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Chapter 1

INTRODUCTION

Energy-storage devices play a significant role in the future’s energy supply, particularly in large-

scale renewable energy technologies and transportation. Lithium(Li)-based batteries as one

kind of the rechargeable energy-storage systems are widely used in electric vehicles and many

portable electronic devices such as cell phones and laptop computers. In addition, the renewable

wind and solar energies are intermittent and they need to be connected to Li-based batteries in

order to store the energy [1].

The rechargeable batteries are electrochemical devices in which the electrical energy is

stored in the form of chemical energy. In Li-ion battery (LIB), low atomic weight of Li, as

well as its high electrode potential compared to hydrogen electrode (-3.04 V [2]), results in high

energy density. In general, LIBs have taken a large part of market not only because of its high

energy density, but also due to its long cyclic life and low self-discharge rate [1,3,4]. However,

the new generation of rechargeable batteries needs more research and improvement in order to

meet the market demands for even higher energy density, low cost, and improved safety [3, 4].

It is hoped that through the combination of theoretical and experimental investigations, re-

searchers can develop the new generation of improved rechargeable batteries. Therefore, the

goal of this thesis is to provide a detailed study on several promising materials in Li-based

batteries using computational techniques. Two important types of Li-based batteries which are

mainly described in this dissertation are lithium-sulfur (Li-S) batteries and all-solid-state Li-ion

1
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batteries (ASSLB). Li-S batteries have a high theoretical energy density (2800 WhL−1) [3, 5].

This property, besides the low cost of S and low atomic weight of Li, makes Li-S battery a

promising candidate for large-scale applications and transportation systems. In ASSLBs, the

replacement of liquid electrolytes by solid electrolytes increases the safety and flexibility in

design of such batteries.

1.1 Lithium-ion battery (LIB)

The first rechargeable LIB was developed by Goodenough et al. in 1980 [6]. A LIB consists

of one or more electrochemical cells which can be connected in parallel or in series. Main

components of each electrochemical cell are two electrodes and an electrolyte which is an ionic

conductor and electronic insulator. The anode is the negative electrode in which Li oxidation

takes place and the electrons get free during discharge process. Most cells commonly employ a

carbon- or graphite-based anode. The positive electrode is the cathode where during discharge

process, Li is reduced and the electrons coming from the anode are taken up. The cathode

is usually a lithium metal oxides, LiMO2 (M : Co, Mn, Ni, etc.). Upon discharging, Li ions

migrate from the anode to the Li-based cathode. Simultaneously, electrons move from the

anode to the cathode through the external circuit. The reverse process occurs during charging.

The schematic view of a typical LIB during charge process is shown in figure 1.1. Electrode

reactions that occur in a LIB consisting of graphite and LiMO2 electrodes are:

Anode reaction : Cn + xLi+ + xe−
charge

�
discharge

LixCn (1.1.1)

Cathode reaction : LiMO2

charge

�
discharge

Li1−xMO2 + xLi+ + xe−

Overall reaction : Cn + LiMO2

charge

�
discharge

LixCn + Li1−xMO2

In reality, besides the mentioned reactions, several side reactions occur during charge/discharge

cycle and consume Li ions and/or active electrode materials. For example, during the first
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Figure 1.1: Schematic view of a typical LIB upon charging. During charging process, Li ions move from cathode
to the anode through electrolyte, while they move in opposite direction during discharging.

charging cycles a solid electrolyte interphase (SEI) is generated on the surface of electrodes

(usually anode) due to reduction or oxidation of electrolyte species [7, 8](as shown in figure

1.1). The formation of SEI layer is irreversible and results in a loss of capacity. In addition,

the Li+ diffusion rate through SEI layer is lower than in the electrolyte and electrodes. On the

other hand, SEI layer acts as an electronically insulating protective layer between the electrolyte

and the electrode, and prevents further undesired decomposition of the electrolyte. Hence, it is

essential in the performance of LIBs [9].

1.2 Lithium-Sulfur Batteries

As shown in figure 1.2, a Li-S battery works based on the electrochemical dissolution of lithium

from metal Li anode and lithiation of sulfur at S cathode during discharge cycles. In reverse,

delithiation of sulfur from S cathode and deposition of lithiums at the anode occur while charg-

ing. Naturally, S exists in the form of ring structure with eight atoms, S8, and its reduction in a

Li-S battery is a multistep process accompanied by the formation of various Li-polysulfides as

intermediate products:
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S8 → Li2S8 → Li2S6 → Li2S4 → Li2S2 → Li2S.

During the discharge process, long-chain Li-polysulfides which are soluble in the electrolyte

are reduced to the insoluble Li2S2 and Li2S. In addition, migration of the Li-polysulfides to the

Li anode (shuttle effect) can form an electronically inactive layer of Li2S2 and Li2S on Li that

can obstruct the diffusion of Li+ into the electrolyte. Consequently, this leads to a hindrance

in further reduction of sulfur, and it results in a poor utilization of active material. Moreover,

the shuttle effect causes an irreversibe capacity fade as well as poor coulombic efficiency and

degradation of the Li anode.

Theoretically, a cell with the Li anode can provide the greatest energy among all recharge-

able batteries [3]. However the reactions between liquid electrolytes and Li electrode dur-

ing charge/discharge cycles form a moss-like Li dendrite with a large surface area. When the

dendrite grows and reaches the opposite electrode, the short circuit occurs. Then, the current

density passing through this dendrite can quickly increase the temperature up to the melting

point of metallic Li, and under this situation, explosion (“thermal runaway”) may happen. As

mentioned, the safety issue is one of the technical barriers for commercialization of the Li-S

Figure 1.2: Schematic view of a typical Li-S battery and mechanism of the shuttle effect.
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batteries. In recent years, researchers have proposed various methods to overcome the short-

comings and improve the performance of the Li-S batteries. Some of these approaches have

been focused on the electrolyte and its particular Li salts that can decrease the shuttle effect.

There are several experimental studies that have examined the effect of different Li salts, such

as lithium hexafluorophosphate (LiPF6), in the electrolyte of the Li-S batteries [10–16]. In ad-

dition, in a few theoretical works, the structures of Li-polysulfides in the solvent-salt complex

have been studied using density functional theory (DFT) [17–19]. Furthermore, employing a

solid-state electrolyte can suppress the Li anode degradation and improve the safety in the Li-S

batteries. Different electrolyte materials such as Lithium borohydride (LiBH4) [20], polymer

electrolytes [21, 22], and Li2S/P2S5-based electrolytes [23–26] have been recently proposed as

promising candidates in all-solid-state Li-S batteries. An alternative approach to enhance the

electrochemical performance in Li-S batteries is to design electrically conductive cathode ma-

terials which can hinder the shuttle effect. This issue will be discussed in more details in the

next section.

1.2.1 Cathode Materials in Li-S Batteries

In the early Li-S batteries, a simple mixture of carbon and sulfur was used as a cathode. These

cells had low capacity due to low electrical conductivity of S. In 1989, Peled et al. [27] in-

troduced loading S on the porous structures of carbon to have a more efficient electronic con-

tact. Afterwards, different approaches were proposed to improve the electrical conductivity of

cathode material such as using carbon-coated sulfur cathodes [28], sulfur/multiwalled carbon

nanotube (S/MWCNT) composites [29], S encapsulated in porous carbon nanofibers [30–32].

However, adding more carbon to S cathode decreases the energy density. In general, electrically

conductive materials with an especial closed structures, such as carbon nanofibers, are good

candidates for the cathode in Li-S batteries. In these closed structures, Li-polysulfides can be

encapsulated and immobilized. Furthermore, coated layers on anode or cathode can adsorb the
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Li-polysulfides and minimize the shuttle effect. Although several experimental researches have

been carried out to diminish the shuttle effect, studying the adsorption of Li-polysulfides at the

atomic scale is still challenging. Previously, the DFT calculations have been performed to in-

vestigate the structures and stabilities of Li-polysulfides in vacuum and electrolyte [18, 33, 34].

However, the mechanism of the Li-polysulfides adsorption on the cathode or the anode has

not been established yet. In particular, there is a possibilty of the Li-polysulfides trapping by

graphene in cathode which should be investigated at the atomistic level of details.

In the conventional Li-S battery, S cathode has to be paired with metallic Li anode as the

only source of Li. The replacement of S with Li2S as a cathode material in Li-S battery can

provide the possibility of employing the Li-free anodes (such as graphite, Si, Sn). Therefore,

the Li dendrites formation is avoided, and eventually the safety of the battery is improved.

Li2S has a high theoretical capacity of 1166 mAhg−1, but poor conductivity. Therefore, carbon

additives have been used to enhance the electrical conductivity of Li2S-based cathodes [35–38].

In addition, ionic conductivity in Li-based compounds has a key role in their applications in Li-

based batteries. Non-defective Li2S has a low ionic conductivity at room temperature [39, 40],

but combining this material with other solid composites results in promising electrolyte which

can hinder the Li-polysulfide migration and increase the energy capacity [23–26, 41, 42].

Superionic conducting behavior of Li2S at high temperatures has been first observed by

Altorfer et al. [39, 40] through the quasielastic neutron scattering study. However, Li-ion con-

ductivity in Li2S has not been theoretically studied so far.

1.3 All-Solid-State Li-Ion Batteries

An answer to the safety problem associated with the Li anode degradation can be using the

solid-state electrolytes. This type of electrolytes can improve safety and cyclic performance of

batteries by protecting the Li anode from dendrite formation and eventually avoiding the short-
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circuit [43,44]. Therefore, solid-state electrolytes are promising substitutes for the conventional

liquid electrolytes.

Along with a high ionic conductivity (more than 10−4 S cm−1 at room temperature), a poten-

tial solid electrolyte material must have a chemical and electrochemical stabilities. Additionally,

it should be non-toxic and inexpensive to be employed in the commercial all-solid-state Li-ion

batteries (ASSLB). There are various types of solid-state Li-ion conductors, but most of them

cannot be referred to as a standard solid electrolyte in commercial applications. Some examples

of common solid-electrolyte materials are perovskite-type oxides such as lithium lanthanum ti-

tanate (LLTO) [45,46], sulfide-based glass/ceramic such as Li2S–P2S5 [47,48], and garnet-type

materials [49,50]. Garnet-type solid-state electrolytes have attracted an increasing interest in the

last decade due to their high ionic conductivity and excellent environmental stability [49,51,52].

1.3.1 Garnet-Type Lithium Ion Conductors

Although the garnet-type materials have been well-understood structures, the first Li-ion con-

ducting garnet oxide, Li5La3M2O12 (M = Nb, Ta), was reported by Thangadurai et al. in

2003 [49]. The Li garnet structure has the general formula of LixA3B2O12 (5≤x≤7) in which

A and B can be substituted by different metal ions such as A = La, Ba, Sr, etc and B = Zr,

Nb, Ta, etc [51–55]. The neutron diffraction studies have shown that in these structures Li ions

are located on both octahedral and tetrahedral sites, and vacancies also exist on both sites (as

illustrated in figure 1.3) [56,57]. One of the most promising Li garnet material is Li7La3Zr2O12

(LLZO) which has been synthesized by Murugan et al. in 2007 [54]. This structure has rela-

tively high stability against metallic Li due to its low reduction rate in contact with Li anode.

LLZO is known to have two polymorphs with the cubic [54, 58–60] and tetragonal symme-

try [61,62]. The ionic conductivity was reported to be 10−6 S cm−1 for tetragonal structure [54]

and greater than 10−4 S cm−1 for cubic structure at room temperature [62–65], which is quite

proper for thin film batteries. A problem of LLZO is that the cubic phase is not stable and with-
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Figure 1.3: Crystal structure of cubic Li garnet oxide (LixA3B2O12).

out doping with Al2O3 or Ga2O3 during synthesis process, a tetragonal phase is produced [60].

Cubic LLZO doped by Al2O3 has been reported to have the ionic conductivity of 4×10−4 S

cm−1 [60], and the conductivity of LLZO stabilized with Ga2O3 is 5.4×10−4 S cm−1 [66].

Despite high Li-ion conductivity, ASSLBs constructed from these garnet materials have not

been commercialized yet. Many experimental studies have reported a high interfacial resistance

between LLZO and electrode materials [67–70]. Using energy dispersive X-ray spectroscopy

(EDS) analysis, a cross diffusion of elements at the interface of LLZO (electrolyte) and LiCoO2

(cathode) has been shown by Ogumi et al. [71]. In a recently published paper, confirming the

formation of an intermediate layer at the interface of LLZO/LiCoO2, Goodenough et al. [72]

have proposed a surface modification of LLZO to improve the electrochemical performance at

the interface. Despite all experimental studies on the interface of solid electrolyte/electrode,

there are still several unclear interface properties which have not been understood yet. This

originates from the failure of existing experimental techniques to elucidate the electronic struc-

ture as well as lack of theoretical studies at such interfaces. Recently, a few theoretical works

have been dedicated to investigate the solid-solid interfaces in the Li batteries. Using DFT
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calculations, the possibility of the interfacial layer formation at LLZO/Li has been shown by

Ma et al. [73]. In this paper, the potential energies for the cubic and tetragonal structures

of LixAl0.25La3Zr2O12 have been calculated and compared with each other [73]. In addition,

Siegel et al. have studied the interfacial resistance at LLZO/Li via DFT calculations [74, 75].

However, due to the large-size unit cell of LLZO, studying the interface between LLZO and

other complex system is a challenging task. Accordingly, the electronic and atomic structure of

LLZO/cathode interface have not been reported so far.

1.4 Goals of This Thesis

The present work focuses on problems and issues in LIB as future energy storage devices, spe-

cially Li-S batteries and ASSLBs. The main idea is that first-principles methods, in particular

DFT calculations, can be applied to investigate the electronic structure of Li-based systems in

order to better understand different mechanisms in LIB during charge/discharge cycles.

This thesis is organized into five chapters:

After current introduction, chapter 2 is dedicated to the theoretical background of the methods

used in the present study. This chapter provides a brief insight into the many-body problem

and DFT. Also the basics of DFT application in solids, some thermodynamic properties, and ab

initio molecular dynamics (AIMD) simulations are described in details.

In chapter 3, using DFT calculations the adsorption of Li2Sx polysulfides on pristine and de-

fective graphene is studied, and the atomic structures, binding energies, dispersion interactions,

and Gibbs free energies for these systems are presented. These findings lead to determination

of more suitable candidates for the cathode materials in Li-S batteries.

Furthermore, in chapter 4, regarding the fact that Li diffusion in Li2S cathode material is an

important process in the performance of the LIB, the mechanism of superionic phase transi-

tion in Li2S is presented. Also combining AIMD and DFT calculations, Li-ion conductivity is
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calculated and compared with experimental results.

In the case of ASSLBs, the computational simulation is expected to clarify the properties of

solid electrolyte/electrode interface. Therefore, in chapter 5 the electronic and atomic structures

as well as ion distribution at a model system for the electrolyte/electrode interface, namely

the LLZO/LiCoO2 interface, are investigated. Moreover, we study the possibility of cation

interchange, which is assumed to be the reason for low rate of Li diffusion at the interface.

Using different exchange-correlation functionals, bulk LLZO and bulk LiCoO2, which include

cation interchange, are optimized to minimize the stress induced by cation defect. Then, it is

shown whether stress on the interface can change the possibilty of cation interchange at this

system. The presented approach can also be used to study other complex solid/solid interfaces

in ASSLBs.



Chapter 2

THEORETICAL BACKGROUND AND METHODS

2.1 Introduction

In the beginning of the twentieth century, classical mechanics was seriously challenged on rel-

ativistic and microscopic aspects [76, 77]. Physicists came to the conclusion that classical me-

chanics could not correctly explain the phenomena at speeds comparable to that of light, as well

as the behavior of subatomic particles such as the electrons. In these years, the series of break-

throughs, from Planck’s quantum concept, and Einstein’s proposition on photons, to Bohr’s

model for hydrogen atom motivated scientists to find theoretical foundation behind these new

ideas [78, 79]. Finally, in the mid-1920s, Heisenberg and Schrödinger independently devel-

oped formulations of quantum mechanics to describe electronic structures of microscopic sys-

tems [76, 79]. Heisenberg proposed his formulation as a matrix eigenvalue problem [80], while

Schrödinger described the motion of microscopic particles by means of a wave function [81].

Both formulations work only for nonrelativistic phenomena, and despite their differences, rep-

resent the same concept from different perspectives. The Schrödinger equation is one of the

cornerstones in quantum mechanics. The non-relativistic time-dependent Schrödinger equation

is written as follows:

i~
∂ψ(r, σ, t)

∂t
= Ĥψ(r, σ, t), (2.1.1)

where Ĥ is the Hamiltonian operator, and ψ(r, σ, t) is the wave function which describes the

state of any physical system at time t with σ as the spin coordinates and r as the position of

11
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all particles. The Hamiltonian for a particle of mass m moving in a time-dependent potential

V (r, t) is given by

Ĥ =
P̂2

2m
+ V̂ (r, t), (2.1.2)

where the first term is kinetic energy operator and P̂ = i~∇. The Schrödinger equation has the

following form:

i~
∂φ(r, σ, t)

∂t
= − ~2

2m
∇2φ(r, σ, t) + V̂ (r, t)φ(r, σ, t), (2.1.3)

in which φ(r, σ, t) represents the one-particle orbital with spin σ at position r and time t. If we

consider the special case of time-independent potentials: V̂ (r, t) = V̂ (r), the spatial and the

spin parts of the orbital can be treated separately from its time-dependent part.

2.2 Many-Body Problem

In general, the systems of interest in quantum chemistry and solid-state physics consist of many

particles. These systems are usually described by many-body time-independent Hamiltonian

which takes the form as: (the atomic units are employed from now on throughout this thesis.)

Ĥ =−
N∑
i=1

(
1

2
∇2
i )−

M∑
I=1

(
1

2MI

∇2
I) (2.2.1)

−
N∑
i=1

M∑
I=1

ZI
|ri −RI |

+
N∑
i=1

N∑
j>i

1

|ri − rj|
+

M∑
I=1

M∑
J>I

ZIZJ
|RI −RJ |

,

where the indices i, j are used for electrons and I , J are used for atomic nuclei. MI denotes

nuclear masses. RI and ri stand for nuclear and electron coordinates, respectively, and ZI

denotes atomic number.

The exact solution to time-independent many-body Schrödinger equation is only possible

for a few very small systems like hydrogen atom. Therefore, different approximations should

be considered for real systems.
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2.3 Born-Oppenheimer Approximation

In 1927, Max Born and J. Robert Oppenheimer [82] justified that the molecular wave function

of a system consisting of nuclei and electrons can be approximated as

Ψ = ψelψnucl, (2.3.1)

which means that the electron and the nucleus states can be treated separately in Schrödinger

equation. The main idea of Born-Oppenheimer (BO) approximation is that the nuclei are more

massive than electrons, so their velocities are comparatively lower. Therefore, the electrons can

be assumed to be completely relaxed at any moment of atomic movement, and nuclei moving in

much slower velocities seem static to the electrons. Considering BO approximation, the many-

body problem is reduced to the problem of electrons moving in an external field which is due

to static nuclei. Thus, the many-body, time-independent purely-electronic Hamiltonian is given

by

Ĥel = −1

2

N∑
i=1

∇2
i +

N∑
i=1

N∑
j>i

1

|ri − rj|
−

N∑
i=1

M∑
I=1

ZI
|ri −RI |

, (2.3.2)

and

Ĥelψel(r) = Eelψel(r). (2.3.3)

In Eq. 2.3.2, the first term is kinetic energy operator, the second term represents the electron-

electron repulsion, and the last term represents the electron-ion interaction (external potential).

Then, the electronic energy including internuclear repulsion is obtained by

Eel+nucl = Eel +
M∑
I=1

M∑
J>I

ZIZJ
|RI −RJ |

. (2.3.4)

As most of the problems that we deal with in Chemistry and Physics focus on the electronic

part, from now on the Ĥ and E will be used instead of Ĥel and Eel, respectively. In Eq. 2.3.2,

the electron-electron Coulomb repulsion term introduces the correlated motion of electrons.
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Therefore, the Schrödinger equation cannot be exactly solved for a system with more than a

few electrons! That is, although the BO approximation is a great step forward to solve the

Schrödinger equation, further approximations are still needed.

2.4 Hartree-Fock Approach

In the Hartree method [83], the wave function of an N-electron system is approximated by a set

of N orthogonal spin orbitals φi(x):

ψ(x) ≡ ψH(x1,x2, ...,xN) = φ1(x1)φ2(x2)...φN(xN), (2.4.1)

where the electronic variable x includes the spatial coordinate r as well as the spin coordinate

σ. φi(x) is the single-electron orbital that describes both the spatial and the spin parts. In

this approach, the N-electron wave function is approximated by a simple product which is

not suitable for describing fermions. However, in the Hartree-Fock (HF) approach [84, 85],

an antisymmetrized wave function of the N-electron system which can be written as a Slater

determinant [86] is used instead of a simple product of spin orbitals φi(x):

ψ(x) ≡ ψHF(x1,x2, ...,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ1(x2) ... φ1(xN)

φ2(x1) φ2(x2) ... φ1(xN)

. .

. .

. .

φN(x1) φN(x2) ... φN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.4.2)

The ground-state configuration is determined by occupying the lowest energy levels according

to the Pauli exclusion principle.

The next step is to find a set of φi’s through variational principle by minimizing the total

energy with respect to the coefficients of a trial wave function. According to the variational

principle, the “best” set of these spin orbitals in the slater determinant is the one which min-
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imizes the electronic energy. This method originates from the fact that the expectation value

of the Hamiltonian for any trial wave function is always equal or greater than the ground-state

energy (variational principle).

In addition, to solve the Schrödinger equation, the electrons are assumed to move indepen-

dently in an effective potential (Veff) which includes the interaction of each electron with all

nuclei and the other electrons. Hence, using the HF wave function, the energy expectation

value can be written as

EHF =
〈
ψHF

∣∣∣Ĥ∣∣∣ψHF

〉
=

〈
ψHF

∣∣∣∣−∇2

2
+ V̂eff

∣∣∣∣ψHF

〉
=

N∑
i=1

∫
φ∗i (x)

[
−1

2
∇2
i −

M∑
I=1

ZI
|ri −RI |

]
φi(x)dx +

1

2

N∑
i=1

N∑
j=1

(Jij −Kij), (2.4.3)

where

Jij =

∫ ∫
φ∗i (x)φi(x)

1

|ri − rj|
φ∗j(x

′)φj(x
′)dxdx′

Kij =

∫ ∫
φ∗i (x)φj(x)

1

|ri − rj|
φ∗j(x

′)φi(x
′)dxdx′. (2.4.4)

The Jij are called Coulomb integrals and the Kij are exchange integrals. Therefore, instead

of solving the N-electron Schrödinger equation, the N one-electron HF equations should be

solved:

F̂iφi(x) = εiφi(x), (2.4.5)

in which F̂i is the Fock operator and takes the following form:

F̂i = −1

2
∇2
i −

M∑
I=1

ZI
|ri −RI |

+
∑
j 6=i

(Ĵj − K̂j). (2.4.6)

It should be noted that in HF approach the effect of “exchange” is included although the

electron-electron correlations are neglected [87].
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2.5 Density Functional Theory

Since in the HF-based methods one needs to calculate the many-body wave function of the

system, these methods become computationally demanding for large systems. An alternative

approach to obtain the physical properties of the system is using the electronic charge density

instead of many-body wave function which can reduce the number of spatial variables for an

N-electron system from 3N to only 3. The original idea of using the electron density as a central

quantity was first proposed in Thomas-Fermi model.

2.5.1 Thomas-Fermi Model

In 1927, Thomas and Fermi (TF) used a simple model of homogeneous electron gas to describe

the kinetic energy based on constant electron density [88,89]. As the electron gas is not uniform

in real atoms and molecules, Thomas-Fermi (TF) model fails to express the energy of an atom.

Dirac improved TF model by adding an exchange term to the total energy [90]:

ETF[ρ(r)] =
3

10
(3π2)2/3

∫
ρ5/3(r)dr− Z

∫
ρ(r)

r
dr (2.5.1)

+
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′|
drdr′ − 3

4

(
3

π

)1/3 ∫
ρ(r)4/3dr︸ ︷︷ ︸

EDirac
X [ρ(r)]

.

The kinetic energy, electron-nuclei interaction energy, the electron-electron repulsion energy,

and finally the exchange energy are sequentially shown in Eq. 2.5.1. All terms are functions

of the charge density which is itself a function of r. Therefore, they are called functionals and

their arguments are shown in square brackets.

2.5.2 Hohenberg-Kohn Theory

Starting point of Density Functional Theory (DFT) is a paper written by Hohenberg and Kohn

in 1964 [91]. They considered a system of charged spinless electrons with a non-degenerate

ground state described by a nonrelativistic time-independent Hamiltonian and showed that
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the ground-state electron density, in principle, contains all the information included in many-

electron wave function. So there is no need to find the wave function for the determination of

the ground state of a system. According to their first theorem, the ground-state electron density

uniquely determines the external potential V̂ext within a trivial additive constant. By knowing

the external potential, the electronic Hamiltonian Ĥ can be solved. This statement shows the

uniqueness of solution, ρ(r). Then, the total energy functional can be written as:

E[ρ] = F [ρ] +

∫
Vext(r)ρ(r)dr, (2.5.2)

in whichF [ρ] is the Hohenberg-Kohn functional and includes the kinetic energy and the electron-

electron interaction energy functionals. F [ρ] is a universal functional irrespective of the system,

that is, its mathematical form will be the same for a helium molecule, an ionic material, or even

a metal.

Their second theorem states that, if and only if the trial density is the true ground-state den-

sity, the total energy functional delivers the lowest ground-state energy based on the variational

principle.

Therefore, the only task is to find the ρ(r) function which minimizes the energy. But in

practice, it is not as simple as it might seem! Finding the correct F [ρ] is practically impossible,

and different approximations are needed to be adapted. A first approximation for F [ρ] was

introduced by Kohn and Sham in 1965 [92] providing a practical procedure to find the ground-

state charge density, ρ(r).

2.5.3 Kohn-Sham Ansatz

The Kohn-Sham (KS) definition for F [ρ] is as follows:

F [ρ] = TS[ρ] +
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′|
drdr′ + EXC[ρ], (2.5.3)

while TS[ρ] is the kinetic energy of a non-interacting electron gas, the second term is the clas-

sical Coulomb interaction energy, and last term EXC[ρ] is the exchange and correlation energy.
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The last two terms include all many-body quantum effects. According to KS approach, one can

map the many-body system of interacting electrons onto a system with noninteracting particles

with the same ground-state density ρ(r).

First, we consider a system of noninteracting particles moving in an effective potential, Veff

(like a homogeneous electron gas). The energy functional for this system is

E[ρ] = TS[ρ] +

∫
Veff(r)ρ(r)dr. (2.5.4)

Employing the variational principle

δE[ρ] = 0, (2.5.5)

the energy is minimized with respect to small variations of the electron density under the con-

straint of
∫
ρ(r)d(r) = N . Then, using the method of Lagrange multiplier, we can write:

µ =
δE[ρ]

δρ(r)
=
δTS[ρ]

δρ(r)
+ Veff . (2.5.6)

µ is Lagrange multiplier and is defined as the derivative of the energy with respect to the density.

Moreover, for a many-body system, µ has the following form for energy obtained by substituting

Eq. 2.5.3 into Eq. 2.5.2:

µ =
δE[ρ]

δρ(r)
=
δTS[ρ]

δρ(r)
+

∫
ρ(r′)

|r− r′|
dr′ +

δEXC[ρ]

δρ(r)
+ Vext. (2.5.7)

Comparing Eqs. 2.5.6 and 2.5.7, Veff is obtained as:

Veff =

∫
ρ(r′)

|r− r′|
dr′ + Vext +

δEXC[ρ]

δρ(r)︸ ︷︷ ︸
VXC

, (2.5.8)

where the last term is the exchange-correlation (XC) potential.

We should keep in mind that all the functionals can include the spin degree of freedom by

defining two charge densities, one for spin up and the other for spin down electrons. The many-

particle problem can be reduced to a single-particle formulation. Therefore, set of one-electron
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Schrödinger-like equations with corresponding Hamiltonian Ĥeff can be written as:

Ĥeff(r)φi(r) =

[
−1

2
∇2 + V̂eff(r)

]
φi(r) = εiφi(r), (2.5.9)

where each φi is a single-particle orbital. The Eqs. 2.5.9 are called Kohn-Sham (KS) equations.

The Eqs. 2.5.9 imply that each electron is moving in a mean-field effective potential of its

surrounding. The KS equations are solved iteratively as follows: After an initial guess for

the electron density, the effective potential Veff is calculated, and by solving KS equations,

the orbitals (KS eigenfunctions) are found. With the newly obtained orbitals, a new electron

density is generated. If the new electron density is not equal to the previous one within a given

threshold, a new cycle of calculation starts, using the recently-calculated electron density as a

new input. This cycle is called a self-consistent cycle.

In Eq. 2.5.8, all unknown parts are gathered in the exchange-correlation functional EXC.

This term have to be chosen in a way that it accurately describes all many-body effects. The

main challenge in DFT is to find a good approximation for this term.

2.5.4 Approximations to the Exchange-Correlation Functional

As mentioned, a good approximation to EXC[ρ] is crucial in order to get an accurate result in a

DFT calculation. One should note that as soon as adapting any approximation, the variational

principle is no longer valid. Therefore, there is no guarantee that minimization of the approxi-

mate energy functional gives the upper bound to the true exact ground-state energy. Neverthe-

less, the variational principle is still applied, and the obtained electron density is considered as

an approximation for the true ground-state density.

It is appropriate to use the concept of the exchange-correlation hole ρXC(r, r′) (Fermi-

Coloumb hole) in order to estimate the exchange-correlation energy EXC. The origin of the

XC hole is that each electron, whose motion is correlated to that of the other electrons, creates

an empty hole around itself based on Pauli exchange principle, since based on this principle, the
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probability of finding two electrons with the same quantum numbers at the same point in space

is zero. According to sum rule:

∀r :

∫
ρXC(r, r′)dr′ = −1. (2.5.10)

The exchange part of the XC hole is called the Fermi hole, while the correlation part results

in the Coulomb hole. The Fermi hole integrates to -1, therefore, it is negative everywhere. As

a result, the integral of the Coulomb hole should be 0. Therefore, the XC hole density has a

negative sign, and the interaction of electron with this hole, which is attractive, can define the

XC energy in the KS equation:

EXC[ρ] =
1

2

∫ ∫
ρ(r)

1

|r− r′|
ρXC(r, r′)drdr′. (2.5.11)

Here some of the famous XC functionals are listed:

Local Density Approximation

The first approximation to explicitly find a expression for the EXC is based on a homogenous

electron gas. That is, the real inhomogeneous electron gas is assumed to consist of small cells

while in each of them the electron density is constant. This assumption is called local density

approximation (LDA), and the XC functional is given by:

ELDA
XC [ρ(r)] =

∫
ρ(r)εXC(ρ)dr, (2.5.12)

where εXC(ρ) is the exchange-correlation energy per electron of mentioned homogeneous gas

and it can be split into exchange and correlation contributions,

εXC(ρ) = εX(ρ) + εC(ρ). (2.5.13)

The exchange part is obtained through Dirac exchange term EDirac
X in Eq.2.5.1,

εX(ρ) = −3

4

(
3ρ(r)

π

)1/3

. (2.5.14)
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There is no explicit expression for the correlation part, while it has been determined by highly

accurate quantum Monte Carlo (MC) simulations of the uniform electron gas [93].

LDA usually underestimates bond lengths and lattice constants, and overestimates the bind-

ing energies specially for the systems with nonuniform electron densities. However, LDA sur-

prisingly shows a good performance in a wide range of problems. This arises from the fact that

LDA satisfies the sum rule of negative values for the Fermi hole.

Generalized Gradient Approximation

Employing higher orders of density gradient in the XC functional can improve its approxima-

tion. In generalized gradient approximation (GGA), the first derivative of the density as well as

the density itself are included in the XC functional:

EGGA
XC [ρ(r)] =

∫
ρ(r)f(ρ, |∇ρ|)dr, (2.5.15)

where f(ρ, |∇ρ|) is found in such a way that the resulting functional is consistent with dif-

ferent criteria and sum rules. In general, GGA can deliver more reliable results compared to

LDA, specially in systems with inhomogeneous electronic charge distribution. Different GGA

functionals have been proposed like PW91 [94] and its close relatives PBE [95], RPBE [96],

MPBE [97]. Employing the PBE functional, which has been widely used, the overestimation of

binding energies is considerably corrected compared to LDA.

Moreover, if we enter second-order density gradient into the expression of the XC functional,

as in meta-GGA functionals such as that of Tao, Perdew, Staroverov and Scuseria (TPSS) [98],

better results compared to those of LDA and GGA functionals can be achieved. However, meta-

GGA functionals are much more computationally demanding compared to LDA and GGA ones.

Further Improvements to Density Functional Formalism

In the case of strongly correlated electron systems such as transition metal oxides, lanthanides,

actinides, and their compounds, electrons are significantly localized on transition metal atoms.
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Therefore, they cannot easily be approximated using a mean-field approach such as the KS

formalism. The error partly comes from the unphysical self interaction in the common LDA

and GGA functionals. A correction, based on the fact that the self interactions are completely

cancelled in the HF approach, is added to the approximate XC functionals. This approach is

called the self-interaction correction (SIC) method [99].

DFT+U Method: The other approach is adding the Hubbard U term to the KS Hamiltonian. In

1963 and 1964, Hubbard applied a simple extension of the tight-binding model to describe the

magnetism coming from electronic correlations [100–102]. Adding such a potential term in the

KS Hamiltonian introduces an orbital-dependent interaction, and causes an energy shift for the

localized orbitals due to the on-site Coulomb repulsion.

Hybrid Functionals: Further improvements to the GGA and meta-GGA functionals can be

achieved by using hybrid functionals. In this kind of XC functionals, the HF exact exchange is

partially added to the LDA and GGA exchanges. One of the most popular hybrid functional is

the Heyd-Scuseria-Ernzerhof (HSE) [103, 104] functional which employs a screened-exchange

potential. The idea behind the screened functional is that the Coulomb potential in the HF

exchange is a long-range potential. Therefore, the calculations on large systems using HF ex-

act exchange are computationally demanding. Furthermore, the interactions between electrons

which are far from each other can be screened by polarization effects. Thus, the contribution of

the HF exact exchange can be restricted only to the short range while the long-range part of the

exchange can be taken from the PBE functional. The HSE hybrid density functional takes the

form of:

EHSE
XC = αEHF,SR

X (µ) + (1− α)EPBE,SR
X (µ) + EPBE,LR

X (µ) + EPBE
C , (2.5.16)

where µ and α are the screening and the mixing parameters respectively. EPBE,SR
X and EPBE,LR

X

are the short-range and long-range contributions from the PBE exchange energy, EHF,SR
X is the

short-range exact-exchange energy, and EPBE
C is the PBE correlation energy.
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In this thesis, the PBE functional is applied in most of the DFT calculations. In the case of

transition metals, the PBE+U method is used. Moreover, some of the calculations are carried

out using the HSE(06) hybrid functional and compared to the same calculations performed with

the PBE+U approach.

Dispersion Corrections: Long-range interactions between instantaneous dipole moments as-

signed to different fragments of the charge distribution in a system are commonly referred to

as dispersion interactions. DFT in its local or semilocal approximations is unable to cerrectly

account for such long-range correlations. Therefore, several approaches have been proposed to

correct the DFT energies and forces to include dispersion interactions. Here, Grimme’s DFT-

D2 [105] and DFT-D3 [106] methods are briefly explained.

Grimme and co-workers added an empirical long-range −C6R
−6 energy correction to ac-

count for dispersion interactions in DFT calculations (DFT-D) [107]. This method was im-

proved over the time to DFT-D2 [105] and DFT-D3 [106]. The general form of the dispersion

correction in DFT-D and DFT-D2 can be written as:

Edisp = −s6

M−1∑
I=1

M∑
J=I+1

CIJ
6

R6
IJ

fdmp(RIJ), (2.5.17)

where M is the number of atoms, s6 is a scaling factor, RIJ is the interatomic distance, and CIJ
6

is the dispersion coefficient for the atom pair (IJ). A damping function (fdmp) is introduced

to avoid double counting and the singularities at short distances where DFT can already give

the correct results. In DFT-D3 framework [106], the two-body interaction is described by

also adding R−8 and R−10 contributions. In addition, many-body dispersion interactions are

included in this method up to three-body interaction by the third-order perturbation theory for

three atoms.
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2.6 DFT Calculations in Solids

The many-body problem is mapped to a single-particle problem using Kohn-Sham ansatz which

results in the KS equations 2.5.9. However, finding the electronic structure of the extended crys-

tals with an infinitely large number of electrons using the KS equations is not a straightforward

task. One way to reduce the complexity of this problem is to decrease the system size using the

symmetry properties.

A crystalline solid consists of periodic arrangements of atoms that repeat endlessly. The

repeating blocks, which are usually referred to as unit cells, should be chosen in a way that

it can generate the whole crystal system by translational vectors. As such, all points can be

defined by a translational vector of Bravais lattice R:

R = ua1 + va2 + wa3, (2.6.1)

where the primitive vectors a1, a2 and a3 are not all on the same plane, and u, v and w are

integer values. Thus, the whole crystal can be described completely by focusing on one unit

cell and applying periodic boundary conditions (PBC) to the Schrödinger equation. According

to the PBC, a single-electron orbital satisfies the following condition [108]:

φ(r +Niai) = φ(r) i = 1, 2, 3, (2.6.2)

where the ai are three primitive vectors and the Ni are the number of unit cells along ai in

crystal.

Another concept which is important in finding the electronic structure of periodic systems is

reciprocal lattice. The reciprocal lattice is defined as the Fourier transform of the Bravais lattice

in real space. Considering the plane wave eik·r, all wave vectors K belong to the reciprocal

lattice if they meet this requirement:

eiK·(r+R) = eiK·r, =⇒ eiK·R = 1, (2.6.3)
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for all R in the Bravais lattice. Any vector K can be written as a function of three reciprocal

primitive vectors bi:

K = hb1 + kb2 + lb3, (2.6.4)

where integers h, k and l are called Miller indices. A reciprocal lattice vector hb1 + kb2 + lb3

is normal to the plane (h, k, l), since ai · bj = 2πδi,j. The primitive unit cell in the reciprocal

lattice is called Brillouin zone.

2.6.1 Bloch’s Theorem

Since the ions in a crystal are periodically arranged in space, one can consider the effective

potential Veff(r), defined in Eq. 2.5.9, to have the same lattice periodicity. According to the

Bloch’s theorem, the single-electron orbital in a periodic structure can be written as a product

of a plane wave and a function with the periodicity of the Bravais lattice:

φnk(r) = eik·runk(r), (2.6.5)

where unk(r + R) = unk(r) for all R in the Bravais lattice. The index n is called the band

index which refers to independent KS orbitals for a given k, due to the PBC 2.6.2. It can be

shown that the wave functions of the form 2.6.5 have the following properties:

φnk(r + R) = eik·Rφnk(r), (2.6.6)

φn,k+K(r) = φnk(r),

εn,k+K = εnk,

where εnk represents the energy of the electron with wave vector k in band n. The last two

equations show that the crystal orbitals and the energies of two states defering by a reciprocal

lattice vector K are identical. This allows us to confine our electronic structure calculations to

the first Brillouin zone. For many physical properties such as electronic charge density and den-

sity of states, it is necessary to have a proper k-point sampling in the first Brillouin zone. In the



26

electronic structure calculations, the k-point sampling is done using different approaches. The

most commonly used method is the Monkhorst-Pack scheme [109] which employs an unbiased

method to choose a set of k points for efficient sampling of the Brillouin zone.

2.7 Basis Sets

All the studies on the electronic structure of systems are based on expansion of an unknown

orbital in terms of a known basis set. Two types of basis functions, which are usually used to

represent the unknown wave functions, are plane waves and atomic orbitals.

2.7.1 Plane-Wave Basis Sets

Plane waves (PWs) form a complete set of functions which do not depend on atomic positions.

The periodic part of the Bloch function can be expanded in terms of plane waves as:

unk(r) =
1√
Ω

∑
K

cnk,Ke
iK·r, (2.7.1)

in which Ω is the volume of the real space unit cell, K is a reciprocal lattice vector, and cnk is

the independent coefficient. Therefore, the Bloch functions can be written as:

φnk(r) =
1√
Ω

∑
K

cnk,Ke
i(k+K)·r. (2.7.2)

In order to correctly describe the electronic wave function of the system, lots of PWs are

needed which expand over the whole system. This makes the Hamiltonian matrix very large.

Therefore, only the PWs with kinetic energy lower than a predefined cutoff (Ecutoff) are included

in the basis set,

1

2
|k + K|2 < Ecutoff . (2.7.3)

In addition, the PW codes usually use pseudopotentials to approximate the effect of the core

electrons together with the nuclei by an effective potential which acts on the valence electrons

[110–112]. Pseudopotential approximation will be discussed later in this chapter.
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2.7.2 Atomic-Orbital Basis Sets

A promising alternative for the PW basis sets are localized atomic orbitals. In most of the DFT

codes employing localized basis sets, electronic orbital φi(r) in a unit cell is constructed as a

linear combination of normalized atomic orbitals (LCAO),

φi(r) =
M∑
α=1

cαiχ
M
α (r), (2.7.4)

in which χMα is the atomic orbital centered at nucleus M in the unit cell. For non-periodic

calculations, one can use Eq. 2.7.4 in order to construct the KS Hamiltonian. However, for

periodic calculations, the fact that the atomic orbitals, χMα , are essentially of the Bloch form

should be taken into account. Therefore, according to Eqs. 2.6.6, each atomic orbital can be

written as [113, 114]:

χMα (r) =
1√
N

N∑
R

eik·RχM(r−R), (2.7.5)

where N is the total number of unit cells in the whole crystal according to the PBC Eq. 2.6.2,

and R is the real-space lattice vector. Due to the finite range of atomic orbitals, the KS Hamil-

tonian becomes sparse. The Hamiltonian matrix elements involving two atomic basis functions

which are far away from each other can be immediately set to zero as soon as their distance is

longer than the sum of their individual spatial range. This is a direct consequence of the “near-

sightedness” of the electronic systems [115]. Another advantage of using the atomic orbitals as

basis functions is the ability of performing the all-electron calculations.

The Gaussian Basis Functions

One of the most popular forms for atomic-orbital basis sets are Gaussian functions. The

Gaussian-type orbitals have the following form in spherical coordinates [116, 117]:

χζ,n,l,m(r, θ, ϕ) = AYl,m(θ, ϕ)r2n−2−le−ζr
2

, (2.7.6)
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where n, l, and m are the quantum numbers, ζ exponent is a constant related to the effective

charge of the nucleus,A is a normalization factor, and Yl,m are the spherical harmonic functions.

The function in Eq. 2.7.6 is generally referred to as the primitive Gaussian function. It is

common to use a contracted Gaussian function which includes fixed linear combinations of

primitive functions [114]. In a contracted basis set, there is a limited number of variational

parameters. Thus, using this kind of basis functions considerably reduces the computational

cost.

However, it is always a formidable task to guess how many basis functions should be em-

ployed for the system of interest. For instance, the smallest number of functions in the case of a

hydrogen atom is a single s-function. For lithium, two s-functions are required, but it is better

to also consider a set of p-functions. To improve the employed basis set, the number of basis

functions is doubled. Such basis set is called double zeta (DZ). For example, two s-functions

with different ζ exponents are used for hydrogen. Similarly, triple zeta (TZ) and quadruple zeta

(QZ) basis functions contain respectively three and four basis functions for each element in the

system. The next improvement is using the polarization functions. Chemically bonded atoms

usually possess some distortions in their electron density compared to their isolated shapes.

In order to describe the charge polarization effects, higher angular momentum functions are

added to the basis set, for example p-functions for hydrogen atom, and d-functions for first-row

elements.

Nevertheless, employing atomic-orbital basis functions is not always problem-free. For ex-

ample, using localilzed basis functions can cause an error in calculating the interaction en-

ergies of different fragments of the system, which is known as basis set super position error

(BSSE) [118]. Assuming A and B are two fragments interacting with each other, the interac-

tion energy of the total system AB at its optimized geometry is usually calculated as the energy
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difference between the total system AB, and the isolated fragments A and B:

∆Eint = Eab(AB)− Ea(A)− Eb(B), (2.7.7)

where Eab(AB) , Ea(A) , and Eb(B) are the energies of the total system AB, the isolated

fragment A, and the isolated fragment B, respectively. The subscripts a and b respectively

indicate the basis functions of fragment A and B. Therefore, Ea(A) refers to the total energy

of the fragment A calculated using only the basis functions of A. However, in the total system

AB, basis functions of the fragment A can be “borrowed” by the fragment B and vice versa.

Thus, as is clear in Eq. 2.7.7, the three Hamiltonians which have been used to estimate the

three total energies do not have the same dimension. This indicates an underlying error due

to incompleteness of the basis sets. A method that is widely applied to correct the BSSE is

the Counterpoise correction scheme of Boys and Bernardi [119]. In the Counterpoise method,

the total energy of the fragment A (B) is calculated in the presence of all the basis functions

of the fragment B (A) on the atomic centers of B (A) without considering the electrons and

the nuclear charges of B (A). These basis functions, located at the A or B fragments without

electrons and nuclear charges, are referred to as “ghost functions”. Therefore the interaction

energy is computed as:

∆Eint = Eab(AB)− Eab(A)− Eab(B), (2.7.8)

In this dissertation, localized basis sets represented by contracted Gaussian functions are

applied using the SeqQuest code [120,121]. We use DZ basis set together with the polarization

function. The BSSE is corrected using the Counterpoise method in all the interaction energy

calculations. Furthermore, the PW basis sets are employed in the calculations using the Vienna

Ab initio simulation package (VASP) [122–125]. In addition, we use the CP2K Quickstep

code [126–129] to simulate the large systems with more than 300 atoms employing mixed

Gaussian and PW basis sets.
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2.8 Pseudopotential Approximation

Most of the electronic properties in solids are determined by the valence electrons. Moreover,

representing the orbitals of core electrons requires lots of basis functions that increases the

computational cost. Thus, to reduce the size of the basis set without compromising accuracy,

the strong ionic core potential is replaced by an effective weak pseudopotential, and smoothly

varying pseudo-orbitals are used instead of valence electron orbitals within the core region

[130–132]. However, outside the core region, the pseudopotentionl and pseudo-orbitals are

required to be the same as the corresponding all-electron ones.

One important class of pseudopotentials is norm-conserving pseudopotentials [133, 134]. In

this scheme, the all-electron orbitals and pseudo-orbitals must have the same norm. Therefore,

the pseudo charge and the pseudo electron density are identical to true charge and true electron

density in the core region. Various types of norm-conserving pseudopotentials are introduced

by different researchers such as Bachelet-Hamann-Schlüter [135], Troullier and Martins [136],

and Goedecker-Teter-Hutter [137].

2.9 First-Principles Thermodynamics

DFT is a technique that gives a detailed insight on the electronic structure of materials. How-

ever, to explain the phenomena in the large time and length scales, an appropriate connection

between the microscopic, the mesoscopic, and the macroscopic regimes is needed. Thermo-

dynamics and statistical mechanics can establish such a link by combining the macroscopic

concepts with the microscopic aspects provided by DFT calculations. Thus, this approach is

often referred to as first-principles thermodynamics.

Typically, we only have access to zero-temperature and zero-pressure results from DFT cal-

culations. The Gibbs free energy enables us to relate these results to finite temperatures and

pressures. For a closed system with volume V , at temperature T and pressure p, the Gibbs free
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energy G is given by

G = Etot + Fvib − TSconf + pV, (2.9.1)

whereEtot is the total electronic energy directly obtained from the DFT calculations. Sconf is the

configurational entropy, and Fvib is the vibrational free energy. Configurational entropy consists

of translational and rotational contributions [138]. The translational entropy is expressed in

terms of the thermal wavelength and it is usually calculated using the Sackur-Tetrode equation

in ideal gas approximation [139, 140]:

St = kBN

[
5

2
+ ln

( v

NΛ3

)]
, (2.9.2)

where kB is the Boltzmann constant, and v is the volume per mole of the molecule. The thermal

wavelength is defined as Λ = h/(
√

2πmkBT ), in which h is Planck’s constant and m is the

molar mass of the molecule. Moreover, the rotational entropy is expressed using the inertia

momenta (I1, I2, I3) [140, 141]:

Sr = kBN

[
3

2
+ ln

(√
π

σ

(
2kBT

~2

)3/2
)√

I1I2I3

]
, (2.9.3)

in which σ is the symmetry number and it is equal to 1 for most molecules, except for those

with rotational symmetry.

The vibrational free energy is calculated based on the vibrational entropy Svib:

Fvib = −TSvib = −kBT ln

[
e
− ε

kBT∑
n e
− εn

kBT

]
. (2.9.4)

Within the harmonic approximation (εn = (n + 1
2
)~ω), the partition function Z takes the fol-

lowing form,

Z =
∞∑
n=0

e
− εn

kBT = e
− ~ω

2kBT

∑
n

(
e
− ~ω

kBT

)n
=

e
− ~ω

2kBT

1− e−
~ω

kBT

. (2.9.5)

Therefore, the vibrational contribution depends on temperature T and frequency ω

Fvib(T, ω) =
1

2
~ω + kBT ln

[
1− e−

~ω
kBT

]
. (2.9.6)
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At T = 0, only the first term in Eq. 2.9.6 remains which gives the zero-point energy of the

vibrational mode ω.

2.9.1 Surface Energy

On a surface, there is no periodicity along the normal direction. Thus, different models are

presented to choose the smallest unit cell that can periodically reproduce the whole system.

One of these simulation models is the supercell approach in which the crystal slabs are sepa-

rated by a vacuum layer in the direction perpendicular to the surface [142]. In order to have a

proper description for the surfaces, the vacuum gap between two slabs has to be large enough

to completely decouple the slabs. Also to model a semi-infinite crystal, the slab thickness has

to be sufficiently large. Therefore, to find the appropriate width of the vacuum gap and the slab

thickness, convergence tests are required. Moreover, in the slab calculations, it is convenient to

set the lattice parameters based on the theoretically optimized bulk structure. Thus, the surface

periodic unit is written based on the strain-free bulk unit cell.

In studying surfaces, it is important to know how much energy is required to cut a bulk sam-

ple, and create a unit surface area. Creating surfaces by cleaving a solid is not an spontaneous

process, since during this process the Gibbs free energy increases [143]. As a result, the most

stable surface at a certain T and p is the one that has the lowest surface energy. The surface free

energy for a slab with two equivalent surfaces in the supercell model can be written as

γ =
1

2A
[Gslab − nGbulk] , (2.9.7)

where A and Gslab are the surface area and the Gibbs free energy of the slab, while Gbulk and n

are the Gibbs free energy per unit cell of the bulk and the numbers of the bulk units in the slab,

respectively. In solids, the difference between the configurational and vibrational contributions

in the surface and those ones in the bulk is usually very small. The pV term is also negligible

for solids at pressures up to 1 atm [144]. Therefore, in Eq. 2.9.7, instead of evaluating the
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Gibbs free energies, the total DFT energy values are calculated, and the surface free energy is

expressed as

γ =
1

2A
[Eslab − nEbulk] , (2.9.8)

in which Eslab and Ebulk are the total electronic energies of the slab and the bulk unit cell,

respectively. In order to have an accurate estimation for the surface free energy, all energies in

Eq. 2.9.8 have to be calculated at the same level of theory, that is using the same basis sets and

k-point sampling.

2.10 Molecular Dynamics Simulations

It is generally important to study a system under realistic conditions, that is finite temperatures

and/or pressure. For this purpose, a class of simulations can be employed in which the evolu-

tion of a system can be tracked in time. These classes of simulations are usually referred to as

molecular dynamics (MD) simulations [145, 146]. MD simulations allow for prediction of the

time evolution of different systems consisting of interacting particles by numerically solving

the classical equations of motions. With the most general form for the potential energy func-

tion of the system, U(R1,R2, ...,RN), structural evolution of the system can be obtained by

calculating the forces acting on atoms through

FI = −∇IU(R1,R2, ...,RN), (2.10.1)

where RI denotes the instantaneous position of atom I . By knowing the atomic positions and

forces at time t, one can, in principle, predict them at later times via integrating the equation

of motion. Generally, there are two main families of MD simulations which differ in the way

they estimate the potential energy function, U . In classical MD simulations, U is obtained using

parametric interatomic potentials, whereas in ab initio MD simulations it is computed through

employing an electronic structure method, such as DFT. In ab initio MD simulations, the forces

FI are calculated “on-the-fly” using an electronic structure method [147].
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2.10.1 Integrating the Equations of Motion

Irrespective of the approach used to describe the potential energy function, one needs to nu-

merically integrate the equation of motion for the atoms which are usually treated as classical

particle.

The Verlet Algorithm

The widely used Verlet algorithm [148] uses the positions and the forces at time t together with

the atomic positions at t−∆t in order to predict the positions at time t+∆t. A Taylor expansion

of the position of the particle I at time t+ ∆t gives

RI(t+ ∆t) ≈ RI(t) + (∆t)VI(t) +
(∆t)2

2MI

FI(t), (2.10.2)

where VI and MI are the velocity and the mass of the particle I , respectively. By performing

a similar Taylor expansion for the particle I at time t − ∆t, and adding these two equations

together, the following expression for the position is obtained

RI(t+ ∆t) ≈ 2RI(t)−RI(t−∆t) +
(∆t)2

MI

FI(t). (2.10.3)

Equation 2.10.3 is known as the Verlet integrator [148], which can be used to propagate the

trajectory of a particle by time step ∆t. Although in the Verlet algorithm the velocities are not

used to find the positions in the next time steps, but one can easily compute them via

VI(t) =
RI(t+ ∆t)−RI(t−∆t)

2(∆t)
. (2.10.4)

The Velocity Verlet Algorithm

The Verlet algorithm has the disadvantage of not propagating the complete phase space trajec-

tory, that is the positions as well as the velocities. Another drawback of the algorithm is that the

positions need to be stored in memory at both times t and t − ∆t. In order to overcome these

shortcomings, one use the time-reversibility of the Newton’s equations of motion. It means
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that one will get to the same observed points in the phase space if the trajectory is propagated

backwards in time. Thus, if the starting time in Eq. 2.10.2 is t + ∆t and the time step of the

motion is −∆t, it will be obtained

RI(t) ≈ RI(t+ ∆t) + (−∆t)VI(t+ ∆t) +
(∆t)2

2MI

FI(t+ ∆t). (2.10.5)

By substituting RI(t+ ∆t) from Eq. 2.10.2 to the above equation, one can find

VI(t+ ∆t) ≈ VI(t) +
∆t

2MI

[FI(t) + FI(t+ ∆t)] . (2.10.6)

Equations 2.10.2 and 2.10.6 are known as the velocity Verlet algorithm [149] and they propa-

gate the positions and the velocities simultaneously. Time-reversal symmetry is a fundamental

property of classical equations of motion and it should be preserved in order to achieve the

numerical stability. It is indeed preserved by both the Verlet and velocity Verlet algorithms.

2.10.2 MD Simulations in Canonical Ensemble

According to the ergodic hypothesis, an ensemble average of an observable can be obtained by

calculating the time average of the observable over a long period of time [146]. Starting with a

fixed number of particles, N , in a fixed volume, V , one can study the evolution of the system

at constant energy, E, in the phase space using the algorithms mentioned in previous section.

This corresponds to micro-canonical (NVE) ensemble. However, to study a system under more

realistic conditions, it is necessary to investigate its evolutions in canonical (NVT) ensemble.

This can be achieved by coupling the system to a heat bath using a thermostat which keeps the

temperature constant.

Nosé-Hoover Thermostat

One of the widely used thermostats was first introduced by Nosé [150, 151] and later modified

by Hoover [152] which adapts an extended-ensemble approach. The Hamiltonian of a system

of N particles with an extra degree of freedom, s, and its conjugate momentum, Ps, is written
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as [146]

ĤNose =
N∑
I=1

P̂2
I

2M2
I

+ Û(R1,R2, ...,RN) +
P 2
s

2Q
+ gkBT ln s, (2.10.7)

where kB and T are the Boltzmann constant and target temperature, respectively, and g is equal

to 3N + 1. In the course of the MD simulation, the additional degree of freedom, s, scales the

velocities to push the instantaneous kinetic energy towards the target value. Q is a parameter

with the unit of energy× time2, and determines the time scale on which the thermostat interacts

with the system. It can be viewed as an “effective mass” for s. In the extended system described

by Eq. 2.10.7, the total energy is conserved, that is we have micro-canonical ensemble. How-

ever, the “potential” for s, that is gkBT ln s is chosen in such a way that the micro-canonical

distribution of HNose gives the canonical distribution of the real physical system [146]. It can be

shown that in this formulation, the equation for momentum had a friction term which is propor-

tional to the conjugate momentum of the extra degree of freedom, Ps. Moreover, the evolution

of Ps is given by the difference between the instantaneous kinetic energy and its canonical aver-

age, gkBT . Therefore, the friction term controls the fluctuations of the kinetic energy and hence

acts as a “thermostat”.

2.10.3 Ab initio Molecular Dynamics

Reliability of empirical potentials (force fields) as well as their transferability to different sys-

tems are questionable [147, 153, 154]. This is due to the fact that the electronic structure of

the system is completely neglected in force-field-based simulations, where the potential energy

function U in Eq. 2.10.1 is approximated by parametric interatomic potentials. In contrast to

the classical MD simulations, in ab initio molecular dynamics simulations (AIMD) the forces

are obtained using the expectation value of the total energy in the electronic ground state via

FI = −∇I

〈
ψ0

∣∣∣Ĥ∣∣∣ψ0

〉
, (2.10.8)
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where Ĥ is the total Hamiltonian of the system while ψ0 denotes the electronic ground-state

wave function with energy E0({RI}), that is Ĥ |ψ0〉 = E0 |ψ0〉. RI’s are the atomic positions.

At each AIMD step, new electronic ground state, characterized by the atomic positions, is

solved and the forces are obtained using Eq. 2.10.8. The electronic charge distribution attributed

to this ground state acts as an external field for the nuclei. Afterwards, the nuclei, which are

usually treated classically, are propagated in time with the algorithms introduced above. This is

exactly the BO approximation which treats the electrons and the nuclei separately [82,147], and

the approach for AIMD simulation is often called Born-Oppenheimer MD. Calculation of the

derivatives in Eq. 2.10.8 is usually performed using the Hellmann-Feynman theorem [155,156],

−∇I

〈
ψ0

∣∣∣Ĥ∣∣∣ψ0

〉
= −E0 〈∇Iψ0|ψ0〉 − 〈ψ0|∇Iψ0〉E0 −

〈
ψ0

∣∣∣∇IĤ
∣∣∣ψ0

〉
= −E0∇I 〈ψ0|ψ0〉 −

〈
ψ0

∣∣∣∇IĤ
∣∣∣ψ0

〉
(2.10.9)

Considering the orthonormality condition (〈ψ0|ψ0〉 = 1),

FI = −
〈
ψ0

∣∣∣∇IĤ
∣∣∣ψ0

〉
(2.10.10)

Additionally, the basis functions which expand the ground-state wave function need to be in-

dependent of the atomic positions. This condition is satisfied when a PW basis set is used.

However, in the case of atomic-orbital basis functions, Eq. 2.10.10 is not valid anymore and

extra terms appear on the right-hand side. These additional term are generally referred to as

Pulay forces. Nevertheless, the Pulay forces vanish if the basis set is complete [157].

Part of this thesis is dedicated to the investigation of Li diffusion in defective bulk structure

of Li2S using AIMD simulations. These calculations are performed in the canonical (NVT)

ensemble while the temperature of the system is controlled by the Nosé-Hoover thermostat.

The details are described in chapter 4.
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Chapter 3

ADSORPTION OF Li-POLYSULFIDES (Li2Sx) ON

PRISTINE AND DEFECTIVE GRAPHENE 1

3.1 Introduction

As discussed in the section 1.2.1, in the Li-S batteries, several electrochemical reactions happen

during the charge and discharge process [159]. In general, the discharge reactions can be ex-

plained by S8 → Li-polysulfides→ Li2S, in which the intermediate Li-polysulfides are Li2S8,

Li2S6, Li2S4, and Li2S2. An important problem in this kind of batteries is that electrolyte-

soluble Li-polysulfides diffuse to the Li anode (shuttle effect). They reduce at the anode,

corrode the Li metal and form the Li2S2 and Li2S. As a consequence, the Li ion diffusion

is inhibited, and the reduction of active S material becomes limited, which finally causes the

capacity fade. In order to hinder the shuttle effect, it is recommended to use an electrically

conductive cathode which can also trap the Li-polysulfides. Therefore, carbon and sulfur com-

posites are good candidates for such a cathode. Although many DFT studies have been carried

out on cathode materials in Li-ion batteries (LIBs), less attention has been paid to sulfur cath-

ode materials in the Li-S batteries. In one of the few theoretical works on cathode materials,

Wang et al. [18] have calculated the atomic structures of Li2S4, Li2S6, and Li2S8 using B3LYP

exchange-correlation functional [160–162] and 6-311G basis set, and they have investigated the

mechanisms of reactions at sulfur cathode during the discharging.

1This chapter is based on the results presented in Ref. [158]

39



40

In addition, graphene can be introduced in the sulfur cathodes to increase their electrical con-

ductivity. The Li-S batteries with cathodes such as graphene-S composites [163, 164], porous

carbon-S composites [165–167], and graphene oxide-S composites [168, 169] have been re-

ported to have high energy capacities. In this chapter, considering graphene in the cathode,

the most favorable atomic structures and adsorption energies of Li-polysulfides on pristine and

defective graphene are studied using dispersion-corrected DFT calculations. Furthermore, the

ability of the graphene with a single vacancy to trap the Li2Sx is investigated, and it is discussed

whether the defective graphene can avoid the shuttle effect in Li-S batteries.

3.2 Graphene Structure

A two-dimensional sheet of graphene has a hexagonal structure. In this structure, each C atom

forms 3 covalent bonds with its nearest neighbors (honeycomb lattice). The fourth valence elec-

tron does not participate in the covalent bonding, and the corresponding 2pz orbital is oriented

perpendicular to the graphene sheet. The primitive unit cell of graphene contains two carbon

atoms. One possible choice of unit cell vectors is shown in Fig. 3.1.a. A and B are carbon

atoms, and the primitive vectors a1 and a2 are written as:

a1 =
AB

2

(
3,
√

3
)
, (3.2.1)

a2 =
AB

2

(
3,−
√

3
)
,

where AB is the distance between the nearest neighbor carbons.

Defects can change the electronic and chemical properties of graphene. Therefore, here

we study the effect of the common graphene defects in trapping the Li-polysulfides. One of

the topological defects in carbon-based structures with honeycomb lattice is Stone-Wales (SW)

defect. It is formed by a 90 degree rotation of a carbon-carbon bond in the graphene plane with

respect to the midpoint of the bond, forming two pentagons-heptagons out of four hexagones

(SW 55-77) as in Fig. 3.1.c. Stone-Wales-like defects are formed by rotation of more than one



41

Figure 3.1: (a) Schematic view of the graphene primitive unit cell. Top views of (b) pristine, (c) SW 55-77, (d)
SW-like 555555-777-9, (e) monovacant graphene, and (f) divacant graphene structures.

pair of carbons, leading to more pentagons, heptagons, and other n-gons. None of the atoms

in such defects has dangling bonds (see Fig. 3.1.d). Point defects are also created in graphene

during some processes such as synthesis or irradiation. Monovacancy, formed through removal

of a carbon atom from the graphene sheet, initially creates three dangling bonds (Fig. 3.1.e). By

removing the other carbon atom from the three unsaturated carbons in Fig. 3.1.f, divacancy is

formed which builds a pentagon-octagon-pentagon (5-8-5) structure.

3.3 Method of Calculations

In this research, the graphene sheets are modelled using supercell approach with 6×6 unit cells.

To study the adsorption of the Li-polysulfides on the graphene, a supercell which includes a

Li2Sx (x =4, 6, 8) molecule on the graphene sheet is used. The vacuum thickness between the

images is 17 Å . To reduce the computational effort the Li-polysulfide molecules with even num-

ber of S are studied. Integrations in reciprocal space are performed on a 3×3 Monkhorst-Pack

k-point mesh grid for the surface unit cell. The full geometry optimization is done for Li2Sx

as well as pristine and defective graphene with and without Li2Sx. All geometry optimizations

are performed using the SeqQuest program [120, 121], which is a DFT code with localized
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basis sets represented by linear combinations of contracted Gaussian functions (double-zeta

plus polarization) and norm-conserving pseudopotentials. The exchange-correlation energies

are evaluated with the Perdew-Burke-Ernzerhof (PBE) functional [95], and the dispersion ef-

fects for van der Waals interactions are introduced by DFT-D2 method [105]. In our present

study, this correction considerably strengthen the calculated interaction energy between Li2Sx

and graphene. Therefore, the distance between the Li-polysulfide molecules and graphene is

shorter with dispersion correction. Here, we do not consider the effect of the graphene ripples

because of the small size of the Li2Sx molecules (< 6 Å) compared to the average wavelength of

the ripples (λ ∼ 55 Å [170]). Moreover, in order to correct for the basis set super position erros

(BSSE), the Counterpoise method [119] is used. It is found that BSSE in current calculations

results in over-binding by 17-19% which is calculated from the difference of biding energies

evaluated with and without considering BSSE correction.

The zero point energies (ZPE) and vibrational free energies are obtained from the frequencies

through Eq. 2.9.6. In order to estimate the rotational and translational entropy contributions to

the Gibbs free energy (Eq. 2.9.1) at room temperature, the TURBOMOLE package of programs

[171, 172] is employed. The rigid rotor and ideal gas approximations are used to respectively

calculate the rotational and translational entropy for the Li-polysulfide molecules.

3.4 Results and Discussion

3.4.1 Li-Polysulfides

First, we study different possible arrangements of Li and S atoms in Li2Sx (x = 4, 6, 8).

The structures reported in Ref. [18] are also considered. Figure 3.2 illustrates our obtained

minimum-energy structures. The most stable geometries are found to be like an open ring which

are in agreement with the previous results [18]. Also the bond lengths in the Li2Sx molecules

are calculated. Table 3.1 presents the distance between two bonded atoms for all structures in
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Figure 3.2: Atomic structures of Li2S4, Li2S6, and Li2S8 molecules.

our calculations and in Ref. [18]. It is demonstrated that at the open ends of each Li2Sx ring,

the bond lengths between sulfur atoms are slightly shorter than that of the other S–S bonds.

It is also found that the lengths of the Li–S ionic bonds are the same in all Li2Sx molecules.

However, the larger the x value in Li2Sx, the shorter the Li–Li bond length.

Table 3.1: Bond lengths (in Å) for S–S, S–Li, and Li–Li atoms in Li2Sx molecules presented in Fig. 3.2. The
values in parentheses are from Ref. [18]. Included with permission from Jand et al. [158]( c© 2016 Elsevier B.V.)

Li2S4 Li2S6 Li2S8

S1–S2 2.11 (2.103) 2.08 (2.094) 2.09
S2–S3 2.14 (2.118) 2.08 (2.078) 2.08
S3–S4 2.12 (2.103) 2.24 (2.092) 2.14
S4–S5 – 2.07 (2.079) 2.09
S5–S6 – 2.09 (2.094) 2.12
S6–S7 – – 2.10
S7–S8 – – 2.08
Li1–Li2 2.79 2.63 2.58
S1–Li1 2.37 2.41 2.42

In order to study the atomic charge distribution in Li-polysulfides, the Mulliken charge pop-

ulations [173] on the Li and S atoms are calculated (listed in Tab. 3.2). Mulliken population

analysis usually gives a qualitative estimation of partial atomic charges. The binding of the Li

atoms to the S atoms induces the charge redistribution from Li to S at the open ends of all the

studied Li-polysulfide molecules.

3.4.2 The Pristine and Defective Graphene

In the next step, the geometries and the total energies of pristine and defective graphenes are

calculated. To estimate the formation energies of the defective graphene structures, we use the
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equation

Ed = Etot
defective − Etot

pristine + nvE
tot
C , (3.4.1)

in which Etot
defective, E

tot
pristine, and Etot

C are respectively the total energy of the defective and the

pristine graphene sample, and energy per carbon of pristine graphene. nv is the number of

vacant C atoms in the graphene samples with vacancy.

The obtained formation energy of a 55-77 SW defect is calculated to be 5.27 eV, while

the structure with the SW-like 555555-777-9 defect has the formation energy of 16.75 eV.

ESW
d =5.27 eV is in agreement with another DFT study [174], where the formation energy for

a SW on graphene has been reported to be 5.53 eV using PBE functional and plane-wave basis

set. Our calculated formation energy for a monovacancy on graphene is EMV
d =7.76 eV, which

is consistent with the result of a DFT-GGA study using PW functional and numerical basis set

(7.63 eV) [175], and with the result of another theoretical research using the same functional

but double numerical basis set with polarization (7.85 eV) [176], as well as experimental value

of 7.0±0.5 eV [177]. Furthermore, in agreement with reported EDV
d =8.08 eV in the former

DFT-PW study [175], we calculate the formation energy of the divacant structure to be 8.03 eV.

The results show that graphene with divacancy is slightly less favorable than the monovacant

structure. In general, it is indicated that graphene with the 55-77 SW defect is more stable

than the structures with the SW-like 555555-777-9 defect or point-defects. Moreover, the most

unfavorable defect in our study is found to be the SW-like 555555-777-9 defect.

Table 3.2: Mulliken population analysis (MPA) for Li2Sx molecules presented in Fig. 3.2. Included with permis-
sion from Jand et al. [158]( c© 2016 Elsevier B.V.)

Li1 Li2 S1 S2 S3 S4 S5 S6 S7 S8
Li2S4 0.369 0.373 -0.324 -0.048 -0.047 -0.323 – – – –
Li2S6 0.346 0.347 -0.288 -0.003 -0.057 -0.058 -0.001 -0.286 – –
Li2S8 0.346 0.336 -0.282 -0.035 0.021 -0.054 0.019 -0.056 0.013 -0.308
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3.4.3 Li-Polysulfides on the Pristine and Defective Graphene

The adsorption of Li2Sx (x = 4, 6, 8) molecules on the most favorable structures of graphene,

namely pristine, SW-defective, and monovacant graphene, is studied. First, we consider dif-

ferent possible orientations of the Li2Sx molecules at various sites of the pristine graphene

(Fig. 3.3), and by calculating the binding energies, we investigate the feasibility of Li2Sx ad-

sorption on graphene. It is indicated that the binding of Li2S4 via S atom to the graphene sheet

is very weak (≥ −0.17 eV). Therefore, we only focus on the adsorption of Li2Sx on graphene

through Li atoms. The binding energies of Li-polysulfides to the pristine graphene at 0 K with-

out ZPE corrections are presented in Fig. 3.3. It is shown that in all the studied cases, Li atoms

tend to bind to the hollow site on graphene. We also examine various configurations of the

Figure 3.3: Top views of the considered structures and binding energies of Li2S4, Li2S6, and Li2S8 on pristine
graphene. Included with permission from Jand et al. [158]( c© 2016 Elsevier B.V.)
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Table 3.3: Binding energies (in eV) of Li2Sx molecules on pristine as well as defective SW 55-77, monovacant,
and S-doped graphene. ∆E values are binding energies at 0 K (without zero-point energy correction). ∆G is the
change in Gibbs free energy of adsorption with respect to an ideal gas phase of the molecules at 300 K and 1 atm.

(eV) Li2S4 Li2S6 Li2S8

pristine ∆E = -0.65 -0.72 -0.73
pristine ∆G = 0.02 -0.04 -0.03
SW 55-77 ∆E = -0.70 -0.78 -0.86
SW 55-77 ∆G = 0.05 -0.04 -0.05
1-vac ∆E = -3.83 -4.48 -4.64
1-vac ∆G = -2.85 -3.27 -3.51
1-vac+1S ∆E = -0.76 -0.83 -0.71
1-vac+1S ∆G = -0.08 -0.09 0.00

Li2Sx molecules on graphene with the SW defect. Table 3.3 shows the adsorption energy (∆E)

of the most favorable structures of the Li-polysulfides on the pristine graphene as well as the

SW-defective graphene. The binding energy of the latter system is calculated to be marginally

larger. Moreover, to study the effect of dispersion correction on the binding energies, ∆E val-

ues for the adsorption of the Li2Sx (x = 4, 6, 8) on pristine graphene are calculated without

considering the dispersion correction. These values are −0.02 eV, −0.04 eV, and −0.06 eV,

respectively.

To estimate the error in the calculations of binding energies, AIMD simulations for all the

optimized structures presented in Tab. 3.3 are carried out in microcanonical ensemble (NVE)

for 100 steps. For each step, the (BSSE-free) binding energy is calculated. Then, the standard

deviation for binding energies of all snapshots is considered as the error in each Li-polysulfide

case. These values are compared to the binding energies reported in Tab. 3.3, and they are found

to be less than 2% for all cases.

For a more accurate study of the Li2Sx adsorptions on graphene, the change of the Gibbs free

energy (∆G) during the adsorption process is calculated. To evaluate ∆G, total energies, ZPEs,

PV term, as well as vibrational, rotational, and translational contributions of thermal energy

and entropy are computed. In Tab. 3.3, ∆G for the Li-polysulfides on the pristine and the SW-
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defective graphene at 300 K and 1 atm are provided. In the case of Li2S4, the positive value

of ∆G proves the unfavorable process of binding to graphene. On the other hand, change in

the Gibbs free energies for adsorption of Li2S6 and Li2S8 on the pristine and the SW-defective

graphene are slightly negative, which we interpret as the spontaneous adsorptions. However, the

small values of ∆G show a physical binding (physisorption) of the Li2Sx (x = 6, 8) to graphene.

The other reason to describe the binding processes of the Li2S6 and Li2S8 molecules to graphene

as physisorption is the considerable difference between the adsorption energies calculated with

and without dispersion correction, which shows that in both cases the main interaction energy

is due to van der Waals interaction.

Similar calculations to evaluate ∆E and ∆G are carried out for the monovacant graphene,

and the obtained values are presented in Tab. 3.3. In addition, we investigate the adsorption

of the Li-polysulfide molecules with odd number of S atoms (Li2Sx (x = 3, 5, 7)) as well as

S8 molecule on the graphene with monovacancy. In all the studied Li-polysulfides, a sulfur

from the open end of Li2Sx ring binds to the vacant site on the graphene during geometry

optimization. Figure 3.4 indicates that the mentioned S atom is dissociated from the molecule,

Figure 3.4: (a) Initial and (b) final structures for the dissociation of Li2Sx (x = 3, 4, 5, 6, 7, 8) and S8 on
monovacant graphene. Included with permission from Jand et al. [158]( c© 2016 Elsevier B.V.)
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and consequently, Li2Sx−1 molecule is formed. Also in the case of S8, one S atom above the

vacancy is separated from the molecule. The detached S atom makes a strong bond with the C

atoms around the vacancy on graphene. Estimation of the bond lengths of dissociated sulfur and

its nearest Li atom in Li2S4 before and after the geometry relaxation gives the values of 2.37 Å

and 2.55 Å, respectively. This longer Li–S distance is due to the strong interaction of the S atom

with the carbon dangling bonds, since the local charge redistribution around the dangling bonds

brings about a large tendency towards interaction with electronegative elements [178].

Moreover, the binding of the detached S atom on the graphene to its former molecule is stud-

ied by calculating the interaction energies of Li2Sx−1/(S-graphene) and Li2Sx−1/(monovacant

graphene) (x =4, 6, 8). Figure 3.5 is an illustration of the structures of Li2S5/(S-graphene)

and Li2S5/(monovacant graphene). The interaction energy between Li2Sx−1 and the S-doped

graphene is calculated using

∆Ea = E
LSx−1/S−g
tot − ES−g

tot − E
LSx−1

tot , (3.4.2)

where ELSx−1/S−g
tot , ES−g

tot , and ELSx−1

tot are the total energies of the final structure, the isolated

S-doped graphene, and the Li2Sx−1 structures, respectively. The last two energies are obtained

by single point energy calculations when the structures are fixed in the positions of the re-

Figure 3.5: The structures of Li2S5/(S-graphene) and Li2S5/(monovacant graphene).
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laxed Li2Sx−1/(S-graphene) structure. Then, the interaction energy of the Li2Sx−1/(monovacant

graphene-without S) is evaluated by the single point calculations:

∆Eb = E
LSx−1/v−g
tot − Ev−g

tot − E
LSx−1

tot , (3.4.3)

in whichELSx−1/v−g
tot andEv−g

tot are respectively the total energies of Li2Sx−1/(monovacant graphene)

and graphene with monovacancy as the atomic positions are set fixed to the relaxed Li2Sx−1/(S-

graphene) structure. Comparing the values of ∆Ea and ∆Eb (see Tab. 3.4), it is pointed out

that ∆Ea-∆Eb is very small, and the interaction energy of Li2Sx−1/(S-graphene) is mainly due

to Li2Sx−1/(monovacant graphene) interaction. Therefore, we can conclude that the detached S

binds weakly to the Li-polysulfide molecule.

In addition, the dissociation energies of a sulfur atom from the Li2Sx (x = 4, 6, 8) and S8

are calculated as 3.62 eV, 3.33 eV, 3.20 eV, and 3.33 eV, respectively. Moreover, the adsorption

energy of a sulfur to the monovacant graphene is evaluated as 6.99 eV, which is larger than the

energy loss during a S dissociation from the Li2Sx molecules. Hence, a S atom can detach from

the Li-polysulfide and bind to the vacant site of the graphene while the detachment activation

energy is provided by the energy gain through adsorption of S to the graphene. In other words,

the interaction of the Li2Sx molecules with the monovacant site leads to graphene doping. It is

expected that S dopant remains in its position on graphene during the charge/discharge cycles

due to the strong binding of the sulfur to the carbon atoms at the vacant site. Thus, the S dopant

can change the ability of the graphene to trap the Li-polysulfide.

Table 3.4: Binding energies (in eV) between Li2Sx molecules and S/single-vacancy-graphene (∆Ea) as well as
between Li2Sx molecules and single-vacancy-graphene (∆Eb) as defined in Eqs. 3.4.2 and 3.4.3. Included with
permission from Jand et al. [158]( c© 2016 Elsevier B.V.)

(eV) Li2S3/S-g (Li2S5)/S-g (Li2S7)/S-g
∆Ea -0.41 -0.86 -0.85
∆Eb -0.29 -0.83 -0.77
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Figure 3.6: Top and side views of structures for adsorption of Li2Sx (x = 4, 6, 8) on the S-doped graphene.
Included with permission from Jand et al. [158]( c© 2016 Elsevier B.V.)

3.4.4 Li-Polysulfides on the S-Doped Graphene

Inspired by our previous results, we focus on the adsorption of the Li2Sx (x = 4, 6, 8) on the

S-doped graphene. Geometry optimizations done for the graphene with a S atom as dopant

clarify that the sulfur atom tends to be located out of the plane of graphene. The S–C bond

length in the most stable structure is 1.75Å, while for C–C is 1.42Å. When the Li-polysulfide

molecule is placed on the graphene, the most favorable configuration is the one in which the S

dopant and the molecule are on two opposite sides of the vacancy on the graphene sheet, and

the Li2Sx interacts via its Li side with graphene (Fig. 3.6). The binding energies and the Gibbs

free energy differences for these structures are calculated (see Tab. 3.3). It is proven that the

S-doped graphene cannot decrease the shuttle effect since the values of ∆E and ∆G only show

a weak physisorption, and the Li-polysulfides cannot be trapped.
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3.5 Conclusions

In this chapter, the ability of pristine and defective graphene to immobilize the Li-polysulfide

has been studied. The atomic structures and the total energies of the Li2Sx and the Li2Sx/graphene

systems have been obtained at the DFT-PBE level of theory considering the dispersion correc-

tion. We have employed localized atomic double-zeta basis set plus polarization. Also the

BSSE correction has been included in the interaction energies. It has been found that the main

source of the binding between the Li2Sx molecules and graphene is the dispersion energy. In all

the studied pristine and (SW- and monovacant-) defective graphene samples, the binding energy

of the Li2Sx molecules and graphene increases with the number of S atoms (x). In the case of

the monovacant graphene, a spontaneous dissociation of a S atom from the Li-polysulfides has

been observed during geometry optimization. This sulfur atom binds to the vacant site resulting

in a graphene doping. Its binding energy to the graphene is comparable to the energy required

for detachment of a C atom from graphene. Therefore, the S atom should remain binded to

the graphene during charging/discharging cycles. In the next step, the adsorption of the Li2Sx

molecules on the S-doped graphene has been investigated. It is found that the interaction en-

ergies of the Li2Sx with the S-doped graphene are of the same order of magnitude as their

interaction energies with the pristine and the SW-defective graphene samples. These energies

are rather too small to make a strong binding between the molecules and graphene. In other

words, the studied cases of graphene are not able to immobilize the Li-polysulfide molecules

and they cannot improve the performance of the sulfur cathodes in the Li-S batteries. This re-

sult confirms the experimental finding that the suitable choices for the cathode material in such

batteries are the carbon-S composites with closed structures to trap the Li-polysulfides, such as

carbon nanofibers [31, 164]. In addition, some previous studies indicate that N-doped [179] or

NP-doped [180] graphene may interact more strongly with the Li-polysulfides than graphene.

Therefore, the effect of graphene doping with different dopants such as nitrogen and phospho-



52

rus on immobilization of the Li-polysulfides should still be thoroughly studied by theoretical

modelling in order to find a promising cathode system for a high performance Li-S batteries.



Chapter 4

A THEORETICAL APPROACH TO STUDY

SUPERIONIC PHASE TRANSITION IN Li2S AS AN

IONIC CRYSTAL 1

4.1 Introduction

Superionic conductors are materials with highly mobile ions. The mobility of ions is often ini-

tiated by a high temperature or a high defect concentration [182]. The effect of temperature is

very significant in superionic conductors. In these type of materials, above the threshold temper-

ature of the superionic phase transition, one or more of the ion sublattices becomes disordered

leading to a super-high ionic conductivity while the whole material structure remains solid. Su-

perionic compounds have attracted increasing interest due to their applications in all-solid-state

Li-ion batteries (ASSLB), fuel cells, and chemical sensors [44,183–187]. In ASSLBs, the ionic

diffusion occurs via the hopping of ions in the crystal structure of a superionic material with-

out the need for a liquid electrolyte. As it was mentioned in Chapter 1, replacing the organic

liquid electrolyte with a solid ionic conductor can extremely improve the device safety and

overcome one of the barriers for large-scale application of the Li-based batteries. Over the last

few years, sulfur-based solid electrolytes have been reported to exhibit relatively higher ionic

conductivity than those of standard liquid electrolytes. Li10GeP2S12 with ionic conductivity of

1.2×10−2 S/cm [188] and Li2S-P2S5 with ionic conductivity of 1.7×10−2 S/cm [189] are the

examples of such solid electrolytes.
1This chapter is based on the results presented in Ref. [181]

53
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Lithium sulfide (Li2S) is a solid-state compound which has received much attention due to its

applications in the Li-S batteries. In these batteries, the metallic lithium anode can be avoided

by using Li2S as a prelithiated cathode which is coupled by Si or Sn as an anode [36,190,191].

The electrical conductivity of the Li2S cathode can be improved by adding carbon. Li2S-C

composites are promising cathode materials which can offer an opportunity to develop the Li-S

batteries with higher energy density [37, 38, 192]. In addition, the ionic conductivity of Li2S

shows a higher value through the combination with solid electrolytes, e.g. Li2S-P2S5 [189,

193]. Moreover, it has been experimentally reported that lithium sulfide exhibits a superionic

conductivity at temperatures higher than ∼ 900 K [39], and its Li-ion conductivity has been

reported to be 1.27×10−1 S/cm at 1170 K [40]. As the mechanism and rate of ionic diffusion

in superionic solids play important roles in the performance and development of the Li-ion

batteries, they have been studied experimentally and theoretically [194–201]. The common

techniques to characterize the ionic conductivity in such systems are the experimental X-ray

and neutron diffraction measurements [194–197] and theoretical molecular dynamics (MD)

simulations [198–201]. In an experimental study, by using quasielastic neutron scattering,

Altorfer et al. [40] have suggested two models for the diffusion mechanism in the superionic

phase of Li2S, model (I) corresponds to vacancy hopping over Li Bravais lattice sites, and model

(II) corresponds to Li jumps from regular sites to interstitial sites and vice versa. However, an

atomic-scale picture of the conduction mechanisms in lithium sulfide is still missing. This

information is necessary for developing methods to improve the ionic conductivity in the next-

generation battery materials.

In this chapter, the crystal structures of the pristine Li2S and Li2S with a single vacancy are

studied using first-principles computations. To investigate the Li-ion transport mechanism, we

use a theoretical approach that can be applied to study the supersonic phase transition in arbi-

trary ionic structures. In this approach, we employ density functional theory (DFT) together
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with ab initio molecular dynamics (AIMD) simulations and thermodynamics of defects to cal-

culate the concentration of mobile ions. Finally, the Li-ion conductivity is determined as a

function of temperature.

4.2 Defect Formation Energy

Formation of defects can be viewed as a process in which a number of atoms and electrons are

exchanged between the host material and the reservoirs. The formation energy of an atomic

kind i with a defect type of d in charge state q is defined as [202–204]:

∆Ed,q
i = Ed,q

tot − Ebulk
tot +

∑
i

niµi + q(εF + εVBM) + ∆Ecorr. (4.2.1)

Ed,q
tot is the total energy calculated for a supercell including the defect d, and Ebulk

tot is the to-

tal energy for the pristine crystal using the same supercell. The ni and µi are the number and

chemical potential of atoms type i, respectively. In fact, the atom i can be introduced into

(positive ni) or removed from (negative ni) the supercell to form the defect. The
∑

i niµi term

represents the energy change due to exchange of atoms with the chemical reservoirs. εVBM

indicates the energy at the valence band maximum (VBM), and it is the energy of removing

an electron from the valence band. εF is the Fermi level referenced to the VBM of bulk struc-

ture. Lastly, ∆Ecorr is a correction term that accounts for finite size effect and for electrostatic

potential alignment of defective and pristine supercells [205]. ∆Ecorr can be obtained through

∆Ecorr = −αq2/(2εL) [205, 206], where q is the defect charge, α and ε respectively represent

the Madelung constant and the dielectric constant, and L is the supercell lattice size.

The energy of Fermi level for a defective system can be derived by considering charge neu-

trality [203, 207]. Therefore, the sum of charge density of defects d with charge q should be

equal to the sum of hole and electron concentrations:

∑
d,q

qnd,q = nh − ne. (4.2.2)
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nd,q is the concentration of defects d and is calculated using:

nd,q = Nd exp

(
−∆Ed,q

i

kBT

)
, (4.2.3)

in which Nd is the number of maximum possible sites where defects d can be located. kB

and T are Boltzmann constant and temperature, respectively. The concentration of holes and

electrons are obtained by integrating the electronic density of states in the pristine bulk (g(ε))

up to the VBM and from the conduction band minimum (CBM) considering the Fermi-Dirac

distribution, f(ε, εF):

nh − ne =

∫ VBM

−∞
[1− f(ε, εF)]g(ε)dε−

∫ ∞
CBM

f(ε, εF)g(ε)dε (4.2.4)

=
∑
d,q

qNd exp

(
−∆Ed,q

i

kBT

)
.

Equations 4.2.1 and 4.2.4 are solved self-consistently for a set of fixed temperature and

chemical potential of each element. By knowing the Fermi energy, ∆Ed,q
i and defect con-

centrations are determined. Then, using Eq. 4.2.1, the Fermi energy is calculated from ∆Ed,q
i ,

and it is accepted if its difference with the previously-calculated Fermi energy is less than a

certain criterion.

4.3 Method of Calculations

First-principles calculations are performed using the Vienna ab initio simulation package (VASP)

[122–125] at the DFT level of theory with the plane-wave basis set approach. The electron-

electron exchange-correlation energy is described by the Perdew-Burke-Ernzerhof (PBE) func-

tional [95]. Also, the projector augmented wave method (PAW) [208] is employed. We use

a 2×2×2 supercell to model the bulk Li2S. The Monkhorst-Pack technique [109] is applied

to generate a 4×4×4 k-point mesh for Brillouin zone sampling. The atomic and electronic

structures as well as defect formation energies of lithium sulfide are calculated with the energy

cutoff of 360 eV for the plane-wave basis set.
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To study Li diffusion mechansims, AIMD simulations (implemented in VASP) are carried

out for pristine Li2S and Li2S with a single vacancy. Simulations are performed in the canonical

NVT ensemble with time steps of 1 fs. We use the Nosé-Hoover thermostat to fix the temper-

ature during the calculations. For the AIMD simulations, the bulk Li2S is again modelled by

2×2×2 supercell with 4×4×4 Monkhorst-Pack k-point grid with an energy cutoff of 360 eV.

In our current research, the AIMD simulations run up to 50 ps for Li2S structure. To investigate

all possible channels of Li-ion migration, the simulations are carried out at different tempera-

tures of T = 300, 600, 750, 830, 900, 1050, 1170, and 1300 K. The thermalization is achieved

within 10 ps and the following 40 ps are used for structure sampling to calculate the diffusion

coefficient.

Using AIMD trajectories, the mean square displacement (MSD) is calculated by

MSD(τ) =
1

Nion

1

Nstep − τ
×

Nion∑
j=1

Nstep−τ∑
i=1

|~rj(ti + τ)− ~rj(ti)|2, (4.3.1)

where τ represents lag time, Nion is the number of diffusing Li ions, and Nstep is the number

of AIMD time steps which is 40000 (for 40 ps) in the current study. Afterwards, diffusion

coefficient D is evaluated using the Einstein relation:

D = lim
τ→∞

MSD(τ)

6τ
. (4.3.2)

Then, the ionic conductivity σ as a function of temperature is derived via the Nernst-Einstein

relation:

σ =
nq2F 2

RT
D (4.3.3)

in which n, q, F,R, and T are the number of carriers per unit volume, the carrier charge, Faraday

constant, gas constant, and temperature, respectively.
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Figure 4.1: Atomic structures of 2×2×2 supercell of (a) pristine Li2S, and (b) Li2S with a single vacancy. Purple
and yellow circles respectively indicate Li and S ions.

4.4 Results and Discussion

To understand the topology of Li sites in lithium sulfide, we first focus on the crystal structure

of Li2S with space group Fm3m. Figure 4.1.a shows the stable atomic configuration of the

bulk Li2S (2×2×2 supercell) after geometry optimization using DFT-PBE. In this compound,

the sulfur (anion) sublattice has an fcc structure, and the Li atoms (cations) can be viewed as a

simple cubic structure with the lattice size of 1
2
a (a is the lattice constant of the Li2S unit cell),

while the cube center is occupied by anions.

In the previous study of our group [209], the diffusion pathways in Li2S were calculated

with the Nudge Elastic Band (NEB) method. Considering Li hopping to nearby single Li va-

cancy and Li hopping between regular lattice sites and interstitial sites, it has been reported that

the diffusion barrier in the former case is lower [209]. In addition, the activation energy for

formation and diffusion (∆Eactivation = ∆Eformation + ∆Ediffusion) of Li vacancy was found to

be lower than that of the interstitial Li. Thus, it can be concluded that Li vacancy possesses a

more dominant role in Li-ion conductivity of Li2S.

By performing AIMD simulations for Li2S with a single vacancy (Fig. 4.1.b), the total mean

square displacements of all diffused Li ions (MSD(τ )) are calculated as a function of lag time at

different temperatures. Figure 4.2.a. presents the MSD curve versus τ . As only few number of
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Figure 4.2: (a) Total mean square displacements (MSD) versus lag time (τ ) calculated for 40 ps AIMD simulations
for all mobile Li ions in Li2S with a single vacancy. (b) Arrhenius plot of diffusion coefficients (D) for Li2S.

Li vacancy jumps can be detected at temperatures less than 750 K, they are not included in the

MSD plot (Fig. 4.2.a). At higher temperatures, more than 32 Li hoppings are observed during

40 ps of the AIMD simulations.

Li diffusion coefficient (D) is derived from the Einstein relation 4.3.2. In Fig. 4.2.b, black

squares represent the calculated logD for Li2S with one Li vacancy at various temperatures. As

it is shown in Fig. 4.2.b, there is a change in the slope of the Arrhenius plot which indicates two

different mechanisms for Li diffusion. At low temperatures (T <∼ 1050 K), simple Li vacancy

hopping occurs while the different behavior at higher temperatures is related to the superionic

phase transition in Li2S.

In order to visualize the Li migration pathways, the probability densities of ions are plotted

within the {110} planes of Li2S with a single vacancy at different temperatures (Fig. 4.3). This

plot which is obtained from the sum over all ion trajectories over the simulated time helps us

detect the lattice regions which are most frequently visited by the mobile Li ions. It can be seen

in Fig. 4.3 that at low temperatures such as T = 830 K, the Li diffusion happens predominantly

due to the vacancy hopping through the channels between the regular Li sites (so called 8c

sites) along the < 100 > axes. At higher temperatures, the trajectories of Li ions extend along
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Figure 4.3: Accumulated all ion trajectories over the AIMD simulation time (40 ps) on the {110} planes of Li2S
at 300 K, 830 K, 900 K ,1050 K, 1170 K and 1300 K. The visited positions by Li and S ions are in purple and
gold, respectively. Included with permission from Jand et al. [181] ( c© 2017 Macmillan Publishers Limited, part
of Springer Nature.)

the < 111 > directions (see Fig. 4.3). For example, at T = 900 K, few Li hoppings from the

regular 8c sites to the interstitial sites (so called 4b sites) are observed while Li migration mainly

occurs via the simple Li vacancy hopping (–8c–8c–8c–). At T = 1050 K, both mechanisms

have considerable contributions in Li diffusion. However, Li migration at 1170 K and 1300 K

is mainly along the –8c–4b–8c– pathway, i.e. from the regular sites to the interstitial sites and

vice versa. This finding confirms Li diffusion models suggested in the experimental study by

Altorfer et al. [40] for the superionic phase of Li2S.

In Fig. 4.2.b, Arrhenius plot at low temperatures is a result of the only possible mechanism

for Li migration, namely the vacancy hopping (Dvac). For temperatures higher than 1050 K,

logDvac is obtained by extrapolating the low temperature values of logDvac to the higher tem-

peratures. To study Li diffusion through –8c–4b–8c– channel, AIMD simulations are performed

for pristine Li2S (modelled using 2×2×2 supercell) at T = 1050, 1170, and 1300 K. In this

structure, Li migration is due to the occupation of the interstitial sites (4b) by Li ions. The cal-
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culated logDdis values (black circles in Fig. 4.2.b) at 1170 and 1300 K are close to that in Li2S

with a single vacancy (logDvac&dis) which shows that at these temperatures, the Li diffusion is

more probable via interstitial sites in Li2S with a vacancy.

The diffusion coefficient at 1170 K is calculated to be Dvac&dis = 1.03× 10−5 cm2/s, includ-

ing the Li diffusion along both –8c–8c–8c– and –8c–4b–8c– pathways (superionic phase). This

calculated value is in good agreement with the experimental values of 1.39×10−5 cm2/s [40]

and 1.17×10−5 cm2/s [210] at 1170 K.

In order to identify the most favorable defect types in poor-ionic conductor phase, the defect

formation energy (∆Ed,q
i ) is calculated using Eq.4.2.1. As it was mentioned in section 4.2,

∆Ecorr in Eq.4.2.1 depends on the unit cell size and the dielectric constant (ε). Here, we use

the experimental value of the dielectric constant which has been reported by Yang et al. to be

ε ∼ 10 in Li2S at room temperature [211]. In addition, µLi is considered to be in the range of

thermodynamical stability of Li2S with respect to bulk Li and S. That is, µLi may not exceed the

chemical potential of bulk Li. If µLi highly increases (i.e. Li-rich limit), the bulk Li would start

to form at the surface of Li2S. Therefore, we set the zero value of µLi to the chemical potential

of the Li-rich limit, which is defined as the total energy per atom of the Li crystal. Similarly, the

lowest limit is a µLi value at which Li2S starts to decompose to the bulk S (i.e. in the Li-poor

limit). Hence, the allowed values for µLi lie between zero and half of the Gibbs free energy of

Li2S formation.

∆Ed,q
i and εF are iteratively calculated from the Eqs. 4.2.1 and 4.2.4. We employ the ex-

perimental Gibbs free energy of formation of Li2S which is ∼ −4.58 eV [212], and the defect

formation energy is calculated for different µLi in the range of –2.3 eV≤ ∆µLi ≤ 0.0 eV. The

evaluated ∆Ed,q
i values are presented for different defect types in Fig. 4.4. According to these

values, interstitial Li (Li+) and Li vacancy (V−Li) are found to be the most favorable charge carri-

ers in Li2S. Considering Fig. 4.4, we study the defect formation energies in two ranges of ∆µLi:
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Figure 4.4: Formation energies of different defect types in bulk Li2S as a function of ∆µLi. Kroger-Vink represen-
tations are given in parentheses. Included with permission from Jand et al. [181] ( c© 2017 Macmillan Publishers
Limited, part of Springer Nature.)

–2.0 eV< ∆µLi ≤ 0.0 eV: The formation energy of the Li vacancy (∆EV −Li ) in this range is

0.80 eV, which is similar to the formation energy of the Li+ interstitial (∆ELi+ = 0.81 eV).

Consequently, there is a high possibility of formation of Frenkel (V −Li + Li+) pairs in Li2S for

–2.0 eV< ∆µLi ≤ 0.0 eV. Therefore, the ionic migration happens via the Frenkel pair diffusion.

Moreover, the formation energies of Li+, V−Li, and Frenkel defect do not change with ∆µLi at

this range, arising from the fact that the Fermi energy and the chemical potential of Li equally

increase within –2.0 eV< ∆µLi ≤ 0.0 eV and they cancel out each other.

–2.3 eV≤∆µLi ≤ –2.0 eV: In this range, ∆EV −Li gets lower and it reaches the value of

0.68 eV for ∆µLi = –2.3 eV, while ∆ELi+ increases in this range. Therefore, the minimum acti-

vation energy is calculated for the formation and diffusion of the Li vacancy at ∆µLi = –2.3 eV,

∆E
V −Li
formation + ∆E

V −Li
diffusion = 0.95 eV (the diffusion barrier was obtained to be 0.27 eV [209]).

The Fermi energy lowers and gets closer to the VBM, which in turn, results in a higher concen-

tration of the holes. Therefore, the ionic conductivity within –2.3 eV≤ ∆µLi ≤ –2.0 eV (i.e.

in the Li-poor limit) occurs through the mechanism of the formation and diffusion of the Li
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Figure 4.5: (a) Concentration of Li vacancy as a function of ∆µLi. (b) Li vacancy concentration which is derived
using Eqs. 4.2.1 and 4.2.4 for –2.3 eV≤ ∆µLi ≤ –2.0 eV (nvac) and –2.0 eV< ∆µLi ≤ 0.0 eV (nvac′ ) as well
as the concentration of the interstitial Li calculated by Eq. 4.4.1 (ndis). Included with permission from Jand et
al. [181] ( c© 2017 Macmillan Publishers Limited, part of Springer Nature.)

vacancy.

The concentration of the Li vacancy in the poor-ionic conductor phase (nV −Li
) is calculated for

the allowed range of chemical potentials µLi and is depicted in Fig.4.5.a. It is found that within

−2.0 eV< ∆µLi ≤ 0.0 eV range, the Li vacancy concentration does not change with ∆µLi

and it is calculated to be nvac′=2.8×109 cm−3, while in the Li-poor limit with minimum ∆µLi,

the vacancy concentration increases and it reaches its highest value of nvac=3.5×1011 cm−3 at

∆µLi = −2.3 eV.

In the superionic phase, two mechanisms of the Li diffusion in Li2S allow for two different

hopping rates (1/t), namely the hopping rate in the regular sites 1/(t8c), and the hopping rate

between the regular and the interstitial sites 1/(t4b). These hopping rates can be related via the

detailed balance condition:

n8c

t8c

=
n4b

t4b

, (4.4.1)

where n8c and n4b are respectively the concentrations of Li on the regular and the intersti-

tial sites, such that n8c + n4b = nLi (nLi is the total concentration of Li in the system and is

4.27×1022 cm−3 for the lattice constant of 5.72 Å). Moreover, t8c and t4b are respectively the
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Figure 4.6: Li-ion conductivities as functions of temperature for (a) high Li vacancy concentration, σvac&dis, and
(b) low concentration, σvac′&dis. Included with permission from Jand et al. [181] ( c© 2017 Macmillan Publishers
Limited, part of Springer Nature.)

residence times for Li at the 8c and the 4b sites during the AIMD simulations. Figure 4.5.b

shows the calculated values of n4b (which is same as ndis) at T = 830, 900, 1050, 1170 and

1300 K. It is found that at 1300 K, the concentration of 4b defects in the superionic phase is

48.6 times larger than the maximum possible concentration of V −Li (nvac) in poor-ionic conduc-

tor phase of Li2S. Finally, Li-ion conductivity in Li2S is calculated using the Nernst-Einstein

Eq. 4.3.3:

σtot = σvac + σdis =
q2F 2

RT
[nvacDvac + ndisDdis] , (4.4.2)

in which nvac and ndis are the concentrations of vacancy hopping (nV −Li
) in the poor-ionic con-

ductor phase and disordered hopping (n4b) in the superionic phase, respectively. The Li-ion

conductivity (σ) in Li2S is determined for various temperatures considering two different con-

centration regimes based on ∆µLi, i.e. nvac and nvac′ . In Fig. 4.6.a, σ is illustrated as a function

of temperature for –2.3 eV≤ ∆µLi ≤ –2.0 eV (with high Li vacancy concentration). As can be

seen in this figure, the superionic phase trasition is estimated to occur at 900 K. This finding

is in agreement with the temperatures of the superionic phase transition in Li2S observed by

Buehrer et al. [39] and Altorfer et al. [40] through neutron scattering, which are ∼ 900 K and
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∼ 800 K, respectively. Fig. 4.6.b shows the Li-ion conductivity for low concentration regime.

Here, the superionic phase trasition is not completely clear and it is not discussable at this stage.

At 1170 K, we calculate the Li-ion conductivity to be σ = 3.02× 10−2 S/cm, which is about

four times smaller than the experimental value of ∼1.27 ×10−1 S/cm estimated from the curve

of σ versus T in ref. [40]. This inconsistency may rise from the errors in the computational and

experimental evaluations. Additionally, the computational limit for the AIMD simulations can

result in the underestimation of ndis which is used to calculate σ from Eq. 4.4.2.

The fraction of σdis/σvac at 900 K, 1170 K and 1300 K are evaluated to be 1.1, 47.1, and 138.9,

respectively. These values show that the ionic conductivity in the superionic phase increases

with respect to σ in the poor-ionic regime by one to two orders of magnitude depending on tem-

perature. Furthermore, the calculated σ at 300 K has a very small value of 9.43×10−17 S/cm,

which is consistent with the reports expressing that Li2S at room temperature has a very low

ionic conductivity [40, 198, 213, 214].

4.5 Conclusions

Here, DFT calculations and AIMD simulations have been applied to determine the diffusion

coefficient of Li in the pristine and defective bulk Li2S, which has attracted lots of interest as a

cathode material for the Li-S batteries. By studying the thermodynamic and kinetic properties

of the system, we have evaluated the defect concentration and ionic conductivity as a function

of temperature. According to the AIMD simulation, it is found that Li-ion migration takes

place through the vacancy hopping in the Li regular sites at low temperatures. Moreover, the

mechanism of Li hopping to the interstitial sites is observed at and above the temperature of

superionic phase transition, which has been previously reported by experimental researchers to

be between 800 K and 900 K [39,40]. At higher temperatures (such as 1170 K), Li diffusion via

hopping from the regular sites to the interstitial sites is more substantial.
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By calculating the defect formation energy in Li2S, we have found that the Li vacancy (V −Li )

and interstitial Li+ have similar formation energies within –2.0 eV< ∆µLi ≤ 0.0 eV, while the

former defect type is more favorable in the Li-poor limit. Furthermore, the activation energies of

these two defect types have been calculated. Although the activation energy for the Li vacancy

hopping is lower than the Li interstitial diffusion, it is high enough to justify the low ionic

conductivity of Li2S at room temperature.

In addition, by plotting ionic conductivity σ versus T , it can be pointed out that the phase-

transition temperature is ∼ 900 K, which is in agreement with aforementioned experimental

data. However, the diffusion coefficient plot indicates a considerable change in its slope at

T = 1050 K, showing that above this temperature the Li interstitial hopping plays the dominant

role in the superionic behavior of Li2S.

Therefore, it can be concluded that the temperature-induced disorder in Li2S results in a

superionic phase for the Li conductivity. This finding is interesting from the point of view

that knowing the mechanism of superionic diffusion can inspire the researchers to predict and

synthesize novel structures which allow for the superionic diffusion of Li ions via the interstitial

sites even at low temperatures.



Chapter 5

THEORETICAL STUDY OF c-Li7La3Zr2O12/LiCoO2

INTERFACE 1

5.1 Introduction

It was discussed in section 1.3 that the safety of the Li-ion batteries mainly depends on the

electrolyte material. Replacing the conventional liquid electrolyte with a fast ion-conducting

solid is a promising way to provide a non-flammable and chemically stable electrolyte in the

Li-based batteries. Indeed, by using solid electrolyte, the dendrite fomation is suppressed,

and therefore, the metallic Li with high specific capacity can be employed as anode [43, 44,

217]. Moreover, solid electrolytes in Li-S batteries can hinder the migration of the soluble

Li-polysulfide from the cathode to the anode and improves the cyclic performance [41, 42].

Lithium garnet oxides as a new class of Li-ion conductors were synthesized by Thangadu-

rai et al. in 2003 [49]. These garnet structures with high ionic conductivity and high stability

have drawn a lot of attentions in the field of solid electrolytes [51, 52]. As mentioned in sec-

tion 1.3, one of the promising candidates for solid electrolytes is lithium garnet Li7La3Zr2O12

(LLZO), which has Li-ion conductivity of about 10−4 S cm−1 in its cubic phase at room temper-

ature [62–65]. In addition, metal-doped cubic-LLZO (c-LLZO) has been reported to be stable

against Li anode because of its low reduction rate in contact with lithium [60, 66, 218]. These

features should give rise to acceptable performance in the LLZO-based batteries. Nevertheless,

1This chapter is based on the results presented in Ref. [215, 216]

67
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such systems do not possess a high energy density compared to the conventional cells due to

a high interfacial resistance at electrolyte/electrode interface [68, 69, 219, 220]. Different ex-

perimental studies have investigated this problem specially at the interface between LLZO and

a common cathode material, namely LiCoO2 (LCO). LCO is an oxide-based lithium intercala-

tion compound with a layered structure in which Li and Co ions are located on different layers

separated by close-packed oxygen planes [221]. The theoretical capacity of LCO has been es-

timated to be 274 mA h g−1 [6, 222–224]. The high energy density as well as excellent cyclic

performance make LCO a good candidate to be used as cathode [222,225]. Therefore, Li-based

batteries with LLZO as the solid electrolyte, LCO as the cathode, and Li as the anode material

have attracted lots of interests.

Ohta et al. [226] have experimentally observed an increase in interfacial resistance of Nb-

doped-LLZO/LCO and Nb-doped-LLZO/Li interfaces compared to Li6.75La3Zr1.75Nb0.25O12

bulk structure. Moreover, Ogumi and co-workers [71] have proposed that low Li transport rate

at the interface of LLZO/LCO is not because of a poor contact between LLZO and LCO, but

due to a strong interaction between them, leading to the formation of a passivating layer. Using

transmission electron microscopy (TEM) and energy-dispersive X-ray diffraction pattern, they

have observed a gradual change in the concentrations of Co, La, and Zr across the interface layer

during the high-temperature process of LCO coating on LLZO. [71]. In another experimental

investigation on the interface of LLZO/LCO, Goodenough et al. [72] have confirmed the cation

interchange and formation of a diffusion layer during the cathode annealing at high tempera-

tures. They have also proposed a surface modification of LLZO to improve the electrochemical

performance at the interface [72].

Few theoretical simulations have been focused on the solid electrolyte/electrode interface.

For example, Ohno et al. [227] have performed AIMD simulations to investigate Li3PO4/LiFePO4

interface. They have reported on Li diffusion from the topmost layer of LiFePO4 to the oxide
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electrolyte (Li3PO4) [227]. According to another theoretical study, high interfacial resistance

has been confirmed at sulfide electrolyte and cathode interface [228]. The researchers have

observed, via AIMD simulations, that the Li depletion and oxidation occur on the electrolyte

side (sulfide side) close to the Li3PS4/LiFePO4 interface [228]. In addition using DFT, β-

Li3PS4/LCO interface has been investigated by Haruyama et al. [229]. It has been shown that

the Li adsorption at the oxygen sites of LCO results in the formation of space-charge-layer at

this interface. Therefore, the LiNbO3 buffer layer has been interposed to suppress this forma-

tion [229]. Furthermore, Zhu et al. [219] have used first-principles calculations to study the

thermodynamics of the interface between common solid electrolytes and LCO as cathode. They

have proposed the formation of thermodynamically favorable interphase layers with different

stabilities at the interface between solid electrolye and electrode [219].

In spite of several experimental investigations on the interface of LLZO/LCO, the atomic and

electronic structure of this interface have not been theoretically studied. In this chapter, an ideal

interface between LLZO and LCO, namely LLZO(001)/LCO(101̄4), is investigated. We apply

DFT calculations to study the atomic and electronic structures as well as charge distribution

of LLZO surface in vacuum and in contact with the surface of LCO cathode at 0 K. Moreover,

the possibility of cation interchange at the LLZO/LCO interface are studied. In addition, we

investigate the effect of strain on the ion interchange in bulk models of LLZO and LCO.

5.2 Method of Calculation

To obtain the total energies and the atomic structures at the interface, we perform DFT calcu-

lations using mixed Gaussian and plane-wave scheme in CP2K Quickstep [126–129]. In this

code, the Kohn-Sham orbitals are expanded in the Gaussian-type basis set, and the auxiliary

plane-wave basis set is defined by an energy cutoff, which is 340 Ry in our current calculations.

We represent the core electrons by Goedecker-Teter-Hutter pseudopotentials [137] and perform
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unconstrained diagonalization of the Kohn-Sham (KS) Hamiltonian to consider the spin polar-

ization. Total energies are calculated at the Γ point in a super cell approach. The generalized

gradient approximation (GGA) of Perdew, Burke, and Ernzerhof (PBE) [95] is employed, and

for Co cations, the Hubbard U parameter is added (DFT+U). As it has been explained in sec-

tion 2.5.4, within the DFT+U framework, the on-site Coulomb interactions of the localized d or

f orbitals are addressed by an added U term. Here, we use the formulation of Dudarev [230]

for the on-site Hubbard U . In this method, the on-site coulombic U and exchange term J are

combined into an effective potential, Ueff = U−J . The DFT+U model is parametrized by com-

paring the calculated band gap of LCO with the experimental one, and Ueff is found to be 5.8 eV

giving a band gap of 2.3 eV for LCO. This value lies in the range of experimental band gaps

of LCO between 1.7 eV and 2.7 eV [231–234]. In the case of Zr and La, which have only a

few electrons in the d orbital (4d2 and 5d1 for Zr and La, respectively), the effect of electron

correlation is rather small. Therefore, U is not considered in the DFT calculations for Zr and

La in LLZO [235–239].

As LLZO has a large unit cell, the constructed slab of LLZO/LCO interface is huge and

possesses a lot of electrons leading to demanding DFT calculations. The number of valence

electrons considered for Li, O, La, Zr, and Co are respectively 3, 6, 11, 12, and 17. Thus, for

our interface model with 544 atoms including 3 types of transition metals (Co, Zr, and La) and

totally 3680 electrons, we employ single-zeta (SZV) basis set to make the structural and energy

calculations feasible. Later in this chapter, to estimate the effect of strain on cation interchange,

we evaluate the energies for bulk structures of LLZO and LCO with and without cation inter-

change. These calculations for bulk with smaller number of atoms give us the opportunity to

use double-zeta basis set with polarization (DZVP).

Furthermore, to study the result of choosing different XC functionals, the hybrid functional

of Heyd, Scuseria, and Ernzerhof (HSE06) [103, 104] is employed for the computations on
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bulk LLZO and bulk LCO. These calculations are carried out using the Vienna Ab initio Simu-

lation Package (VASP) [122–125] and they are compared with the results calculated by PBE+U

method implemented in VASP. Projector augmented wave (PAW) are used to treat the core-

valence electron interactions, while wave functions are expanded in a plane-wave basis set. For

a 1× 1× 1 unit cell of bulk LLZO with 192 atoms, Γ-centered 2× 2× 2 k-grids and 1× 1× 1

k-grids are respectively considered for the PBE+U and HSE06 levels of theory. Similarly, for

bulk LCO with 4×4×1 unit cell (192 atoms), we use Γ-centered 2×2×2 k-point mesh for the

PBE+U method and 1× 1× 1 k-point mesh for the HSE06 calculations. The screening and the

mixing parameters are respectively µ = 0.2 and α = 0.25 in HSE06 method. The convergence

criterion for electronic self-consistency is set to 10−4 eV, and an energy cutoff of 460 eV is used

for the plane-wave basis. Spin polarization is considered in all calcultions.

5.2.1 Initial Structure Optimization

In the crystal structure of LLZO, the Li cations can be coordinated to oxygen tetrahedrally or

octahedrally. The difference in the tetragonal and cubic polymorphs of LLZO is the arrange-

ment of Li ions in the tetrahedral and octahedral sites [61, 62]. Using X-ray structure analysis,

the three-dimensional pathways for the Li migration in c-LLZO has been proposed by Awaka et

al. [62]. In this structure, the Li ions are not located on the adjacent Li-allowed sites because of

the strong Coulomb repulsion (Fig. 5.1.a) [59, 240]. Such reduced site occupancy is an impor-

tant factor in high Li-ion conductivity. Considering the mentioned site occupancy, we perform

the geometry optimization for the bulk c-LLZO configuration. The model structure consists

of 192 atoms and has the stoichiometric formula Li56La24Zr16O96. Our calculated unit cell

for c-LLZO has a lattice parameter of a = 12.998 Å, consistent with the experimental value

of 12.968 Å [54] and the previously-reported theoretical value of 12.983 Å [239]. The (001)-

oriented surface with a rectangular unit cell is chosen to match with the rectangular LCO(101̄4)

unit cell which will be introduced later. The LLZO(001) surface is constructed with a two bulk
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Figure 5.1: (a) Atomic configuration of bulk c-LLZO and LCO in their respective unit cells. (b) Unreconstructed
and reconstructed LLZO(001) surface. (c) Interface structure of LLZO(001)/LCO(101̄4).

unit cell thickness containing 384 atoms. The pristine stoichiometric LLZO(001) surface is en-

ergetically unfavorable. It has a high dipole moment of 8.3 eÅ which is due to its asymmetric

arrangement of the surface atoms. The structure is terminated with different ions at each side

(As it is shown in Fig. 5.1.b, four Zr and four La ions are on the topmost layer at one side, while

the terminal layer at the other side does not have any Zr or La). The different surface charges

or dipoles associate with energy increase and unstability of the surface. Therefore, to stabilize

the structure of LLZO(001), we reconstruct a stoicheometric surface by moving two Zr and

two La cations from one side to the other side of the slab (see Fig. 5.1.b). This reconstruction

is similar to the conventional mechanism in rock salt structures to reduce the surface-dipole

problem [241, 242]. The reconstruction decreases the dipole moment to 5.3 eÅ, and the new

structure is more stable than the unreconstructed configuration. We find that reducing the polar-

ization play an important role in stability of these structures, and thus, we use the reconstructed

LLZO(001) surface to assemble the interface.
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In the case of bulk LCO with a rhombohedral structure (Fig. 5.1.a), the lattice parameters

are calculated through the geometry optimization as a = b = 2.862 Å and c = 14.045 Å, which

are close to the experimental values of a = b = 2.819 Å and c = 14.09 Å [243], and the

theoretical values of a = b = 2.829 Å and c = 14.119 Å [244]. Among the low-index facets of

LCO, (101̄4) and (0001) are the most favorable surfaces with the highest stability under a wide

range of lithium and oxygen chemical potentials [245,246]. LCO(0001) surface is polar, while

LCO(101̄4) is a nonpolar surface in which Li layers are distributed from the surface to the bulk

region (see Fig. 5.1.c). Thus, in the present study, we use LLZO(001)/LCO(101̄4) to construct

the interface slab. The unrelaxed structure of this interface is shown in Fig. 5.1.c.

To investigate the effect of lattice mismatch between LLZO(001) and LCO(101̄4), three

interface models with different lattice parameters are considered:

(I) a = b = 12.99 Å (the theoretical unit cell of LLZO(001))

(II) a = 12.23 Å and b = 12.22 Å (the averaged unit cell of LLZO(001) and LCO(101̄4))

(III) a = 11.46 Å and b = 11.45 Å (the theoretical unit cell of LCO(101̄4)).

The atoms at two bottom layers of LCO(101̄4) as well as 6.35 Å from the top of LLZO(001)

slabs are fixed at their bulk-truncated coordinates. For all the studied interface models, we have

first optimized the geometry of LLZO(001) and LCO(101̄4) surfaces before bringing them in

contact with each other. To find a minimum energy interface structure for each model, the

following test calculations are performed:

1. The geometry optimization has been carried out for models I–III with a separation of 10 Å

between slabs.

2. Afterwards, the relaxed slabs are brought in contact with each other and the geometry

relaxation has been performed for fifteen interface structures with separations (along the z di-

rection) of 1.0 Å≤ z ≤2.4 Å between LLZO(001) and LCO(101̄4) slabs with the step size of

0.1 Å. An optimal separation of 1.5 Å is then found.
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3. Finally, we search for the optimal relative x and y position of the slabs by perform-

ing geometry optimization of sixteen structures with different relative x and y coordinates of

LLZO(001) slab with respect to LCO(101̄4) slab using the optimal separation of 1.5 Å. The

vacuum of 15 Å is considered between periodic images along the direction perpendicular to the

interface (namely, z direction) for all the structures.

The interaction energy for each structure is evaluated by subtracting the total energy of sep-

arated slabs from that of the interface.

In addition, the ionic charges q(z) are calculated by Mulliken population analysis and it is

presented along with the charges based on the formal oxidation states. Moreover, the number

of electrons and the density of states (DOS) are illustrated for LLZO(001)/LCO(101̄4) to have

a clear picture of the electronic structure at the interface.

5.3 Results and Discussion

The lowest-energy structures of LLZO(001)/LCO(101̄4) interface for each model (I–III) are

shown in Fig. 5.2.a. By optimizing the whole interface, it is observed that the atomic structures

of the bulk region of LLZO(001) and LCO(101̄4) remain bulk-like in models I and II, but not in

model III where the unit cell of LCO(101̄4) is used. In models I and II, the atoms close to the

interface undergo a positional change. Indeed, a Li ion moves from the surface of LCO(101̄4)

to the surface of LLZO(001) in models I and II while there is no ion segregation from the bulk

to the surface. In model III, in which the atomic structure of LLZO(001) becomes disordered,

no Li transfer is observed. Moreover, the strongest interaction energy is calculated for model I

(-15.19 eV), whereas it is -6.76 eV and -5.74 eV for models II and III, respectively. In order to

investigate the interfacial effect, we compare the isolated LLZO(001) and LCO(101̄4) features

with their characteristics at interface.
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Ionic Charge Diagrams: The ionic charge distribution q(z) as a function of z (along the

normal to the interface) is calculated using formal oxidation states and Mulliken charge analysis

[173] with a mapped column width of∼ 1 Å as a typical size of ions. That is, the charge of each

atomic layer with 1 Å width is drawn for each element separately (vertical lines in Fig. 5.2.b

and c). Then the sum of these values in each layer (q(z)) is plotted along z with black curves.

In both analyses of separated surfaces (Fig. 5.2.b and c, left hand side), a sequential chain of

dipoles along z direction for LLZO(001) surface has been observed, while for LCO(101̄4),

this wave-like pattern is very small in Mulliken analysis and zero in oxidation state plot. By

placing the surfaces in contact with each other, the dipole moments at the interfacial layers of

the LLZO(001) reduce, whereas they become larger at topmost layers of LCO(101̄4) surface

in models I and II. For model III (Fig. 5.2.b and c, right hand side), the change in the charge

distribution (i.e. dipole moments) at LLZO(001) part is more substantial than that for the other

models. Comparing with the isolated surfaces before the interface constrcution, the change in

the charge distribution at LLZO calculated via Mulliken analysis extends to a distance of ∼8 Å

Figure 5.2: (a) Atomic structures for separated surfaces as well as different interface models. Ionic charge diagrams
calculated by (b) oxidation state and (c) Mulliken population analysis. In (b) and (c) parts, blue, purple, red, brown,
and green lines respectively represent the sum over Co, Li, O, Zr, and La charges in a columnwidth of 1 Å of the
slab, and black lines are total sum over all charges in each column (q(z)). Included with permission from Jand et
al. [215] ( c©Materials Research Society 2018)
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from the interface for model I and II, and to∼20 Å above the interface for model III (Fig. 5.2.c).

This change for the LCO part is up to ∼3 Å in model I and II, and up to ∼5 Å in model III. In

addition, based on Mulliken analysis, a small electron transfer of 0.48 e and 0.28 e is observed

from LCO to LLZO at the interface models I and II, respectively. However, this value is 0.80 e

in model III where no ionic transfer between LCO and LLZO occurs.

Number of Electrons: In order to study the electron distribution at the LLZO(001)/LCO(101̄4)

interface, we calculate the number of electrons n for each interface model along z. Figure 5.3

shows n as well as the difference in the number of electrons (∆n) between interface and iso-

lated surfaces. It is clear that for LCO(101̄4), there is a considerable change in ∆n in all the

interface models. Therefore, the induced dipole moments in LCO(101̄4) which is presented in

Fig. 5.2 is mainly due to the electronic redistribution, and the ionic displacement has a smaller

effect. On the other hand, a small and short range ∆n in LLZO(001) illustrates that electron

redistribution is not the main factor in weakening of dipoles in LLZO(001) at the interface. This

means that the dipole weakening at the topmost layer of LLZO(001) in Fig. 5.2 arises from the

ionic displacement.

Figure 5.3: Number of electrons (n) for LLZO(001)/LCO(101̄4) interfaces in model I–III, and its difference (∆n)
with respect to the separated surfaces.
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Electron Density of States: To study the role of each ion in electron transfer at the inter-

face, the electron density of states (DOS) is calculated for LLZO(001)/LCO(101̄4) interface.

Figure 5.4 shows the contour map of DOS for the bulk LCO, the bulk LLZO as well as the

interface models I–III along the interface normal direction, z. For all the models, the Fermi

energy of the whole system is set to zero. From the energy differences between the valence

band maximum (VBM) and the conduction band minimum (CBM), the band gaps of the bulk

LCO and the bulk LLZO are estimated to be 2.3 eV and 4.1 eV, respectively. At the interface,

the formation of gap states is observed in all models. The projected density of states (PDOS)

per atom and angular momentum helps us assign these gap states to the certain atomic orbitals.

As illustrated in Fig. 5.4 for model I, the gap states between -0.3 eV and 0.3 eV in LCO(101̄4)

are due to the Co3d and O2p orbitals (with more significant role of O2p), and those between -

1 eV and 0.3 eV in LLZO(001) arise from O2p orbitals. In the interface model I, with the largest

biaxial tensile strain for LCO(101̄4) (a =13.4% and b =13.5%), Co cations and O anions accept

and also donate electron, depending on their nearby ions at the surface of LLZO(001), and

therefore, the Fermi level cuts through the gap states in LCO. On the other hand in LLZO(001),

O anions accept and Zr cations donate electron. In addition, the electron/hole transfer is up to

2Å from the interface in LLZO(001) while it is extended to the top three layers of LCO(101̄4),

which is around 3Å from the interface.

Figure 5.4: Atomic structures and density of states for bulk LCO and bulk LLZO as well as different interface
models. Fermi level is set to 0 eV. Included with permission from Jand et al. [215] ( c©Materials Research Society
2018)
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Comparing interface models I and II, although structure ordering of LCO(101̄4) does not

change much with increase in its surface unit cell dimensions, the band gap of LCO(101̄4) in

model I becomes smaller than that in model II. This is due to the stronger tensile strain in the

former one. The smaller band gap in model I results in the larger electron transfer from LCO to

LLZO in this case (0.48 e in the model I and 0.28 e in the model II). At the interface model II,

the applied tensile strain on LCO(101̄4) is a =6.7% and b =6.8%, and the compressive strain on

LLZO(001) is a =5.9% and b =6.0%. It is shown that in this model, the empty and occupied

states in LCO and LLZO are similar to those in the model I. However, the unoccupied states

close to the CBM of LCO(101̄4) correspond to Co3d orbitals.

In the model III, where the atoms at LLZO(001) surface undergo a configurational displace-

ment, the largest compressive strain is applied on LLZO while there is no strain on LCO. Similar

to the model II, the created empty states close to the CBM of LCO and LLZO are respectively

due to Co3d and Zr4d. The created occupied states of Co3d and O2p are merged to the VBM in

both surfaces.

5.3.1 Possibility of Li accumulation at the Interface

The concentration of Li at the interface is a key factor in Li-ion conductivity of the system as Li

is the major charge carrier. Li depletion at a region near the interface can lead to a lower ionic

conductivity and as a result, a lower energy density in Li-based batteries. To study the possibilty

of Li accumulation in our system, we move two Li ions from z = 26.8 Å (middle) to z = 14.7 Å

(topmost layers) within the LLZO(001) slab. Focusing on the interface model II in which a

moderate strain is imposed on both LLZO and LCO surfaces, eight different configurations

are constructed by removing/locating Li ions from/at different sites. Four of these structures

are energetically more favorable than the pristine interface with the energy difference between

0.33 eV and 1.38 eV. Note that during the geometry optimization for pristine interface in model

II, a Li ion goes from the surface of LCO(101̄4) to LLZO(001). By moving two Li ions from
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bulk-like region of LLZO to the interface region and performing the geometry relaxation, one

Li occupies the Li-vacancy site at the surface of LCO(101̄4), and another Li ion goes to an

interstitial site at LLZO(001) close to an oxygen anion of the LCO(101̄4) surface.

Similarly, we move two Li ions from the top of LCO to the top of LLZO(001) slab at the

interface in model II. Among four different possible configurations, the most stable structure

is found to be 0.3 eV more favorable than the pristine interface while the others are unstable

compared to the pristine structure. It is observed that in this stable configuration, the Li va-

cancy site at LCO(101̄4) is spontaneously occupied by one of the moved Li ions to the top of

LLZO(001). Indeed, this Li ion comes back to the LCO surface during the geometry optimiza-

tion. However, the other Li does not significantly move and forms a ionic bond with oxygen

anion of LCO(101̄4). Therefore, it is concluded that the accumulation of Li ions at the interface

is energetically favorable.

Moreover, the similar investigation is carried out for O ions at LLZO(001) and LCO(101̄4)

to study O accumulation at the interface. Six different configurations are tested by moving O

from the bulk region of LLZO to the interface as well as from the inner layers of LCO to its

topmost layer. None of these structures are more stable than the pristine interface.

5.3.2 Possibility of Cation Interchange

As mentioned earlier in the current chapter, two experimental research groups have reported on

cross diffusions of Co from LCO to LLZO and, concurrently La and Zr from LLZO to LCO

during the high-temperature coating of LCO on LLZO [71, 72]. Therefore, we theoretically

study the possibility of cation interchange at LLZO(001)/LCO(101̄4) interface. We start with

considering interchange of a Co cation from the topmost layer of LCO(101̄4) with a Zr or a

La cation in LLZO(001) at different distances from the contact plane. The interaction energy

versus the z coordinate of replaced cation site in LLZO(001) is plotted in Fig. 5.5. Because of
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a similarity between the interface models I and II in terms of electronic and atomic structure,

we first investigate the models I and III. In all plots, the first point at the left side indicates the

energy of the pristine structure without any cation interchange. In both models I and III, the

required energy to interchange the cations at the structure (hereafter called interchange energy)

is positive for most of the z values, which shows that the structures with cation interchange are

more unfavorable than the pristine interface. However, energy variation in the case of Co↔Zr

is smaller than that of Co↔La. This is because of the large size of La ion (with ionic radius of

117.2 pm) compared to Co (ionic radius of 68.5 pm) and Zr cation (ionic radius of 86.0 pm).

Then, the history dependence of cation transport along the interface normal direction is checked

by considering the geometrically-optimized structure with cation interchange at z − ∆z as an

initial structure for interchange at z. The results do not indicate any significant change in the

interchange energies.

Furthermore, to check the possibility of the cation diffusion in model II, we calculate the

interchange energies of the structure with Co↔Zr or Co↔La at z = 27.5 Å, which are also

obtained to be positive (1.68 eV for Co↔Zr and 2.03 eV for Co↔La). Afterwards, the depen-

dence of interchange energy on the z coordinate of the Co cation at LCO(101̄4) is studied in this

Figure 5.5: Atomic structure as well as interaction energy diagram versus z for cation interchange process for
interface models I and III and new-labelled IV. Co is interchanged with (a) Zr and (b) La at the interface.
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model. Thus, we evaluate the energies of interfaces with interchange of a Zr or a La cation at

z = 27.5 Å with Co from the second and third topmost layers of LCO(101̄4). The energy val-

ues show that the pristine structure is still more favorable. The interchange energies for Co↔Zr

considering Co from the second and third layer of LCO are 1.53 eV and 2.14 eV, respectively.

The corresponding energies for Co↔La are 2.27 eV and 1.86 eV, respectively.

Note that in our study, we optimize the geometry of both surfaces before bringing them

in contact with each other to construct the interface models. After constructing the interface,

the relaxation is again performed for the whole structure. The other common approach is to

construct the interface by placing the bulk-truncated surfaces close to each other without pre-

optimization. However, as will be shown in the following, this approach for complex surfaces

such as LLZO(001) with large lattice mismatches can lead to a very different result compared

to that of models I-III. Figure 5.5 illustrates the interchange energies for an interface model (la-

beled as model IV) with the size of the theoretical unit cell of LCO(101̄4), similar to that of

model III. The difference between model III and model IV is that in the latter case we do not

optimize the geometry of surfaces before bringing them in contact with each other. After the

geometry optimization of the interface model IV, the resulting configuration is not similar to

the minimum energy structure found for model III in which LLZO(001) slab is disordered. At

the interface model IV, there is a large stress along the normal to the interface plane. In this

case, interaction energy is highly positive since total energies of the separated LLZO(001) and

LCO(101̄4) surfaces are much lower than that of the interface which is frozen in a metastable

structure. Nevertheless, the calculated interchange energies in this model have negative values,

indicating the possibility of the cation interchange under large stress along the interface normal

direction z. Therefore, cation diffusion at LLZO/LCO interface can occur under special con-

ditions. This is in agreement with previous experimental findings which report on the cation

interchange at LLZO/LCO interface during annealing process at a high temperature [71, 72].
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In the models I and III where the unit cell size is kept fixed before and after interchange,

cation diffusion can cause a strain in the slabs. As strain has a fundamental influence on the

possibility of cation interchange, in the following we study the effect of interchange-induced

strain.

5.3.3 Effects of Interchange-Induced Strain and Computational Parameters on Cation
Interchange

In order to minimize the strain resulting from the cation interchange between LLZO and LCO,

we consider the bulk models of LLZO and LCO and perform a full (geometry and unit cell)

optimization for bulk structures with an interchanged cation. For the bulk structures, to be con-

sistent with the concentration of interchanged cations in the interface models, we interchange

a Co with a Zr or a La per 1 × 1 × 1 unit cell of LLZO and a Zr or a La with a Co cation per

4× 4× 1 unit cell of LCO. The volume of each optimized supercell is calculated, and the per-

centage of the volume change with respect to the corresponding pristine structure is evaluated

to determine the effect of cation interchange on the unit cell size. The calculated volume change

is rather small (less than 2% in LLZO or LCO). However, the results indicate that the Co↔Zr or

Co↔La interchange in LLZO shrinks its unit cell dimensions, while both interchanges in LCO

expand its unit cell. This arises from the fact that Co cation is smaller than Zr and La ions. The

interchange energy (Eintc) for this system is obtained by

Eintc = ELLZO
A↔B + ELCO

A↔B − ELLZO
pris − ELCO

pris , (5.3.1)

where EA↔B and Epris are respectively the energies of the structure with A↔ B interchange

and pristine structure. We obtain the interchange energies of +1.30 eV and +2.59 eV for

Co↔Zr and Co↔La interchanges, respectively. Thus, the cation interchange is energetically

unfavorable in both cases.

As mentioned before, because of the large size of the interface structure (152 Li, 272 O,

40 Co, 48 La, and 32 Zr), using a double-zeta basis set is computationally prohibitive. There-
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fore, we employ single-zeta (SZV) basis set to evaluate the atomic and electronic structures of

the interface models. Here, for the bulk structures with smaller number of atoms, we have the

possibilty to use a double-zeta basis set. Therefore, to study the effect of basis set on the results,

we recalculate the energies of bulk LLZO and bulk LCO with and without ion interchange using

double-zeta basis set with polarization (DZVP). By using DZVP, the volume changes based on

cation interchange are again less than 2% in LLZO or LCO and completely consistent with the

previous results, i.e. both interchanges make the unit cell of LLZO smaller, while they increase

the size of LCO unit cell. In addition, the interchange energies are evaluated to be +4.09 eV and

+5.73 eV for Co↔Zr and Co↔La interchanges respectively. Therefore, both SZV and DZVP

basis sets predict unfavorable structures after the ion interchange.

Furthermore, the effect of different XC functionals on our calculations is studied by employ-

ing two different levels of theory: DFT+U method by using PBE XC functional and the hybrid

functional of Heyd, Scuseria, and Ernzerhof (HSE06). Hereafter, we use the plane-wave basis

set implemented in VASP. The calculated band gaps of the bulk LLZO and LCO as well as their

experimental band gaps are presented in Tab. 5.1. The on-site Hubbard U model is parametrized

in VASP with Ueff = 4.9 eV for Co atom, obtained by a fit to the experimental band gap of

LCO. As it was discussed before, because of the relatively small electron correlation effects

in Zr and La atoms, Hubbard U is not considered in LLZO. The results show that in case of

LLZO, the calculated band gap using HSE06 is larger than the one obtained by PBE and it is in

good agreement with experimental measurements. However, in LCO the calculations based on

HSE06 do not yield different results from the PBE+U method, and both are consistent with the

experimental values.

Table 5.1: Calculated and experimental band gaps of LLZO and LCO.

PBE+U HSE06 experiment
LLZO 4.1* 5.4 5.0 – 5.5 [54, 247]
LCO 2.3 2.3 1.7 – 2.7 [231–234]

* In case of LLZO, U is not considered for La and Zr atoms due to their small electron correlation.
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By allowing the unit cell and atomic positions to change during the full system relaxation,

we try to obtain the strain-free configurations for LLZO and LCO with and without cation inter-

change. Then, the interchange energies for Co↔Zr and Co↔La are evaluated through Eq. 5.3.1

to be respectively +1.37 eV and +2.89 eV using PBE+U functional, while they are +5.23 eV

and +6.48 eV in the HSE06 framework. Therefore, similar to PBE results, the calculations

at the HSE06 level of theory also indicate that at the strain-free systems, the cation diffusion

between LLZO and LCO is infeasible.

5.4 Conclusions

In this chapter, first-principles calculations have been performed to study the interface between

two promising materials in ASSLBs, namely LLZO as an electrolyte and LCO as a cathode.

These materials have been rarely investigated theoretically because of their complicated struc-

tures.

We have modelled the LLZO(001)/LCO(101̄4) interface by considering different unit cell

sizes and thereby, various biaxial compressive and tensile strains. It has been found that under

a high biaxial tensile strain, LCO(101̄4) surface keeps its crystalline structure, while a large

biaxial compressive strain on LLZO(001) leads to large displacement of atoms in this surface.

On the other hand, most of the ions in both LLZO(001) and LCO(101̄4) surfaces remain at their

bulk atomic positions under moderate strains. During ionic relaxation for the interface models

where LLZO(001) stays crystalline, we have observed the Li migration and the electron transfer

from LCO to LLZO at the interface. Although the effect of the ion transfer is neutralized by the

electron redistribution to some degree, it is not completely compensated and results in a dipole

formation at the interface.

We have also studied the accumulation possibility of more Li ions at the interface by trans-

ferring Li ions from deep layers of LLZO(001) to its topmost layers. The calculated energies
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for this process indicate its feasibility. During geometry optimization, the transferred Li ions at

the interface move slightly and bind to oxygen anion of LCO(101̄4) which shows the effect of

an electrostatic driving force.

In the next step, we have investigated the possibility of cation interchange at LLZO/LCO

interfaces. It has been found that the ion interchange can only occur if there is a huge stress

along the interface normal direction. In other cases, where this stress is released by optimizing

the surfaces before bringing them in contact with each other, we have calculated the positive en-

ergies for Co↔Zr and Co↔La interchanges indicating that the cation diffusion is unfavorable.

In such systems, the interchange energies are generally lower close to the interface.

Afterwards, the bulk models of LLZO and LCO have been considered, and in order to mini-

mize the strain, full cell geometry optimizations have been performed on these systems with and

without interchange. We have also studied the difference between employing SZV and DZVP

basis sets. Also in separate calculations, the correlation effects have been investigated by using

PBE+U and HSE functionals. All these calculations show that ion interchange at the interface

is unlikely. Our study indicates that the low ionic conductivity, which impacts the performance

of ASSLBs, can be the result of a new phase forming at the interface. This interfacial phase

have been observed previously [71,72], but the composition and the structure of this new phase

is still heavily under debate.

A natural extension of the current study would be to investigate possible stable phases pro-

duced due to the interaction between LLZO and LCO. Moreover, the effect of the types of

interchanged species could be studied. The approach presented in this chapter can be used

to model the solid/solid interfaces in various applications. In addition, the charge distribution

and the density of states analyses give valuable information on atomic scale processes at the

interface. Our calculations on cation diffusion clarify the conditions under which the cation

interchange is possible. These findings can help experimentalists to control the cation diffusion
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at the interface. In general, our computational results suggest a useful perspective for the further

improvement of next-generation batteries.



Chapter 6

SUMMARY

Recently, lithium(Li)-based batteries have attracted significant attention due to their applica-
tions in electric vehicles and many new kinds of portable electronic devices such as cell phones.
However, such batteries still need more research and improvement in order to meet the mar-
ket demands for low cost and high-rate performance. Lithium-sulfur (Li-S) batteries with their
high theoretical energy density, and all-solid-state Li-ion batteries (ASSLB) with their increased
safety and design flexibility are among the most promising energy-storage systems. The focus
of current dissertation is set on the important materials in these two kinds of batteries.

The common cathode materials for Li-S batteries are S8 or Li2S. Intermediate Li-polysulfides
are also formed at the cathode during the charge/discharge process. Moreover, carbon-based
materials are added to sulfur cathodes in order to increase their electronic conductivity. In Li-S
batteries, the Li-polysulfides migrate through the electrolyte, and their reductions and oxida-
tions on both electrodes result in excessive utilization of the active material and self discharging.
To inhibit this process, traping of Li-polysulfides in the cathode has been proposed. Here, we
have investigated the ability of graphene (pristine and defective) as part of sulfur cathode to trap
the Li-polysulfides. To this end, binding energies and Gibbs free energies for adsorption process
of Li2Sx onto the graphene are calculated using Density Functional Theory (DFT) with PBE-D2
method. To calculate the Gibbs free energies, vibrational and configurational entropies are eval-
uated. It is found that the interaction of the Li-polysulfides and graphene is mostly dominated
by the dispersion interactions, and pristine as well as defective graphene cannot immobilize
the Li-polysulfides. Although during the adsorption of Li2Sx on monovacant graphene, one S
atom is chemically attached to the defect site, the resulting S-doped graphene cannot hinder the
Li-polysulfide migration either. In the next step, Li2S, which is one of the promising cathode
materials in Li-S batteries, has been investigated. Similar to S8, Li2S has a low electronic con-
ductivity. Moreover, Li-ion conductivity of Li2S at room temperature is low, but this crystal
possesses a high ionic conductivity at high temperatures. Although many experiments have
been performed to study the ionic conductivity of Li2S, it has not been studied theoretically
so far. In this thesis, we have studied ionic conductivity of Li2S as well as the origin of its
superionic phase transition which has been reported by experimentalists. To achieve this aim,
we have applied DFT and ab initio molecular dynamics (AIMD). Through AIMD simulations
at different temperatures, diffusion coefficients are evaluated. Additionally, concentration of

87
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the Li ions is calculated from thermodynamics of defects as well as using the detailed balance
condition. Finally, the Li-ion conductivity is obtained for various temperatures which shows
the superionic phase transition for temperatures above T = 900K, in good agreement with the
experimental reports.

In the case of ASSLBs, although the solid electrolyte has a high ionic conductivity and a high
stability, such systems do not possess a high energy density compared to the conventional cells,
which is due to a large interfacial resistance at electrolyte/electrode interface. Therefore, it is
of crucial importance to know the atomic and electronic structures of these interfaces. In this
work, an important electrolyte/cathode interface for ASSLBs, namely Li7La3Zr2O12/LiCoO2,
has been investigated. Although several experimental researches have synthesized and studied
this interface, its complex structure makes it difficult to investigate theoretically. Here, for the
first time, we have modelled and studied this interface using DFT (PBE+U method) by focusing
on Li7La3Zr2O12(001)/LiCoO2(101̄4). To consider the effect of lattice mismatch between the
two surfaces, three models with different lattice parameters for the interface have been applied.
Therefore, different magnitudes of biaxial compressive and tensile strains are applied on the
interface. It is shown that during the interface optimization, a Li ion moves from the surface of
LiCoO2 to Li7La3Zr2O12. This ion migration is accompanied by electron transfer in the same
direction attempting to neutralize the system. The electron transfer also results in the forma-
tion of certain gap states at the interface. In the next step, the possibility of cation interchange
(Co↔Zr or Co↔La) has been studied at the Li7La3Zr2O12(001)/LiCoO2(101̄4) interface. By
calculating the energy difference between interface with interchanged cations and pristine inter-
face, it is found that this process is possible only under a large stress along the interface normal
direction. In addition, to minimize the strain on such systems during the cation interchange,
the bulk models of Li7La3Zr2O12 and LiCoO2 have been considered, and the full optimization
has been carried out for these bulk structures. Moreover, to increase the accuracy, HSE06 hy-
brid functional has been applied. Comparing with pristine Li7La3Zr2O12 and LiCoO2 bulks, the
structures with Co↔Zr or Co↔La cation interchange are unfavorable. As a result, these struc-
tures can only form under a large stress which is consistent with experimental observations,
showing the cation interchange during the cathode annealing at high temperatures.

In the case of Li-S batteries, our findings show that pristine and even vacant graphene in sulfur
cathode do not have the ability to catch the Li polysulfides. Therefore, another way to trap the
Li-polysulfides should be proposed. According to the experimental results, doping of graphene
by certain dopants such as nitrogen or phosphorus can immobilize the Li2Sx molecules, and
improve the performance of sulfur cathode. This process should be studied theoretically in
detail, similar to what we have done for pristine and defective graphene. In order to study the
Li-ion conductivity, the approach that has been used in Li2S can be applied to model superionic
phase transition in ionic crystals. In addition, at Li7La3Zr2O12(001)/LiCoO2(101̄4) interface,
our calculations enable us to have a better understanding of processes at such interfaces which
will eventually lead to fabricate the more efficient ASSLB.



Chapter 7

ZUSAMMENFASSUNG

In jüngster Zeit haben Lithium (Li)-basierte Batterien aufgrund ihrer Anwendungen in Elek-
trofahrzeugen und vielen neuen Arten von tragbaren elektronischen Geräten (z. B. Mobil-
telefonen), beträchtliche Aufmerksamkeit auf sich gezogen. Solche Batterien müssen jedoch
noch weiter verbessert werden, um den Marktanforderungen nach niedrigen Kosten und hoher
Leistung gerecht zu werden. Deshalb werden Lithium-Schwefel (Li-S) Batterien infolge ihrer
hohen theoretischen Energiedichte und Festkörper-Li-Ionen-Batterien (FLIB) aufgrund ihrer
Sicherheit und Designflexibilität intensiv erforscht, und sie gelten als die vielversprechendsten
Energiespeichersysteme. Der Schwerpunkt der vorliegenden Dissertation liegt auf den wichti-
gen Materialien dieser beiden Batterietypen.

Die üblichen Kathodenmaterialien in Li-S Batterien sind S8 oder Li2S. Während des Lade- /
Entladeprozesses werden auch intermediäre Li-Polysulfide an der Kathode gebildet. Darüber
hinaus werden kohlenstoffbasierte Materialien der Schwefelkathode hinzugefügt, um ihre elek-
tronische Leitfähigkeit zu erhöhen. In Li-S Batterien führen Reduktionen und Oxidationen
der Li-Polysulfide, die aufgrund ihrer Wanderung durch die Elektrolyten auftreten, zu einer
übermäßigen Ausnutzung des aktiven Materials und zu einer Selbstentladung. Um diesen
Prozess zu hemmen, wurde das Abfangen von Li-Polysulfiden in der Kathode vorgeschlagen. In
dieser Arbeit wird die Fähigkeit des Graphen (makellos und defekt) untersucht, welches Teil der
Schwefelkathode ist, die Li-Polysulfide einzufangen. Zu diesem Zweck werden Bindungsen-
ergien und freie Gibbs-Energien für den Adsorptionsprozess von Li2Sx auf Graphen mithilfe
der Dichtefunktionaltheorie (DFT) mit der PBE-D2-Methode berechnet. Zur Berechnung der
freien Gibbs-Energien werden Vibrations- und Konfigurationsentropien ausgewertet. Es zeigt
sich, dass die Wechselwirkung von Li-Polysulfiden und Graphen hauptsächlich durch die Dis-
persionswechselwirkungen dominiert wird, und makelloses oder defektes Graphen kann die Li-
Polysulfide nicht immobilisieren. Obwohl während der Adsorption von Li2Sx an Monovacant-
Graphen ein S-Atom vom Molekül chemisch an die Defektstelle gebunden wird, kann auch das
resultierende S-dotierte Graphen die Li-Polysulfid-Wanderung nicht verhindern. Im nächsten
Schritt wurde Li2S, eines der vielversprechenden Kathodenmaterialien in Li-S Batterien, un-
tersucht. Ähnlich verhält sich Li2S zu S8, die eine niedrige elektronische Leitfähigkeit haben.
Darüber hinaus ist die Li-Ionen-Leitfähigkeit von Li2S bei Raumtemperatur niedrig, aber dieser
Kristall besitzt eine hohe Ionenleitfähigkeit bei hohen Temperaturen. Obwohl viele Exper-
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imente durchgeführt wurden, um die Ionenleitfähigkeit von Li2S zu untersuchen, wurde sie
bisher nicht theoretisch untersucht. In dieser Arbeit haben wir die Ionenleitfähigkeit von Li2S
sowie den Grund für dessen superionischen Phasenübergang untersucht, der von Experimenta-
toren berichtet wurde. Um dieses Ziel zu erreichen, haben wir DFT und ab initio- Molekulardy-
namik (AIMD) angewendet. Durch AIMD-Simulationen bei verschiedenen Temperaturen wer-
den Diffusionskoeffizienten ausgewertet. Zusätzlich wird die Konzentration der Li-Ionen aus
der Thermodynamik von Defekten sowie unter Verwendung der detaillierten Gleichgewichtsbe-
dingung berechnet. Die Li-Ionen-Leitfähigkeit wird bei verschiedenen Temperaturen simuliert
und zeigt folglich den superionischen Phasenübergang für Temperaturen über T = 900K. Dies
steht in guter Übereinstimmung mit den experimentellen Ergebnissen.

Obwohl der Festelektrolyt in FLIBen eine hohe Ionenleitfähigkeit und eine hohe Stabilität
aufweist, besitzen FLIBen keine hohe Energiedichte im Vergleich zu herkömmlichen Zellen.
Dies liegt an einem großen Grenzflächenwiderstand an der Elektrolyt/Elektroden -Schnittstelle.
Daher ist es von entscheidender Bedeutung, die atomaren und elektronischen Strukturen dieser
Grenzflächen zu kennen. In dieser Arbeit wurde eine wichtige Elektrolyt/Katoden -Grenzfläche
für FLIBen, Li7La3Zr2O12/LiCoO2, untersucht. Obwohl mehrere experimentelle Forschungen
diese Grenzfläche synthetisiert und untersucht haben, erschwert ihre komplexe Struktur die the-
oretische Untersuchung. Hier wurde das erste Mal diese Schnittstelle mit DFT (PBE+U Meth-
ode) modelliert und untersucht, indem wir uns auf Li7La3Zr2O12(001)/LiCoO2(101̄4) konzen-
triert haben. Um den Effekt der Gitterfehlanpassung zwischen den zwei Oberflächen zu berück-
sichtigen, werden drei Modelle mit unterschiedlichen Gitterparametern für die Grenzfläche ver-
wendet. Daher werden unterschiedliche Größen biaxialer Druck- und Zugspannungen auf die
Grenzfläche angewendet. Es wurde gezeigt, dass sich während der Grenzflächenoptimierung
ein Li-Ion von der LiCoO2 Oberfläche zu Li7La3Zr2O12 bewegt. Diese Ionenwanderung wird
von einem Elektronentransfer in der gleichen Richtung begleitet, der versucht, das System zu
neutralisieren. Daher werden bestimmte Bandlückenzustände an der Schnittstelle gebildet. Im
nächsten Schritt wurde die Möglichkeit des Kationenaustauschs (Co↔Zr oder Co↔La) an der
Li7La3Zr2O12(001)/LiCoO2(101̄4)-Schnittstelle untersucht. Durch Berechnen der Energiedif-
ferenz zwischen der Grenzfläche mit ausgetauschten Kationen und der ursprünglichen Gren-
zfläche wurde herausgefunden, dass dieser Prozess nur unter einer großen Spannung entlang
der Grenzflächennormalrichtung möglich ist. Im nächsten Schritt wurden die Volumenmod-
elle von Li7La3Zr2O12 und LiCoO2 betrachtet. Um die Belastung solcher Systeme während
des Kationenaustauschs zu minimieren, wurde die vollständige Optimierung durchgeführt. Für
die Erhöhung der Genauigkeit wurde HSE06-Hybridfunktional angewendet. Im Vergleich zu
reinen Li7La3Zr2O12 und LiCoO2 sind die Strukturen mit Co↔Zr oder Co↔La-Kationenaustausch
ungünstig. Folglich können sich diese Strukturen mit dem Kationenaustausch nur unter großen
Spannungen bilden, die bisher experimentell bei der Behandlung von Kathoden mit hohen Tem-
peraturen, dem Kathodenglühen, nachgewiesen werden konnten.

Im Fall von Li-S-Batterien zeigen unsere Ergebnisse, dass ein reines oder sogar defektes Graphen
in der Schwefelkathode nicht in der Lage ist, die Li-Polysulfide einzufangen. Daher sollte ein
anderer Weg zum Einfangen der Li-Polysulfide gesucht werden. Gemäß den experimentellen
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Ergebnissen kann die Dotierung von Graphen mit bestimmten Dotierstoffen wie Stickstoff oder
Phosphor die Li2Sx-Moleküle immobilisieren und die Leistung der Schwefelkathode verbessern.
Dieser Prozess sollte theoretisch genau untersucht werden, ähnlich wie wir es für ein reines
oder defektes Graphen getan haben. Der Ansatz, der in Li2S verwendet wurde, kann hier
ebenfalls angewendet werden, um die Li-Ionen-Leitfähigkeit zu untersuchen sowie die tempera-
turinduzierten superionischen Phasenübergänge in ionischen Kristallen zu modellieren. Darüber
hinaus ermöglichen unsere Berechnungen an der Li7La3Zr2O12(001)/LiCoO2(101̄4)-Schnittstelle
ein besseres Verständnis der Prozesse an solchen Grenzflächen, die letztendlich zu effizienteren
Festkörperbatterien führen werden.
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