous studies using stimulated measures of telomerase 

expression/activity. 

 Our findings suggest that individual differences in mTAC are independent of percentages of different 

immune cell subsets present before in vitro stimulation. However, we cannot completely rule out the 

contribution of differences in immune cell composition. For example, here, we analyzed the total fraction of 

CD8+ T-cells and did not discriminate between naïve, effector and memory CD8+ cytotoxic T-cells. It has 

been shown in mice that effector and memory CD8+ T-cells express higher levels of telomerase activity after 

acute viral infection [67], indicating that the percentage of naïve and virus-specific CD8+ T-cells can 

influence mTAC after stimulation in vitro. In addition, mTAC could be influenced by the percentage of 

senescent cells. Lin et al [47] showed that in total PBMC, senescent CD28- T-cells had lowest telomerase 

activity and shortest telomere length. CD28 signaling is required for optimal telomerase up-regulation, 

indicated by the paralleled loss of telomerase activity and CD28 expression in T-cells after chronic antigen 

stimulation in vitro [59]. 

Previous studies have reported that chronically stressed individuals exhibit lower levels of 

unstimulated telomerase activity (e.g., [7, 39-41]). Our results indicate that individuals reporting high levels 

of perceived (chronic) psychological stress display lower stimulated telomerase activity capacity (mTAC). A 
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previous study by Damjanovic et al [42], showed no differences in induced PBMC or T-cell telomerase 

activity levels (anti-CD3/CD28 monoclonal antibody stimulation for 72 h) between caregivers of Alzheimer’s 

patients (stress exposure group) and controls. This discrepancy with our findings may perhaps be explained 

by differences in the mitogen stimulation protocols that were employed, or by the fact that stress exposure in 

the caregivers was operationalized using a depression scale, whereas we assessed perceived stress over the 

past month using the perceived stress scale. 

Our protocol particularly stimulates cell types involved in cellular immunity, the part of the immune 

system that is initially affected by chronic stress exposure [68]. Chronic stress induces a shift in the 

production of type 1 cytokines towards type 2 cytokines, and it has been associated with blunted mitogen-

induced lymphocyte proliferation and mitogen induced IL-2 production [69], both activators of signaling 

pathways stimulating telomerase activity [9, 57]. Therefore, the observation that higher levels of perceived 

(chronic) psychological stress are associated with lower mTAC may be a reflection of impairment in cell-

mediated immunity. In addition, chronic stress exposure is associated with a higher level of oxidative stress 

[40, 70]. Oxidative stress decreases telomerase activity and induces senescence (or apoptosis) via DNA 

damage-induced activation of the p53 pathway, probably by causing erosion of telomeres or perhaps by 

inducing nuclear exclusion of hTERT into mitochondria [29, 30]. Senescent CD28- T-cells show impaired 

up-regulation of telomerase activity after antigen stimulation [59], and could therefore inhibit mTAC. 

In our study population, a larger cortisol increase in response to an acute psychosocial stressor was 

related to lower mTAC. An individual’s biological stress reactivity measure can be considered a stress-related 

trait and has been studied in the context of several stress-related pathologies and conditions [71]. Previous 

findings showed that greater cortisol responses to an acute stressor was associated with shorter telomere 

length, as was higher overnight urinary free cortisol levels and flatter daytime cortisol slope [72]. In line with 

our finding, exposure to exogenous cortisol has been shown to inhibit telomerase production in human T-

cells stimulated with PHA and IL-2 [55]. Glucocorticoids place a limit on the maximal activity of the 

immune system, modulate inflammatory gene transcription [73], and can either through direct action or 

through the modulation of cytokine release (type 1 cytokines towards type 2 cytokines) inhibit lymphocyte 

proliferation and NK cell activity [69], thereby influencing telomerase regulatory pathways [9, 57]. Cortisol 

levels measured during the chronobiology test day (test day 1) were not associated to mTAC. However, 

mTAC was negatively related to the cortisol response to acute stress. It is likely that individuals experiencing 

persistently exaggerated stress responses are exposed to greater levels of cortisol over longer periods of time, 

which may have important consequences on immune system function. In a study by Epel et al, in which 

basal/unstimulated telomerase activity was measured soon after a standardized stress test, the cortisol 

response was positively associated with telomerase activity [7]. As discussed by these authors, telomerase 

activity levels may change dynamically in response to stress, likely as a protective functional response to 
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protect telomeric regions from stress-induced acute increases in biological stress mediators such as cortisol or 

oxidative stress. Two key differences between this study and ours is that the Epel et al study [7] did not use a 

mitogen challenge to stimulate telomerase expression and did not characterize maximal capacity of cells to 

express telomerase (i.e., mTAC) but measured only the short-term response (up to 90 min) to acute social 

stress, whereas we assessed telomerase in response to a mitogen challenge and across a 3-day period of time. 

 In the present study, individuals displaying higher cortisol responses also showed higher heart rate 

responses, indicating a coupling between these stress-related endocrine and autonomic systems. 

Catecholamines, which are normally produced in response to acute stress by the adrenal medulla and 

postganglionic sympathetic nerve fibers, activate β2-receptors present on immune cells. In vitro studies 

suggest that β2-receptor stimulation by catecholamines activates the cAMP signaling pathway, inhibiting 

mitogen-stimulated T-cell proliferation and NK-cells activation [74]. Hence, catecholamines could also 

inhibit leukocyte mTAC after stimulation in vitro. 

Strengths of the present study include the following: We first established the optimal mTAC time 

course and stimulation conditions before the development and use of the in vitro study stimulation protocol to 

address the study aims. Furthermore, to the best of our knowledge, our study is the first to systematically 

investigate the within- and between-subject stability of stimulated telomerase activity responses (mTAC) in 

women and men with respect to chronobiological and stress-related influences. 

Limitations of our study include the unavailability of measures of telomere length in our study 

subjects, the relatively modest sample size, and the restricted range of age and BMI in our study subjects.  

Any interpretation of sex effects is limited by the fact that all the women in our study were using oral 

contraceptives. While the absence of chronobiological or acute stress effects on mTAC in our study may 

provide a justification for future studies against requiring multiple mTAC measures over the course of a day 

or in response to an acute challenge, we note, based on the within-subject correlations of serial measures of 

mTAC indicating a shared variance of approximately 50-65%, that measurement issues such as single vs 

average of multiple samples remain an important consideration. Lastly, because mTAC was measured in 

isolated circulating immune cells (PBMCs) in the context of immune cell activation and clonal T-cell 

expansion, it is unclear whether this measure also reflects the capacity of hematopoietic stem and progenitor 

cells to induce a telomerase activation response. 

 As discussed earlier, only a few studies to date have examined the characteristics of stimulation-

induced telomerase responses in the context of health and disease states [50-54].  Based on our findings in 

support of the premise that the maximal leukocyte telomerase activity capacity construct (mTAC) may 

represent a potentially useful individual difference measure, one future research direction will be to determine 

the prognostic value of mTAC, independently, and in combination with measures of telomere length, with 

respect to health, disease risk and mortality. Also, further mechanistic studies are warranted to better 
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understand the contribution of specific immune cell populations such as memory and senescent T-cells, 

circulating levels of other stress-related biological mediators such as catecholamines, oxidative stress and 

pro-inflammatory cytokines, on mTAC. Future studies should also explore the characteristics of mTAC in 

hematopoietic stem cells [75], such as those obtained from umbilical cord blood. 

 In conclusion, because mTAC exhibits high within-subject stability, is not influenced by situational 

circumstances, and shows substantial between-subject variability in relation to stress-related traits and states, 

this in vitro measure of telomerase activity may represent a potentially useful individual difference measure 

in studies of telomere biology and health and disease. 
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Tables 

 

 

Table 1. Within-subject correlations (Pearson’s correlations) between mTAC levels from samples obtained at 

the three different time points during Test Day 1. 

 mTAC 

8 a.m. 

mTAC 

1 p.m. 

mTAC 

7 p.m. 

mTAC 

8 a.m. 
1 .82** .73** 

mTAC 

1 p.m. 
.82** 1 .68** 

mTAC 

7 p.m. 
.73** .68** 1 

**indicates p-value < .001 

 

 

Table 2. Results of mixed models predicting mTAC by immune cell subtype percentages (%) on Test Day 1. 

mTAC on Test Day 1 

Cell type (%) B (SE) p-value 

CD4+ T-cells -.64 (.42) .14 

CD8+ T-cells .92 (.80) .26 

B-cells .28 (1.65) .87 

NK-cells .15 (.82) .86 

NKT-cells -.10 (.31) .98 

Monocytes .52 (.53) .34 
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Figure captions 

 

 

Figure 1. Study protocol: All subjects reported to the laboratory on two occasions (Test Day 1: 

“Chronobiology day”; Test Day 2: “TSST day”); mTAC: maximal telomerase activity capacity; FACS: 

fluorescence-activated cell scanning (flow cytometry); TSST: Trier Social Stress Test. 

 

 

Figure 2. Time course experiment: a) mean relative PBMC telomerase activity (± SD) of 5 individual 

measured at day 1-8 after in vitro PHA/IL-2 stimulation and b) mean percentages (± SD) of immune cell 

subpopulations (calculated as percentages of CD45+ cells) of 5 individuals measured at day 1-5 after 

PHA/IL-2 stimulation in vitro; RTA: relative telomerase activity. 

 

 

Figure 3. mTAC levels measured on both test days: a) mean mTAC levels (± SE) in stimulated PBMCs 

isolated at 8 p.m., 1 p.m. and 7 p.m. during Test Day 1, and b) before (-10 min) and after (+30 min, +90 min) 

the TSST (Test Day 2); RTA: relative telomerase activity. 

 

 

Figure 4. Perceived (chronic) stress score and mTAC: a) Correlation of mTAC (AUCg) with the perceived 

stress score (PSS), and b) mTAC levels in individuals reporting high and low/moderate stress. RTA: relative 

telomerase activity. 

 

 

Figure 5. Correlation of mTAC (AUCg) with a) the cortisol response, and b) the heart rate response (%) to 

the TSST. RTA: relative telomerase activity. 
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Figure 2 
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Figure 4 
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Figure 5 
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Supplemental material 

 

Supplemental material: Protocol for isolation, stimulation and lysis of PBMC  

 

Materials (listed or equivalent) 

BD Vacutainer 9NC (sodium citrate) 6ml (2x), Becton Dickinson (Franklin Lakes, USA), 366575 

Falcon 50mL conical centrifuge tubes, Corning (Corning, USA), 352070 

Falcon 15mL conical centrifuge tubes, Corning (Corning, USA), 352097 

Sepmate-50 (or Sepmate-15 for smaller volumes of blood), Stemcell Technologies (Cologne, Germany), 

15450 

Ficoll, GE Healthcare Life Sciences (Little Chalfont, UK), 17-144-002 

PBS ready to use (sterile), VWR International (Radnor, USA), K812-500 ml 

Fetal bovine serum (FBS), HyClone (South Logan, USA), SH3007102  

Dimethyl sulfoxide (DMSO, sterile), Sigma-Aldrich (Saint Louis, USA), D2438-5X10ML 

Hemacytometer, Sigma-Aldrich (Saint Louis, USA), Z359629-1EA 

Trypan blue, Sigma-Aldrich (Saint Louis, USA), T8154 

RPMI-1640 medium, Gibco, Life Science Technologies (Carlsbad, USA), 21875-034 

Phytohaemagglutinin (PHA), Sigma-Aldrich (Saint Louis, USA), L8754-1MG 

Interleukin(IL)-2, Sigma-Aldrich (Saint Louis, USA), I7908-10KU 

TeloTAGGG Telomerase PCR ELISA plus kit, Roche (Basel, Switzerland), 12013789001 

 

Equipment 

Biosafety cabinet 

Centrifuge  

Mr. Frosty freezing container with isopropanol 

-80 C freezer and/or liquid nitrogen freezer 

 

Solutions 

Freezing medium: FBS containing 10% DMSO  

Culture medium: RPMI-1640 medium containing 10% FBS  

 

PBMC isolation protocol 

1. Procedures should be performed in a biosafety cabinet under sterile conditions. 

2. Retrieve whole blood. 
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3. Dilute 1:1 with sterile PBS. 

4. Fill Sepmate-50 tube with 15 ml Ficoll. 

5. Carefully pipet the diluted blood on the Ficoll layer. 

6. Spin down for 10 min at 1200 x g with the brake on. 

7. Poor the supernatant within 2 sec in new 50 ml falcon tube and add PBS until 40 ml. 

8. Spin down for 10 min at 300 x g (brake on), remove the supernatant and tap the bottom of tube to 

loosen the cell pellet.  

9. Fill up the tube with 10 ml of PBS. 

10. Spin down at 200 x g for 10 min (brake on), remove the supernatant and tap the bottom of tube to 

loosen the cell pellet. 

11. Dissolve the pellet in exactly 1 ml of sterile PBS (mix thoroughly by resuspending).  

12. Count cells and calculate the amount of cells/ml using a hemacytometer. 

13. Spin down cells at 250 x g for 10 min (brake on), remove the supernatant and tap the bottom of tube 

to loosen the cell pellet. 

14. Dissolve pellet in freezing medium (1 ml of freezing medium / 1 x 107 cells). 

15. Divide the cells dissolved in the freezing medium over 2 (or more) sterile cryovials and freeze using 

a Mister Frosty at -80 ºC. Optional: Cryovials can be transferred to liquid nitrogen tank after 1 day. 

 

PBMC stimulation protocol 

1. Procedures should be performed in a biosafety cabinet under sterile conditions. 

2. Thaw cells (quickly) in a 37 ˚C water bath and transfer each thawed cell suspension to an 

appropriately labeled 15 ml tube and add pre-warmed (37 ˚C) culture medium diluting 10 x the 

original volume. 

3. Centrifuge at 250 x g for 10 minutes at RT, remove the supernatant and tap the bottom of tube to 

loosen the cell pellet.  

4. Resuspend cells in exactly 1 ml of culture medium. 

5. Count live cells using a hemacytometer.  

6. Dilute the cells in the appropriate amount of culture medium in order to obtain a cell concentration of 

exactly 1 x 106 cells/ml.  

7. Pipet 1 ml of cell suspension (1 x 106 cells/ml) in the well of a 12-well plate; so each well contains 1 

x 106 cells.   

8. Add 5 µl of Il-2 (10 KU/ml) per ml/well (final concentration = 50 units/ml).  

9. Dissolve 1 mg of PHA (Sigma-Aldrich) in 1 ml of PBS (stock concentration = 1 mg/ml). 
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10. Add 10 µl of PHA (1 mg/ml) per ml/well (final concentration = 10 µg/ml) and incubate 72 hours at 

37C° and 5% CO2. 

 

Lysis protocol 

1. Procedures should be performed under nuclease free conditions. 

2. Take out lysis reagent (Roche TeloTAGGG Telomerase PCR ELISA plus kit) from freezer and let it 

thaw to 4 ºC. Keep on ice. 

3. Label the appropriate amount of sterile (RNase free) 1.5 ml Eppendorf tubes. 

4. Remove cells from the wells with a 1000 µl pipet (resuspend a few times to remove aggregates) and 

place into Eppendorf tubes. 

5. Spin down tubes at 300 x g for 10 min, RT, remove the supernatant and tap the bottom of tube to 

loosen the cell pellet.  

6. Dissolve pellet in exactly 1 ml of PBS and carefully resuspend and/or shortly vortex. 

7. Count live cells with hemacytometer. 

8. Transfer a volume corresponding to exactly 200,000 cells to the corresponding Eppendorf tube:  

required cell volume (µl) = total volume (1000 µl) * 200,000 / total amount of cells   

9. Cool centrifuge and spin down the 200.000 cells for 5 min, 3000 x g at 4 ºC, remove supernatant and 

keep pellet on ice. 

10. Dissolve pellet in 200 µl of cold lysis buffer (Roche TeloTAGGG Telomerase PCR ELISA plus kit). 

11. Resuspend pellet and shortly vortex, keep on ice for 30 min. 

12. Centrifuge for 20 min, 16.000 x g at 4 ºC. 

13. Carefully remove 175 µl of the supernatant, transfer in a sterile labeled (RNase free) 1.5 ml 

Eppendorf tube and store at -80 ºC.  

14. Telomerase activity is measured in the lysates following the instructions of the Roche TeloTAGGG 

Telomerase PCR ELISA plus kit. 
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