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The pig represents a preferred model for the analysis of intestinal immunology. However,

the barrier of the follicle-associated epithelium (FAE) covering porcine Peyer’s patches

(PP) has not yet been characterized in detail. This study aimed to perform this

characterization in order to pave the way toward an understanding of the functional

contribution of epithelial barrier properties in gut immunology. Porcine tissue specimens

were taken from the distal small intestine in order to obtain electrophysiological data of PP

FAE and neighboring villous epithelium (VE), employing the Ussing chamber technique.

Transepithelial resistance (TER) and paracellular fluorescein flux were measured,

and tissues were morphometrically compared. In selfsame tissues, expression and

localization of major tight junction (TJ) proteins (claudin-1, -2, -3, -4, -5, and -8) were

analyzed. PP FAE specimens showed a higher TER and a lower apparent permeability for

sodium fluorescein than VE. Immunoblotting revealed an expression of all claudins within

both epithelia, with markedly stronger expression of the sealing TJ protein claudin-4 in PP

FAE comparedwith the neighboring VE. Immunohistochemistry confirmed the expression

and localization of all claudins in both PP FAE and VE, with stronger claudin-4 abundance

in PP FAE. The results are in accordance with the physiological function of the FAE, which

strongly regulates and limits antigen uptake determining a mandatory transcellular route

for antigen presentation, highlighting the importance of this structure for the first steps

of the intestinal immune response. Thus, this study provides detailed insights into the

specific barrier properties of the porcine FAE covering intestinal PP, at the interface of

intestinal immunology and barriology.

Keywords: claudins, tissue barrier, tight junction, pig intestine, gut-associated lymphoid tissue

INTRODUCTION

The small intestinal mucosa is exposed to a wide variety of exogenous molecules. Forming the
first line of immunological defense, Peyer’s patches (PP) play an important role in distinguishing
between potentially harmful agents and common food ingredients within the ingesta as a major
part of the gut-associated lymphoid tissue (GALT; Jung et al., 2010). The intestinal reaction of
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the immune system, which includes the transport and
presentation of antigens, the stimulation of lymphocytes,
and the production of antibodies, is essential for gut physiology.
Responsible for the uptake and transport of antigens to the
underlying tissue is the overlying follicle-associated epithelium
(FAE), which forms a boundary separating the lumen contents
and immune cells. Therefore, a tight intestinal barrier and
a controlled paracellular permeability are prerequisites for a
healthy individual.

The transport of antigens through FAE of PP is an important
step for the further initiation of immune reactions. FAE differs
from neighboring adjacent villous intestinal epithelium (VE)
both structurally and by cell composition: within this cell layer,
M cells (or microfold cells) are responsible for the translocation
and presentation of antigens to immune cells (Onishi et al.,
2007). M cells are abundantly distributed in FAE but not in VE
and are able to transport antigens directly to the subepithelial
lymphoid follicles (Sakhon et al., 2015) or to proceed and present
antigens by using major histocompatibility complex (MHC)
II (Allan et al., 1993). Moreover, FAE lacks the subepithelial
myofibroblast sheath, the basal lamina of FAE is more porous
compared to VE, and the basolateral surface of M cells is
enhanced by invagination, promoting a faster translocation of
antigens (Neutra et al., 2001; Takeuchi and Gonda, 2004). The
presentation of antigens induces the activation of B- and T-
lymphocytes in the follicular area of PP (Gebert et al., 1996).
Local differences in morphology such as the invagination of the
basolateral membrane of M cells, the lack of the subepithelial
myofibroblast sheath, and a more porous basal lamina promote
a faster response to antigens (Takeuchi and Gonda, 2004).
However, the selectivity of transcellular mechanisms, including
antigen uptake by dendritic cells or ligand-specific transcytosis
mediated via Toll-like receptors, might benefit from a stronger
paracellular seal.

Whereas, transcellular translocation has been described
in detail, limited information is available regarding the
characteristics of the Para cellular pathway and its contribution
to the immunological function of PP. A comparison of the
trans epithelial resistance (TER) of rabbit PP and VE has
revealed a general difference, with markedly higher values in
FAE compared with neighboring VE (Kucharzik et al., 2000).
Although these general structural properties of PP have been
described, information on the Para cellular pathway of the PP
epithelium remained limited until our previous study showing
the differential distribution of the barrier function in correlation
with the expression and localization of tight junction (TJ)
proteins in rat PP FAE (Markov et al., 2016). In this context, the
functional contribution of single TJ proteins to epithelial barrier
physiology has been reviewed in detail recently, highlighting the
special role of claudins as a main TJ component (Markov et al.,
2015, 2017).

The pig is similar to the human concerning its genomics,
anatomy, and physiology (Hart et al., 2007; Swindle et al.,
2012). As one of the most commonly used animal in biomedical
research, the pig presents an important in vivo model for
investigating physiological and pathological mechanisms in the
cardiovascular, urinary, integumentary, and digestive systems

(Swindle et al., 2012). Moreover, the porcine intestine has gained
major attention as an important model in infectious diseases
(Meurens et al., 2012). This extensive use stands in contrast to
the limited information available concerning the porcine GALT
system, as no data regarding functional and molecular PP FAE
barrier properties is currently available.

Thus, our study has aimed to characterize the barrier
properties within porcine PP FAE in order to build a
substantiated foundation for the understanding of the
contribution of the PP FAE barrier in health and disease.

MATERIALS AND METHODS

Tissue Preparation
Tissue specimens of seven untreated pigs at the age of 2 months
were taken immediately after slaughter. The PP and VE were
differentiated visually and taken from the distal small intestine.
The samples were further processed and used for Ussing
chamber experiments, flux measurements, immunoblotting, and
immunohistochemistry, as described below. Tissues for Ussing
chamber measurements were transported and stored in warm
(37◦C) transport buffer solution containing (in mmol·l−1): Na+

(145.2), Cl− (124.8), K+ (5), Ca2+ (1.2), Mg2+ (1.2), HCO−

3 (25),

H2PO
2−
4 (0.4), HPO−

4 (2.4), and D-Glucose (5). The solution was
permanently gassed with 95% O2 / 5% CO2, resulting in a pH
of 7.4.

Morphometry
The mucosal surface of the VE is larger than that of PP
because of specific anatomical structures. Whereas the VE is
typically organized in crypts and villi, the epithelium covering
PP is composed of FAE and intermolecular areas of VE.
These differences must be taken into account for immunoblot
analysis. The morphology of PP in piglets aged 2 months has
previously been researched intensively (Barmann et al., 1997).
Subsequently, ratio of FAE to VE in PP was calculated. Since FAE
is characterized by a dome-like arch of epithelial cells covering
the follicles, cellular content is lower when compared with the
meandering VE. This morphological difference was also taken
into account by employing a method used previously (Markov
et al., 2016). Nuclear DAPI (4′,6-diamidino-2-phenylindole)
staining of the PP and VE was analyzed via immunofluorescence
microscopy (Leica DMI 6000 B, Leica, Germany). Sample areas
were chosen at 20× magnification, whereas the subsequent
calculation of the cell count in selected lengths was performed
at 63×magnification due to easier visualization.

Electrophysiology
Tissue was mounted in conventional Ussing chambers and left
to calibrate until the electrophysiological values were stable.
All electrophysiological measurements were performed under
voltage clamp conditions, reporting TER. After 45min of
preincubation with fluorescein, measurements were started, and
TER was recorded continuously over a period of 60min. The
experimental buffer contained in mmol·l−1: Na+ (149.4), Cl−

(128.8), K+ (5), Ca2+ (1.2), Mg2+ (1.2), HCO−

3 (25), H2PO
2−
4

(0.6), HPO−

4 (1.2), and D-Glucose (10.0). Buffer was warmed
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to 37◦C and gassed with 95 % O2 and 5 % CO2 continuously.
The vitality of the tissue was tested by using theophylline (10
mmol·l−1).

Measurement of Paracellular Permeability
Paracellular flux was measured using sodium fluorescein (332
Da) as described previously (Radloff et al., 2017). Fluorescein
(100 µmol l−1) was added to the apical side of the chamber.
After preincubation, basolateral samples were taken every 30min
for 1 h, and the removed volume was replaced with fresh
experimental buffer. Samples were measured photometrically at
a wavelength of 514 nm by utilizing a plate reader (EnSpire
Multimode Plate Reader, Perkin Elmer, USA). The resulting flux
and permeability were calculated as reported recently (Radloff
et al., 2017). Initially, the measured concentration of sodium
fluorescein was corrected for the dilution occurring because of
sample removal and replacement of the volume with fresh buffer:
concentration c = (ct−1 × Vs + ct × VK)/VK, with ct being the
measured concentration, ct−1 the measured concentration of the
previous period, Vs = sample volume, VK = volume of Ussing
chamber. Flux was calculated as J = (ct−ct−1) × VK/1t × A
with 1t representing the duration of the measurement period
and A being the tissue area. Finally, the apparent permeability
Papp = J/ca was computed, with ca being themeasured fluorescein
concentration in the apical side of the Ussing chamber.

Real-Time Quantitative Polymerase Chain
Reaction
Subsequent to Ussing chamber experiments, samples for
quantitative real-time polymerase chain reaction (qPCR) were
taken from the chambers. The tissue specimens were rinsed,
transferred into RNAlater RNA Stabilization Reagent (Qiagen
GmbH, Hilden, Germany), and stored at −20◦C until RNA
isolation, the determination of RNA quantity and quality, and
cDNA synthesis. These steps were performed as described
recently (Lodemann et al., 2017). The iScript cDNA Synthesis
Kit was employed to reverse-transcribe 100 ng total RNA of
each sample to cDNA (Bio-Rad Laboratories GmbH, Munich,
Germany) according to the manufacturer’s recommendations,
and primers were obtained from Eurofins MWG Synthesis
GmbH (Ebersberg, Germany). Primer sequences were claudin-
4 (CLDN4, Sus scrofa) (Sense) 5′-CAA CTG CGT GGA TGA
TGA GA-3′, (Antisense) 5′-CCA GGG GAT TGT AGA AGT
CG-3′; and beta-2-microglobulin (B2M, Sus scrofa) (Sense) 5′-
AAACGGAAAGCCAAATTACC-3′, (Antisense) 5′-ATC CAC
AGC GTT AGG AGT GA-3′. Real-time quantitative PCR was
performed in the iCycler iQ Real-Time PCR Detection System
(Bio-Rad Laboratories GmbH, Munich, Germany) by using
SYBR green I detection. The reactions were performed as
triplicates; the final volume (15µl) contained iQ SYBR Green
Super mix (Bio-Rad Laboratories GmbH, Munich, Germany),
primers (0.3µl of 20 pmol/µl each), and 5µl cDNA. iQ5 software
(Bio-Rad Laboratories GmbH,Munich, Germany) was employed
for the calculation of the relative amount of target genes in
PP FAE tissue specimens compared with villous epithelia. For
normalization, the geometric mean of the reference gene (B2M)
was used.

Protein Extraction, Immunoblot, and
Densitometry
Tissue samples were frozen in liquid nitrogen. Homogenization
was carried out in a Tris-buffer containing inmmol·l−1: Tris (10),
NaCl (150), Triton X-100 (0.5), SDS (0.1), and a set of protease
inhibitors (Complete, Boehringer, Mannheim, Germany). The
supernatant was cooled on ice for 30min after centrifugation
for 1 min at 13,000 rpm (Eppendorf centrifuge 5418, Eppendorf
AG, Hamburg, Germany). Samples were then centrifuged for 15
min at 15,000 x g at 4◦C (sigma 3-30ks, Sigma-Aldrich, Munich,
Germany). Quantification followed by using a BCA protein assay
reagent (Pierce, Rockfort, Il, USA) and a plate reader (EnSpire
Multimode Plate Reader, Perkin Elmer, USA). Protein (20 µg),
and Laemmli buffer (Bio-Rad Laboratories GmbH, Munich,
Germany) were mixed and loaded onto a 12.5% polyacrylamide
gel for electrophoresis. Samples were then transferred onto a
PVDF membrane. Subsequently, membranes were blocked for
60 min in 5% milk (in Tris-buffered saline with 0.1% Tween 20)
and incubated with antibodies raised against claudin-1, -2, -3, -4,
-5, and -8 and β-actin (Life Technologies, USA) by employing
1 µg/ml in accordance with the manufacturer’s instructions,
respectively. Later peroxidase-conjugated goat anti-mouse and
anti-rabbit antibodies (Cell Signaling Technology, Danvers, MA,
USA) were used to bind the primary antibodies. Signals were
detected via the chemiluminescence detection system of Clarity
Western ECL Blotting Substrate (Bio-Rad Laboratories GmbH,
Munich, Germany) and a luminescence imager (ChemiDoc MP,
Munich, Germany). Densitometric analysis of the specific bands
was performed by using the imager associated software Image
Lab. Finally, the measured values were expressed as a ratio to
the relevant β-actin band of the same sample. Calculated values
for the VE were set to 100%, and the matching PP-values were
expressed in relation. The calculated correction factor derived
frommorphometric analysis was used to account for the different
number of epithelial cell contacts.

Immunohistochemistry
Tissue samples were fixed in 2% paraformaldehyde diluted in
PBS (16% paraformaldehyde, E15700, Science Service, Munich,
Germany) for 2 h and kept in PBS until dehydration, embedded
in paraffin, and cut into sections (Leica RM 2245 microtome,
Leica Microsystems Heidelberg, Germany). For staining, the
paraffin was removed by using a decreasing xylol-ethanol
gradient. Heat-induced epitope retrieval was carried out for
20min in EDTA or citrate buffer. Sections were then blocked for
30min in 5% goat serum in PBS and incubated with antibodies
raised against claudin-1, -2, -3, -4, -5, and -8 (1:100, Life
Technologies, USA) for 60min at 37◦C or overnight at 4◦C.
After being washed with PBS, samples were incubated with goat
anti-rabbit Alexa Fluor-488, goat anti-rabbit Alexa Fluor-594,
or goat anti-mouse Alexa Fluor-488 (1:1,000, Life Technologies,
USA). Nuclei were stained by using DAPI (1:5,000) before the
specimens were mounted with ProTags Mount Flour (Biocyc,
Luckenwalde, Germany). In accordance with the manufacturer’s
instructions, control staining was performed by employing
matching IgG and IgG1 isotype controls and with secondary
antibodies only. Hematoxylin and eosin staining was performed
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as previously described (Amasheh et al., 2009). Slides were
analyzed by using Leica microscopes of the DMI 6000 and TCS
SP2 series (Leica Microsystems Heidelberg, Germany).

Statistical Analysis
The data are expressed in means and standard error of the mean
(SEM), where n represents the number of animals used. Statistical
analysis was carried out by using Student’s t-test. Values below
p = 0.05 were considered to be statistically significant, being
denoted as ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

RESULTS

PP FAE Tissue Specimens Show Stronger
Barrier Properties
Electrophysiological measurements revealed significantly higher
TER in PP tissue, when compared with adjacent VE. VE TER
values of 30.4 ± 3.1 � cm2 represented the rather leaky type of
jejunal epithelium, whereas in adjacent PP, a two-fold higher TER
was observed (56.1± 3.7� cm2, ∗∗∗p< 0.001, n= 7; Figure 1A).

Experiments employing sodium fluorescein (332 Da) as
the paracellular marker revealed an even more pronounced
difference of apparent permeability, being calculated from flux
measurements as a three-fold lower value (Figure 1B: VE: 24.7±
6.92 10−6 cm/s, PP FAE: 8.03± 2.03 10−6 cm/s, ∗p< 0.05, n= 7).

Morphometric Analysis Reveals a PP
Surface Correction Factor of 2.3
Histological analyses revealed major differences of PP compared
with neighboring VE (Figure 2). Because of the different
morphology between the PP and VE, a surface correction for
the proper comparison of quantitative epithelial protein became
necessary. Whereas, the serosal structure and area were equal
in both the PP FAE and VE, the PP had a lower cell count
and therefore fewer fraction of TJ proteins. This had to be
taken into account when analyzing the quantitative results of
immunoblotting data. Since the FAE covering PP is interrupted

FIGURE 1 | (A) Transepithelial resistance (TER), and (B) Apparent permeability

(Papp) for the paracellular flux marker fluorescein of Peyer’s patch follicle

associated epithelium (PP) compared to neighboring villous epithelium (VE).

Whereas higher TER values were detected in PP FAE, lower paracellular

permeability for fluorescein was observed consistently (n = 7, *p < 0.05, ***p

< 0.001).

by interfollicular villi, the ratio between the two areas also had to
be included when calculating the correction factor.

Surface correction was performed in three separate steps,
namely (i) correction for interfollicular areas, (ii) correction by
cell count, and (iii) calculation of ratio.With regard to step (i), the
morphology of PP in piglets aged 2 months has been previously
researched intensively (Barmann et al., 1997). The average width
and length of PP has been measured at 0.71mm and 0.86mm
(Barmann et al., 1997), giving it a total area of 0.6106mm2.
Assuming a round shape, we calculated the average diameter of
PP to be 0.88mm. Since the average distance (0.11mm) between
PP was also provided in the data of Barmann et al. (1997),
we calculated the average diameter of PP and the surrounding
VE as being 0.99mm, giving it an area of 0.77mm2. Because
of our Ussing chamber setup, we used an area of 95 mm2 for
measurements; this can also be expressed as roughly 123 PP
plus surrounding VE. Combining the average size of PP and
the given number, a total area of 75.10 mm2 of the tested area
of 95 mm2 can be estimated to be covered by PP, whereas the
remaining 19.90mm2 is interfollicular epithelium. Expressed in
percentages, we calculated the ratio of FAE to VE in PP to be
79% : 21%. For point (ii), the DAPI staining of PP and VE
was analyzed via immunofluorescence microscopy (Leica DMI

FIGURE 2 | DAPI staining of Peyer’s patch follicle associated epithelium (PP

FAE) compared to neighboring villi (V) with villous epithelium (VE), and

Hematoxylin and Eosin (HE) staining. (A) VE (B) PP FAE Tissue specimen;

magnification 20×, marked squares are shown in 63× magnification (C) HE

staining representing PP with FAE, and neighboring V with VE (bar: 50 µm).
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6000 B, Leica, Germany). Cell count was performed at 63×
magnification. Measurements of PPs revealed that FAE had 34
± 2 cells per 100 nm length, whereas the VE revealed 120 ± 8
cells per 100 nm. Because of the presence of interfollicular villi in
PP, the total amount of cells had to be reduced by the percentage
calculated in step (i). Therefore, 21% of the area was covered
by 120 cells/100 nm, whereas 79% was covered by 34 cells/100
nm, resulting in a combined cell count of 52 cells/100 nm for PP
tissue. In step (iii), these cell counts gave a ratio of 2.3, which
was employed as a correction factor for the proper comparison
of immunoblotting data, as outlined below.

Immunoblot Detection of Claudins
Immunoblotting revealed specific signals of claudin-1, -2, -3,
-4, -5, and -8 in all preparations (Figure 3A). Without surface
correction, densitometric analyses comparing specific signals in
the VE and PP tissue showed weaker signals of single members
of the claudin family including claudin-3, -5, and -8, whereas
claudin-1, -2, and -4 were not significantly different fromVE. The
values were corrected by taking the different morphology and
the number of cellular connections into account, by employing
the calculated correction factor of 2.3, as described above.
Whereas corrected values revealed no significant differences of
PP expression compared with neighboring tissue for claudin-1,
-2, -3, -5, and -8, a markedly stronger expression was observed
for the tightening or sealing TJ protein claudin-4. Although the
VE-value was normalized to 100± 0%, densitometric evaluation
of PP samples revealed comparable expression levels (95.4 ±

18.7%). Surface correction employing the calculated factor (×2.3)
led to a final value of 222.3± 49% (∗p < 0.05, n= 5; Figure 3B).

Immunohistochemistry
Immunohistological analyses revealed focused expression and
localization of claudins within the TJ complexes of both the
PP FAE and adjacent VE in single staining (Figure 4). The
variable signal intensities in the heterogeneous cell populations

of porcine tissue specimens did not allow proper quantification or
colocalization analysis. However, in order to confirm specificity,
control staining was performed by employing matching IgG and
IgG1 isotype controls or secondary antibodies only; no specific TJ
signals were detected in epithelial cells, respectively (not shown).

Real-Time Quantitative Polymerase Chain
Reaction
To analyze the expression of claudin-4 further, RT-qPCR was
performed, revealing increased levels of mRNA in PP FAE
tissue specimens vs. VE and after surface correction (PPcorr).
Normalized fold expression was calculated by the 11Ct method
(∗p < 0.01, n= 3; Figure 5).

DISCUSSION

Organized as bands surrounding the upper part of epithelial
cells, TJs are the structural correlate of intestinal barrier
function (Martinez-Palomo and Erlij, 1975). In recent years,
our understanding of the molecular basis of epithelial barrier
function has greatly advanced (Markov et al., 2015, 2017; Suzuki
et al., 2017). TJ strands are composed mainly of tetraspan
transmembrane proteins of the claudin family (Furuse et al.,
1998) and determine the paracellular movement of ions, water,
and small molecules (Amasheh et al., 2002; Rosenthal et al.,
2010). The extracellular loops of various claudins interact to
form a paracellular seal or gap that determines paracellular
permeability (Colegio et al., 2002). Our structural understanding
of this principle has been enlightened by the recently reported
crystallographic structure of a claudin (Suzuki et al., 2014).

This study aimed to characterize the barrier of porcine PP
FAE. Since the postnatal development of PP is strongly influenced
by contact with living microbial antigens (Barmann et al., 1997),
a tight paracellular seal is essential for the correct presentation of
antigens through M cells to the underlying follicle immune cells
and therefore for the proper maturation of the immune system.

FIGURE 3 | (A) Immunoblots, (B) Densitometry. (A) In both, Peyer’s patch (PP) and neighboring villous epithelium (VE), claudin-1, claudin-2, claudin-3, claudin-4,

claudin-5, and claudin-8, were detected. (B) Densitometric analysis of tight junction protein signals revealed significantly stronger claudin-4 expression in PP after

surface correction (n = 5, *p < 0.05, ***p < 0.001).

Frontiers in Physiology | www.frontiersin.org 5 August 2017 | Volume 8 | Article 579

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Radloff et al. Claudins in Pig Peyer’s Patches

FIGURE 4 | Immunofluorescent staining revealed signals of all claudins within

epithelial cells in Peyer’s patch follicle-associated epithelium (PP FAE) and

neighboring villous epithelium (VE). The majority of claudins was detected in

the apicolateral membrane, including claudin-4 in PP FAE (n = 5, respectively,

bar: 20 µm).

In adult pigs, various PP are found in the distal jejunum with
an average length of 3.8 cm. Moreover, a continuous ribbon-
like patch can be found in the ileum (Kararli, 1995). Although
age, body weight, and length of the small intestine have been
shown to have a positive influence on the number of PP (Kararli,
1995), information about the paracellular barrier of the FAE
is limited. Nevertheless, it can be expected to play a major
functional role, because of its exceptional differentiation with
regard to barrier properties and specific claudin expression,

FIGURE 5 | RT-qPCR revealed increased levels of mRNA expression of

claudin-4 in Peyer’s patch follicle associated epithelium (PP FAE) tissue

specimens vs. villous epithelium (VE). Normalized fold expression was

calculated by the 11Ct method. *P < 0.05, n = 3, respectively.

potentially also affecting mechanisms of stress-induced barrier
disruption. These mechanisms involve corticotrophin releasing
hormone, acetylcholine, substance P, and mast cells and even
the selectivity of immune responses compared with the defined
receptor-mediated transcellular processes currently discussed
for M cells within FAE with allograft inflammatory factor 1
promoting transcytosis, which might be compromised by the
paracellular pathway (Keita et al., 2010; Kishikawa et al., 2017).
Therefore, the results of our study will apply to a broad research
field in porcine and human pathophysiology.

In accordance with our previous study focusing on rat PP
(Markov et al., 2016), the current study has revealed claudins
in all tissue specimens of the porcine PP FAE and neighboring
villous epithelia. However, among the major intestinal TJ
proteins, only claudin-4 shows a significantly higher expression
in porcine PP FAE. The significance of the similar findings in
the pig system compared with our recent study in rat regarding
claudin-4 and barrier properties (Markov et al., 2016) strongly
suggests that a major common denominator has now been
identified on both, protein and mRNA level. The pig system
closely resembles the human intestine and therefore is a useful
model for studying the detailed principles of PP FAE function and
regulation in barriology and immunology, which are currently
being discussed in the context of formula feeding and food
allergies (Chen et al., 2014; Wu et al., 2015; Yeruva et al.,
2016). However, as a refinement, current limitations regarding
the visualization of co-localization and the quantification of
immunohistological images might be overcome in epithelial
monolayer and co-culture models.

Within intestinal TJ, claudin-4 plays an eminent role, as
it can be affected by a wide variety of factors, including
secondary plant compounds, such as the flavonoid quercetin
(Amasheh et al., 2008), bacteria and bacterial toxins, e.g.,
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enter toxigenic Escherichia coli and cholera toxin (Markov
et al., 2014; Lodemann et al., 2017). Thus, susceptibility to
barrier strengtheners and pertubators might be attributed to
claudin-4, as demonstrated in detail for Clostridium perfringens
enterotoxin (Sonoda et al., 1999; Shinoda et al., 2016). The
first evidence of a direct influence of a claudin in the selective
control of paracellular ion permeability was obtained by Van
Itallie et al. (2001) for claudin-4. The direct association of
decreased claudin-4 expression has been demonstrated for a
variety of intestinal pathophysiological conditions, including
the inflammatory bowel diseases collagenous colitis, ulcerative
colitis, and Crohn’s disease (Bürgel et al., 2002; Prasad et al., 2005;
Das et al., 2012). Thus, a higher expression might be generally
regarded as a preventive or protective mechanism.

Apart from claudin-4, a number of other intestinal claudins
are known to be susceptible to barrier effectors and perturbation,
namely claudin-1 and claudin-2 (Amasheh et al., 2009, 2010),
claudin-3 and claudin-4 (Markov et al., 2014), claudin-5 and
claudin-8 (Dittmann et al., 2014; Barmeyer et al., 2017). Although
the interplay of these TJ proteins with transport function
and signaling might still be worth considering with regard to
porcine PP FAE (Markov et al., 2015, 2017), no differences of
these claudins with respect to their localization and expression
levels have been observed, at least under the non-challenging
conditions of the current study.

In porcine PP FAE, claudin-4 can be regarded to strengthen
the sealing of the paracellular pathway and, therefore, to improve
the selectivity of the transcellular pathway. This mechanism
would allow a stronger focus on transcellularly presented
antigens and less susceptibility for barrier perturbation as a
preventive mechanism. If barrier effectors selectively impair
porcine PP FAE function during pathophysiological events, they

might also affect intestinal immune defense, but this remains

to be elucidated. The outcome of our study, however, lays the
foundation for focused approaches with regard to specific effects
on PP FAE in intestinal physiology and pathophysiology.
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