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Summary

This thesis describes the development and implementation of the BeesBook System,
a computer vision based solution for the automatic detection and analysis of behav-
ioral patterns of honey bee colonies at the individual and collective level.

The behavioral analysis of honey bee colonies requires extensive data sets describ-
ing the behavior of individual colony members. These data sets must often be cre-
ated manually - a time consuming and cumbersome activity. Consequently, behav-
ioral data sets are usually restricted to small subsets of the colony’s life, whether this
regards to time, space or animal identity. By automating the data acquisition process,
the BeesBook system allows the supervision of a higher number of individuals during
more extended periods of time, opening the door to more sophisticated, inclusive and
significant studies.

The BeesBook System uses unique binary markers attached to the bees to keep track
of their position and identity via computer vision software. The markers’ flexible de-
sign allows the implementation of a diversity of error-correcting codes, depending on
the study’s goals and the colony’s population size. The markers adapt to the bee’s tho-
rax shape creating a surface that withstands heavy-duty activity in and outside of the
hive.

Three recording seasons were conducted during the summers of 2014, 2015, and
2016 to evaluate and improve the performance of the system components. Each sea-
son extended over a period of nine weeks and generated approx. 65 million images.
Prior to the beginning of each season, all members of a bee colony were individu-
ally tagged and transferred to an observation hive. The activity inside the hive was
recorded using an array of four high-resolution cameras and stored for later analysis
on one of the complexes of the North-German Supercomputing Alliance. Communi-
cation dances were identified in real-time using a second set of cameras comprised
of two webcams running at high frequency. During the off-season, the experimental
design was optimized to ensure that the generated data better serve the target of the
experiment.

Stored images were processed using highly optimized computer vision software to
obtain the position, orientation, and ID of every marked bee. These data are further
processed to generate motion paths for the colony members, which, combined with
data on the communication dances, constitute an unprecedented set of knowledge
on the inner life of the honey bee colony. The information obtained through this sys-
tem establishes the conditions for consolidating our understanding of already known
behaviors. Furthermore, this research has identified previously unknown behavioral
data which ultimately extend our knowledge of bee colonies and their collective intel-
ligence.
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Chapter 1

Introduction

This thesis describes the development and implementation of the BeesBook sys-
tem, a vision based solution for the automatic detection and analysis of behavioral
patterns on honey bee colonies at the individual and collective level.

The collective behavior of the honey bee and its highly efficient foraging ecology
have captivated humans for centuries. Already in ancient Greece, Aristotle documented
his insights on the honey bee in his Historia Animalium, including an account of the
waggle dance, a behavior observed in some bees after returning to the hive from col-
lecting food or scouting for new nest locations. In 1946, more than 2,000 years later,
Karl von Frisch proposed for the first time a correlation between some of the dance’s
characteristics and the location of the resources visited by the dancers [115], in what
is, up to now, the only known case of abstract communication among insects.

After von Frisch’s discovery, biologists have continued to study the waggle dance
and the different ways in which it shapes the collective behavior of honey bee colonies
[38, 95, 116]. As part of a general trend in ethology, the nature of these studies has grad-
ually moved from an exclusively qualitative approach to a predominantly quantitative
one. Quantitative studies, unlike their qualitative counterparts, require gathering and
analyzing a substantial amount of data; this change of approach in ethology has led to
a demand for new tools and methodologies that allow a more efficient acquisition and
analysis of data.

It is under these conditions that the new field of computational ethology has emerged,
bringing together advances in the areas of technology, engineering, and mathematics,
and with the primary goal of automating measurement and analysis of animal behav-
ior [3]. The BeesBook system, as a computer vision based solution for the automatic
tracking of honey bees, is an excellent example of the scope intended by computa-
tional ethology.

To fully understand the motivation for this work, and appreciate its ambitions, it is
imperative to review two of the features that have made the honey bee the interesting
object of study that it is nowadays: division of labor and the waggle dance.
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2 Chapter 1: Introduction

Figure 1.1: The experimental methods developed by Karl von Frisch remained practically unaltered
during decades. Only until recent years, with the arrival of new technologies, these methods have been
significantly modified. (Image by: Nina Leen-Time Life Pictures, 1964).

1.1 Honey Bee Colonies and Division of Labor

During foraging season, which usually extends over spring and summer, an aver-
age honey bee colony consists of some 20,000 members, from which the vast majority
are workers- all these are females. The rest of the population consists of a few hundred
males and the queen, mother of the colony. During winter the overall colony’s popu-
lation usually descends to just a few thousand bees, and the small male population is
completely wiped out [95].

Population reduction is not the only seasonal change that takes place within the
hive; bees also exhibit seasonal age polyethism. During foraging season, when food ac-
cumulation and growth rate are priorities, the colony optimizes these processes through
age polyethism, this means that each bee performs a particular task depending on its
age. During winter, when no new resources are available, and the colony must survive
with the food gathered during the most recent foraging season, all workers become
generalists [48].

Each of the activities performed by a worker bee during foraging season is closely
related to her ongoing physiological stage, in particular to the maturity of its glandular
system [95]. Biologists have hypothesized for a long time about the internal and exter-
nal aspects that compel a worker to switch from one activity to another, resulting in
the temporal polyethism observed in honey bee colonies. Johnson [48] conceptualizes
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the more representative results on honey bee’s division of labor research into two mod-
els. The first model works at the behavioral level and explains the form and adaptive
basis of age polyethism; it proposes that nurses are pushed from their caste by young
bees ready to take their place, and mature workers are pulled from their caste as a con-
sequence of interactions with members of the caste above them. The second model
works at the proximate level and proposes that the colony level needs are translated
into individual-level patterns of physiological development.

Regardless of which of the two models is closer to the truth behind the division of
labor mechanisms; there is a clear correlation between the tasks performed by workers
during foraging season and their age [48]. In fact, the type of tasks is allocated accord-
ing to an specific age: cell cleaner (0 - 3 days old), nurse (4 - 12 days old), food-storer
(13 - 20 days old) and forager (21 - dead around day 42).

Age polyethism allows honey bee colonies to constitute themselves into sophisti-
cated biological organizations [95]. Thus, working as a unit at the group level enables
the colony to transcend their individual capabilities and succeed in complex tasks such
as; optimal exploitation of multiple food sources, control of the hive’s micro-climate,
and regulation of the hive’s population. These complex and highly coordinated be-
haviors, which at first glance calls for the existence of a central intelligence, are in fact
the result of myriads of interactions among colony members. Since each bee has only
access to local stimuli [82], the flow of information across the colony must play a cru-
cial role in the emergence of the behavioral patterns observed at the macroscopic level
[46].

1.2 The Waggle Dance, Dancers, and Followers

When a bee discovers a highly valuable resource on the field, for instance, a patch
of flowers or a potential new location where to nest, she shares this resource’s location
with her nest-mates via a series of symbolic body movements. This peculiar behavior,
which usually takes place on the honeycomb surface, is now commonly known by the
name of waggle dance [65]. Waggle dances consist of two distinct phases, the waggle
run, and the return run. During the waggle run, the dancer vibrates her body from side
to side while moving forward in a rather straight line. Each waggle run is followed by
a return run during which the dancer circles back to the starting point of the previous
waggle phase. Right and left return runs are alternated, this way the dancer describes
a path resembling the figure eight (Fig. 1.2).

The importance of the waggle dance resides in the fact that some of its properties
correlate to the resource’s polar coordinates on the field and that it is used as a mean
of communication by the honey bee. Firstly, the average orientation of consecutive
waggle runs, measured from the hive’s vertical, approximates the angle of the adver-
tised resource and the solar azimuth as perceived from the hive (Fig. 1.2). Furthermore,
the duration of the waggle run correlates to the distance between hive and resource
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[19, 27, 116].

Figure 1.2: Food source locations and their representations as waggle dance. On the left, three food
sources on the field located at (A) 45◦ counterclockwise (B) 0◦ and (C) 90◦ clockwise with respect to the
azimuth and on the right the correspondent waggle dance paths on the surface of a vertical honeycomb.

A correlation between the profitability of the resource and the timing of the dance
advertising its location has been observed. Similarly, return runs for highly profitable
sites are considerably shorter than those for other not so profitable localities, yielding
this way a higher waggle production rate [97]. Nevertheless, it remains unclear if dance
attendants make use of this information or even if they are capable of reading it from
the dance.

When a forager bee dances on the comb surface, one or more unemployed foragers
might become interested, track her movements, translate the information encoded in
the dance and search for the resource in the field [1, 8, 69, 91, 95]. This process is usually
carried out multiple times since bees very rarely find the advertised resource on their
first try [98]. Successful followers, once back in the hive, may also advertise the visited
location, thereby incrementing the probability of new recruitment for their resource
location.

Bees also exhibit a negative feedback mechanism known as stop signal. When a
forager executes the stop signal, she knocks her head against the dancer in conjunc-
tion with a short burst of thorax vibration [55, 75, 76]. The stop signal is used as a mean
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to discourage recruitment to specific locations, for instance when a food source rep-
resents a threat due to aggressive food competition with other colonies or during nest
selection when a different scout has found a better location to establish the colony.
Waggle dance and stop signal complement each other. Furthermore, they constitute
the mechanism that allows honey bees select the best nest site when swarming and to
optimally distribute the population of foragers across the available food sources.

Pursuing a better understanding of the communication process carried out during
the waggle dance, Landgraf et al. developed a robotic bee that mimics all potential
stimuli known to be emitted by foragers during communication dances [62, 60]. Ex-
periments conducted with the robotic dancer proved its ability to communicate new
food locations to novice foragers. However, the response to the robotic dancer was not
stable, some bees kept returning to the robot and attending to its dances, while other
bees did not follow the robot at all.

A possible explanation for the irregular response to the robotic dances is that bees
might forage in groups defined according to a social structure inherent to the colony
[59]. If this hypothesis is correct, it will imply that the waggle dance is not self-contained
and that the colony’s social structure plays a major role in the decision of an unem-
ployed forager whether to follow or not a particular dancer [1, 39]. These foraging
groups would consist of nest-mates who have built a partnership in the base of frequent
interactions, where each new encounter increases the probability for further collabo-
rations. Since interactions between nest-mates are not limited to their life-stage as
foragers, this record of interactions could extend over multiple stages, probably all the
way back to their early days as nurses.

In support of the foraging groups hypothesis, some studies indicate that bees are
capable of discriminating between members of their patriline -their super sisters- and
members of other patrilines- their half-sisters- [35, 67, 72]. Furthermore, Oldroyd et
al. [80] observed a preference among unemployed foragers for dances performed by
their super-sisters over dances by their half-sisters. A later study [81] suggested a pref-
erence for certain foraging distances linked to genetic variances as a plausible expla-
nation for this nepotistic behavior. This problem was revisited by Kirchner and Arnold
in [54], who worked with two colonies of 2 and 17 subfamilies. After observing multiple
dances, dancers and recruits were collected to conduct DNA studies and determined
their subfamily. Results from this study indicate no preference from unemployed for-
agers for dances of their super-sisters over those of their half-sisters. However, it is
worth noticing that the number of workers analyzed during this study is significantly
small when compared to the colony’s overall population; each of the two colonies con-
sisted of about 6,000 bees, and only 100 workers from the 2 subfamilies colony and 134
from the 17 subfamilies colony were analyzed.

Most of the studies with a focus on honey bee colonies and their social structure
face similar conditions to those encountered by Kirchner and Arnold in [54], where the
number of individuals and the amount of data analyzed is strongly restricted by the
manual and time-consuming nature of the data collection process.
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1.3 Motivation for this Work

The main motivation for this work is the need in the field of ethology for new tech-
nologies that allow the generation of more extensive and reliable data sets. As pointed
out during the introduction to this chapter, studies on animal behavior have become
increasingly quantitative over time; unfortunately, technologies for behavior quantifi-
cation have not developed at the same pace, and manual scoring remains the most
common approach for this task [3].

Data collection from experiments with social insects like ants and termites, fre-
quently involves tracking the activity of hundreds or even thousands of individuals.
Unfortunately, most of the available methods for data collection remain to a large ex-
tent manual procedures that rely on human observation. As a consequence, there are
two surmounting obstacles to any similar research: the man hours that the project de-
mands, together with the subjectivity brought by the researchers. Even when assisted
by special purpose software, manually scoring video recorded activity is a slow and
tiresome task, which is why most of the quantitative studies are restricted to short pe-
riods of time and small groups of individuals. One technique that has been used to
speed up the data collection stage and improve the depth and breadth of observation
is parallelization of the scoring process. Unfortunately, parallelized scoring adds the
extra difficulty of standardizing data from multiple sources [12].

Behavioral studies of the honey bee are not strange to quantitative analyses and
the challenges that they pose. Studies as those conducted by von Frisch during the
mid-20th century with a focus on the characterization of the waggle dance and its val-
idation as a mean of communication [115], have been gradually replaced by studies
with a focus on collective behavior and the analysis of interactions within groups of
individually marked bees [95]. This kind of studies have been already conducted for
a long time, and although there is no formal standard procedure, most of them fol-
low the same general lineaments. For instance, one or more honeycombs are kept in
a one layer array inside a glass cabinet known as observation hive. The limited space
between honeycomb and glass panes forces the bees to move over the honeycomb
surface without walking one over the other and maximizing the activity exposed to the
observer. Colony members who are part of an ongoing experiment are marked with a
paint stroke to ease their localization inside the hive, if the experiment requires it, they
can be individually tagged by attaching numbered plastic markers to their thorax. The
behavior annotation is then performed either on real-time, directly at the observation
hive with the help of protractors and stopwatches [106, 116, 114, 117], or after the fact
using digital video recordings (Fig. 1.3) and applying either manual [6], semi-automatic
[23] or automatic techniques [62].

In recent years, some of the characteristic behaviors observed in honey bee colonies
have gained attention in fields of knowledge other than ethology. In computer science,
for instance, honey bee collective foraging has inspired the development of new opti-
mization algorithms [50, 85, 126]. In complexity sciences, honey bee colonies have also
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Figure 1.3: Video recording of observation hive. Video recording is now ubiquitous in ethology, it pro-
vides a permanent register of experimental raw data, and allows the conduction of more comprehensive
studies after the fact (Image by: Laboratory of Apiculture and Social Insects - University of Sussex).

become a common object of study, including successive studies that model their col-
lective foraging [13, 24] and nest-site selection behavior [96, 83, 90, 89, 73]. In fact, with
more detailed longitudinal studies and following the bottom-up approach described
by Crick [18] and Seeley [95] (Fig. 1.4), it would be possible to actually define rules and
mathematical models that are more in line with the actual mechanisms behind the
colony’s collective behavior.

Figure 1.4: Cycle of studies to understand a complex system. Understanding a complex system like a
colony of honey bees is an iterative process that begins with experimental observations, followed by the
proposal of rules or a mathematical model that aims to reproduce the observed behaviors. The model
can then be simulated and the output compared with the observed data, if necessary new observations
are conducted, the model is adjusted, and the process starts all over again.

The need for new solutions to the data acquisition and analysis problem in studies
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of the honey bee is clear, moreover, its benefits are substantial. The ability to perform
more comprehensive studies with deeper and broader data sets would allow us to gain
a better understanding of the colony’s social structure and the mechanism that shapes
its collective behavior. An ideal solution to this problem would be one that allows track-
ing activity at the individual level during long uninterrupted periods of time.

Here is presented the BeesBook system, a computer vision based solution for the
automatic tracking of behavioral activity in honey bee colonies. The system comprises
recording and storage of high-resolution images, computer vision software for identi-
fying uniquely marked bees (Fig. 1.5) and automatic detection and decoding of waggle
dances. Unlike any other system of its kind, the BeesBook system is able to track all
components of the waggle dance activity: Location, orientation and identity of every
colony member inside the observation hive, 24 hours a day over several weeks. The
system is conceived as a budget-priced framework for the incremental implementa-
tion of hardware and software modules.

Figure 1.5: Tagged bees inside the observation hive. Prior to the beginning of each season, all members
of a bee colony were individually tagged and transferred to an observation hive.

1.4 Overview of the Thesis

This work comprises of five additional chapters. The second chapter, devoted to
the state of the art of animal tracking systems, provides a brief overview of the meth-
ods used so far in the study of behavioral patterns in social insects. The chapter pays
particular attention to the work of Dankert et al. [20], Mersch et al. [70], and Crall et
al. [17]; three notable examples of computer vision-based systems for the tracking of
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marked and unmarked social insects.
The third chapter provides a detailed description of the system components, be-

ginning with the preliminaries such as the design of the individual binary tags and the
recording setup. Next, it describes all elements involved in the image acquisition pro-
cess. After that, it outlines the computer vision algorithms implemented to locate and
decode the binary tags followed by the post-processing stage to trace the bee trajecto-
ries. The last section covers the design and implementation of the automatic waggle
dance decoder sub-system.

Chapter four covers the experimental validation of the BeesBook system, providing
full details of the experimental protocols implemented during the three recording sea-
sons (2014, 2015,s and 2016), and presenting performance evaluation for the different
modules that comprise the system.

In chapter five, two cases of study are presented to exemplify the usability of the sys-
tem’s generated data. The first one is an analysis of the spatial distribution of foragers
on the honeycomb surface. The second case is a study of foraging ecology through the
automatic mapping of detected dances using the waggle dance decoder sub-system.

Finally, general conclusions and discussion of the obtained results are presented in
chapter six. Here are also described future experiments and tools for further investi-
gation on honeybee colonies.



Chapter 2

State of the Art of Animal Tracking
Systems

This chapter presents the state of the art of automated image-based tracking sys-
tems in the field of ethology, with emphasis on solutions applied to social insects. By
way of introduction, it provides a brief outlook of ethology, describing how the study
of animal behavior has changed through the years, moving from a purely qualitative
approach to a predominantly quantitative one. It also discusses the impact that this
change of approach had on the field, including the development of new methodolo-
gies for the quantitative description of animal activity. Then, it analyses the strengths
and limitations of some of the developments in automated image-based tracking that
have been applied to ethology. Finally, it analyses some of the methods proposed for
the automatic detection and decoding of honey bee waggle dances.

2.1 The Path to Computational Ethology

Ethology is a discipline devoted to the objective study of animal behavior, typically
of intact freely moving animals in their natural environment [3]. The origin of ethology
as a formal branch of biology traces back to the 1930s and the notable work of Kon-
rad Lorenz, Karl von Frisch and Niko Tinbergen, who in 1973 shared the Nobel Prize
in physiology for their discoveries on the individual and social behavior of animals.
During its early years, ethology was primarily a descriptive science and had as main
purpose the observation and description of large collections of animal behavior. Even-
tually, ethology turned into a more analytical science, and the search for causal expla-
nations to well-described behaviors rapidly became more and more important; con-
sequently, the ratio between experimental analysis and description increased rapidly
[111].

In ethology, the main purpose of experimental analyses is to provide a quantitative
description of the animal activity. These descriptions can be very simple, and be lim-

10
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ited to the account of incidences for specific behaviors, or they can be more complex
and include a collection of detailed metrics for each behavioral episode, for instance,
its duration, location or even the identity of the individuals taking part of the event.

Conducting experimental analyses and documenting their results have proven to
be challenging tasks. Originally, these tasks were performed exclusively in real-time by
trained biologists, usually with no more tools than paper and pencil [2]. This manual
approach to documenting experimental analyses has many downsides, but they can
be summarized in the following three: First, depth, and breadth of observation are
constrained by human perception. Second, scoring of behaviors by human observers
is subjective and difficult to standardize. Third, no raw record of events against which
to compare collected information is preserved.

Looking to overcome these drawbacks, biologists resorted to several technologies,
among which video recording became rapidly popular. Video recording was intro-
duced as an aid for experimental analyses in ethology with the aim to allow more ex-
tensive studies and provide a permanent register of experimental raw data. Although
the use of video recording represented an important improvement when compared
to direct observations, the scoring technique remained in principle a manual process.
Consequently, the overall process remained time-costly, and the extracted data had
still the drawback of being tied up to the personal perception of a human observer.

When digital video recording became the norm, computer-assisted video analy-
sis tools were developed, allowing observers to analyze the videos frame by frame,
and to score well-defined behaviors with a simple click of the mouse [77]. From these
measurements, it is now possible to obtain multiple metrics and statistics, extending
the observation’s dimensionality to scales beyond reach when the data was collected
exclusively through manual scoring techniques. By speeding up the scoring phase,
computer-assisted video analysis tools sped up the overall process. Nevertheless, since
these new techniques still rely on human observers, breadth of observation and sub-
jectivity of recorded values remain issues to address.

One common practice to speed up longitudinal studies is to divide the period to
be analyzed into multiple sub-periods, this way, several chunks of information can be
worked in parallel by more than one observer. Nevertheless, having many observers
poses the challenge of conciliating their naturally biased scores. It becomes clear then
that subjectivity is an issue in data obtained through manual techniques, whether one
or multiple observers participate in the scoring process, and that the only reliable way
to entirely avoid this problem is to remove the human factor from the scoring process.
In principle, automating the data extraction from digital video recordings (Fig. 2.1)
should allow broader and deeper observations with objective and unambiguous records.

The field of computational ethology [3] has taken significant steps towards the full
automation of measurement and analysis of animal behavior. To this end, advances in
technology, mathematics, and engineering have been brought together in this emerg-
ing field. If successfully automated both, measurement and analysis of behavior, solu-
tions developed under the approach of computational ethology should overcome the
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Figure 2.1: General steps involved in the automated image-based analysis of behavior. The first step
in the process is to detect the individuals in the sequence of images that comprise the video. These
detections are then linked to create individual trajectories for each animal in the video. The trajectories
are analyzed to detect individual behaviors and interactions with other animals in the field of view.

three main drawbacks of manually performed experimental analyses.
In recent years, multiple studies in the field of computational ethology have taken

advantage of new advances in machine learning and computer vision to develop video
tracking systems capable of simultaneously track many individuals, or to automat-
ically measure multiple elements of behavioral patterns. Some of these studies are
presented in the following sections; their strengths and limitations are discussed to
conclude to which extent a solution developed under the approach of computational
ethology could be used for the case of the honey bee colony that concerns this thesis.

2.2 Tracking Unmarked Animals

In [3], Anderson et al. describe ethology as a discipline devoted to the objective
study of behavior, typically of intact freely moving animals in their natural environ-
ment. Based on this description of ethology, it is possible to come with a characteriza-
tion for an ideal tracking solution in the frame of behavioral studies. An ideal solution
should be able to extract the detailed location and pose of multiple freely moving an-
imals in their natural environment; the solution should not require the animals to be
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handled in any way for a successful data acquisition.

In principle, although not a trivial task, it should be possible to develop a computer
vision-based solution that complies with the characteristics expected from an ideal
tracking solution. Nevertheless, not all tracking problems demand an ideal solution,
and for those cases, developing such a system would represent a misuse of resources.
According to Dell et al. [25], in automated image-based tracking, there is always a
trade-off between the complexity of the tracking problem and the quality of tracking
output. Hence, every tracking solution can be classified based on the complexity of the
problems that it can deal with, and the quality of the data that it collects. In Fig. 2.2,
this trade-off is represented over a plane. Following the analysis made in [25], the diffi-
culty of the tracking problem is represented on the horizontal axis, ranging from small
groups of individuals of the same species interacting in a simple habitat (left panel),
to many individuals of multiple species interacting in complex habitats (right panel).
The vertical axis classifies tracking systems according to the kind of output provided,
specifically if the identity of the individuals is maintained through the analysis, and
whether only the position or also the detailed pose are tracked.

Figure 2.2: Classification of automated image-based tracking solutions used for experimental analy-
sis in ethology. The horizontal axis separates the solutions based on the difficulty of the tracking prob-
lem (complexity of the habitat and number of individuals) and the vertical axis does it based on the
quality of output provided (tracking of individual identities and detailed detection). *Require markers.
+Tested for longitudinal studies.
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To the parameters used in [25] to determine the difficulty of the tracking problems,
two more parameters are here considered: The observation’s span and whether the
animals need to be marked to simplify their tracking and identification. Depending on
the nature of the study being conducted, observations can last from only a few minutes
to several days; long lasting observations represent a bigger challenge than short ones
since the number of crosses between animals is significantly bigger in the former, also
making more complicated to maintain identities through the whole observation. Since
the problem presented in this work does not comprise tracking animals in open spaces,
here are only discussed tracking systems that deal with animals kept in the laboratory.

Conducting observations in a laboratory offers the possibility to control many of
the variables that influence, either directly or indirectly, its output. When using auto-
mated image-based tracking techniques, reducing the complexity of the habitat facil-
itates the job of the tracker significantly. In the simplest scenario, animals are filmed
over homogenous surfaces that work as a high contrast background. This way, identi-
fying the individuals can be achieved through simple operations, like binarization or
background subtraction. This technique was used by Wolf et al. to develop a system
capable of tracking the locomotor activity of up to 20 fruit flies at a time [124]. This
system requires the flies to be placed into a translucent exposure chamber, they are
then recorded from above, and identified by the software as dark objects on a light
background; for each object, a path is traced between frames, as well as its speed and
position. The system does not maintain identity nor solves crosses, placing its quality
of output at a very basic level.

The information that can be obtained through segmentation based methods is not
limited to the position of the individuals. In [20], Dankert et al. describe a system that
monitors interacting pairs of flies, and at each frame computes a set of features de-
scribing body size, wing pose, and position and velocity of both flies. These features are
later used to detect behaviors linked to aggression and courtship. In this system, just as
in [124], the flies are placed inside a translucent exposure chamber and recorded from
above. Recorded images are segmented in three classes (background, other parts, and
body) using a thresholding method based on Gaussian mixture model (see Fig. 2.3).
Once the image has been segmented, the method proceeds to compute a simplified
model for each fly from where the set of features is computed.

A similar approach is used by de Chaumont et al. in [21], where geometrical prim-
itives are used to model and track multiple objects in video sequences. This method
requires defining a physics model by a set of primitives, and a set of joints linking the
bodies together (see Fig. 2.4 A, B), for each of the objects to be tracked. For each se-
quence frame, two attraction maps are computed to fit each model to its correspon-
dent object; a binary mask to attract the center of the model, and an edge map to adjust
the peripheral bodies towards the object boundary. The physics engine solver com-
bines these forces with the constraints of the physics model to adjust the model ac-
cordingly. Using this approach, de Chaumont et al. [22] developed a mouse-tracking
method that works with pairs of interacting mice, providing position, orientation, dis-
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Figure 2.3: Detection and modeling of fruit flies [20]. (A) The intensity map of the original image (B) is
segmented in three classes (background, other parts, and body) using a thresholding method based on
Gaussian mixture. (C) The pixels corresponding to the “body” class are fit with an ellipse. The position of
the ellipse along with the pixels of the “other parts” class are used to compute the angle of the wings and
orientation of the fly. (D) Touching flies can can be separated once the body ellipses have been defined.
(E) Extra parameters are used to detect the interactions between individuals. (Adapted by permission
from Macmillan Publishers Ltd: Nature Methods [20], c© 2009).

tance and speed of each of the animals (Fig. 2.4).
Also using videos of animals in a high contrast planar arena to ease their detec-

tion and tracking through computer vision techniques, Branson et al. developed the
software solution Ctrax. This software is capable of tracking many individuals without
swapping identities [11]. Besides background subtraction, the software relies on the
grouping of foreground pixels, if more than one group of pixels overlap, these are split
by the tracker (see Fig. 2.5 A, B). The software computes a trajectory for each subject to
maintain the identities throughout the video sequence. Trajectories are generated by
connecting successive detections, each subject detected in frame t is associated with
the trajectory from frame t-1 that best predicts its position and orientation, this as-
suming a constant-velocity model (see Fig. 2.5 C). The results obtained using Ctrax
are remarkable, in observations reported in [11], identity errors are estimated to occur
every 40 min when working with a population of 50 flies.

Motivated by Ctrax’s performance, multiple researchers found in it a reliable tool
for tracking multiple animals on planar arenas. The machine learning-based system
JAABA, developed by Kabra et al. [49] for the automatic annotation of animal behavior,
relies on Ctrax tracking capabilities for the analysis of flies’ behavioral patterns. Ctrax
has also been used as a generic tracker in studies with other animals besides flies. In
[88, 34], it was used to track the position of ants, while in [7] it was used to measure the
walking speeds of cockroaches.

Despite their popularity, trajectory-led solutions like Ctrax face some significant
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Figure 2.4: Analysis of social interactions in mice using models based in geometrical primitives [21,
22]. (A-B) Images of two different tracked mice and superposition of a physics model. (C) Image of two
mice interacting and superposition of the physics model, including force vectors (green and pink lines)
and boundaries of their attraction maps (green and pink circles). ( c© 2009 IEEE).

Figure 2.5: Detection and tracking of fruit flies using ctrax [11]. (A) Frame of the entire arena and
detail with binarization of the foreground/brackground pixels. (B) The large group of pixels is divided
into 1-4 subgroups and a penalty is computed for each option to find the optimal configuration. (C)
Individual tracking is conducted through the matching of predicted and detected positions. (Adapted
by permission from Macmillan Publishers Ltd: Nature Methods [11], c© 2009).

limitations. Their performance is highly dependent on the number of crosses, which
often result in the swapping of identities, an error that propagates through the rest of
the sequence unless corrected manually. Identities assigned by the system are valid
only within the same video sequence; plus, any animal that temporally disappears
from view loses its original identifier.

To overcome these limitations, Pérez Escudero et al. developed idTracker [84], a
tracking solution with an identity-led approach. idTracker extracts a characteristic fin-
gerprint from each animal in the video sequence. The fingerprints are used to identify
the individuals in each frame, regardless crossings, occlusions or temporary disappear-
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ance from view; and trajectories are traced by joining the centers of the labeled indi-
viduals. The identity-led approach of idTracker achieves higher levels of accuracy than
algorithms based on the tracing of trajectories, and it maintains identities even across
different videos.

On the downside, the performance of solutions like idTracker is highly dependent
on the resolution and quality of the input video, and its computational cost is consid-
erably higher than that of trajectory-led solutions. Its proved breadth of observation is
also significantly narrow, it has been tested for groups of up to 20 animals, and min-
imal deterioration of identification is expected for up to 35 animals [84]. Even more
important is that the method used to extract references can be compromised at high
densities where crossings are ubiquitous. All these limitations are a clear indicator that
idTracker is not a suitable solution to track animals in complex environments like a
beehive.

Reducing the complexity of the environment eases the tracking process, usually
at the cost of the output’s significance. For the behavioral analysis of many animals
this represents a fair trade-off, given that even observations in the most simple en-
vironments, provide reasonably significant data; but for the honey bee, this is hardly
the case. Honey bee colonies are numerous, usually with populations in the many
thousands [95], and their life in community is tightly linked to the structure of the
honeycomb. The honeycomb not only is the surface where the interactions between
colony members happen, but its cells are used to contain the larvae and store honey
and pollen. For this reason, ethologists working with honey bees use observation hives
for their studies. An observation hive essentially is a glass-walled cabinet inside which
one or more honeycombs are kept in a one layer array, the limited space between hon-
eycomb and glass panes forces the bees to move over the honeycomb surface without
overlapping one another providing the observer with full visual access to activity within
the hive. Due to its difficulty, few algorithms have addressed the task of automatically
tracking bees in observation hives. Solutions designed to track animals in high contrast
planar arenas [124, 20, 11, 84] perform poorly with large populations and nonuniform
backgrounds; therefore new approaches have to be explored.

One of the solutions proposed for the observation hive problem is the method de-
veloped by Kimura et al. based on vector quantization and temporal contextual infor-
mation [52]. In the proposed method, a code book is first generated by a 2× 2 quanti-
zation process, and one of the found code vectors is used to obtain a honey bee-code
image out of the original hive image (Fig. 2.6 A, B). From the honey bee-code image,
two different kinds of regions are identified, single honey bee regions (SHR) and plural
honey bee regions (PHR) (Fig. 2.6 C). Identification of successive SHRs is made by over-
lapping; it is assumed that consecutive SHRs with the largest overlapping correspond
to the same bee. PHRs are divided into SHRs using preceding and posterior frames, it
is always considered that a PHR is the result of the temporal merging of more than one
SHR (Fig. 2.6 D, E).

For the solution proposed by Kimura et al. to perform satisfactorily, it is required
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Figure 2.6: Detection of bees in observation hive using vector quantization [52]. (A) Observation hive
image and detail with the position of one of the bees highlighted. (B) The original frame is processed
using vector quantization to obtain a honey bee-code image. (C) The honey bee-code image is divided
in SHR (top) and PHR (bottom). To track individual identities (D), it is assumed that (E) overlapping of
consecutive SHR correspond to the same individual and (F) PHR are the result of the merging of more
than one SHR. ( c© INRA, DIB-AGIB and Springer Science+Business Media B.V., 2011. With permission of
Springer).

the frame rate of the input video to be high enough to allow overlapping of consecutive
detections of the same bee. In [52], the analyzed videos had a frame rate of 29.97 fps,
and the system reportedly was able to identify more than 72% of the 700 observable
bees in the movie and trace trajectories for more than 50% of them. In general, the
system allows locating the bees in the hive and compute their velocities, but it is not
as effective tracking their movements and maintaining their identities. It also faces se-
vere constraints regarding computing costs, in [52] the system was only able to process
movies of up to 3 minutes duration due to memory limitations.

A different approach suitable for tracking bees in observation hive videos has been
put forward by Poiesi and Cavallaro in [86]. They propose a composite solution in-
tegrated by a gradient-climbing technique, which works with a Markov chain Monte
Carlo to fit a shape model iteratively onto the target locations; and an isocontour slic-
ing approach for intensity maps to localize targets in videos with a high density of ho-
mogeneous targets (Fig. 2.7). The overall method profits from the strengths of both
approaches by fusing their results. The trajectories are generated by recursively asso-
ciating detections with a hierarchical graph-based tracker on temporal windows.

For experiments conducted with observation hive videos, the red channel (RGB
color space), equalized and with a Gaussian filter applied to it was used as target-
intensity map. As a shape model was used an ellipse with dimensions set to match



Chapter 2: State of the Art of Animal Tracking Systems 19

the size with which bees appear in the video. Analyzing short video sequences of 500
frames of size 640×350p x and recorded at 29.97 fps, the method performed with pre-
cision and recall values close to .90 for an average population of 30 bees per frame [86].
The tracking method also carried out with favorable values, switching IDs only an av-
erage of .22 per frame and 3.55 per track [86].

Figure 2.7: Detection of bees in observation hive using the gradient-climbing based detector and
hierarchical-isocontour based morphology [86]. (A) Original frame and (B) target-intensity map. (C)
Initialization of detections for the gradient-climbing technique and (D) resulting detections after the
adjustment with a Markov chain Monte Carlo. (E) Binary map obtained after morphological operations
for the isocontour slicing approach and (F) detected individuals. Regions 1 and 2 in (D,F) exemplify
challenging cases that benefit from this composite approach. ( c© 2015 IEEE).

The overall performance of both methods [52, 86] is acceptable, detecting and track-
ing a significant amount of the observable bees. Nevertheless, there is still plenty of
room for improvement, especially if these systems are intended to be used for behav-
ioral studies that extend over long periods of time. Long-term analyses can signifi-
cantly profit from methods that keep identities throughout the entire observation pe-
riod, even if the subjects disappear temporally from view. From the solutions discussed
in this section, only idTracker [84] is capable of keeping the identities of individuals
that go out of view, a solution that on the other hand, is aimed for videos with small
populations and high contrast background.

In general, conducting longitudinal studies of animal behavior, maintaining track
of the identities of the subjects, is a complex task that for the moment seems to be out
of reach if the animals are to be kept unmarked. It might be that marking the animals
is not only a way to ease their detection but in some cases also the only way to keep
track of their identities; e.g., honey bees in observation hives. Honey bees are not only
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hard to tell one from another, but many of them often get out of the supervised area to
forage nectar and pollen or scout for new nest locations. This behavior is fundamental
to the colony’s life, and repressing it would rest significance to data collected during its
study.

The following section discusses some of the proposed approaches for tracking marked
animals, and which extra considerations can be taken into account to achieve a fair
trade-off between their advantages and disadvantages.

2.3 Tracking Marked Animals

Most of existing methods for automatically track position and identity of animals
assume that these are visible at all time [11] or that they have individual features which
differentiate them from one another [84]. When these conditions are not met, biol-
ogists resort to different marking techniques to keep track of the animals identities.
Some approaches take advantage of multiple techniques, like Weissbrod et al. [121]
who combine video and radio frequency identified data to obtain detailed behavioral
profiles at the individual and group level. However, most of the approaches use visible
markers [17, 70, 77, 79], this way animal tracking can be reduced to a computer vision
problem.

Handling and tagging animals can affect their stress levels and behavior [26, 103].
Therefore, much effort is put into preserving the environment as close to nature as
possible. For instance, long-term observations are partly conducted under infrared
lighting to simulate dark cycles. Furthermore, in some cases like honey bees in obser-
vation hives, it is convenient to carry out the whole observation period under infrared
lighting to recreate the conditions in the natural environment. Infrared lighting ren-
ders colored markers useless, since they are not discriminable anymore, and narrows
the options to black and white markers [17, 70].

Automatic image-based recognition of binary markers is widely known for its com-
mercial applications like bar-codes and QR-codes. Nevertheless, binary markers have
a broad variety of applications. Their high contrast structures make them optimal for
use as fiducial markers; this along with their readability using computer-vision meth-
ods, have fostered their use in camera-calibration (CALTag, [4]) and augmented reality
applications (ARTag, [31]). The same properties that make binary markers convenient
for augmented reality make them a viable option to mark animals for automated high-
throughput behavioral studies.

Proof of the suitability of binary markers for behavioral studies is the automated
video tracking system used by Mersch et al. to track individuals in ant colonies [70].
The solution is based on the ARTag marker developed by Fiala [31], and it was used
to track all members from 6 colonies (122 to 192 ants per colony). The marker itself
consists of a 10× 10 binary matrix array. A black or white outline of 2 units thickness
encloses the 36 inner cells which encode the marker’s ID (Fig. 2.8). Only 10 of the 36 bits
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within the delimiting outline are used to encode the marker’s ID; the other 26 provide
redundancy and uniqueness over the four possible rotations [31].

Figure 2.8: Example of ARTag markers and detail of marked ants in the arena [70]. The black outline is
used by the decoder software to calculate a homography to define a grid over the inner elements. With
10 bits to encode the marker’s ID it is possible to generate up to 1024 unique codes. The orientation of
the tags is also used to obtain the orientation of the animal (equivalent to identify its head). (From [70].
Reprinted with permission from AAAS.).

For their behavioral experiments with ants, Mersch et al. [70] used a 260×160mm
planar arena, and a video camera with a resolution of 4560× 3048p x recording at a
frequency of 2 frames per second. Under this setup, markers with a 1.6mm side length
appear on recorded images with a resolution of 17− 18p x/mm . With this configura-
tion, Mersch et al. reported a tag detection probability of 88±17%, and a false positive
and very low inter-marker confusion probability of 0.8×10−7 (supplementary material
for [70]).

A similar solution to the one used in [70] is put forward by Crall et al. with a low-cost
alternative denominated BEEtag (BEhavioral Ecology tag) [17]. BEEtag is distributed
as a Matlab package, and the idea behind it is to provide all the benefits from other
image-based tracking systems, but with the advantages of an open-source solution.
The BEEtag markers are is similar to others used for visual tracking like ARTag [31] and
CALTag [4]. The 25-bit matrix is divided into 3 columns (15 bits) used for the identity
code, and 2 columns (10 bits) for error check. The valid 15-bit codes were limited to
those that ensure matching with their error check only in one of the four possible ori-
entations and at least a Hamming distance of 3, resulting in 7,515 valid tags (Fig. 2.9).

To test the system’s performance, Crall et al. conducted an experiment with a bum-
blebee colony comprised of 100 workers [17]. All colony members were marked with
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Figure 2.9: Example of BEEtag markers and detail of marked bumblebees in their nest [17]. The design
consists of a 25 bits code matrix (5× 5) of black and white cells surrounded by either a black or white
one cell thick outline. The first 3 columns are used for the identity code, and the 2 remaining columns
for error check. ( c© 2015 Crall et al.).

unique tags of 2.1×2.1mm size, and they could move freely on the nest. The nest was
illuminated with red light, and a camera with a resolution of 6016× 4000p x was used
to record the entire nest area of around 21.5× 15.0c m (a resolution of ∼ 16p x/mm).
The system detected an average of 90% of the recoverable tags in each frame. They
also reported that 99.97% of the detected tags were decoded into valid IDs [17]. It is
important to mention that this percentage does not necessarily account for accuracy
since they did not consider inter-marker confusion.

In the end, the number of advantages provided by automated tracking systems
based on marked individuals surpasses their limitations. While experiments with un-
marked animals are usually limited to small groups interacting in simple habitats, ex-
periments with marked animals can comprehend hundreds of individuals interact-
ing in naturalistic environments. The use of tags also provides more certainty to the
tracked identities regardless of the number of crossings and even allows individuals to
go out of view temporarily. Finally, even though the marking procedure represents a
potential factor of stress for the animals [26, 103], this can be significantly reduced if
careful protocols are observed [93].

2.4 Detecting and Decoding Communication Dances

The waggle dance gained interest among ethologists after its significance as an ab-
stract form of communication became clear thanks to the studies conducted by von
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Frisch in 1946 [115]. The most common way in which ethologists gain access to the ac-
tivity inside the beehive is by placing the colony to be studied in an observation hive.
Keeping bee colonies in observation hives for their study is straightforward, and be-
cause its design forces the bees to move over the honeycomb surface without overlap-
ping, it provides full access to the observable characteristics of the dance behavior.

Communication dances essentially encode in the orientation and duration of their
waggle runs an ordered pair of polar coordinates for a field location. Hence, waggle
dances can be mapped back to the field using the solar azimuth as a reference and a
factor that correlates waggle run duration and distance in the field. To find this factor,
first a calibration curve has to be built, usually by training bees to a feeding station at
a known distance from the hive and timing their dances in the observation hive [114].
This way, without tracking the foragers’ flight, one can deduce the distribution of for-
agers in the environment by establishing the distribution of dance-communicated lo-
cations. Couvillon et al. [16] used this method to investigate how the decline in flower-
rich areas affects honey bee foraging, while Balfour and Ratnieks [5] used it to find new
opportunities for maximizing pollination of managed honey bee colonies.

The information available through the waggle dance has not only been used to ob-
tain the distribution of foragers in the field. In [42], Haldane and Spurway analyzed
the spatial information contained in waggle runs following an information theory ap-
proach. Working with a data set produced by von Frisch [115] they concluded that the
dance conveys 2.0 bits of information regarding the direction component. Later in [94],
Schürch and Ratnieks reproduced this analysis, this time with a new and more com-
plete data set [16], and computing also the information for the distance component.
Their findings, 2.9 bits for direction and 4.5 bits for distance did not differ much from
those of Haldane and Spurway [42]. Other researchers have studied the accuracy and
precision with which bees represent spatial coordinates through waggle runs [23, 15]by
manually decoding and analyzing thousands of waggle runs from digital video record-
ings. Landgraf and co-workers tracked honey bee dances in video recordings to build
a motion model for a dancing honey bee robot [62, 60].

All the studies mentioned in the previous paragraph required the decoding of hun-
dred of waggle dances. Different techniques have been used over time to decode wag-
gle dances. During the first decades that followed von Frisch’s discovery, the dances
were analyzed in real time, directly from the observation hive with the help of protrac-
tors and stopwatches [116]. In subsequent years, when video recording was introduced
as an aid for experiments, the decoding of dances started to be performed during a
later process [95]. Nowadays, the use of digital video has become ubiquitous to ex-
tract the encoded information during a later process. Digital video allows researchers
to analyze dances frame by frame and extract their characteristics either manually us-
ing the screen as a virtual observation hive [15], or assisted by computer software [23].
Although digital video recordings allow measurements with higher accuracy and preci-
sion, decoding communication dances continues to be a manual and time-consuming
task.
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Multiple automatic and semi-automatic solutions have been proposed to simplify
and accelerate the dance decoding process. These solutions can be classified into
two complementary groups. The first group of solutions focuses on tracing the bees’
trajectories via a variety of tracking algorithms. For instance, in [52] vector quanti-
zation was used to track multiple individual bees behavioral patterns, including the
waggle dance. Landgraf and Rojas [61] proposed a method capable of tracking un-
marked dancing bees by clustering the motion of optical flow features using the Hough
transform (Fig. 2.10). In [51] a Rao-Blackwellized particle filter-based tracker was used
to track an unmarked bee. The second group of solutions analyzes the trajectories
mapped by the tracking algorithms and extracts specific features such as orientation
and duration of the waggle runs. The analysis is done using either a generic classifier
trained on bee dances (see [29, 49, 78]) or methods based on manually defined features
such as the specific spectral composition of the trajectory in a short window [62].

Figure 2.10: Automatic tracking of dancing bee. The method proposed by Landgraf and Rojas based on
optical flow [61] only computes flow vectors for (A) promising points detected using a pyramidal imple-
mentation of the Lucas-Kanade tracker. (B) Sparce flow field for a dancing bee. (C) Points that exhibit
the same direction are clustered together to obtain position and orientation of the bee. (D) Dancing bee
and traceed trajectory. (From [61]).

Although methods from the two groups have been combined in a solution with the
potential of an automatic detector and decoder of dances [30], its implementation has
been limited to the automatic labeling of behaviors. What is expected from an auto-
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matic detector and decoder of communication dances, is the capability to measure
the three basic properties of each dance, namely average waggle run duration, aver-
age orientation, and average return run duration. Once these measures are known, it
is possible to read the information encoded in the dance. None of the solutions avail-
able in the literature has these characteristics.

2.5 Chapter Overview

In the introductory chapter of this thesis, it is presented as the main motivation
for this work the lack of technologies that allow behavioral biologists to conduct lon-
gitudinal studies and obtain reliable data sets out of them. The work focuses on the
particular case of the honey bee and its life inside the hive; it is expected that the data
sets obtained from comprehensive studies would allow a better understanding of the
colony’s social structure and the mechanisms that shape its collective behavior.

The solution proposed to the lack of technologies for longitudinal studies is an
image-based system that keeps automatic track of position and identity of the colony
members and detects and decodes the communication dances. To maximize the rel-
evance of the data sets obtained by the system, this must be able to work with freely
moving individuals in naturalistic environments.

None of the technologies discussed in sections 2.2 - 2.4 can be used to fulfill the
stated goals. The methods to automatically track marked animals are conditioned to
the use of their designs, which does not adapt to the bee’s curved thorax or the ac-
tive environment within the hive. Regarding the technologies to detect and decode
communication dances, none of them can perform both tasks, and those undertak-
ing decoding do not compute the three fundamental properties of the dance: average
waggle run duration, average orientation, and average return run duration. Never-
theless, these technologies do embody the advantages of the computational ethology
approach, and work as inspiration for the development of a new solution capable of
meeting the goals. In the next chapter is described this solution which uses its own
binary markers design to keep track of the bees inside the observation hive and its ca-
pable of automatically detecting, decoding and mapping communication dances.



Chapter 3

Design and Implementation of the
BeesBook System

This chapter provides a thorough description of the components that conform the
BeesBook system. The overall system can be seen as integrated by two functionally
independent units that operate simultaneously to harvest data from the colony’s ac-
tivity. The first sub-system works with high-resolution images captured by a four cam-
eras array to extract position, orientation, and identity of each colony member. The
second sub-system, from here on referred as “waggle dance decoder”, detects and de-
codes communication dances via the analysis of video sequences generated by two
web-cams running at high-frequency. As shown in Fig. 3.1 each operational unit is di-
vided into three modules. At the end of the analysis phase, each unit writes its results
to formatted files, from where it can be taken for further analysis.

The first section of this chapter covers the preliminaries to the data analysis compo-
nents of BeesBook, these include the binary markers used to identify each colony mem-
ber and the recording setup. In sections two to four, are presented the elements that
process the high-resolution images to extract position and identity of marked colony
members. The last section of the chapter is devoted to the waggle dance decoder sub-
system.

The BeesBook system’s status at the moment of writing this dissertation is the result
of a continuous teamwork with members of the Biorobotics Lab of the Dahlem Center
of Machine Learning and Robotics at the Institute of Computer Science. Some of the
final system’s features here reported were implemented by members of the group as
part of their bachelor and master’s theses; proper acknowledgment has been given to
them throughout the text.

Some of the information provided in section 3.3.1 is also included in the research
article “Automatic methods for long-term tracking and the detection and decoding of
communication dances in honeybees” [118], published by Frontiers in Ecology and Evo-
lution. Information in section 3.4 has been partly used for the research article “Novel
technological and methodological tools for the understanding of collective behaviors”

26
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Figure 3.1: BeesBook comprises of two sub-systems working in parallel. The first sub-system works
with high-resolution images obtained from a four cameras array. Images obtained from the high-
resolution cameras are encoded and transferred for permanent storage to a remote server. These images
are later processed for detection and decoding of the binary markers attached to the bees. Finally, de-
tections are connected to build paths and correct misread IDs. The second sub-system works with two
web-cams running at high-frequency. Images read from the web-cams are processed in real time to de-
tect potential waggle dances. Sub-images of the region containing potential dances are stored locally
and false positives filtered out using DNN. Finally detected dances are decoded through a process based
on FFT.

[10], submitted to Frontiers in Robotics and AI. Some of the information in section 3.5
has been used in the preparation of the article “Automatic detection and decoding of
honey bee waggle dances” [119], accepted for publication in PLOS One.

3.1 Preliminary Work

For a computer vision-based system, the image to analyze constitutes its raw ma-
terial, and its quality has a substantial impact on the system’s overall performance. For
the specific goals pursued by this work, a number of challenges had to be addressed
to generate high-quality images that allow the image processing stage to extract the
targeted information with the highest accuracy possible. These problems and their
solutions are described next.

3.1.1 Individual Binary Tags

Tracking individuals for behavioral studies in highly populated environments is a
difficult task that can be significantly eased with the implementation of a reliable label-
ing method [41]. In the particular case of studies with honey bee colonies, the number
of individuals rounds the thousands, supervised spaces are usually crowded, and most
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of the colony members are virtually identical, to tackle these challenges biologists have
developed a series of inventive labeling methods to keep track of each individual bee.

Each of the labeling methods that biologists have at their disposal better serves a
particular porpoise. When the number of bees to track is fairly reduced, the most com-
mon labeling technique is to color each bee with enamel paint, using either a toothpick
or a fine-haired brush. Applying more than one color mark to each animal allows for
multiple unique combinations. In [116], von Frisch describes a marking system based
on five colors and four different body spots on the bee’s thorax and abdomen; the sys-
tem allowed von Frisch to mark up to 599 bees, each one with a unique colored code.
Another highly popular method to individually label bees is to affix small numbered
plastic disks to the animal’s thorax. Numbered bee tags and the tools to apply them to
the bees are commercially available. The tags are sequentially numbered from 00 to 99
and available in 5 different colors, making possible to mark up to 500 bees uniquely. In
[95], Seeley mixed both methods to tag a whole colony with a total population of 4000
bees; each bee was marked using one of the 500 numbered tag plus a paint dot on the
abdomen in one of eight different colors (Fig. 3.2).

Figure 3.2: Numbered bee markers. (A) Tools to mark queen bees, including marking cage and num-
bered tags in five different colors are commercially available. (B) Using all 500 different numbered tags
and adding a paint mark in one of eight different colors to the bees’ abdomen, Seeley [95] has success-
fully labeled up to 4000 bees (Image source: Seeley, 1995).

The methods described have been for a long time the standard in the field and have
repeatedly proved their suitability for studies with a scope on reduced groups of bees
during short periods of time; unfortunately, they result inadequate for the set goal of
automatically tracking all colony members, over uninterrupted extended periods of
time. Leaving aside the problem of automatically reading the tags’ numbers, since
similar tasks have already been successfully addressed [40, 74], the main constraint
of numbered tags resides in their color-dependency. To unequivocally mark over 100
bees using numbered tags, it is necessary to count with a source of light that allows for
the distinction of different colors. That is, the supervised scene has to be illuminated
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using white light. In nature, bees tend to build their hives in places like tree cavities
where they are protected from predators and weather conditions; as a result, hives are
rarely exposed to natural light and introducing a source of white light, especially during
night hours would certainly disturb the colony’s environment.

A viable solution to the scene illumination problem is to use sources that only emit
in wavelengths outside of the bees’ visual range. The portion of the electromagnetic
field visible to honey bees is slightly shifted towards the short wavelength end, regard-
ing the human visual range; it spans from 300 to 650 nm [37]. Hence, using red or
IR light is an acceptable option to white light. Regardless which of these options is
implemented, the use of monochromatic sources demands an alternative, not color-
dependent labeling method to uniquely mark each colony member.

For the labeling method, it is also necessary to take into consideration the number
of individuals to be labeled. A fully functioning queen-right hive can be populated by
as few as 1000 worker bees [45]. A solution to the problem is then the implementation
of a binary design. For this sort of designs the marker is divided into a number of fields,
and each field can adopt one of two different colors; this way each field can be inter-
preted as a bit in a visual representation of a binary code. A scheme containing 10 bits
can produce up to 1024 different markers, in principle enough to tag a whole colony.

Binary markers have already been used in ethology, in [70] all members of six dif-
ferent ant colonies (between 122 and 192 per colony) were marked using barcode-like
matrix generated using the ARTag system [31]. The ARTag markers are planar patterns
that consist of a square layout with a 36-bit word encoded in it, the system allows for
up to 2002 unique designs with small inter-marker confusion rates. Another example
of binary markers in ethology is the BEEtag, developed by Crall et al. [17]. Similar to
the ARTag design, the BEEtag markers’ design is a square matrix divided into 25 cells,
the design allows the codification of up to 7,515 different identifiers.

Although the experimental results reported in [70, 17] are encouraging for the use
of ARTag and BEEtag markers in experiments with social insect colonies, this kind of
design has some limitations that make it unsuitable for its application on bee colonies
studies. The markers are planar an printed on paper [70, 17]. In the particular case of
bees, a marker must fit the animal’s curved thorax so that it doesn’t interfere with the
wings’ movement; it also must be firmly attached to avoid it being removed by other
colony members or the marked animal itself; finally they must be moist resistant since
bees are frequently exposed to humid conditions, both in and outside of the hive.

Lacking an adequate solution to the labeling problem, I decided to devise my own
marker. The resulting circular, curved tag (Fig. 3.3) was designed to create a marker that
bears the heavy duty activity carried by worker bees during their full life-span while
making the most of the available space on the bees’ thorax. The tag adapts firmly to
the thorax and displays two concentric circles. The smaller circle is divided into two
semicircular segments, which are used to determine the tags orientation and to align
the decoder properly. The ring formed by the overlapping of both circles is divided
into 12 segments, each of which holds one bit of information. This design has multiple
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advantages; it adapts naturally to the circular form of the marker and the bee’s thorax.
Twelve bits of information allows the codification of up to 4096 different identifiers.
In case more animals are to be marked, the ring can be divided into more cells. If the
experiment comprises fewer animals, a coding scheme that allows for error detection
or correction can be employed. If for instance, a single bit is spare, it could be used as a
parity bit; if three or more bits are unused, Hamming coding [43] can be implemented.

Figure 3.3: The BeesBook tag design. The circular matrix design is comprised of 14 regions. The two
semicircular regions in the middle are used to encode the tag’s orientation. The other 12 regions are used
to represent a unique binary code. The design is printed on white material that offers a high contrast
with the bee thorax.

Different materials were tested for resistance to humidity, extended durability and
long lasting attachment to the bee’s thorax. Finally, the design was printed on backlit
polyester film by a commercial print shop. Each set of tags is generated using a python
script and printed in a 210mm × 405mm piece. The tags are later manually punched
out from the polyester sheets with the help of two customized elements attached to the
end and table of a stand-up drill (Fig. 3.4). The drill is switched off at all time, and it is
only used for stability purposes, to assure that both elements remain in line during the
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process and the tag can be cut with maximum precision. The cutting procedure also
bends the tags for optimal fit to the bees thorax.

Figure 3.4: Tags’ punching out procedure. (A) The markers are manually punched out from the
polyester sheets using a stand up drill. (B) The hollow tip attached to the drill’s end and the convex
base provide the tag with the needed curved profile for an optimal fit to the bee’s thorax.

3.1.2 Cameras and Camera Modification

Cameras are one of the neuralgic components of a vision-based tracking system.
Their quality of image and transfer rates determine to a great extent the system’s reach.
For the BeesBook system, with the double goal of keeping track of the markers and de-
tecting and decoding waggle dances, the requirements of image resolution and frame
and transfer rates are by no means met by a single camera model, especially when try-
ing to keep a low budget.

Detecting and decoding the markers is a task that relies heavily on the image qual-
ity, including image resolution, contrast, and sharpness; whereas the speed of the cam-
era plays a secondary role, and any frame rate that allows keeping track of the bee in-
side the hive suffices. By contrast, detecting and decoding communication dances re-
quires primarily of a camera with high frame rate capabilities, relegating image quality
to a secondary role.

The system’s setup comprises of a total of 6 cameras. Four PointGrey Flea3 (FL3-
U3-88S2C-C) high-resolution cameras (Fig. 3.5), two per side, are employed to ob-
serve the surface of the comb. They feature a Sony IMX121 CMOS, 1/2.5”, 1.55 µm
color sensor with a resolution of 12 megapixels (4000× 3000 pixels). Each camera is
equipped with 12mm lenses (RICOH FL-CC1214A-2M) to capture half of the comb’s
surface. These cameras are connected to the central recording computer via USB3 and
record 3 images per second. Two additional cameras (PS3Eye webcams) are connected
to a second personal computer. Each of these cameras observes the full comb side at
320×240 pixels resolution. The PS3Eye cameras are low cost and deliver uncompressed
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images at 120 fps using a modified third party driver (“CL Eye”).

Figure 3.5: The two model of cameras used in the BeesBok system. (A) The Point Grey Flea3 (FL3-
U3-88S2C-C) is used to record high-resolution images for the sub-system in charge of tracking position
and identity of the colony members. (B) The PSEye capable of capturing video with frame rates of 120
hertz at a 320×240 pixel resolution is used to feed video to the waggle dance detector sub-system.

As mentioned before, the bees’ visual range spans from 300 to 650 nm [37], what
makes of red light (620-700 nm) a viable option to illuminate the recording setup with-
out disturbing the colony. Nevertheless, lighting an scene exclusively with red light
when working with color cameras has an important drawback. To create color images,
digital cameras have a 2×2 mosaic array of color filters placed over the sensor; this way
each photoreceptor is exclusively sensitive to one color (red, green or blue). The most
popular pattern, known as Bayer filter, is 50% green, 25% blue and 25% red (Fig. 3.6).
Consequently, images captured under red lighting only register real red values in 25%
of the pixels, the other 75% corresponding to blue and green photoreceptors are inter-
polated from adjacent red photoreceptors (see Fig. 3.6B). Under these circumstances,
the resulting images are in general of poor quality, and far from optimal for their use in
computer vision tasks.

Figure 3.6: Bayer filter. (A) The Bayer filter mosaic array has twice as many green components as red
or blue to mimic the physiology of the human eye. (B, C, D) To obtain a complete set of RGB values for
each pixel, the two missing values are interpolated from neighboring pixels. It is worth to mention that
while this means a total of 8 values for red and blue pixels, these are only 4 in the case of green pixels.

To avoid blurry images resulting from the demosaicing process and an scene ex-
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clusively illuminated with red light, the BeesBook setup uses infrared (IR) light sources
(840 nm). The photoreceptors of digital cameras are sensitive to IR radiation, and color
cameras are equipped with an IR block filter to minimize noise introduced by this por-
tion of the electromagnetic spectrum. The IR block filter of the Flea3 was replaced with
a cold light mirror with the same refraction index (bk Interferenzoptik bk-HT-45-B).
This modification renders the Flea3 an inexpensive alternative to similar IR-sensitive
cameras, that can go for as much as five times its price. To optimize the performance
of the PS3Eye, not only the IR block filter was removed, but also the original lens was
replaced with an 8mm IR corrected Megapixel lens (Lensagon BM8018), in order to fit
the new lens to the camera a customized 3D printed lens mount was produced.

3.1.3 Observation Hive, Scaffold and Illumination Setup

Observation hive
A customized one frame observation hive was designed to be used during the ex-

perimental seasons (Fig. 3.7). Bees frequently smear small portions of honey, wax, and
propolis on the observation hive glass, which impairs the image quality. Hence the
glass panes have to be periodically replaced. Replacing the glass of a standard obser-
vation hive would require removing the cabinet from the recording setup, then the old
glass has to be pulled off before the new one can be put in place, letting the honey-
comb exposed. The customized design allows replacing the glass of the observation
hive without need to remove it from the recording setup. It incorporates a set of guides
that allows sliding the new glass in front of the old one before this is removed, keeping
the cabinet closed at all time.

Figure 3.7: Design of the customized observation hive. (A) The customized design allows replacing the
glass panes without having to open the cabinet. (B) Frontal and (C) Lateral detail of the design.
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Scaffold and illumination setup
The observation hive stands in a scaffold that holds the IR lamps and the cameras

(Fig. 3.8). The scaffold is built of a total of 26 aluminium profiles of the brand item. The
scaffold comprises of two frame structures for the IR lamps, two for the Flea3 cameras
and two arms for the PS3Eye cameras. The elements connecting the profiles enables
the free movement of the components in three perpendicular axes to adjust the posi-
tion of the lamps and cameras at convenience. The Flea3 cameras are mounted to the
structure with a ball head (CULLMANN CB2.7), what effectively grants them a total of
six degrees of freedom (three for position and three for orientation); the same is true
for the PS3Eye cameras which are already shipped with a case that allows free rotation
in three axes.

Figure 3.8: Recording setup with IR LED clusters (840 nm wavelength), 4 high-resolution cameras
(Flea3) and 2 webcams (PS3Eye). The design of the scaffold allows multiple configurations for the lamps
and grants the cameras 6 degrees of freedom to adopt practically any position and orientation.

The lighting setup comprises of 22 IR LED clusters (Abus TV6700) per side arranged
in an adjustable frame. The entire skeleton is enveloped with IR reflector foil that has
small embossments for light dispersion. The foil reflects 80% of infrared light and helps
creating a homogeneous ambient lighting which reduces reflections on the glass pane
or the tags. The IR LED clusters point towards the foil to create a homogeneous ambi-
ent lighting and at the same time reduce reflections on the glass panes. The observa-
tion hive is connected to one of the walls through a tunnel to allow colony members to
leave and enter the hive.

Improvements to illumination setup for recording season 2016 1

Since the honeycomb is translucent to IR light, continuous lighting from both sides
of the observation hive casts shadows from bees on one side of the comb to the op-

1The improvements here described were carried out by Hauke Mönck, member of the Biorobotics
Lab. Further details can be found in his master’s thesis [71].
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posite side, plus it reduces the contrast in the images. To solve these problems and
improve the image quality, the IR LED clusters used during the first two seasons were
replaced for the season 2016 with asynchronous flashing IR LED boards (Fig. 3.9).

Figure 3.9: The IR LED board design. (A) Schematic diagram for the custom designed IR LED boards.
(B) The design was implemented on 230×510mm PCB.

The new illumination setup consists of 5 custom designed IR LED boards at each
side of the observation hive. Each board drives two high power IR emitters with a 150◦

beam angle (OSRAM SFH-4716S). Individuals sides of the setup flash asynchronously
to avoid shadows and improve image contrast. Each set of LED boards flashes at a
frequency of∼ 3 Hz, and are synchronized to the Flea3 cameras on their setup side. An
Arduino Duemilanove was used to trigger the asynchronous flashing of the LED boards
and the synchronization with the corresponding cameras. The period of the flashing
for the LED boards is defined according to the time of exposure of the Flea3 cameras,
with an inherent limit of 1/6 of a second to fit the asynchronous flashing from both
sides of the setup.

3.2 Image Acquisition Software

Each recording season produces about 65 M images (4 cam ·3/s ·60 s/min ·60 min/h
·24 h/d ·63 d= 65,318,400 images), depending on the compression ratio used to encode
the images, this might represent ∼ 150 TB per season. Storing locally this amount of
data is out of the scope of the BeesBook system, conceived as a budget-priced solution.
From the early planning stage of the BeesBook system a solution to this problem was
procured, enough computing and storage resources were granted to the project by the
North German Supercomputing Alliance (HLRN). One of the HLRN’s Cray XC30 super-
computer is housed in the Zuse Institute Berlin (ZIB), which is located just a few meters
from the site of the recordings and offers gigabit ethernet connectivity. The Cray XC30
features 1872 compute nodes with 24 CPU cores each. The system has 117 TiB of RAM
and 4.2 Petabyte of hard disk space, organized as RAID 6.

This section covers the details of the software module in charge of image acquisi-
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tion. The module deals with a number of tasks, including retrieving of images from
the Flea3 cameras, encoding them in JPEG format, and transferring them to the HLRN
facilities for permanent storage.

Two applications were developed for the implementation of this module: bb _im-
ageAcquisition and bb _imageStorage. Both applications were written in C++and com-
piled in mingw64 gcc for portability. The applications also use the Qt framework to take
advantage of the signals and slots mechanism for communication between objects.
This section only covers the functionality of the applications, code and documenta-
tion of both applications is publicly available 2 3.

During recording seasons bot applications run on the same computer. The com-
puter was specially configured to administer the image acquisition module, an entry
level workstation with an Intel R© Xeon R© processor E3-1280 (4 Cores), 32 GB of RAM,
and two network cards with gigabit capabilities. One of the network cards is used to
connect to the Cray. The second network card is connected to a NAS of 4 HDD of 3
TB each, organized as RAID 5. The RAID 5 configuration allows the recovering of any
lost information upon the failure of a single drive. The NAS works as a cache if the
Cray is not reachable and as permanent storage for stripes recorded over the day. The
computer also runs a RAMDisk to enable part of the RAM as a virtual SSD. This allows
buffering the images in RAM, instead of the HDD, before they are transferred to the
HLRN. Using a regular HDD could delay the storing process and make it unstable.

From camera to computer - (bb_imageAcquisition)
In addition to the Qt framework, the bb_imageAcquisition application also uses

the FlyCapture SDK to communicate with the Flea3 cameras. The application runs four
threads in parallel, one for each of the Flea3 cameras. The software first initializes the
cameras’ parameters, including frequency. Each thread retrieves the images from the
camera and saves them temporarily in the RAMdisk. The RAMdisk has a simple direc-
tory structure with one directory per camera. The bb_imageAcquisition thread saves
the images in the corresponding directory and names the files following the schema:

Cam_ID_YYYYMMDDhhmmss_iii,

where YYYY= year, MM=month, DD= day, hh= hour, mm=minute, ss= second,
and iii = fraction of second. For instance Cam_1_20150812165048_333 corresponds
to an image from camera 1 captured on August 12, 2015 at 16:50:48.333.

For season 2016 the original lighting setup was replaced with asynchronous flash-
ing IR LED boards (see section 3.1.3). A program running on an Arduino Duemilanove
synchronizes lights and cameras. A first pulse switches on the IR LED boards and it is

2bb_imageAcquisition: https://git.imp.fu-berlin.de/bioroboticslab/bb_imgacquisition

3bb_imageStorage: https://git.imp.fu-berlin.de/bioroboticslab/bb_imgstorage

https://git.imp.fu-berlin.de/bioroboticslab/bb_imgacquisition
https://git.imp.fu-berlin.de/bioroboticslab/bb_imgstorage
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Figure 3.10: Image acquisition module. The module consists of two elements applications, namely
bb_imageAcquisition and bb_imageStorage. bb_imageAcquisition configures the cameras
parameters via software, initializes the recording process and encodes the images to jpeg format.
bb_imageStorage accumulates the images in TAR files and transfers them to the Cray supercomputer
(HLRN). The NAS is used as temporary storage if the connection with HLRN is broken.

hold up, a second pulse triggers the cameras’ shutter, once the cameras’ exposition has
concluded the IR LED boards are turned off 4.

From computer to ZIB - (bb_imageStorage)
Thebb_imageStorageapplication, originally developed by Christian Tietz 5, trans-

fers the images from the local computer to the Cray supercomputer of the HLRN. It also
saves a subset of the data, 6 stripes of 10min duration (distributed over the day), in the
NAS. In addition to the Qt framework, this application also requires the libcurl li-
brary to connect with the Cray using SCP-protocol and keyfile authentification.

The application initializes four threads, one for each directory in the RAMDisk.
Each thread manages one of the directories; when its directory reaches 256 files, the
thread packs the images in a TAR file and transfers it to the Cray. If necessary, accord-

4Further details can be found in Hauke Mönck master’s thesis [71].

5Further details on this application can be found in Christian Tietz master’s thesis [110].



38 Chapter 3: Design and Implementation of the BeesBook System

ing to the striping schedule, it also saves a local copy in the NAS. If the connection to
Cray fails, a new child thread is initialized to temporarily copy the TAR file to the NAS
and subsequently move it to the Cray, once the connection has been reestablished. All
the manipulation of the TAR file is done in the RAMDisk, and the original data is only
deleted after the transfer has been verified.

3.3 Image Analysis

The second software module also referred to as “pipeline”, processes the high res-
olution images to detect and decode the binary markers (see Fig. 3.12). For each de-
tected marker, the module obtains the following information:

• A sequential index of the detection, counted from 0 for every frame,

• x- and y- coordinates of the detection,

• a scale factor for the tag,

• rotation of the tag on all three axes (see Fig. 3.11), and

• the decoded marker ID.

Figure 3.11: The three rotation axes of a bee. The position and orientation of the marker also tells the
position of the bee. The x-rotation, or roll appears when the bee leans on her right or left side. The
y-rotation, or pitch, appears when a bee leans into a comb cell. The z-rotation, or yaw indicates the
direction in which the bee looks.

Two different approaches were implemented to solve this task. The first solution,
based on a series of computer vision algorithms was first tested with images from sea-
son 2014. Although this approach is reliable for reading the position and orientation
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of the markers, it struggles with the id decoding phase. The second proposed solu-
tion is based on Deep Convolutional Neural Networks (DCNNs). DCNNs have shown
remarkable results on many computer vision tasks. Unfortunately, their performance
depends to a great extent on the amount of training data at hand. Generating labeled
data for BeesBook is a time-consuming activity, which is why the implementation of
this task was delayed till an alternative to annotating data manually became available.

Figure 3.12: Computer vision pipeline. Schematic overview of the image analysis module.

3.3.1 CV-Pipeline

The computer vision pipeline (CV-Pipeline) used to analyze the data from season
2014 is organized in five layers. Each one of the listed layers processes the results of the
previous one to extract more information from an initial detection (see Fig. 3.13). The
software is written in C++ using the OpenCV framework and compiled in mingw64 gcc
for portability. A description of the layers follows.

Image preprocessing. The first layer preprocesses the original images. To nor-
malize brightness and contrast across different regions of the images, different cam-
eras, and recording seasons, the images were preprocessed using the Contrast Limited
Adaptive Histogram Equalization (CLAHE) [127].

Tag localizer. The second layer detects image regions containing strong edges in
closed proximity and therefore more likely to display binary tags. First, the derivative
of the image is computed using the Sobel operator. This image is then binarized using
a threshold to create an edge map. The edge map is then eroded to remove noise, and
dilated to join adjacent clusters of pixels and create bigger patches [99]. Large binary
patches are reported as regions of interest (ROI) to the next layer.

Ellipse fitter. This layer detects elliptic contours in the ROI. The layer’s input is
a 50 × 50 px sub-image of the edge map centered at one of the ROI. A probabilistic
Hough transform [125] is a used to find likely ellipse configurations defined by a high
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amount of edge pixels agreeing with an ellipse equation for a range of plausible pa-
rameter values (heavily rotated tags were excluded since those are likely to be decoded
incorrectly).

Grid fitter. For each ellipse that has been detected, this layer fits a three-dimensional
model (“Grid”) of the binary tag to the underlying image. When rotated in space, the
contour of the circular tag becomes an ellipse in the camera image. There are two
possible 3D rotations of a circular contour that project to a given ellipse in the image.
The two rotation sets are computed from the ellipse parameters and used as starting
points for the search of the best grid fit using gradient descent. The quality of the fit
is expressed by a scoring function (Eq. 3.1) that evaluates the homogeneity of the pixel
brightness in each cell and the match of the outer grid contour to the edge pixels:

SG (G ) =α · sh +β · se , (3.1)

where α and β are coefficients to adjust the weight of the scoring function parts.
The latter part of the scoring function is easily computed as the number of pixel in

the grid contour matching edge pixels in the image:

Se (G ) =

∑Ns

i=1 El (xi , yi )
|Ns |

, (3.2)

where El is a binary function that returns the value of (xi , yi ) in the edge map, and
Ns the contour pixels for the grid.

Respectively, the first part is computed using Fischer scoring [33]:

Se (G ) =
|µw −µb |2

σ2
w +σ2

w

, (3.3)

where µi are the centroids for black and white classes and σ2
i their variance. The

three best grid configurations are reported to the decoder layer.

Tag decoder. Each ring segment of the grid represents one bit of the marker ID and
it can be either a “0” (black) or a “1” (white). Local contrast enhancement is applied to
account for light intensity gradients on the binary tag. The decoder layer computes a
statistic of the brightness of all underlying pixels for each ring segment to classify the
cells to either of the two classes and reports the number as the marker ID.

Pipeline parameters optimization.
The pipeline has various parameters such as thresholds for the edge detection or

the number of iterations of the morphological operations, a total of 48 parameters 6.

6For a full list of the parameters: https://github.com/BioroboticsLab/deeplocalizer_data

https://github.com/BioroboticsLab/deeplocalizer_data
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Figure 3.13: The five layers of the computer vision approach to the pipeline. (A) Histogram equal-
ization and Sobel edge detection. (B) Edge binarization and morphological operations in the localizer
layer. Only regions of interest (marked with a blue rectangle) are processed in the next layer. (C) Ellipse
fit using probabilistic Hough transform. (D) 3D Grid model and fit to underlying image. (E) Result: The
sequence of 0s and 1s is determined in the Decoder layer, based on the fit of the tag model.

Manually determining the optimal combination of parameters can be very time con-
suming and might result in a suboptimal performance. A global optimization library
is used [66] to automatically select the best set of parameters.

Stitching and coordinates transformation7.
The coordinates of the tag reported by the grid fitter layer are given with respect to

the image. Since each camera only records one fourth of the total observation hive sur-
face, the detection coordinates have to be translated to a global reference that indicates
the position of the bees on the hive surface. The field of view of two cameras record-
ing at the same side of the hive share a small overlapping area. Prominent features are
found in this area and matched on images from both cameras to obtain a homography.
This way, images from both cameras can be stitched, duplicated detections filtered and
the detection coordinates translated to a hive reference.

The bb-binary format.
The final output of the module is saved in a BeesBook specific data format (bb-

binary) whose specification is publicly available 8. The data format relies on a Cap’n
Proto schema, a fast data interchange format and capability-based RPC system, it gen-
erates classes with accessors methods from the fields specified in the schema. Each tag
detected by the pipeline is represented in the bb-binary format as a data point called
Detection which contains the following information:

• A sequential index of the detection, counted from 0 for every frame,

• sequential index of the candidate per tag,

7This functionality was implemented by Peter Strümpel. Further details can be found in his master’s
thesis [107].

8Binary format for the BeesBook detections: https://github.com/BioroboticsLab/bb_binary

https://github.com/BioroboticsLab/bb_binary


42 Chapter 3: Design and Implementation of the BeesBook System

• sequential index of the grid/decoding per tag,

• x- and y- coordinates of the grid center wrt. the image,

• x- and y- coordinates of the grid center wrt. the hive,

• rotation of the tag on all three axes (see Fig. 3.11),

• scores for the localizer (ROI), ellipse fitter, and grid fitter, and

• the decoded id.

3.3.2 DCNN-Pipeline

The image analysis module based on DCNN operates in a similar way to its coun-
terpart based on computer vision algorithms, with the difference that detecting and
decoding stages (see Fig. 3.14) are replaced with two DCNNs. The first DCNN, named
localizer network, processes the input image to generate a saliency map with the prob-
ability for each pixel to be located at the center of a marker. Morphological operations
combined with a minimum threshold value are used to extract the local maxima. Re-
gions of interest (ROI) centered at the local maxima are forwarded to the second DCNN,
reducing this way the overall computational cost of the image analysis module. The de-
coder network finds the most likely configuration for the marker contained in the ROI.
The output of the network includes the rotation of the marker, its radius, and a proba-
bility for each ID bit. The DCNN approach here described was developed by Leon Sixt
and Benjamin Wild who compiled some of the following information in their theses
[101, 123].

Localizer network.
Although DCNNs have shown remarkable performance on many computer vision

tasks [57, 44], its performance is highly tied to the quantity and quality of labeled data
available for their training. Hence, defining a quality data set whose production cost is
not too high is the first step to designing a successful DCNN.

For the localizer network, whose task is finding ROIs with a high probility of con-
taining a marker the data set was prepared as follows: Using a custom user interface,
All position of markers were manually labeled in a small subset of the raw BeesBook
image data. Small (100×100 px) subimages were randomly sampled from the labeled
images. A measure for the probability that a marker is in the center of the subimage is
defined as the probability density of the center point under a bivariate normal distri-
bution centered at the next marker center with a fixed variance (Eq. 3.4).
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Figure 3.14: Visualization of the DCNN-Pipeline stages. The DCNN-Pipeline comprises of two DCNNs:
Localizer network and decoder network. The localizer network generates a saliency map from where
ROI with high probability to have a marker at the center are defined. The decoder network analyzes
these ROIs and finds the most likely configuration for the marker in the image. In the visualization of
the decoder’s output, the color of the cells is a representation of the probability for each ID-bit to be set,
fading from solid blue to solid green (0 to 1). The red semi-arc indicates the decoded orientation of the
marker.
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x and y are the center coordinates of the subimage, µX and µY are the center co-
ordinates of the next marker in the image and
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is a constant covariance matrix.
The localizer is a fully convolutional neural network with three convolutional layers

with a kernel size of 5 px and strideof 2 px followed by a ReLU activation. No padding is
applied before the convolutional layers so that the model can be easily applied to full
images during inference and not only to the small regions of interest in the training
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Figure 3.15: A region of interest an its corresponding label. The center of the marker in the original
image (A) corresponds with the highest probability in the label (B).

data set. Dropout is applied following each convolutional layer to reduce overfitting.
A final convolution layer with a kernel size of 1 px and a stride of 1 px followed by a
sigmoid activation computes the probability of each pixel being in the center of a tag.

Because the described model is fully convolutional, it can be applied to images of
various sizes; which is why the network is applied to the whole input image during in-
ference (after preprocessing and downsampling). Processing the images in this man-
ner is much faster than extracting subimages and applying the network individually to
each subimage. The network generates a saliency map for the whole image, to which
morphological operations and a maximum filter are applied to extract the pixels with
the highest probability to be located at the center of a marker. From here the DCNN-
Pipeline follows the process outlined in Fig. 3.14.

Decoder network.

The decoder network’s goal is to find the most likely configuration for the marker
contained in each ROI. The output of the network should include the rotation of the
marker, its radius and the probability that each bit of the tag is set to one. The first
attempt to decode BeesBook markers using a DCNN did not deliver significantly bet-
ter results than those of the computer vision decoder. Being the main constraint the
amount of labeled data available at that point in time. Furthermore, labeling the bi-
nary markers manually, even with the help of a custom user interface, proved to be
a time consuming and tiresome activity, and the costs of generating a sufficiently ex-
tensive data set rendered the DCNN approach temporarily impractical. By the end of
2016, an extension to the Generative Adversarial Network (GAN) framework proposed
by Sixt et al. [102] allowed generating realistic synthesized labeled images to train the
DCNN (see Fig. 3.19) and significantly improve its performance.

The decoder network is a large CNN based on the ResNet architecture proposed by
He et al. [44].
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Figure 3.16: Sample of synthesized labeled images generated with the RenderGAN framework. The
process begins with the automatic generation of an image of the marker’s 3D model. This image is then
modified by multiple stages that add realistic details without affecting the original label (rotation, radius
and ID).

Layer name Output size Layer
input 64×64 -
conv1 32×32 3×3, 16, stride 2

conv2-x 32×32

�

3×3, 16
3×3, 16

�

×3

conv3-x 16×16

�

3×3, 32
3×3, 32

�

×4

conv4-x 8×8

�

3×3, 64
3×3, 64

�

×6

conv5-x 4×4

�

3×3, 128
3×3, 128

�

×3

id 12 fc 256, fc 12
params 6 fc 256, fc 6

Table 3.1: Architecture of decoder network. The brackets denote ResNet building blocks. The id and
params layer receive both the output from layer conv5_3 as input. The output of the params layer rep-
resents the orientation, position, and radius. As in the original ResNet architecture, downsampling is
performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.

As with the computer vision pipeline, the final output of the module is saved in a
bb-binary data format containing the following information:

• A sequential index of the detection, counted from 0 for every frame,

• x- and y- coordinates of the grid center wrt. the image,

• x- and y- coordinates of the grid center wrt. the hive,

• rotation of the tag on all three axes (see Fig. 3.11),
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• radius of the tag,

• saliency of the localizer network, and

• the decoded ID, the bit probabilitties are discretized to 0-255.

3.4 Tracking and ID Filter

Keeping track of the bees through time allows creating motion paths that can be
later used for behavior analyses. Under optimal circumstances, tracking an individual
and generating its path is as simple as connecting consecutive detections of the same
ID. However, since BeesBook’s pipeline does not have a 100% decoding accuracy, and
the bees are not always visible, merely connecting successive appearances of the same
ID would yield erroneous tracks (see Fig. 3.17). Therefore, the real problem to solve is
finding correct correspondences between detections that might not exist in consecu-
tive frames, and that might not exhibit matching IDs.

Figure 3.17: Visualization of the tracking problem. In an ideal scenario tracking identifiable moving
objects is as easy as connecting consecutive detections with the same identity (triangles). In reality
tracking is not a trivial task, especially in complex environments where the subjects are not always visible
(circles), and their identities are sometimes misread (squares).

One way to deal with this problem is extending the search space for correspon-
dence to more than one frame into the future and conducting and exhaustive search.
Considering that BeesBook has an average rate of 200 detections per frame, using this
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approach would be computationally too expensive for the scope of the system. Fur-
thermore, there are better approaches to the problem like the one here proposed9. The
tracking module in BeesBook’s addresses the tracking problem using a hierarchical ap-
proach based on probabilities [10]. During a first iteration, only detections from con-
secutive frames are considered to form trajectory fragments without gaps (“so-called
tracklets”). A random forest classifier trained on a manually labeled data set is used to
predict the probability of two detections belonging to the same track. Then, using the
Hungarian algorithm (Kuhn-Munkres algorithm [58]) a global mapping of detections
in time t to detections in t+1 is generated. However, uninterrupted tracklets represent
only part of all possible trajectories. Following the approach from Fasciano et al. [28],
the tracking module links tracklets with temporal gaps during a second iteration.

Besides generating reliable motion paths of single individuals for behavioral anal-
yses, the tracking module serves the second purpose of correcting misread IDs. An ID
is computed for each trajectory as the bitwise averaged ID over all detections of the
track. Eventually, after the last iteration of the module, the IDs of the individual detec-
tions are updated to that of their trajectory. A more in depth description of the first and
second iteration follows.

Linking consecutive detections (first tracking iteration).
In an iterative scheme, all detections at time t fall in one of two classes: either the

most recent detection of an open tracklet or a seed detection to start a new tracklet. A
search radius of 200 px (approximately 12 mm, less than a bee’s body length) is defined
to create a list of potential successors for each of these detections. From each candidate
pair (last detection of the tracklet and candidate detection), the following three features
are extracted:

• distance: Euclidean distance in pixels.

• id_distance: Hamming distance between both detections’ IDs.

• z_rot_diff: the difference of tag orientation between the last detection of the first
fragment and the first detection of the second fragment. (see Fig. 3.11) in degrees.

A trained random forest classifier [64] is used to map these features to the proba-
bility that both detections correspond to the same individual. Finally the Hungarian
algorithm is used to assign detections at time t+1 to tracklets. Pairs with a score lower
than a predefined threshold are discarded. Detections that could not be assigned to
any tracklet are regarded as seed detections in the next step of the iteration. Tracklets
that could not be assigned new detections are closed, i.e., they will not be regarded in
the next step.

9The approach here described was implemented by Franziska Boenisch and Benjamin Rosemann of
the Biorobotics Lab. Further details can be found in their theses [9, 92]
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Linking tracklets. (second tracking iteration) After the first iteration the process
is repeated, this time considering only tracklets and individual detections that were
not assigned to any trajectory during the first iteration. With fewer candidates at each
step of the iteration, it is possible to extend the search for candidates to no adjacent
frames. The size of the affordable time gap for this step is not fixed and requires some
analysis of the distribution of gaps among the data set produced by the first iteration.
When selecting this parameter is important to note that allowing long gaps will be more
computationally expensive than limiting the gaps to just a few frames, but the latter
might require more iterations to finish the tracking analysis.

Tracklets with two or more detections allow more complex and discriminative fea-
tures than those used during the first iteration. When linking tracklets over gaps, fea-
tures that reflect a long-term trend, like the direction of motion are worthy to take into
consideration, the following six were found to have a high predictive power:

• distance: Euclidean distance of last detection of fragment 1 to first detection of
fragment 2.

• id_distance: Hamming distance of both fragments’ bitwise averaged IDs.

• forward_error: Euclidean distance of linear extrapolation of last motion in first
fragment to first detection in second fragment.

• backward_error: We extrapolate the starting point of the gap-spanning motion
by projecting back the first motion segment in fragment two and compute the
Euclidean distance to the last detection in fragment one.

• confidence: all IDs in both fragments are averaged (bitwise), the minimum dif-
ference of all averaged bit confidences to the value 0.5 (maximum uncertainty)
is extracted from both fragments and compared (absolute difference).

• z_rot_diff: the difference of tag orientation between the last detection of the first
fragment and the first detection of the second fragment.

Similar to the first iteration process, these features are computed at each step of
the iteration, then a trained random forest classifier maps them to probabilities, and
finally the Hungarian algorithm assigns candidate tracklets at time t+n to tracklets in
t.

3.5 Automatic Detection and Decoding of Communica-
tion Dances

The detection and decoding of waggle dances is carried out by the waggle dance
decoder (WDD) sub-module. The WDD relies on detecting the waggle run portion of
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communication dances. During waggle runs, bees pull their body from side to side
at a frequency of ∼ 13H z , therefore the cameras must be capable to stream video at
higher frequencies. The solution here proposed requires a frame rate of∼ 100 f p s and
a resolution of at least 1.5 pixels per millimeter. Thus QVGA resolution suffices to cover
the whole surface of a “Deutschnormal” frame (370 mm x 210 mm). The four frame
corners are used as a reference to rectify distortions caused by skewed viewing angles
or camera rotations; If the frame corners are not captured by the camera, it is necessary
to consider other reference points and their relative coordinates.

3.5.1 Target Features

As explained in section 1.2, forager bees share the location of valuable resources
with their nestmates through the waggle dance (see Fig. 1.2). The relation of site prop-
erties (distance and direction to the feeder) and dance properties (duration and angle)
has been documented thanks to systematic experiments [116]. Using these data, it is
possible to approximate an inverse mapping of dance parameters to site properties.

rR ∼ f −1
d (dw ) . (3.7)

θR ∼ a t a n2
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pR ∼
dw

dr
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Where rR (Eq. 3.7) is the distance between hive and resource and is related to the
average waggle run duration dw through the function fd that approximates the cali-
bration curve [114]. θR (Eq. 3.8) is the angle between resource and solar azimuth (see
Fig. 1.2), and it corresponds to the average orientation of the waggle runs with respect
to the vertical, with an even number of consecutive runs to avoid errors due to the
divergence angle [116, 120, 109, 62]. The resource’s profitability pR (Eq. 3.9) is propor-
tional to the ratio between average waggle run duration dw and average return run
duration dr . Dances for high-quality resources contain shorter return runs than those
for less profitable resources located at the same distance, hence yielding a higher pR

value [97].
From Eq. 3.7 to Eq. 3.9 it follows that to decode the information contained in a com-

munication dance three measurements are required: average waggle run duration dw ,
average orientation αw , and average return run duration dr . Most of the current ap-
proaches available to decode communication dances require first to trace the dance
path to then analyze it and extract its characteristics [51, 52]. In contrast to these meth-
ods, the waggle dance decoder of the BeesBook system directly analyzes video frames
to obtain each waggle run starting timestamp, duration, and angle. The duration of
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return runs is calculated as the time difference between the end of a waggle run and
the beginning of the next one (Fig. 3.18).

Figure 3.18: Fundamental parameters of the waggle dance. If the starting time (tx ) and duration (dw x )
for each waggle run is known, it is possible to calculate the return run durations as the duration of the
gaps between consecutive waggle runs.

3.5.2 Software Modules

The dance decoder consists of four modules that are executed in sequence namely:
attention module (AM) 10, filter network (FN), waggle orientation module (OM) and
mapping module (MM) (Fig. 3.19). The AM analyzes either online video or video record-
ings in the search of waggle-like activity, if any is detected, a small sub-region of the
video where the activity was detected is saved to disk. False positives detected by the
AM are filtered out using a convolutional neural network FN. Later, the OM extracts
the duration and angle of the filtered waggle runs. Finally, the mapping module (MM)
clusters waggle runs belonging to the same dances and maps their parameters back
to field coordinates. Although all modules can run offline on video recordings, long
observations require large storage space; for this scenarios it is recommended to run
the AM on real-time camera input to reduce the amount of stored data drastically. A
detailed description of all four modules is given in the following sections.

Attention module (AM)
The waggle frequency of dancing bees lies within a particular range of values; here

on referred to as waggle band [61, 36]. Each pixel in the video images covers a small
area of the honeycomb surface and its intensity evolution through time reflects the
region’s activity. Since the bee body is well discriminable from the background under
consistent lighting conditions, when a pixel intersects with a bee, its intensity time-
series is a function of the bee’s motion dynamics. Indeed, by using a camera with low
spatial resolution, bees appear as homogeneous ellipsoid blobs without surface texture
(Fig. 3.20). Thus the brightness of pixels that are crossed by waggling bees varies with

10The implementation of the AM was carried out by Alexander Rau as part of his master’s thesis [87],
conducted in the Biorobotics lab during the summer of 2014.
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Figure 3.19: Software modules of the waggle dance detector and decoder. The automatic detector
and decoder sub-system comprises of four modules. Even though all modules can run offline on video
recordings, the AM is usually run online on live video streaming to minimize the disk space required for
video storage.

the periodic waggle motion, and their frequency spectrum exhibits components in the
waggle band or harmonics.

Figure 3.20: A screenshot of the waggle detection camera stream. (left) The green rectangle demarcates
the comb borders. Despite the video low resolution, it is still possible to discern between the honey bees
body and the background (detail shown on the right).
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To detect these events, a binary classifier here on referred as Dot Detector (DD) is
defined [87]; each pixel position [i , j ] is associated to a DD Di j . The DD analyzes the
intensity evolution of the pixel within a sliding window of width b . For this purpose,
the last b intensity values of each pixel are stored in a vector B , which at the time n

can be described as B n
i j =

�

v n−b+1
i j , v n−b+2

i j , . . . , v n
i j

�

, where v k
i j is the intensity value of the

pixel [i , j ] at time k . We calculate a score for each of these time series using a number of
sinusoidal basis functions, in principle similar to the Discrete Fourier Transform [14]:

s
�

B̄ n
i j , r

�

=
b
∑

m=1

�

�

B̄ n
i j (m ) · c o s

�

2πr
m

sr

��2

+
�

B̄ n
i j (m ) · s i n

�

2πr
m

sr

��2
�

, (3.10)

where B̄ n
i j is the normalized version of B n

i j with B̄ n
i j ∈ {−1, 1} and mi n n

i j =mi n
�

B n
i j

�

and ma x n
i j =ma x

�

B n
i j

�

, sr is the video’s sample rate (100 Hz), and r ∈ [10, 16] are the
frequencies in the waggle band. If at least one of the frequencies in the waggle band
scores over a defined threshold th , Di j is set to 1.

To the analysis in the frequency domain follows a process divided into two layers.
In the first layer those Di j set to 1 are clustered together following a hierarchical ag-
glomerative clustering (HAC) approach [100], using as a metric the Euclidean distance
between pixels and with a threshold dma x 1 set to half the body length of a honey bee. To
filter out false positives, only clusters formed by a minimum of cmi n1 DDs are regarded
as positions of potential dancers.

In the second layer, positions found during the clustering step are used to form
waggle runs (WR). Consecutive detections are considered as part of the same WR if
they are located within a maximum distance dma x 2, defined according to the average
waggle forward velocity (see [62]). At each iteration new dancer detections are matched
against open WR candidates, and either appended to a candidate or used as basis for a
new one. A WR candidate can remain open up to gma x 2 frames without new detections
being added, after what it is closed. Only closed WR candidates with a minimum of
cmi n2 detections are retrieved as WRs. Finally, coordinates of the potential dancer along
with 50 x 50 pixels image snippets of the WR sequence are stored to disk.

The operation of the AM can be seen as a three layers process (Fig. 3.21) summa-
rized in the following points:

1. Layer 0, for each new frame I n :

(a) Update D D s ’ score vector.

(b) Set to 1 D D s with spectrum components in the waggle band above th

2. Layer 1, detecting potential dancers:

(a) Cluster together D D s potentially activated by the same dancer.
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(b) Filter out clusters with less than cmi n1 elements.

(c) Retrieve clusters’ centroids as coordinates for potential dancers.

3. Layer 2, detecting waggle runs:

(a) Create waggle run assumptions by concatenating dancers positions with a
maximum Euclidean distance of dma x 2.

(b) Assumptions with a minimum of cmi n2 elements are considered as real WR.

Figure 3.21: Flowchart of the attention module (AM). Each new input frame is preprocessed before
its pixel’s values are used to update the DDs’ score. If after undergoing all three layers of the module a
waggle run is detected, 50×50 px images snippets of the WR sequence are stored to disk.

Filtering network (FN)
The AM can be run offline on video recordings, but to reduce the storage require-

ments by longitudinal studies, it is advised to use it online with video from a camera
streaming in real-time. Since only activity detected by the AM is stored to disk, this will
reduce drastically the amount of storage required by the system. However, the thresh-
old values of the AM must be set to fairly sensitive values to maintain the number of
false negatives to a minimal, and reduce the risk of loosing significant data. This might
lead in turn to a higher number of false positive detections and to the decrement of the
detector precision.

To improve the system’s precision, the detections can be filtered later using a binary
classifier that classifies them either as correct detections or false positives. The solution
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here proposed to this end is a convolutional neural network designed and trained to
process the sequences of 50 × 50 px images saved by the AM. This filtering network
(FN) produces a scalar output that is then thresholded to predict whether the input
sequence contains a waggle run. The network is a 3D convolutional network whose
convolution and pooling layers are extended to the temporal dimension [47, 113, 105,
56]. The network architecture, three convolutional and two fully connected layers, is
rather simple but suffices for the filtering tasks (Fig. 3.22).

Figure 3.22: Architecture of ConvNet. The raw sequences of images are processed by two stacked 3D
convolution layers with SELU nonlinearities. The outputs of the second convolutional layer are flattened
using average pooling in all three dimensions. A final fully connected layer with a sigmoid nonlinearity
computes the probability of the sequence being a dance or not. Dropout is applied after the average
pooling operation to reduce overfitting.

The network was trained using a total of 8239 manually labeled AM detections from
two separate days. During training, sub-sequences consisting of 128 frames were ran-
domly sampled from the detections for each mini-batch. Detections with less than
128 frames were padded with constant zeros. Twenty percent of the manually labeled
data was reserved for validation. To reduce overfitting, the sequences were randomly
flipped on the horizontal and vertical axes during training. We used the Adam [53] op-
timizer to train the network and achieved an accuracy of 90.07% on the validation set.
This corresponds to a recall of 89.8% at 95% precision.

Orientation module (OM)
While the duration of the WRs is estimated from the number of frames exported
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by the AM, its orientation is computed in a separate processing step here on referred
as orientation module (OM). During waggle runs bees throw their body from side to
side at a frequency of about 13 Hz [62]. Images resulting from subtracting consecutive
video frames of waggling bees exhibit a characteristic pattern similar to a 2D Gabor
filter, a positive peak next to a negative peak; since this pattern reflects the previous
and current position of the dancing bee, its orientation is aligned with the its body
Fig. 3.23.

Figure 3.23: Difference image and its Fourier transformation. The image resulting from subtracting
consecutive video frames of a waggling bee exhibits a characteristic Gabor filter-like pattern. While the
peak location varies in image space along with the dancer’s position, its representation in the Fourier
space is location-independent, showing distinctive peaks at frequencies related to the size and distance
of the Gabor-like pattern.

The location of the Gabor filter-like structure in the difference image is variable and
determined by the dancing bee’s location itself. Transforming the difference image to
the Fourier space provides a location-independent representation of the bee’s lateral
movement and orientation (Fig. 3.23). The Fourier transform is the series expansion
of an image into sinusoidal basis functions. Maxima in the Fourier space correspond
to the frequency and orientation of the main sinusoidal components of the input im-
age, in the case of the difference images, those matching the Gabor filter-like structure.
Since the bee’s longitudinal axis is orthogonal to her lateral movements, we can safely
conclude that the orthogonal to the maxima in the Fourier space corresponds to the
dancer’s orientation.

Not all difference images in a given image sequence exhibit the Gabor pattern, it
only appears when the bee is quickly moving laterally. To get a robust estimate of
the average waggle orientation, it is convenient to sum all Fourier transformed dif-
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ference images obtained from the WR sequence (Fig. 3.24A). To improve the quality of
the orientation lecture, one can apply a bandpass filter to this cumulative sum. This is
achieved by multiplying the resulting cumulative sum with a difference-of-Gaussians
DoG (Fig. 3.24B). The radius of the ring needs to be tuned to the expected spatial fre-
quency of the Gabor pattern. This frequency depends on the frame rate (100 Hz, for
video from the PS3Eye webcam) and the image resolution (17 px/mm). With the lat-
eral velocity of the bee (descriptive statistics can be found in [62]) one can compute the
displacement in pixels (5 to 7 px/frame). Using Eq3.11 one can approximate the value
of the expected frequency k :

k =
Is i z e

T
=

Is i z e

2x
, (3.11)

where Is i z e is the input image size (50 px in this case) and T is the period for the
Gabor filter-like pattern or twice the bee’s displacement between frames.

Figure 3.24: Filtering cumulative sum of difference images in the Fourier space. (A) The cumulative
sum of the Fourier transformed difference images of a waggle run exhibit a strong pair of maxima in
locations orthogonal to the dancer’s orientation. (B) A DoG kernel of the Mexican hat type, properly
adjusted to the waggle band, is used as a bandpass filter. (C) Bandpass filtering the cumulative sums
emphasizes values within the frequencies of interest.

The orientation of the bees’ lateral and forward movements is obtained from the re-
sulting image through Principal Component Analysis (PCA). The principal component
direction reflects the direction of the dancer’s lateral movements, hence the bee’s body
axis must be orthogonal to the principal component. This axis represents two pos-
sible waggle directions. To disambiguate the alternatives, the OM processes the dot
detector positions extracted by the AM. Each ordered pair in the waggle run metadata
represents the average pixel position in which the AM detected brightness changes in
the waggle band. In a typical waggle sequence, these points trace roughly the path of
the dancer. The OM averages the first 10% ordered pairs of the waggle sequence and
compute all DD positions relative to this average. Then it searches for the maximum
values in the histogram of the orientation of all vectors and average their direction for
a robust estimate of the main direction of the dot detector sequence. This direction is
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then used to disambiguate the two possible directions extracted during the PCA.

Mapping module (MM)
Each waggle dance encodes in its average waggle run duration and orientation a

set of polar coordinates to a field location. The mapping module (MM) implements a
series of steps to decode this coordinates and map the dances back to the field. The
MM first reads the output of the AM and OM, essentially time, location, duration and
orientation of each detected waggle run. Then, it clusters together waggle runs with a
high probability of belonging to the same dance. To understand which waggle runs be-
long together, one can visualize a three-dimensional data space defined by the axes X
and Y of the comb surface and a third axis T of time of occurrence. This way, each WR
can be represented in the data space by (x , y , t ) coordinates based on its comb loca-
tion and time of occurrence (Fig. 3.25A). To maintain coherence between spatial and
temporal values, the time of occurrence is represented in one-fourth of the seconds
relative to the beginning of the day.

Figure 3.25: Depiction of 200 waggle runs in the data space XYT. (A) A set of 200 WRs plotted in the data
space XYT, where values in the axes X and Y correspond to their comb location, and values in axis T to
their time of occurrence. (B) Using an HAC approach, those WRs within a maximum Euclidean distance
of dmax3 are clustered together and considered as belonging to the same dance.

The clustering process in the MM, just as with the AM, is carried out following a
hierarchical agglomerative clustering (HAC) approach. An Euclidean distance dma x 3 is
defined as a threshold for the clustering process. The value of dma x 3 is based on the
average drift between WRs and the average time gap between consecutive WRs [62]
(Fig. 3.26).

It is highly possible that during the clustering process either some waggle runs will
end up in the wrong dance cluster or that some dances will be divided into multiple
clusters. To deal with the latter issue, the MM only considers clusters with a minimum
of 4 waggle runs as real dances, since the average values for a sample of 4 waggle runs
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from a dance is highly correlated with the mean of all its waggle runs [15]. The misclas-
sification problem is solved using random sample consensus (RANSAC) [32], where the
waggle runs mistakenly classified are perceived as outliers in the distribution of waggle
run orientations. Waggle run duration and orientation are then averaged for all inliers
and translated to field locations.

Figure 3.26: Dendrogram for the hierarchical agglomerative clustering of 200 waggle runs. The den-
drogram provides a graphic representation of the HAC process. Each observation starts as its own clus-
ter, at each iteration, the two closest clusters are merged, this process is performed iteratively till only
one cluster remains. A maximum threshold distance dma x 3 is defined, and all clusters generated to this
point are regarded as dances and their constituent elements as their waggle runs.

The mean waggle run duration is translated to meters using a conversion factor,
and its orientation is translated to the field with reference to the azimuth at the time of
the dance. The duration-to-distance factor is internally calibrated by each colony, and
it depends on multiple factors. It is possible to approximate the value of this factor
for a particular colony by training a group of their foragers to a known location and
averaging the duration of all waggle runs signaling in its direction.

3.6 Chapter Overview

In this chapter were presented the components of the BeesBook system, a vision-
based solution for the automatic data recollection in behavioral studies of bee colonies.
The overall system can be seen as integrated by two functionally independent units
that operate simultaneously. The first system comprises the automatic recording and
storage of high-resolution images, computer vision software for identifying uniquely
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marked bees, and post-processing software to trace their trajectories. The second sub-
system comprises image analysis software for detecting waggle dances on real time and
post-processing software to decode the dances and map their coordinates back to the
field. BeesBook has been conceived as a budget-priced framework for the incremental
development of software and hardware components and its modular design facilitates
the continuous improvement of the already existing components without disrupting
the rest of the system.

Each component of BeesBook was carefully selected to maximize the quality and
significance of the collected data. A marker that adapts to the physiology of the bee
without limiting her everyday activity, and allows to uniquely identify all colony mem-
bers (up to 4096 individuals at a time). A setup that allows video recording the activity
of the hive 24 hours a day during extended periods of time without introducing any
noticeable source of discomfort to the colony that could affect their natural behavior.
To reduce costs, rather than using high end cameras as state of the art systems do, Bees-
Book relies on the implementation of powerful image analysis software.

All the elements of the system have been described thoroughly and in the case of
the software elements links are provided to the repositories of the source code.

In the following chapter I present the experimental design for the three recording
seasons (summers of 2014, 2015, and 2016) and discuss the performance of the system
with the generated raw image data.



Chapter 4

Experimental Validation

This chapter discusses the experimental validation of the BeesBook system. The
data here analyzed was collected during three consecutive summers (2014 - 2016). The
first part of the chapter covers the experimental design of the recording seasons and the
implementation of the image analysis solution on a Massive Parallel Processing (MPP)
system. Due to the significant amount of media data gathered during each summer
(∼ 65 M images), its analysis had to be carried out in one of the complexes of the North-
German Supercomputing Alliance (Norddeutscher Verbund zur Förderung des Hoch-
und Hochstleistungsrechnens HLRN), requiring the development of a customized tool
to batch analyze the recorded images. Int the second part of this chapter it is discussed
the performance of the image analysis and post-processing modules on the images
collected during the recording seasons. Finally, in the last section, it is discussed the
performance of the waggle dance automatic decoder.

The results presented in section 4.3.1 have been previously published in “Auto-
matic methods for long-term tracking and the detection and decoding of communica-
tion dances in honeybees” [118], published by Frontiers in Ecology and Evolution. Some
of the data in section 4.4 has been partly used for the research article “Novel technologi-
cal and methodological tools for the understanding of collective behaviors” [10] submit-
ted to Frontiers in Robotics and AI. The results reported in section 4.5 have been used
in the preparation of the article “Automatic detection and decoding of honey bee waggle
dances” [119], accepted for publication in PLOS One.

4.1 Experimental Design of Recording Seasons

To evaluate and improve the performance of the different components of the Bees-
Book system, three recording seasons were conducted from 2014 to 2016. The record-
ings were conducted exclusively during summer to capture the colony’s activity at the
peak of its yearly cycle. Life expectancy of bees during summer ranges from 30 to 60
days [68]. Hence, each season was programed to last ∼ 60 days to document at least

60



Chapter 4: Experimental Validation 61

one full cycle of renovation of the colony’s population. Each season represents a sig-
nificant improvement over the previous one, both for the experimental design and the
components of the system.

Figure 4.1: Comparative of images obtained from first and last season. (A)Season 2014. (B) Season
2016.

In Fig. 4.1 are shown side by side details of images captured during (A) season 2014
and (B) season 2016. Although both images were recorded by the middle of the season,
there are some clear differences between them. For a start, Fig. 4.1B seems brighter and
sharper than Fig. 4.1A. Also, while all bees in Fig. 4.1(B) seem to be marked, this is not
the case for Fig. 4.1A. Many lessons had to be learned during seasons 2014 and 2015 to
achieve the quality of image observed in Fig. 4.1B, the details are given in the following
paragraphs.

Season 2014
The first recording season was conducted during the summer of 2014 (from July 24

to September 25, 2014 - 63 full days). The process started weeks before the recordings
with the installation of a standard observation hive containing an unmarked colony.
The observation hive was connected to the exterior through one of its entrances to
allow bees to fly in and out and get accustomed to the environment. The bees were
marked previous to the start of the video recording with help of members of the Biorobotics
Lab over a period of three days. The panels of the observation hive were prepared in
advance to allow extracting the bees without opening the cabinet (Fig. 4.2A). Batches
of approximately 50 bees were extracted from the original hive into containers with a
vacuum cleaner (Fig. 4.2A,B) and were distributed to the collaborators to be marked.

Each bee was marked individually, first the bee is put in a marking cage, then hair is
removed from the thorax and shellac applied onto it to fixate the tag; finally, the tag is
attached with the white semi-circle rotated toward the bee’s head (Fig. 4.3A). Once all
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Figure 4.2: Extracting bees from original observation hive. (A) The panels of the observation hive con-
taining the unmarked colony were perforated and covered with a second layer of panels. The second
layer could be re-arranged to open just one of the holes at a time and allow extracting bees from that
region of the hive. (B) Bees were extracted from the original hive into containers (C) using a vacuum
cleaner.

bees in the batch were marked, they were poured at the hive entrance (now connected
to the customized observation hive) (Fig. 4.3B). This process was repeated till all bees
in the original hive had been marked (A total of∼ 2, 000 bees were marked). The queen
was marked in the same way as the workers, but she was introduced to the observation
hive through the other entrance (on the inside of the room) (Fig. 4.3C).

Figure 4.3: Marking procedure. (A) Each bee was marked individually using a marking cage. (B) Marked
bees were placed on a platform at the entrance of the observation hive (on the outside of the building).
(C) The queen was also marked but introduced to the hive through its second entrance (on the inside of
the building).

The season 2014 was intended as a proof of concept, to test and adjust protocols
of the experimental design and components of the setup; it would also provide the
first batch of images under real circumstances to put to the test the image analysis
modules. The structure used during season 2014 (Fig. 4.4) did not have many of the
features projected for the final design; the lighting setup consisted of only six IR lamps
per side, and the cameras could just adopt a very limited number of positions.
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Figure 4.4: Experimental setup season 2014. (A) (I) Observation hive, (II) infra-red lamps, (III) right
side of observation cage, (IV) left side of observation cage, and (V) camera array. (B) Detailed view of
the camera array: (VI) Flea3 cameras and (VII) PS3Eye webcam.

Another particularity of season 2014 was that the same brood comb was used through-
out the whole season. Worker honey bees take 21 days to emerge from their cells.
Hence, three weeks after the start of the recording season new unmarked bees started
to hatch. To maintain a significant population of the colony marked, young bees were
raised in an incubator, marked and introduced to the observation hive. Following this
procedure, a total of 441 bees were added to the colony over a period of 30 days. By the
end of the season all of the first generation of marked bees, except for the queen, had
already died and most of the colony members were unmarked.

Season 2015
Some minor but important changes were made to the experimental design for sea-

son 2015. The recording season lasted seven weeks (70 days), from August 18 to Oc-
tober 26, 2015. The colony from 2014 survived the winter and was used also for this
season. A total of 1953 colony members were marked previous to the beginning of the
recordings following the same protocol from 2014. Also this season young bees raised
in incubator were marked and introduced to the observation hive, a total of 822 bees
over a period of 49 days. This year, a register with the marker ID and hatching day was
kept for the incubated bees. This way, the age of incubated bees was known through-
out all season (not so for original members of the colony). To avoid young, unmarked
bees hatching within the observation hive, the brood comb was replaced for a honey-
comb every three weeks. Disregarding those bees who loosed their tag, season 2015
had an entirely marked colony from beginning to end. The most noticeable changes
for season 2015 were done to the recording setup, which was completely renewed to
adopt the originally projected design described in section 3.1.3 (see Fig. 4.5). The new
lighting setup with 22 IR lamps per side enabled the acquisition of brighter and sharper
images.

Season 2016
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Figure 4.5: Experimental setup seasons 2015-2016. (A) (I) Observation hive, (II) infra-red lamps, (III)
right side of observation cage, (IV) left side of observation cage, and (V) camera array. (B) Detailed view
of the camera array: (VI) Flea3 cameras and (VII) PS3Eye webcam.

During season 2016 the marking of the bees was conducted differently. The tagging
period began three weeks previous to the recording season (June 28), and only young
bees raised in incubator were marked. Each day a batch of bees was taken from the
incubator, bees were tagged individually, and introduced to the hive. A record of the
tags used during the marking sessions was maintained to keep track of the bees’ age.
The recording season began on July 19, already with 1424 marked bees in the hive, and
lasted 63 days. Young bees were marked and introduced to the hive on a daily basis till
two weeks before the end of the recording season. By the end of the tagging period, a
total of 3,191 bees had been marked and added to the observation hive. As in 2015, this
season the brood comb was also exchanged to prevent unmarked bees to hatch within
the observation hive. Regarding the recording setup, it practically remained the same
as in 2015; only the illumination setup was modified (see section 3.1.3).

The marking protocol from season 2016 has two advantages over those implemented
in 2014 and 2015. First, it does not require handling adult bees; young bees are easier
to handle since they still do not fly and rarely sting. But most important is the fact that
this protocol allows the system to compute the age of each colony member at any point
in time, opening the possibility to conduct new and more significant studies with the
collected data.

4.2 Highly Parallelized Image Processing on Cray Super-
computer

Each recording season produces about 150 TB of data in images (see section 3.2).
The image processing reduces the raw image data to just a few hundred Gigabytes in
binary files (see 3.3), but the computing time required for this task results prohibitive,
even if performed on a high performance desktop. Considering an average computing
time of one second per image, the analysis of a whole season would take more than
two years. To speed up this process, the analysis had to be parallelized.
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From the early planning stage of BeesBook, computing and storage resources were
granted to the project by the North German Supercomputing Alliance (HLRN). The
HLRN’s provide the project with access to their Cray XC30 supercomputer housed in
the Zuse Institute Berlin (ZIB), which is located just a few meters from the site of the
recordings and offers gigabit ethernet connectivity. The Cray XC30 features 1872 com-
pute nodes with 24 CPU cores. The system has 117 TiB of RAM and 4.2 Petabyte of hard
disk space, organized as RAID 6. Since the recording seasons’ data is already stored on
the supercomputer’s file system, using it to process the images circumvents additional
data transfers.

The Cray XC30 supercomputer works under a Single Program Multiple Data (SPMD)
approach, which means that the same program can be executed in multiple instances,
working on separate data. In the particular case of BeesBook, this means that multi-
ple instances of the image analysis module can be run in parallel, with each instance
accessing to an exclusive batch of images.

To access the compute nodes of the Cray XC30, a batch script has to be submit-
ted to the job queue. The batch script contains information about the resources re-
quested (number of nodes, wall time, modules, etc...) and a call to the binary. Once
the script has been submitted, is up to the system scheduler to decide when to execute
the job. Many parameters are taken into account to make this decision, but the number
of nodes and time wall are the most important, the fewer resources are requested, the
sooner the script is run1. Therefore, the correct strategy to accelerate the image anal-
ysis on the Cray XC30 is to submit numerous jobs with small requirements. Manually
submitting the jobs and keeping track of their status is time-consuming, to automate
this task, an observer program was implemented2 3. The script is divided into three
modules, namely a context container, a job queue manager, and an image provider.

The BeesBook context module is a container for all the configuration constants,
among them directory paths, job properties, average computing time per image. These
constants are used by the other two modules and during the initialization of the anal-
ysis when the batch scripts are automatically generated.

The job queue manager module manipulates the internal job queue and imple-
ments all related functions, including submitting jobs, checking the status of submit-
ted jobs, moving the results from a job directory to the global results directory and
recover the job queue if the process is unexpectedly interrupted.

The image provider module extracts the images from their containers to the work-

1Full documentation of the process in the HLRN website: https://www.hlrn.de/home/view/Sys-
tem3/WebHome.

2Code and documentation available online: https://git.imp.fu-berlin.de/bioroboticslab/bb_ob-
server.

3The final version of this tool is based on the one proposed by Simon Wichmann as part of his master’s
thesis in the biorobotics lab [122]

https://www.hlrn.de/home/view/System3/WebHome
https://www.hlrn.de/home/view/System3/WebHome
https://git.imp.fu-berlin.de/bioroboticslab/bb_observer
https://git.imp.fu-berlin.de/bioroboticslab/bb_observer
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ing file system from where they are distributed to the jobs’ directories to be submitted.
As a way to keep a record of the images that have already been processed by a running
job, these are deleted from its internal directory. Once the job has been terminated by
the system scheduler, all images remaining in its internal directory are collected by the
image provider module and reassigned to new jobs.

When the observer is initialized, it first creates a directory structure (see Fig. 4.6)
with all necessary files to keep track of the production. The Job Script Slot files are the
batch scripts required to submit jobs to the compute nodes. They are generated by the
observer when initializing the work directory. The Image Heap contains images ready
to be assigned to a slot. The Job Outputs directory contains the command line output of
the batch jobs (e.g., for error reporting). The Results directory contains the result files
of the image analysis. The Job Slots directory contains the image data for the batch
jobs. Each Slot directory contains one Proc directory for each process in the batch job.
The image blocks are provided here for their respective job. Each HLRN account has
a limited number of batch jobs (N) that can be either in the queue or running. The
observer creates one extra script and slots directory that will be ready to be submitted
as soon as a slot opens.

Figure 4.6: Work directory structure. The Observer’s work directory is used to maintain a job queue
and the image blocks provided for the separate jobs. Files are depicted as round boxes and directories
as rectangular boxes.



Chapter 4: Experimental Validation 67

The major functionality of the observer program is depicted in Fig. 4.7. First the
observer initializes the directory structure or recoveries from an interrupted process,
in which case cleans the Slots directories and submits new jobs. Then, while there
are images left to process, the image provider module prepares a slot directory. Then,
when a slot opens, it submits the new job, collecting before results files if necessary.
This process is repeated iteratively till all images have been processed and all results
collected.

Figure 4.7: Main routine of the external observer. The observer keeps the queue and slots directories
full till all images have been processed, after what it waits till the last job is completed to collect the latest
batch of results.

4.3 Image Analysis Performance

This section presents the performance evaluation of the two implemented pipelines,
namely CV-Pipeline and DCNN-Pipeline. The BeesBook system was initially conceived
with a computer vision pipeline carrying out the tasks of the image analysis module,
and many of the design decisions (particularly the marker design) were made keeping
this approach in mind. The analysis of real data generated during the first experimen-
tal season (2014) showed that, although the CV-Pipeline is a robust approach to the
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image analysis problem [118], there is room for improvement, especially in the bit-
reading stage. For this reason, a new approach, based on DCNN was proposed. Pre-
senting the results of both approaches side by side highlights the value of BeesBook’s
modular design, that did not require changes to the rest of its structure to exchange the
CV-Pipeline for the better performing DCNN-Pipeline.

Ground truth
To validate the performance of the image analysis module, a ground truth data set

was generated using a custom user interface4 (see Fig. 4.8). The user interface allows
to manually fit a three-dimensional model of a tag, with control of the size, position,
and rotation in three axes. The interface also allows setting the value of each of the 12
code cells to black, white or undetermined. To minimize the user bias, the data set was
generated with the help of 13 coworkers. Using this process, it took approximately 39
hours to label 26 images, what amounts to a total of 2,808 tags.

Figure 4.8: A GUI was used to generate ground truth data manually. A custom user interface allows
setting new tags and modify all its parameters via mouse interaction.

4.3.1 CV-Pipeline Performance

The GUI used to generate the ground truth data was also enabled to read and dis-
play the output from the pipeline. This way one could see what makes a marker hard
to be detected or decoded and modify the pipeline in function of this information.

4This utility was implemented as a module of the biotracker framework, developed in the biorobotics
lab. A repository is available online: https://github.com/BioroboticsLab/biotracker_beesbook.

https://github.com/BioroboticsLab/biotracker_beesbook
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Figure 4.9: Validation of pipeline results with GUI. The user interface developed to generate ground
truth can also be used to explore the pipeline output.

The performance of each layer of the CV-Pipeline was evaluated individually. As
measures of performance were chosen recall and precision. In the context of a binary
classification problem, recall is defined as the proportion of real positives that are cor-
rectly predicted positive, and can be expressed as:

R e c a l l =
tp

tp + fn
, (4.1)

where tp is the number of correctly predicted positives (or true positives) and fn is
the number of unpredicted positives (or false negatives). In a similar way, precision
is defined as the proportion of predicted positives that are real positives, and can be
expressed as:

P r e c i s i o n =
tp

tp + fp
, (4.2)

where fp is the number of erroneously predicted positives (or false positives). A
result generated by a pipeline layer is considered as a true positive (tp ) if it exists in
the ground truth data set, otherwise is regarded as a false positive ( fp ); the elements
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in the ground truth data set that are not predicted by the layer are considered as false
negatives ( fn ).

All four evaluated layers (localizer, ellipse fitter, grid fitter, and decoder) scored high
values of recall and precision (see Tab. 4.1). Almost 90% of the tags are detected by the
localizer. The ellipse fitter performance is outstanding, finding the correct parameters
for 97% of the identified markers that represents 88% of the ground truth set. The grid
fitter estimates the parameters correctly for 88% of the tags. Finally, although only 66%
of the detections can be decoded successfully, up to 94% of the decoded IDs have less
than three misidentified bits. These detections are still valuable as their correct ID can
be retrieved using the tracking module. As an additional way to measure the decoder’s
accuracy, the Hamming distance [43]was also computed with an average value of 1.08.

Recall Precision
Localizer 0.90 0.84
Ellipse fitter 0.88 0.97
Grid fitter 0.88 0.89
Decoder 0.66/0.94

(0/<3 hamming distance)

Table 4.1: CV-Pipeline performance. Recall and precision values for the CV-Pipeline layers.

4.3.2 DCNN-Pipeline Performance

During training, a neural network (NN) learns to minimize its loss, a summation
of the error made for each example in training set. Ideally, a model will decrease its
loss with each iteration; the lower the loss, the better a model. Therefore, loss can be
seen as a metric for performance. As a matter of fact, customary metrics to report the
performance of a NN are: the loss and accuracy (the percentage of correctly classified
examples) of the model with the test set.

Training and validation losses are here reported as a metric for performance of the
two models that comprise the DCNN-Pipeline. In addition to the loss, and to be able
to compare the performance of the DCNN-Pipeline with that of the CV-Pipeline, four
more metrics were computed: Recall and precision for the localizer network, and mean
Hamming distance and accuracy for the decoder network.

Training and performance of the localizer network
For the localizer network, several millions of samples were generated with the pro-

cess described in section 3.3.2. The 100 × 100 px image regions were downsampled
to a a size of 32× 32 px using bilinear interpolation; this increases the speed of the fi-
nal model and helps to avoid overfitting. The training set consists of 17,956 samples
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from which 10% is used for testing and 10% for validation. The network was trained to
minimize the cross entropy between its output and the training labels using stochas-
tic gradient descent (SGD) with back propagation [63]. The network is trained for a
fixed model number of 100 epochs after which the loss does not decrease significantly
anymore (see Fig. 4.10).

Figure 4.10: Training and validation losses of localizer. Binary cross entropy between outputs and
training labels is used as loss.

Training and performance of the decoder network
For the decoder network, the training set was generated using the RenderGAN frame-

work [102], each epoch consisting of 1000 batches with 128 samples. Early stopping
was used to select the best parameters of the network. As a validation set was used the
manually generated ground truth data, with a total of 66,000 samples. The loss for the
decoder network is the binary cross entropy between the true values of the individu-
als bits and the mean squared error between the true orientations and its predictions.
As with the localizer network, the training was done using stochastic gradient descent
(SGD) with back propagation [63]. The training and validation losses of the decoder
network are plotted in Fig. 4.11.

Both models are validated with the manually generated ground truth data from sea-
son 2014. The overall performance of the Pipelines is compared using five different
metrics: Recall, precision, mean Hamming distance (MHD), accuracy of the decoded
IDs, and computing time per tag. As Table 4.2, shows, the DCNN-Pipeline clearly out-
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Figure 4.11: Training and validation losses of decoder. Binary cross entropy for the bits and the mean
square error for the orientations are used as loss.

performs its counterpart in accuracy. Furthermore, the computing time required by
the DCNN-Pipeline is less than one-hundredth the time of its counterpart.

CV-Pipeline DCNN-Pipeline
Recall (Localizer) 0.90 0.98
Precision (Localizer) 0.84 0.99
MHD (Decoder) 1.08 0.17
Id Accuracy 0.66 0.87
Time per tag (ms) 177.54 1.43

Table 4.2: Pipelines performance comparison. The DCNN-Pipeline clearly outperforms the CV-
Pipeline in all five metrics, yielding higher accuracy values and consuming less computing resources.

4.4 Tracking and Temporal ID Filter Performance

This section presents the performance evaluation of the tracking module described
in section 3.4. The module implemented in python and is available for download from
its github repository (https://github.com/BioroboticsLab/bb_tracking). The module

https://github.com/BioroboticsLab/bb_tracking
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uses the random forest classifier available in python’s scikit learn library5. To train the
classifier two ground truth data sets (2015.1 and 2015.2) were manually defined using
a custom user interface that allows marking the position of an animal and defining its
ID 6.

Ground truth data sets
The data set 2015.1 comprises two sequences of images. The first one obtained

from camera 0, starting at 11:36, and lasting 100 frames; the second was obtained from
camera 1, starts at 04:51, and extends over 101 frames (more derails in Tab. 4.3). The
data set 2015.2 consists of a single set of images from camera 0, starting at 13:36, and
extending over 200 fps. To avoid overfitting, the data sets were chosen to contain both
high activity (around noon) and almost no activity (in the early morning hours).

The random forest classifier was trained and validated with the data set 2015.1 us-
ing stratified split. The data set 2015.2 was used for testing. Hyperparameters of the
random forest classifier were tuned using hyperopt-sklearn (https://github.com/hy-
peropt/hyperopt-sklearn)

Data set Date Time Frames Detections F-Positives Ind.
2015.1 18.09.2015 11:36 & 04:51 201 (3 fps) 18,085 222 (1.23 %) 144
2015.2 22.09.2015 13:36 200 (3 fps) 10,945 82 (0.75 %) 98

Table 4.3: Ground truth data sets. The number of detections corresponds to number of tags localized
and decoded by the DCNN-Pipeline over all frames in the data set.The number of false positives (F-
Positives) shows how many times the deep learning pipeline detects a detection when there is none.
The number of individuals (Ind.) indicates how many different bees are present in the data set.

Performance
After training and tuning of the classifier, the data set 2015.2 is processed using the

tracking module. Two iterations are performed, the first with a gap of 0 frames and the
second with a maximal gap of 14 frames. To compare the quality of the data before
and after being processed with the tracking module, four pre-tracking properties are
computed for the data set:

• track_ids_correct_truth: Proportion of ground truth tracks with correctly pre-
dicted ID.

5Scikit learn library: http://scikit-learn.org

6The tracking software is available to download from github: https://github.com/Biorobotic-
sLab/bb_tracking

https://github.com/hyperopt/hyperopt-sklearn
https://github.com/hyperopt/hyperopt-sklearn
http://scikit-learn.org
https://github.com/BioroboticsLab/bb_tracking
https://github.com/BioroboticsLab/bb_tracking
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• detection_ids_correct_truth: ID averaging on ground truth tracks, proportion
of detections with correctly predicted ID.

• detection_ids_correct_default: Proportion of correct detections after threshold-
ing each bit.

• tracks_in_scope: Relative number of tracks that in the best case could be found
given a gap size 0 or 14, for tracking step 1 or 2, respectively.

For the data set 2015.2, only 83% of all detections entering the tracking module
have a correct ID (detection_ids_correct_default). Given a perfect tracking algorithm,
averaging individual bits would assign correct IDs to 92% of all tracks (track_ids_cor-
rect_truth) and more than 99% of all detections (detection_ids_correct_truth). During
the first iteration only 35% of all possible tracks could be generated (tracks with no
gaps). Around 78% of all tracks have gaps of up to 14 frames (tracks_in_scope).

To measure the effect that each new iteration has in the data set, eleven post-tracking
properties are computed after each one of them:

• fragment_ids_correct_tracking: Proportion of fragments with correctly predicted
ID, refers to all fragments obtained from respective tracking step.

• detection_ids_correct_tracking: Proportion of detections with correctly predicted
ID after ID averaging on fragments found in respective tracking step.

• tracks_complete: Number of correctly assembled tracks, relative to tracks_in_scope.

• track_fragments_complete: Number of correctly assembled fragments (track-
lets with 0 or 14 gaps, respectively).

• track_detections_complete: Post-tracking, number of correctly associated de-
tections.

• fragments_inserts: Number of incorrectly inserted fragments (instead of gap).

• detections_inserts: Number of incorrectly inserted detections (instead of gap).

• fragments_id_mismatches: Number of incorrectly inserted fragments (instead
of other fragments).

• detections_id_mismatches: Number of incorrectly inserted detections (instead
of other detections).

• fragments_deletes: Number of incorrectly missing fragments.

• detections_deletes: Number of incorrectly missing detections.
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Figure 4.12: Results from first iteration. While many detections were correctly identified during the first
iteration, the fragments were generally shorter and only a small fraction of detections were be assigned
to complete fragments

The ID correctness for the tracks as well as for individual detections is measured
after each iteration. The first tracking iteration produces 292 correctly identified frag-
ments (73%); The second iteration yields 112 fragments with correct ID, since these
are longer fragments that include some fragments from the previous iteration, this ac-
counts for 82% of the fragments (fragment_ids_correct_tracking). The remaining in-
correct fragments are only a small part of the detections this due to their short length.

While the first iteration yields 96% correctly identified detections, the second it-
eration assigns correct IDs to 98% of the detections (detection_ids_correct_tracking),
a small increase in accuracy that has a significant impact on the completeness of the
tracks. Only 26% of the theoretically possible fragments (relative to tracks_in_scope)
were correctly found after the first iteration, a second iteration improves finds 69% of
the tracks with no error (tracks_complete).

Incomplete or incorrect fragments might exhibit deletions (missing detections),
mismatches (incorrect detection replaces the correct one) or inserts (incorrect detec-
tion instead of a gap). After both iterations only one of the fragments contains an insert
(fragment_inserts) of only one detection (detection_inserts). No mismatches were in-
troduced in the test set (fragments_id_mismatches and detections_id_mismatches). Af-
ter the first iteration were found 107 fragments (27%) with deletions and 25 fragments
(18%) were found after the second iteration (fragments_deletes). These deletions, how-
ever, correspond to only ∼ 2% of the whole set (detections_deletes).

After the tracking and the median-ID assignment, more than 98% of all detections
obtain the correct ID. This represents an improvement of 15% over the original 83%
returned by the DCNN-pipeline.
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Figure 4.13: Results from second iteration. The second iteration yields longer and more complete frag-
ments. More than 98% of the detections were correctly identified

4.5 Automatic Waggle Dance Decoder

The working principle behind the automatic waggle dance decoder is the detec-
tion of pixel clusters pulsating at a characteristic frequency. This oscillation of inten-
sity is observed in pixels that capture dancing bees during the waggle run. For this
phenomenon to occur, it suffices that the bee body is easily discriminable from the
background. The performance of the waggle dance decoder is not affected by the mod-
ifications made to the experimental design or the illumination setup throughout the
recording seasons. Therefore, the results discussed in this section can be considered
valid for any of the recording seasons.

Accuracy of attention module
The attention module (AM) is the only module of the waggle dance decoder sub-

system running in real time. It was implemented in C++ and uses the OpenCV library.
The hardware requirements are reasonably modest; during recording seasons both
PS3Eye cameras were connected to the same computer over USB 2.0 interface at two
separate USB controllers. The computer had a CPU Intel i7-26000 with four cores @
3.4GHz and 4 GB of RAM. Both processes combined consume less than 300 MB of RAM,
and depending on the sensitivity settings and the liveliness of the colony, it produces
about 1GB of data per day.

To evaluate the WR duration accuracy of the waggle dance decoder, the AM was exe-
cuted on a set of video sequences containing a total of 199 waggle runs [87]. The results
obtained by the AM were compared then to manually defined values. The duration of
the detected sequences and human-generated values was translated from number of
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frames into time units using the frame rate. Two different kind of errors were com-
puted, the signed gap for the first and last frame, and the absolute difference for the
WR duration. It was observed an overall delay in the detections made by the AM. On
average, the AM shows an average delay of 110.75 ms (SD= 110.92) for the start time of
the WR, and M= 208.54 (SD= 79.03) for the end. This translates into an overestimation
of the WR duration of M = 98 ms (SD = 139 ms).

Accuracy of the orientation module
The accuracy of the orientation module OM is evaluated with a test set of 200 wag-

gle run sequences. First, the orientation for each waggle run in the test set was man-
ually defined by a group of eight observers using a custom user interface. Using the
user interface, each observer traces the line that best fits the dancer’s body during the
waggle run. The average of the eight manually extracted angles is considered as the
reference value (ground-truth), and the distribution of values among the user’s obser-
vations is noted as a reference for acceptable performance of the OM. The human-
generated data showed a normal distribution with a SD = 6.66◦ (Fig. 4.14A). Running
the mapping module (MM) on the test set a total of 53 dances were detected, only
23 of which consisted of 4 or more waggle runs. An average angle was computed for
each waggle dance and each user; as expected, the standard deviation for manually
extracted angles is smaller (SD= 3.67◦) when computed at the dance level (Fig. 4.14B).

Figure 4.14: Distribution of the manually extracted angles for a 200 waggle runs test set. A group of
eight observers extracted manually the angle of 200 WRs. (A) The data shows a normal distribution with
a SD = 6.66◦ at the WR level and (B) a SD = 3.67◦ at the dance level.

The 200 WRs in the test set were analyzed using the OM and the results compared
to the ground truth values defined by the human observers. Although the mean er-
ror of the values obtained by the OM is relatively low (M = −5.18◦), a closer examina-
tion of the data reveals that ∼ 10% of the predicted values have an error close to ±180◦

(Fig. 4.15A). These outliers are a direct consequence of the method used by the OM to
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disambiguate the direction of the WR. Recalling section 3.5.2, the method used by the
OM to disambiguate between WR orientations is based on the locations of the dancer
during the WR. Although this method works for most of the cases, has some difficulties
with short WRs. Ignoring the outliers, the error distribution of the OM (M=−2.92◦, SD
= 7.37◦) gets closer to the one observed in the manually defined angles (Fig. 4.15B).

Figure 4.15: OM error distribution at the waggle run level. (A) The values returned by the OM for the
test set contain ∼ 10% of outliers. (B) Removing the outliers, the remaining values have a distribution
with a SD = 7.37◦, close to the one for manually defined angles.

Accuracy of the mapping module
The mapping module (MM) clusters together waggle runs that potentially belong

to the same dance based on their location in the data space XYT (see Fig. 3.25). To
evaluate the performance of the MM, an average value was computed for each of the
23 dances detected in the test set using the values returned by the OM. The resulting
error distribution at the dance level has a mean value of −3.27◦ and an SD of 5.48◦

(Fig. 4.16A), which as expected is bellow the standard deviation at the WR level.
The MM includes a RANSAC step to compute the average value for each dance dis-

regard the outliers. To demonstrate the effect that the RANSAC step has at the WR level,
a new error distribution was computed using exclusively the WRs used by the RANSAC
step to calculate the angles for the detected waggle dances. The new error distribu-
tion has a mean value of −2.02◦ and an SD of 6.13◦, well within the SD observed in the
human defined angles (Fig. 4.16B).

4.6 Conclusions

BeesBook has been in constant improvement since its conception. Major modifi-
cations were done to the setup after the first recording season and software modules
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Figure 4.16: MM error distribution. (A) Error distribution at the dance level has a mean value of −3.27◦

and an SD of 5.48◦. (B) The outliers removing effect of RANSAC is observed when mapping dances back
to WRs (M = −2.02◦, SD = 6.13◦).

are constantly tuned to obtain a better performance. The modular architecture of the
system allows substituting specific modules without changing the rest of the structure.

In the first part of this chapter, I describe the experimental design of the three
recording seasons. Each of the seasons represents an improvement over the previous
one. It is noteworthy that before BeesBook, conducting experimental observations with
a fully marked colony over uninterrupted extended periods of time was unfeasible with
any available technology. Consequently, there was no experimental protocol for a lon-
gitudinal study of these characteristics. The refined protocol for the 2016 season, not
only allows having a fully marked colony during the nine weeks of recording, but it also
allows knowing the age of all members at any point in time, adding even more value to
the data set generated by BeesBook.

The image analysis module based on DCNN outperformed the original CV-Pipeline.
Using a DCNN to address the most computationally intensive module in the system
reduces the overall demand for computing power; what hopefully will allow process-
ing the BeesBook images on general-purpose computers instead of recurring to super-
computers. Thanks to the improvement in decoding accuracy brought by the DCNN-
Pipeline, the tracking module can determine the correct ID for more than 98% of the
individuals in the hive. This number is even higher than state-of-the-art technologies
[70] that unlike BeesBook use high-end cameras and redundancy in the markers of up
to 26 bits. With 99.69% of all detections being assigned to their correct trajectory, the
tracking module provides an accurate image of the movement paths of bees. These
paths can then be used for analyses of the bees’ experiences during their lifetime.

The WDD performs with a detection accuracy of 90.07%. The decoded waggle ori-
entation has an average error of M=−2.92◦, SD= 7.37◦, well within the range of human
error with a SD = 6.66◦.

Having validated the capabilities of the system, the following chapter presents two
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case studies that show the potential of BeesBook.



Chapter 5

Case Studies

This chapter presents two different case studies that exemplify the type of behav-
ioral and ecological questions BeesBook can address. The first case analyzes the spatial
distribution inside the hive of individuals observed foraging from the same artificial
food source. This study was designed to test the hypothesis that bees forage in groups
defined according to a social structure inherent to the colony [59], a question that to a
great extent first motivated the development of BeesBook due to the lack of technolo-
gies that allow conducting this type of studies. In the second case, waggle dance ac-
tivity detected in the observation hive was mapped back to the field. Dance decoding
provides integrated information about the food sources available to the colony. This
data can be used for monitoring the floral resources in the landscape around the hive.
A total of 571 dances detected during a period of 6 hours were automatically decoded
and mapped back to the field. Using the Waggle Dance Decoder from BeesBook, a task
that using traditional methods would require numerous hours of manual work is re-
duced to just a few seconds1 2.

5.1 Spatial Distribution of Foraging Groups on the Honey
Comb

During recording season 2016 groups of foragers from the bee colony were trained
to 5 different artificial feeders (see Fig. 5.1). At the feeding station, one collaborator
kept track of the animals foraging from the place. Those individuals visiting the same
location more than once, during the same day, were regarded as belonging to the same

1The training of foragers to the artificial feeders was done in both experiments by Franziska Lojewski
during recording season 2016.

2The data analysis for the first case study was conducted by Maria Sparanberg, member of the
Biorobotics Lab. Further details can be found in his bachelor’s thesis [104].
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forager group. Unmarked bees were tagged to keep control o their visits but were not
considered as part of the forager groups since their age was unknown.

Figure 5.1: Artificial feeders locations. The feeding station was located at different distances from the
hive (here in yellow). The first days it was located at a distance of 210 m from the hive (F1-orange
marker), after that at 340m (F2-green marker), 425m (F3-blue marker), 400m (F4-magenta marker), and
540m (F5-brown merker).

Using these guidelines a total of 25 groups with an average of 10 members were
identified. During recording season 2016, we kept a record of the hatching day for each
bee as she was marked, using this information it is possible to obtain the age of the
foragers. The average age of the 25 groups goes from 24 to 42 days.

Using the positional data extracted by BeesBook this study analyzed the spatial prox-
imity of members from the same group when in the hive. This study aims to identify
indicators of potential social structures between bees foraging from the same feeding
location. As an example here are presented in detail the results obtained for one of the
foraging groups. The group in question was detected foraging from the feeding station
1 (F1), it consists of 8 bees and has an average age of 31 ± 3 days.

Spatial distribution.
In Fig. 5.2 and Fig. 5.3 is showed the spatial distribution of members of the forager

group over a period of one hour. Each member of the group is represented in a different
color. Each of the graphics corresponds to one of the hives’ side. For the graphic at the
top (left side of the hive), the entrance to the hive is located at the lower left corner,
whereas for the second graphic (right side of the hive) the entrance is at the lower right
corner.
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Figure 5.2: Spatial distribution of the foraging group (08/02/2016 from 4:00 to 5:00 AM). The image
on the top corresponds to the left side of the hive (Cam2-Cam3) and the image on the bottom to the
right side (Cam0-Cam1). Each member of the group is represented by a different color. Since these data
correspond to a period early in the morning before dawn, only a few of the bees show a high level of
activity, in particular, the bee 2160 (Image from [104]).

Euclidean distance.
The Euclidean distance between members of the group was computed to analyze

if the proximity within members of the group could be considered an indicator of the
existence of a social structure. Every time that at least two of the members of the forager
group are detected inside the hive their Euclidian distance is calculated and averaged
over one second. The measures are accumulated for periods of one hour to find their
median and average values over the 24 hours of the day. For the left side of the hive the
median distance variates between 371 and 2,378 px with an average of 1,429 px, for the
right side the median distance oscillates between 871 and 3,003 px with an average of
1,712 px.

These data is compared with values computed for 1,000 randomly generated groups
with the same average age and number of members. Again, for each second in which
at least two of the members from the forager group were detected in the hive, their av-
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Figure 5.3: Spatial distribution of the foraging group (08/02/2016 from 2:00 to 3:00 PM). The image on
the top corresponds to the left side of the hive (Cam2-Cam3) and the image on the bottom to the right
side (Cam0-Cam1). The data plotted in the graphics correspond to a busy period in the hive when most
of the foraging takes place. It is easy to notice that most of the activity is located close to the entrance
to the hive located at coord. (0,0) for the image on the top and at coord. (6000,0) for the image on the
bottom (Image from [104]).

erage Euclidean distance was computed. At each time one of these events happened
the Euclidean distance for all random groups with at least two members in the hive was
also computed. This information was used to calculate the percentile for the forager
group. For the left side of the hive the percentage fluctuated between 2% and 73% dur-
ing the day with an average of 42%. For the right side the percentile oscillated between
25% and 81% with an average of 51%.

Although these data cannot be used to validate the foraging groups’ hypothesis,
the intention of presenting this kind of analysis in this chapter to show the technical
capabilities of the system rather than to draw conclusions. I consider this type of work
out of the scope of this thesis, but I hope that the case studies here presented will help
the reader to recognize the potential of the tool system.
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5.2 Mapping Dances Back to the Field

To exemplify the use cases of the automatic detection of waggle dances, dance ac-
tivity detected in the observation hive was mapped back to the field. During the record-
ing season of 2016, a group of foragers from the colony was trained to an artificial feeder
placed 342 m southwest of the hive. On the 16th of August, dance activity detected by
the attention module (AM) during a period of 6 hours (11:00 - 17:00) was collected and
further processed by the rest of the modules of the automatic waggle dance decoder.
The 539 detected dances are depicted in Fig. 5.4 as purple circles. The saturation of
each circle is proportional to the number of waggle runs associated to that particular
dance, where white denotes the minimum (4 WRs) and deep purple the maximum (17
WRs) (5.8 in average).

Figure 5.4: Detected dances mapped back to the field. Dance detections were averaged over at least
four waggle runs and translated to a field location with respect to the sun’s Azimuth. A linear mapping
was used to convert waggle duration to metric distance. The saturation of each circle is proportional to
the number of waggle runs associated to the dance. The hive and feeder positions are depicted with a
white and green triangle, respectively. The dashed line represents the average dance direction.

A total of 3,287 WRs were detected and processed by the orientation module (OM);
while the mapping module (MM) identifies 539 dances with 4 or more associated WRs.
The angles obtained by the MM and OM were translated to angles on the field with
reference to the sun’s azimuth at the time the WRs were detected. As the dots in Fig. 5.4
and the error distributions in Fig. 5.5 show, most of the detected dance activity clusters
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around the artificial feeder. The mean angular error with respect to the artificial feeder
is of only 0.69◦ at the WR level and 2.35◦ at the dance level.

Figure 5.5: Error distribution with respect to the orientation of the artificial feeder. (A) From the error
distribution at the waggle run level (M = −0.69◦, SD = 51.93◦) (B) and at the dance level (M = −2.35◦, SD
= 54.85◦) it is clear that most of the dance activity pointed in the direction of the artificial feeder.

In Fig. 5.4, it can be noted that the dances around the artificial feeder are rather
scattered. Although this distribution of the mapped dances can be misinterpreted as
an error from the OM, it is actually caused by the dancers themselves [120, 112, 108].
This divergence in the orientation of waggle runs correlates negatively with the dis-
tance to the advertised location. To analyze the precision of the dancers advertising
the artificial feeder, dances and WRs with an angular error of ±45◦ were selected. The
error distribution for the filtered data shows a SD = 11.12◦ at the dance level and SD
= 14.37◦ at the WR level (see Fig. 5.6), what is consistent with previous observations
documented by Landgraf et al. [62].

To map dances back to the field, in addition to their orientation with respect to the
solar azimuth, it is necessary to transform their average WR duration to distance using
a linear factor. Bees encode accumulated optical flow rather than metric distances in
their waggle runs. Hence, the distance/duration factor is particular to each colony and
geographical situation. To calibrate the distance/duration factor of the colony in this
study, the duration of all WRs signaling towards the artificial feeder (±10◦) was averaged
(M = 582.79 ms, SD = 196.09 ms ). The mean duration of 582.79 ms was considered as
reference for the 342 m distance to the artificial feeder and the rate of both values (342
m/582.79 ms) as the linear factor to map the rest of the dances.

It is unlikely that the set of waggle runs used to compute the distance/duration fac-
tor would have contained waggle runs signaling a different food source since natural
food sources were scarce in that time of the year. Furthermore, the coefficient of varia-
tion of ≈ 0.34 (196.09/582.79) for the duration distribution is consistent with the value
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Figure 5.6: Precision of the waggle dance. Dance activity pointing towards the artificial feeder (±45◦)
is very accurate but not as precise. (A) It has mean error of 2.58◦ with an SD = 14.37◦ at the waggle run
level, (B) and a M = 2.33◦ with an SD = 11.12◦ at the dance level.

Figure 5.7: Duration distribution. The duration of 2024 WRs signaling towards the artificial feeder
(±10◦) was averaged (M = 582.79 ms, SD = 196.09 ms ) to calibrate the distance/duration factor of the
colony.

documented by Landgraf et al. [62].

5.3 Discussion

The two case studies presented in this section show how, using BeesBook, researchers
gain access to a variety of data that up to now was either unavailable or only partially
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accessible. The data extraction effort, which using alternative methods would require
a significant manual work, is reduced to a matter of minutes with the system.

It is important to remember that BeesBook was conceived as a tool for researchers
looking to reduce the manual effort required to collect and decode data. Likewise, the
experiments described in this chapter aim to showcase precisely the technical capabil-
ities of the system rather than to give an extensive list of them. It is important to note,
therefore, that the focus of this work is first to lay the technical foundation for future
case studies. I consider this type of work out of the scope for this thesis, but I hope
that researchers from other fields will recognize the potential of the tool and develop
experiments of their own which make use of the technologies presented here.



Chapter 6

Concluding Remarks

This dissertation introduces the BeesBook system, a successfully implemented vision-
based solution for the automatic tracking of behavioral activity in honey bee colonies.
The system consists of a custom-made recording setup and software modules for iden-
tifying uniquely marked bees and decoding of waggle dances. BeesBook is unique in its
approach and capabilities: it can identify and decode up to 90% of all the waggle dance
activity, the location, orientation, and identity of almost all colony members (∼ 98%)
inside the observation hive, 24 hours a day over several weeks. No other available tech-
nology has even comparable capabilities.

BeesBook was developed in response to the manifest need for automation of behav-
ior quantification in studies of bee colonies. While studies on animal behavior have be-
come increasingly quantitative over the last decades, technologies for behavior quan-
tification have not developed at the same pace, and manual scoring is still to this day
the most common approach to this task. Relying on human observers to track a high
number of individuals, as is the case in bee colonies, poses several disadvantages, chief
among which is the introduction of subjectivity as well as constraints on the depth and
breadth of the observations.

By automating the data acquisition process, BeesBook is able to monitor a high
number of animals during extended periods of time. Likewise, the data extraction ef-
fort, which with alternative methods require days of manual work, is reduced to a mat-
ter of minutes with the use of the system. Furthermore, removing the human factor
from the data collection process ensures the objectivity of the gathered data.

BeesBook has been conceived with a modular architecture of reasonably self-contained
elements in mind. This structure favors the incremental development of software and
hardware components as well as the improvement of the already existing elements
without requiring significant adaptations to the rest of the system. Thanks to the ar-
chitectural style of the system, it was possible to iteratively and independently improve
the recording setup, most of the software elements of the waggle dance decoder, and
the image analysis module. The accuracy of BeesBook on determining the correct IDs
of marked animals in the hive is higher than that reported by Mersch et al. [70] (98% vs.
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95% respectively). Whereas the current state-of-the-art system developed by Mersch
et al. [70] relies on high-end cameras and markers with 26 bits of redundancy, Bees-
Book circumvents this need for expensive hardware and bit redundancy through the
use of a highly reliable decoder.

Using less expensive hardware means lower image quality, which in turn introduces
uncertainty when it comes to identifying elements in images. In BeesBook, this mani-
fests itself in the first layer of abstraction as potentially misread IDs, which then propa-
gate down the data pipeline. BeesBook tackles this challenge by quantifying the uncer-
tainty early in the process and adding algorithms that are able to make more intelligent
decisions based on probabilities. The image analysis module delivers the marker IDs
as a set of probabilities rather than discrete IDs as would be the case in systems with
high-end cameras where the identification usually has a high level of certainty. Given
that behavioral studies in bees rely on being able to track a given individual through
time, it is clear how this can be accomplished by linking consecutive frames contain-
ing the same ID in the ideal scenario. Once uncertainty is introduced, tracing reliable
trajectories requires to consider additional parameters. This is accomplished by the
tracking module within the system, which takes into consideration position and ori-
entation of individuals in addition to their identity, thus enabling the tracing of tra-
jectories despite possible single faulty detections within a given path. Unlike the case
with discrete IDs, adding additional parameters makes our trajectory tracing method
more robust once the cost of the hardware is taken into consideration.

6.1 Contributions

This thesis makes four major contributions:
First, the system itself. The modular design of the system favors the incremental

development of software and hardware components and allows for the constant im-
provement of multiple elements at a time. The hardware components and all the soft-
ware elements that precede the image analysis, ultimately have a significant impact on
the quality of the data delivered by the last stage of the system. Therefore, is of great
importance to continually search room for improvement in these early stages of the
system. Starting from the marker, that was specially designed to be used in longitu-
dinal studies of bee colonies within the hive, i.e., that it could unambiguously identify
thousands of individuals, functional under infrared light, and that could withstand the
particular intense activity of the bee during the summer without restricting its mobility.
The current iteration of BeesBook, while using budget components for the recording
setup, manages to generate high-quality raw data for the rest of the processing pipeline
through either the adaptation of existing hardware (as it is the case with the cameras)
or custom-built components. The hardware elements of the recording setup are com-
plemented by software modules for image acquisition and storage designed to operate
over extended periods of time without pause with high levels of reliability. BeesBook’s
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image analysis module has a significant weight on the overall performance of the sys-
tem; it is mainly thanks to the level of accuracy of this module that BeesBook outper-
forms state-of-the-art technologies like the one proposed by Mersch et al. [70]. Fur-
thermore, BeesBook not only outperforms similar techniques on the level of accuracy
but it also enables conducting experimental observations with unprecedented levels
of breadth and depth.

A second significant contribution is the experimental design from season 2016.
Previous to the development of BeesBook, conducting experimental observations with
the depth and breadth from the three recording seasons documented in this thesis
was not pursued, since processing the generated raw data with available technologies
would require a enormous amount of resources. Consequently, there was no experi-
mental design for similar cases to BeesBook’s recording seasons and one had to be de-
signed from zero. The original procedure followed during recording season 2014 was
improved for 2015 and by season 2016 BeesBook’s experimental design has achieved a
level of refinement that reflects in well-defined procedures and an overall process that
takes full advantage of BeesBook’s potential.

A third contribution is the waggle dance detector. Although this system operates
under BeesBook, and it is expected that data from both processing pipelines can be
fully integrated to augment the variety of data provided by the system, it can also op-
erate as an entirely independent system. With a detection accuracy of 90.07% and a
decoding error well within the range of average human error, the waggle dance de-
coder can provide valuable information and save hundreds of hours of manual work
to behavioral biologists and ecologists by decoding and mapping the dance activity of
the hive. Furthermore, its implementation is very simple and does not require high-
end equipment for video recording or high performance computing, what makes it
attractive to a broader public than the full BeesBook system.

I consider as a fourth major contribution of this thesis the three recording seasons.
The data sets stemming from the three recording seasons are unique in their extension
and number of animals under observation. For each season around 60 million images
were recorded, what translates to more than 6 billions of detections. With the high level
of accuracy of he most recent implementation of the pipeline, that can determine the
correct ID for more than 98% of the individuals in the hive, no other study conducted
until now comes even remotely close to the characteristics of BeesBook’s data sets. In
particular, the season 2016 also adds the age of each one of the individuals to the data
set, what makes it even more interesting to researchers.

6.2 Directions for Future Work

BeesBook was conceived as a framework for the incremental implementation of
hardware and software modules. As such, there will always be room for improvements
such as the automatic detection of focal behaviors or the implementation of the tag
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decoder in a portable device to ease the data recollection at the feeding station and
closing the loop of automated data extraction in behavioral experiments with honey
bees. Nevertheless, I consider the most important and urgent work the analysis and
interpretation of the existing data sets stemming from the recording seasons. With
feedback from biologist and researchers from other fields, new lines of development
can be discovered what in turn will generate new data sets, setting in motion a loop
of feedback that at each iteration will provide a clearer picture of the life at the colony
and the mechanism laying at the core of its collective behavior. The ultimate goal of
BeesBook is using this information to build a virtual hive in which hypothesis related
either to biology or collective intelligence can be reliably tested.

A waggle dance decoder based on deep convolutional neural networks (DCNN).
The main constraint for the successful implementation of a DCNN is the availability
of labeled data. Using the automatic waggle dance decoder presented in this work
as a generator of labeled data, a DCNN based version of the software could be devel-
oped. Tests have already been conducted in the Biorobotics Lab and they have de-
livered promising results. The transition of technology in the waggle dance decoder
would potentially translate into a better performance and the speed up of the decod-
ing process as it happened with the image analysis module within BeesBook. This sort
of improvements could lead to the mapping of foraging activity in real time, a valuable
resource for researchers in the field of ecology.
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Zusammenfassung

Diese Dissertation beschreibt die Entwicklung und Implementierung eines Bees-
Book Systems, welches ein Bildverarbeitungsverfahren zur automatisierten Erkennung
und Analyse des Verhaltens von Bienenstöcken auf der Ebene einzelner Individuen
sowie des kollektiven Verhaltens ermöglicht.

Verhaltensanalysen von Bienenpopulationen setzen umfangreiche Daten voraus,
die das Verhalten einzelner Mitglieder der Population beschreiben. Diese Daten müssen
in der Regel manuelle erzeugt werden, welches eine zeitintensive und aufwändige Auf-
gabe darstellt. Folglich waren Verhaltensdaten bisher nur auf kleine Teilbereiche (be-
zogen auf Zeit, Raum und Identifizierung der Bienen) des Populationslebens beschränkt.
Die automatisierte Datengewinnung des BeesBook Systems erlaubt es, eine hohe An-
zahl von Individuen über längere Zeiträume zu beobachten, woraus sich zahlreiche
Möglichkeiten für umfassende und inklusive Untersuchungen ergeben.

Das BeesBook System verwendet eindeutige, binäre Markierungen, um die Position
und Identität einzelner Individuen mit Hilfe von Bildverarbeitungssoftware zu bes-
timmen. Abhängig von der Populationsgröße und den Zielen der Untersuchung er-
laubt dieses flexible Design der Markierungen die Implementierung vielfältiger fehler-
korrigierender Codes. Die an die Thoraxform der Biene angepassten Markierungen
bilden eine Oberfläche, die den durch die verschiedenen Aktivitäten in- und außer-
halb des Bienenstocks hervorgerufenen Belastungen standhält.

Um die Leistung der einzelnen Systemkomponenten bewerten und verbessern zu
können, wurden insgesamt drei Experimente durchgeführt. Die Untersuchungen wur-
den im Sommer der Jahre 2014, 2015 und 2016 durchgeführt und dauerten jeweils neun
Wochen. Insgesamt wurden ca. 65 Millionen Bilder aufgenommen. Vor Beginn der
jeweiligen Untersuchung wurde jedes Mitglied der Bienenpopulation markiert und
in einen Beobachtungsstock überführt. Die Aktivitäten innerhalb des Bienenstocks
wurden mit vier hochauflösenden Kameras aufgenommen. Die so erzeugten Daten
wurden auf einem Komplex des norddeutschen Verbundes für Hoch- und Höchstleis-
tungsrechnen gespeichert. Die Schwänzeltänze wurden in Echtzeit mit einem zweiten
Set von Kameras identifiziert, welches aus zwei Hochgeschwindigkeits-Webcams be-
stand. Während der drei Untersuchungszeiträume wurde das experimentelle Design
hinsichtlich der Eignung der erzeugten Daten zur Analyse des kollektiven Verhaltens
optimiert.

Um die Position, Orientierung und ID jeder markierten Biene zu erfassen, wurden
die gespeicherten Bilder unter Zuhilfenahme optimierter Bildverarbeitungssoftware
verarbeitet. Anschließend wurden diese Daten weiterverarbeitet, um Bewegungspfade
zu erzeugen, welche in Kombination mit den Informationen der Schwänzeltänze ein
neuartige Einblicke in das Innenleben eines Bienenstocks erlauben. Die durch dieses
System gewonnen Informationen ermöglicht es bereits bestehende Erkenntnisse Bi-
enenverhalten zu validieren. Darüber hinaus hat diese Forschungsarbeit bisher un-
bekannte Verhaltensdaten erzeugt, die letztendlich unser Verständnis von Bienenstöcken
und seinen Schwarmintelligenz erweitern kann.
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