
Practical Issues of Implementing a Hybrid Multi-NIC Wireless

Mesh-Network

Mesut Güne³ Bastian Blywis Felix Juraschek Philipp Schmidt
Computer Systems and Telematics
Institute of Computer Science

Freie Universität Berlin, Germany
{guenes,blywis,jurasch,phils}@inf.fu-berlin.de

Technical Report
TR-NO: TR-B-08-11

August, 2008

Institute of Computer Science, Freie Universität Berlin, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/199420685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
{guenes, blywis, jurasch, phils}@inf.fu-berlin.de

2

Contents

List of Acronyms vii

1 Introduction 5

1.1 Motivation . 5
1.2 Summary of the DES testbed . 5
1.3 Structure of the paper . 7

2 Software Architecture and Management 9

2.1 Testbed Server . 9
2.2 Boot Process . 10
2.3 File System Organization . 11
2.4 User Administration . 12
2.5 Experiments . 12

3 Technical Aspects 15

3.1 Linux Network Stack . 15
3.1.1 Sockets . 16
3.1.2 Routing Basics and Packet Handling 16
3.1.3 Netlink Inter Process Communication 20

3.2 General Routing Protocol Implementation Approaches 21
3.2.1 Limitations and Di�erences . 22
3.2.2 Layer 2.5 Approaches . 22
3.2.3 Related Work . 23
3.2.4 Outlook . 24

3.3 IEEE 802.11 Stack . 24

4 Practical Experiences & Pitfalls 27

4.1 Antenna Separation . 27
4.1.1 Basic Setup . 28
4.1.2 Network Topology and Environment 28
4.1.3 Interference . 28
4.1.4 USB Throughput . 29
4.1.5 WLAN Throughput and Delay . 29
4.1.6 Multi-Transceiver Comparison . 30

4.2 Network to Data Link Layer Mapping . 31
4.2.1 ARP Flux . 31
4.2.2 Experienced Symptoms . 32
4.2.3 Impact on Experiments . 33

i

ii Contents

4.2.4 Operation System Speci�c Design Reasons 33
4.2.5 Solution Approaches . 34

4.3 Network Booting . 35
4.4 Time Synchronization . 36
4.5 Universal Serial Bus . 36

5 Conclusion 39

List of Figures

1.1 DES-Mesh Testbed Architecture . 6

2.1 File System Organization . 12

3.1 Linear Packet Space . 18
3.2 Net�lter Hooks . 20

4.1 Map and topology of the experiment setup. 28
4.2 Spectrum of three NICs using orthogonal channels 29
4.3 Single-transceiver throughput and delay. 30
4.4 Multi-transceiver throughput over 4 hops. 30
4.5 ARP Problem Example . 32

iii

iv List of Figures

List of Tables

4.1 Multi-transceiver throughput using 3 disjoint router pairs 30

v

vi List of Tables

List of Acronyms

AODV Ad-hoc On-demand Distance Vector
ARP Address Resolution Protocol
ASlib A library with the goal to help developers to

implement mesh-/manet protocols
ATM Asynchronous Transfer Mode

BGP Border Gateway Protocol

CST Computer Systems and Telematics

DES Distributed Embedded Systems
DHCP Dynamic Host Con�guration Protocol
DLL Data Link Layer
DNS Domain Name System
DSL Domain Speci�c Language

ESSID Extended Service Set IDenti�er

FDDI Fiber Distributed Data Interface
FIB Forwarding Information Base

ICMP Internet Control Message Protocol
IEEE Institute of Electrical and Electronics Engi-

neers
IGMP Internet Group Management Protocol
IP Internet Protocol
IPC Inter Process Communication
ISP Internet Service Provider

MTU Maximum Transmission Unit

NFS Network File System
NIC Network Interface Card
NTP Network Time Protocol

vii

List of Acronyms 1

OFDM Orthogonal Frequency Division Multiplex
OS Operating System
OSPF Open Shortest Path First

PHY Physical Layer
PXE Preboot eXecution Environment

QoS Quality of Service

RPDB Routing Policy Database
RSSI Received Signal Strength Indicator

SCTP Stream Control Transmission Protocol
SSH Secure SHell

TCP Transmission Control Protocol
TFTP Trivial File Transfer Protocol
TOS Type Of Service

UDP User Datagram Protocol
USB Universal Serial Bus

WEP Wired Equivalent Privacy
WLAN Wireless Local Area Network
WMN Wireless Mesh Network
WPA Wi-Fi Protected Access
WSN Wireless Sensor Network

2 List of Acronyms

Abstract

Testbeds are a powerful tool to study wireless mesh and sensor networks as close as possible
to real world application scenarios. In contrast to simulation or analytical approaches
these installations face various kinds of environment parameters. Challenges related to the
shared physical medium, operating system, and used hardware components do arise. In
this technical report about the work-in-progress Distributed Embedded Systems testbed of
100 routers deployed at the Freie Universität Berlin we focus on the software architecture
and give an introduction to the network protocol stack of the Linux kernel. Furthermore,
we discuss our �rst experiences with a pilot network setup, the encountered problems and
the achieved solutions. This writing continues our �rst publication and builds upon the
discussed overall testbed architecture, our experiment methodology, and aspired research
objectives.

3

4 List of Acronyms

CHAPTER 1

Introduction

1.1 Motivation

Wireless networks have been an emerging technology since the last two decades. While all
of them shall enable communication between remote hosts over a shared wireless broadcast
medium, their technologies, network topologies and characteristics are manifold. One of
the prominent kinds of networks are the wireless mesh networks (WMN). They are set up
by non-pro�t communities, by Internet Service Providers (ISP), or by individuals in rural
areas. The most important application scenario of WMNs is to provide network access to
arbitrary groups of users. Mesh networks usually posses a stationary core network that
routes data towards gateway nodes or vice versa to a client. Routing in wireless networks
has to deal with the properties of the wireless medium. The bit error rates are many
times higher than in wired networks. Links cannot be assumed to be bidirectional or to
provide the same bandwidth in both directions. Further on, due to the mobility of clients
or arbitrary objects, e�ects like temporary loss of connection and short-term fading have
to be considered. To study these issues testbeds are a viable option. While they are
limited in scalability, they do not rely on models abstracting from real world properties
as do simulators. Thus, the usage of real hardware and operating systems ensure research
as close to reality as possible.

In this report we discuss the hybrid wireless Distributed Embedded Systems (DES)
testbed that supports holistic research of wireless networks. We focus on the physical and
technical aspects that have been of interest in the setup phase. With this publication we
continue our introduction of the DES testbed [1]. This paper has several goals. On the
one hand, we want to report our �rst experiences and the encountered problems. On the
other hand, students that plan to do their thesis in the Computer Systems and Telematics
(CST) work group shall be introduced to the relevant topics. We pursue to minimize the
needed training period with our writing. Chapter 3 is of special interest for anybody
interested in doing a routing protocol implementation or kernel related modi�cations.
The following section summarizes the most important information that are required for
the understanding of this writing.

1.2 Summary of the DES testbed

The DES testbed is a hybrid network. The nodes of our network contain a small form-
factor mainboard equipped with an Intel x86 compatible CPU and at least three network

5

6 Chapter 1. Introduction

Figure 1.1: Architecture of the hybrid testbed consisting of mesh routers, mesh clients,
sensor nodes, and management component. Sensor nodes may be connected with wired
extensions.

cards compliant to the Institute of Electrical and Electronics Engineers (IEEE) 802.11b/g
standard. The network interface cards (NIC) are connected via universal serial bus (USB)
using a powered hub. The focus on USB devices instead of Mini PCI achieves virtually
unlimited expandability for future extensions. We call the corresponding network built by
these wireless mesh routers DES-Mesh. Contained in the same enclosure are one or more
wireless sensor network (WSN) nodes creating a second in parallel testbed to the WMN.
The sensor network testbed is named DES-WSN and consists of hardware based on an
ARM7 core and Chipcon CC1100 transceiver. The combination of a multi-transceiver
WMN and WSN will be referred to as DES testbed. This setup distinguishes our testbed
from others.

At the time of the writing the DES testbed is in the process of setup with a pilot net-
work of 35 routers located in the computer science institute of the Freie Univeristät Berlin.
In the �nal stage up to 100 will be deployed comprising several of the adjacent buildings.
The network has the property of being persistent as it is a permanent installation.

As depicted in Figure 1.1 our overall architecture is a three layered one. The station-
ary mesh routers make up layer 1 while the mobile clients of the network are layer 2.
Subsequently, the sensor nodes form layer 3. We do not make any speci�cations but leave
the decision whether mesh clients and sensor nodes route to the application. We plan to
use mobile phones, laptops, and PDAs as mobile hosts for experiments. The network is
therefore partially mobile while the stationary routers are always present. The topology
is con�gurable. The last component of the DES testbed is the testbed server which is the
central management, monitoring, and experimentation platform and stores all vital data.

For further detailed information about the DES testbed architecture, hardware, and

1.3. Structure of the paper 7

experiment methodology the reader is referred to our previous technical report [1].

1.3 Structure of the paper

The remainder of this Technical Report is structured as follows. In Chapter 2 we introduce
the overall software architecture of our testbed infrastructure including topics related to
the testbed server as well as concerning the mesh routers. We continue in Chapter 3 with
an overview of the Linux kernel with the focus on the network stack and a discussion about
the di�erent routing protocol implementation approaches. Subsequently, in Chapter 4 we
discuss our �rst practical experience with the testbed hardware and encountered pitfalls.
Viable solutions are o�ered. The paper closes in Chapter 5 with some conclusions.

8 Chapter 1. Introduction

CHAPTER 2

Software Architecture and Management

This chapter describes the software architecture applied to the di�erent components of
the DES testbed. We present the particular operating systems and con�guration of the
testbed server, mesh routers, and sensor nodes. Finally, we elaborate our approaches to
support a multi-user environment and how experiments are actually performed on the
DES testbed.

2.1 Testbed Server

Our testbed server consists of a virtual server with the hostname UHU located in the
network of the Freie Universität Berlin. A Debian Linux distribution of version 4.0 (Etch)
is installed as the Operating System (OS). UHU is connected to the university network
via Ethernet and is only accessible from hosts in this particular network. UHU can access
the world-wide Internet over the university network. At the time of this writing, UHU
provides manifold services; on one hand for the mesh routers and sensor nodes forming
the hybrid testbed and on the other hand for the maintainers and users of the testbed.

UHU provides a Dynamic Host Con�guration Protocol (DHCP) service, which assigns
a static Internet Protocol (IP) address to each mesh router according to the MAC address
of its Ethernet network interface. With the acquired network layer address a mesh router
can mount the root �le system via the network �le system (NFS) protocol, which is also
located on UHU. In the following sections the boot process as well as the organization of
the root �le system of the mesh routers is described.

The hostname of a mesh router is determined by a simple system which takes its
location into account. It is composed of the name of the building and the room number,
in which the mesh router is placed. For instance the mesh router with the hostname t9-157
is located in our institute building Takustrasse 9 in room number 157. In combination
with dnsmasq [2], a light-weight Domain Name System (DNS) server, the nodes can be
addressed with the issued hostname, which is much more comprehensible and convenient
for experimenters than using the IP address.

Access to the testbed server is provided in a twofold way for testbed maintainers and
users. A Secure SHell (SSH) daemon is running on UHU which enables remote admin-
istration of the testbed server. This shell access is restricted to the testbed maintainers.
User management of the testbed experimenters is a task of the DES-EXP web application
which is integrated into our webserver architecture.

At the moment this architecture consists of an Apache2 and a Tomcat server. The

9

10 Chapter 2. Software Architecture and Management

Apache2 server listens on port 80 and depending on the URL redirects the requests to
the corresponding server. In the case of the DES-EXP application the request will be
redirected to the Tomcat server which hosts the application, which is implemented as an
servlet in Java and therefore depends on a Java Server-Engine. DES-EXP as described
in [1] provides the interface to create, upload, and execute experiments. Further on, it
can be used to download or evaluate measured data. We chose this approach and did
not install just a single Tomcat server because we also want to host various other web
applications on a di�erent platform than the Java Servlet-Engine. With our webserver
architecture we can easily expand the o�ered web services and are not restricted to a
single platform. We will add a forum, a bug tracking component, and a Wiki to our
web services soon. The Wiki will feature useful information about the testbed and its
con�guration and manuals about the management components. Its content is aimed at
students who take part in the lab exercises and is also meant as an introduction for the
research sta�.

Finally, the testbed server hosts a PostgreSQL database, in which logging data of the
testbed operation will be saved for further investigation. For this purpose we will use
a Round Robin Database (RRD) tool, which allows us to get periodic data about the
network state. Results of experiments will also be stored in the database, which is used
for evaluation and as input for the visualization tool DES-VIS.

2.2 Boot Process

All mesh nodes are diskless to minimize the points of failure and to reduce costs. The
primary of the two Ethernet network interfaces of the Alix2c2 mainboard can be con�gured
to boot over the network. The router sends DHCP requests that are answered by the
testbed server. The mapping of MAC to IP addresses is con�gured statically at the time
of this writing. After receiving a DHCP response, the router learns its layer 3 address, the
subnet, and information about the next step of the process. This includes the IP address
of a server o�ering a bootable OS image. In our case this is also the testbed server. The
router downloads a Preboot eXecution Environment (PXE) image via the Trivial File
Transfer Protocol (TFTP) to continue with the next step. The SYSLINUX [3] derivative
PXELINUX is utilized to download the real Linux kernel that is stored in the RAM of the
router. After decompression, the control is handed over to this kernel. Due to the kernel
parameters an IP address is requested via DHCP again. The same IP address is assigned
as the �rst time. The root �le system is then mounted via NFS and the standard kernel
boot-up procedure takes place. During the System V initialization the network interfaces
are brought-up by the kernel. A third time the same IP address is acquired via DHCP.
After this step the router is a fully functional node of the testbed. The whole process
consists of the following steps:

1. Mesh router is switched on

2. Mesh router boots over the network

3. Download of PXE image

4. Download of Linux kernel image

5. Standard kernel boot-up procedure

2.3. File System Organization 11

Although it seems unnecessary to acquire the same IP address three times during start-
up, the whole process is straight forward and applies to the common default approach. Due
to this con�guration mesh routers can be easily deployed in arbitrary rooms or relocated
without changes to the OS. As we will discuss in Section 2.3 the only information that
has to be updated is the hostname of the mesh router stored on the testbed server.

2.3 File System Organization

The mesh routers use multiple �le systems. All mesh routers share a root �le system that
is provided over NFS by the testbed server and is mounted read-only. This avoids write
after write hazards and ensures a sane root �le system as no entity but the testbed server
can modify it. We pursue the approach that every router shall have as little rights as
possible and just as much as necessary. Furthermore, the shared root �le system simpli�es
management and updates of the OS as we need to do tasks just in one location.

Anyhow, the Linux system needs write access to some directories and �les. The most
prominent example is the /tmp directory where temporary �les are stored. For this cause
tempfs is utilized which uses virtual memory that can be mounted like a normal �le
system. Everything in this directory is lost after a reboot. /tmp is mounted by default by
the Debian distribution. There are other locations for which the mesh routers need write
permission but normally would be part of the root �le system. An example is /var/run.
We create these as subdirectories in /tmp and use symbolic links (symlinks) to map them.
For this, we copy the content of the directory /ro, where template �les are stored, to
/tmp during the boot process. This is necessary as the corresponding directories and �les
have to exist and are not created on demand.

Log �les needed for evaluation and error diagnosis have to use persistent storage. Logs
are normally stored in /var/log. The testbed server provides individual NFS exports for
each router that are named after their hostnames. The routers mount the correspond-
ing network drive to /mnt/data during the boot process. Directories like /var/log are
mapped via symlinks to the /mnt/data entries. As the information of all routers is stored
on the testbed server we can easily access these with shell scripts to evaluate measured
data or to diagnose errors.

Our approach might seem complex on the �rst sight but the mentioned advantages
are bene�cial for the management of the testbed and experiment execution. The whole
con�guration is shown in Figure 2.1. In summary, we divide the root �lesystem into the
following parts:

� temporary data: These data are lost after reboot and mounted as tempfs.

� persistent data: Each mesh router has its own writable data area that is mounted
via the NFS protocol, provided by the testbed server.

� root: Everything else is read-only and shared by all mesh routers mounted as NFS.

The �le system organization makes the DES-Mesh testbed scalable beyond the envisioned
100 routers and sets the foundation for extensive network wide experiments.

12 Chapter 2. Software Architecture and Management

/
etc

tmp

var

etc

var

ro

lock
run

lock
log

resolv.conf

resolv.conf
mnt

data
var

log

run

persistent
(stored on

testbed server)

temporary
(created as

tempfs)

Figure 2.1: File system organization of the mesh routers. The arrows with solid lines
depict symbolic links while the dashed one symbolizes a copy action.

2.4 User Administration

As already brie�y described, we enforce a twofold user management system by strictly
separating users who want to perform experiments from the testbed maintainers and
administrators. Shell access via SSH is restricted to the latter group and due to the
connection to the Internet, software updates can be easily done. With the sudo command
we are able to grant (selected) superuser rights to a particular user needed to perform
maintenance tasks.

Testbed users do not have a shell account for the Linux system and are managed
by our management component. Testbed administrators can create, modify, and delete
testbed users within the DES-EXP application. Thereby, we are able to grant rights or
utter restrictions to speci�c users, which becomes especially useful, when di�erent users
should be able to address only particular subsets of testbed nodes when working on lab
assignments simultaneously.

2.5 Experiments

With theDES-EXP management console experiments can be created as described in detail
in [1]. Each experiment consists of a description written in DES-CRIPT and additional
�les such as kernel modules, shell scripts and binary programs which will be executed
during the experiment. To keep track of each experiment, general information such as the
experiment id, its status, and the starting time will be saved in the PostgreSQL database
which ensures an easy access for the experiment scheduler. Next to that, a folder for
each experiment is created in /des/experiment/<EXPERIMENT-ID> which contains the
DES-CRIPT description and all additional �les.

When an experiment is started, the preparation of the testbed begins by interpreting
the experiment description. First, possible changes to the root �le system of the mesh
routers have to be carried out. As for now, we do not support self-compiled kernel images

2.5. Experiments 13

but provide a variety of di�erent kernel images of which the user can select one. Support
of self-compiled kernel images is scheduled as future work.

There are many options to ensure that the mesh routers can boot di�erent kernel
images without the need to clone the entire root �le system. The DHCP and TFTP �les
can be modi�ed accordingly so that it is possible to specify the kernel image which will
be booted depending on the MAC address of the mesh router. After the reboot process
the additional �les will be copied into the root �le system of the mesh routers. The
mesh router loads the kernel modules, either custom ones supplied by the user or already
installed ones. The support of custom kernel modules is essential for many experiments,
for example for the development of routing algorithms. Besides that the user can choose
between several already installed modules.

During the experiment execution the testbed server interacts with the mesh routers
via SSH connections. Actions de�ned in the experiment description will be triggered at
the speci�ed times or when given conditions are met.

Once the experiment is �nished the testbed server gathers the log �les of the mesh
routers to make them accessible for further investigation by the user or automated evalua-
tion. For nodes with a permanent Ethernet connection, the log �les are already contained
in the testbed server's �le system. Therefore, copy operations are only required to save all
log �les to the speci�ed experiment folder. Data can also be inserted into the database.
We accomplish this by supporting user de�ned evaluation scripts, which process the log
�les of the mesh routers and perform database insertions accordingly. We refrain from the
idea to let the mesh router directly access the database in real time, since not all mesh
routers will have permanent Ethernet connection. Therefore, all measured data will be
written to log �les �rst and processed after the experiment.

Finally, after �nishing an experiment the testbed server starts a restoration procedure
to reset the testbed in its default and well-de�ned state. As part of this procedure the
testbed server removes the experiment speci�c �les from the root �le system of the mesh
routers and restores its con�guration. Subsequently, the mesh routers are rebooted using
the default kernel image.

The same restoration procedure takes place when exceptions occur during an exper-
iment. Due to our conservative error handling approach, an experiment will be aborted
as soon as errors or misbehavior are detected. Log �les, if available, are copied to the
experiment folder on the testbed server which may be useful to �nd the reason that lead to
the abortion. The status of the experiment will be marked as failed in the corresponding
database entry.

14 Chapter 2. Software Architecture and Management

CHAPTER 3

Technical Aspects

Linux is a complex and feature-rich OS developed over a time span of 15 years by countless
people. In this chapter we will introduce the most important aspects about the kernel.
Due to our focus on networking we will discuss the overall network stack architecture
and the most important related properties. We will particularly have a look at di�erent
approaches on how to implement routing protocols. The chapter ends with a short sec-
tion about the new IEEE 802.11 wireless stack and alternatives that have been declared
obsolete but are still used today.

3.1 Linux Network Stack

The network stack of the Linux kernel is one of its most complex components. It has been
developed over a long time span and severely refactored during its lifetime. The network
stack provides various features for packet handling and in most cases implementations of
common protocols. From an structural point of view the software architecture re�ects
rawly a subset of the layers of the ISO/OSI reference model or alternatively the TCP/IP
Internet model. The lower two layers (host-to-network) are hardware dependent and im-
plemented by a corresponding driver. For example, there is support for Asynchronous
Transfer Mode (ATM), Fiber Distributed Data Interface (FDDI), IEEE 802.11, and Eth-
ernet while the last two are the dominating standards and therefore obtain the most
attention from developers. The network layer consists basically only of IP in versions 4
and 6 and the supporting protocols Address Resolution Protocol (ARP), Internet Control
Message Protocol (ICMP), and Internet Group Management Protocol (IGMP). Avail-
able transport layer protocol implementations include User Datagram Protocol (UDP),
Transmission Control Protocol (TCP), and the mostly unknown and seldom used Stream
Control Transmission Protocol (SCTP). The session and presentation layer and corre-
sponding protocols are absent as in the TCP/IP model. Most of the experiments on the
DES-Mesh testbed will focus on the 3rd and 4th layer. We will therefore discuss these in
this section.

The kernel protocol stack is no easy to understand and a large part of the OS. It
accounts for a signi�cant amount of lines of code. This section has the goal to introduce the
most important parts. Although, this publication cannot be a complete documentation,
we will focus on the overall architecture so that the problem of implementing new routing
protocols and the di�erences to simulation environments become apparent. For further
reading we suggest [4].

15

16 Chapter 3. Technical Aspects

In the remainder of this chapter we elaborate how routing and forwarding in the kernel
is accomplished and what kind of OS related problems arise when setting up a testbed
infrastructure. We will have a look at the components that store routing information,
implement packet �ltering features, the communication interface between the kernel and
userspace, and how these facilities can be used to implement routing protocols. The
chapter closes with an excursion about the IEEE 802.11 speci�c protocol stack.

3.1.1 Sockets

Sockets or to be more speci�c so called Berkeley sockets, are a standardized, bidirectional,
and full-duplex software interface enabling communication between two entities. They are
one of the most widely used Inter Process Communication (IPC) interfaces for user space
applications and can provide communication between two or more user space programs,
the kernel and applications on remote computers.

Sockets are created with a given address family (also called domain) like AF UNIX

for �lesystem based Unix Domain Sockets or AF INET for IP based sockets. The netlink
interface as discussed in Section 3.1.3 uses AF NETLINK. The socket type depends on the
particular used address family. Some examples are as follows:

� SOCK STREAM: Stream oriented socket

� SOCK DGRAM: Datagram oriented socket

� SOCK RAW: Raw socket, no network or transport layer handling

The third and last parameter to create a socket is a protocol speci�c to the address family.

3.1.2 Routing Basics and Packet Handling

To get an understanding of the whole process of data communication we have to distin-
guish between the process of route or path discovery and forwarding. The separation of
route discovery and forwarding enables the exchange of routing implementations while
the forwarding routine can remain untouched. Therefore, the features provided by the
kernel should be used by all routing protocols although it is also valid to reimplement
parts for one reason or another. The forwarding mechanism has to be very e�cient to
handle a vast number of packets per time unit. With proactive routing protocols routing
information is always present which may not be true for reactive routing protocols. The
following steps are taken on packet reception:

1. Net�lter PRE ROUTING-chains are checked (Net�lter is discussed below)

2. Query of routing cache for forwarding information

3. Query of Forwarding Information Base (FIB) on cache misses and insertion of entry
into cache if a matching one is found

4. Decision if packet is destined for the current host or has to be forwarded

5. If the packet is destined for this host:

(a) Net�lter checks LOCAL IN rules

(b) Packet is forwarded or dropped

3.1. Linux Network Stack 17

5. Forwarding case:

(a) Net�lter checks FORWARD rules

(b) Net�lter checks POST ROUTING rules

(c) Packet is forwarded or dropped

For the whole packet reception process and also for all locally created packets a uni�ed
structure is used. We will discuss this socket bu�er in the following.

Socket Bu�er

The Linux socket bu�er is the central data structure used to handle incoming and outgoing
packets. The name is derived from the fact that it is the data structure used for any socket-
based data send and receive operation implemented within the Linux kernel. All packets
use one individual instance of the structure of type sk buff. It is used to store and pass
the data of all layers of the stack. An additional separate data space is allocated for
each socket bu�er to store the whole linear packet data which can be accessed by several
pointers.

The structure is divided approximately into the following important groups omitting
some of the remaining parts:

� Linking: Bu�ers can be chained into double linked lists with the help of the next
and prev pointers.

� Headers: There are three pointers of type sk buff data t to the memory where
the headers of layer 2, 3, and 4 are located.

� transport header: layer 4

� network header: layer 3

� mac header: layer 2

� Lengths: The three size information are easily confusable.

� truesize: Size of the whole allocated memory space used by the socket bu�er
structure and the linear packet data

� len: Actual size of data space used in the linear packet memory

� data len: Length of paged data in the socket bu�er or zero if no paged data
present

� mac len: Length of link layer header

Although, handling of unmapped page socket bu�ers is very rarely needed, a large
chunk of the network code exists only for this purpose. Linearity is recommended
in all cases.

� Pointers: Four pointers enable access to the linear packet data. The structure is
depicted in Figure 3.1. The linear memory is used somehow as a stack as the various
headers are pushed onto the head room while the user data remains in the bottom.

� unsigned char *head: Pointer to the linear packet data that points to the
�rst byte in the allocated memory.

18 Chapter 3. Technical Aspects

Head Room

Headers

Tail Room

User Data

head

data

tail

end

Figure 3.1: The linear packet space used by the socket bu�er to store all headers and user
data. In this example we assume space has already been allocated for both parts. Head
and tail rooms mark currently unused memory.

� unsigned char *data: Variable pointer to the linear packet data that points
to the �rst data byte. It is adjusted when a new header is added or an old one
removed.

� sk buff data t tail: Variable pointer that points to the last used byte.
There may be currently unused bytes after this location as we did allocate
more space than needed.

� sk buff data t end: Points to the end of the linear packet data and with
that to a structure of type struct skb shared info that resides after the
packet and is used to handle fragmented bu�ers and unmapped page bu�ers

� Ownership: The member struct sock sk points to the socket the bu�er is owned
by and atomic t users is the number of processes holding references to this bu�er.
If the reference counter is decremented to zero, the bu�er may be freed.

� Device: struct net device dev is the member pointing to the device the packet
arrived on/is leaving by.

� Forwarding Information: The pointer dst references a struct dst entry that
is present in the route cache. This structure also hosts a callback pointer to the
output function transporting the packet to its destination.

� General Purpose: The control bu�er array char cb[48] can be used by any layer
to store information but it might be overwritten. If this data has to be preserved
a socket bu�er copy has to be made. The array exists to reduce the number of
memory allocations and thus can speed up the packet handling.

Forwarding Information Base

The FIB basically consists of several routing tables and a Routing Policy Database
(RPDB). It has to be queried if the route cache does not contain a suitable entry. In

3.1. Linux Network Stack 19

the case of a hit the entry will be inserted into the route cache to speed up successive
lookups. Policy based routing with multiple tables is an optional feature which is usually
available in most kernels. We assume for the remainder of this technical report to have
this option enabled.

Linux normally routes in a very traditional way by determining the path based on the
destination address only. The next hop is chosen by a longest pre�x match mechanism,
thus the most speci�c route is taken. The policy based approach adds more criteria to this
decision. The routing rules in the database determine one of the tables that will be used
for route look-up and whether a packet is actually allowed to be forwarded. Priorities
from 0 through 32767 determine the order in which the rules are checked. If one rule
applies for a particular packet, the corresponding table is searched using a longest pre�x
approach. On a match, the packet will be forwarded, otherwise the look-up continues if
other rules do apply.

The maximum number of routing tables is 256 with local being number 255, main
254, 253 is called default, and 0 is regarded as unspeci�ed. The main table is the one
used in the policyless case. It is the only one used by the route command and as the
default of ip. Information into the local table is entered and removed only by the kernel.
It stores routing information for broadcast communication on the link layer and to locally
con�gured addresses. The table is populated when network interfaces are brought up.

Routing Cache

As the name implies this is a transparent storage where forwarding information is stored
in a dictionary, respectively a hash table. It is the �rst place searched for a matching
entry during the packet handling and forwarding process. Lookups are far less costly
than a corresponding query of the FIB because it only takes a single look-up using a
key constructed of source address, source interface, destination address, the IP Type Of
Service (TOS) �eld, and some net�lter marks. It cannot be manipulated from user space
except being �ushed which is especially important because route changes are not instantly
propagated otherwise. This might lead to inconsistency between routes injected to the
FIB and existing cache lines.

Net�lter

The kernel provides the Net�lter framework for packet inspection and modi�cation. It
is mostly known because of the user space program iptables that is used to con�gure
the Linux packet �ltering ruleset. As core feature so called hooks are set up to enable
kernel modules to register callback functions. These are called if a packet is handled by
the network stack at a particular stage. The following hooks are present and also shown
in Figure 3.2:

1. NF IP PRE ROUTING: After simple sanity checks each packet is passed to this hook.

2. NF IP LOCAL IN: If the packet is destined for this host, the corresponding callback
functions are called prior to passing the packet to upper layers.

3. NF IP FORWARD: Used if the destination is another entity and the packet has to be
relayed.

4. NF IP LOCAL OUT: For packets that are created locally this hook is used.

20 Chapter 3. Technical Aspects

Routing

Routing

1

2

3

4

5

Upper stack layers

In Out

Figure 3.2: Each of the 5 di�erent Net�lter hooks is called at a particular time of the
packet handling process.

5. NF IP POST ROUTING: Each outgoing packet either created locally or relayed has to
pass this hook.

Kernel modules can register with any of these, inspect the packet, and then tell what to
do with it. The following values are returned by the corresponding function used to check
the packet:

� NF ACCEPT: Continue with the packet handling

� NF DROP: Drop the packet

� NF STOLEN: Stop packet handling, the module will continue handling it

� NF QUEUE: Queue the packet for userspace handling and later re-injection into the
stack

� NF REPEAT: Call this hook again

The Net�lter is a powerful framework whose features have to be exploited at least at one
point if we like to implement new routing protocols as we will discuss in Section 3.2.

3.1.3 Netlink Inter Process Communication

Now we will discuss how data can be moved between user and kernel space to manipulate
and monitor the networking parts of the kernel.

There are several methods to do IPC between the kernel and user space such as system
calls, the proc �lesystem, and ioctls. We will focus on netlink sockets [5] in the remainder
of this report as they were speci�cally designed to transfer networking information and
data between kernel space and user space processes. They are also the only option to
manipulate more than the two basic routing tables (local and main) as discussed in
Figure 3.1.2. Netlink sockets are the recommended and up-to-date way for development
and usage. They can be used with the standard socket API from the user space and
an internal kernel API for kernel modules. In contrast to the above mentioned Internet
address family, they provide a pure local communication link. Netlink sockets provide a
simple to use networking environment manipulation and monitoring capability.

With the corresponding address family (AF NETLINK), the type set to datagram or
raw, and a given protocol a netlink socket can be created with ease using the standard
socket API. Netlink supports many di�erent protocols:

3.2. General Routing Protocol Implementation Approaches 21

� NETLINK ROUTE: Communication channel between user space routing daemons and
kernel module

� NETLINK ARPD: Management of the ARP table

� NETLINK FIREWALL: Management of the �rewalling

� NETLINK NFLOG: Log messages from the �rewalling

After socket creation and the binding to a local address messages can be exchanged be-
tween the two spaces. A request-response mechanism is employed. Each request from user
space begins with a �xed header structure de�ning the type and the caller among other
things. Attribute structures following the header de�ne a type and pass a length. Each
attribute is then succeeded by the corresponding attribute value. The reverse direction
for the responses from kernel space uses a stream of structures as well.

With these features routing daemons have a mature mechanism and interface for the
manipulation of the various Linux networking parameters.

3.2 General Routing Protocol Implementation Approaches

The implementation approach of a given routing algorithm primarily depends on its kind.
Proactive protocols can be implemented without any kernel changes. We already intro-
duced all relevant elements. The routing is likely to be implemented as user space daemon,
but rarely kernel module implementations are done. Both do route discovery on a peri-
odic basis and use the netlink interface to inject routes into the FIB. Reactive protocols
in contrast are di�cult to implement. Several steps are required:

1. Detection to start a route discovery on packet arrival

2. Storage of unroutable packets

3. Routing daemon or kernel module noti�cation

4. Route discovery

5. Routing table modi�cation

6. Re-injection of previously unroutable packets

7. Saving protocol dependent routing information, for example the last time a routing
table entry has been used

8. Provisioning and storage of additional information if required for the routing pro-
tocol, like the link quality

It is especially an interesting question where unroutable packets should be stored: Inside
the kernel space or by the routing daemon in the user space (if the latter one does exist)?
Allocating extensive kernel memory is usually frowned upon, but often times the only vi-
able approach for a module. The amount of space mainly depends on the duration of route
discovery and average packet inter-arrival time. Undeliverable packets can alternatively
be transferred to the user space daemon using for example a virtual network interface.
Then, route discovery and insertion of routing information into the corresponding tables

22 Chapter 3. Technical Aspects

is done like in the proactive case. Afterwards, re-injection of the stored packets can be
accomplished by using the raw sockets mentioned above.

Of course, a tradeo� exists between the ease of use and the resulting performance.
Due to less context switches, kernel only solutions yield the best performance and can use
the internal API for direct access. Data transfers between kernel and routing daemons
and the context switches needed could pose a possible bottleneck and reduce the overall
performance. The advantage of a user space implementation is the ease of development,
abstraction from kernel internals, and exchangeability. In between these concepts are
hybrid approaches using a kernel module for critical tasks and user space routing daemon
for the sporadic route discovery, but many other divisions are also imaginable.

If we have to consider the maintainability of the source code, we conclude that the
less kernel API dependencies exist, the more portable is a protocol. Therefore, daemon
based implementations are favored.

3.2.1 Limitations and Di�erences

Due to its common application domain the Linux kernel has not been developed with
reactive routing protocols in mind. This is noticeable in the fact that there is no stan-
dardized framework that supports the implementation of the features needed for reactive
routing protocols. As we have discussed in Section 3.2 the corresponding approaches
di�er in concept as well as in performance. These facts lead to the question whether a
meaningful comparison between protocols is possible without taking the implementations
into account.

The properties of an OS used in the real world result also to signi�cant di�erences in
implementations compared to simulation environments. One of the commonly named ex-
amples concerns Ad-hoc On-demand Distance Vector (AODV). The protocol prefers link
layer feedback to signal unsuccessful transmissions to maintain local connectivity infor-
mation. As this kind of indicator is not available in several host-to-network technologies,
like IEEE 802.11, the protocol has to resort to the passive acknowledgment mechanism or
as in most cases to the usage of HELLO messages. This introduces signi�cant overhead
because of the large amount of control packets that have to be sent periodically.

Similar problems arise from nearly every cross layer approach. Information about
multiple layers is easy to gather and combine within simulation environments while in a
real protocol stack these layers are often strongly encapsulated. Combined with the dis-
cussed facts, experiments can produce deviating outcomes only because of implementation
speci�c reasons.

3.2.2 Layer 2.5 Approaches

Many routing protocols use minor or major modi�cations to the standard layer 2 and
layer 3 protocols like Ethernet, IEEE 802.11, and IP or their protocol stacks to make
them more suitable for mesh networks. While this is possible in a simulation environment,
it is almost impossible to do in a real wold scenario and at least a challenging task in
a testbed. In real world scenarios interoperability between the mesh network and other
IP based networks (like the Internet) is required. There is no way to extend IP (version
4 or 6) in an compliant or at least interoperable way to carry additional data, like for
example a sequence number for loop detection, without extending the IP stack on every
communication peer. Such extensions are possible in a closed testbed but are still very

3.2. General Routing Protocol Implementation Approaches 23

complex and make the testbed setup far more complicated.

A layer 2.5 approach can help to solve the problem of injection of additional data in
compliant data packets by providing an additional layer in-between layer 2 (usually Ether-
net or IEEE 802.11) and IP (version 4 and/or 6). The developer is free to decide whether
he wants to do forwarding of packets within the mesh network himself and circumvent
limitations in the OS network stack. This layer can carry the data needed for the routing
protocol and help to do routing tasks like multi-path or stochastic routing which cannot
easily be implemented in a standard IP stack. A layer 2.5 approach can also reduce the
overhead in a dual IP stack (version 4 and 6) mesh network by eliminating the need to
perform route discoveries twice. It also provides an alternative and optimized layer 2 to
layer 3 mapping and helps to solve the addressing problem.

Beside these advantages, a layer 2.5 approach also has serious drawbacks. Because
of the encapsulation of each packet it introduces more overhead and leads to a smaller
maximum transmission unit (MTU). When implemented in user space, a layer 2.5 ap-
proach leads to a high latency for every packet because 2 context switches are needed at
every node to forward a packet as not only packets triggering a route discovery have to be
handled this way. In contrast, the implementation as a virtual network interface within
the kernel provides a challenging task and may be too complicated for experiments with
many variants. Forwarding packets in an layer 2.5 implementation may even worsen these
drawbacks.

3.2.3 Related Work

Right now there is still no easy way to implement new routing protocols. However,
some more or less commonly used techniques and frameworks exist to implement routing
protocols.

For the implementation of proactive routing protocols, routing suites like Quagga [6] or
its forerunner Zebra [7] have been developed. These frameworks focus on OS abstraction
and route redistribution between di�erent routing protocols, for example the injection of
Border Gateway Protocol (BGP) learned least cost routes into Open Shortest Path First
(OSPF) networks. They are widely used in Internet infrastructure but not in the research
community.

The implementations of the well known reactive routing protocols AODV by the uni-
versity of Uppsala and DYMO by the university of Murcia do not use any special frame-
work. Large parts of the core are shared between the simulation and the Linux imple-
mentation. They feature no abstraction layer between the routing daemon and the Linux
forwarding code. Every packet is inspected by a net�lter callback function which searches
the route cache for the existence of a valid route for that packet. The packet is passed to
the corresponding user space routing daemon via a netlink socket on misses for further
handling. Otherwise, the packet forwarded, and the user space daemon is noti�ed. The
last step is necessary if information, like the number of relayed packets or route usage,
has to be stored.

We only encountered a single framework for implementing reactive routing protocols on
Linux, called AdHoc Support Library (ASlib) [8]. This framework aims to help developers
writing reactive routing daemons in user space. Packets lacking a valid route to their
destination in the kernel are routed on a virtual network device (TUN device) and parsed
in user space. The only kernel extension they provide is a module collecting information
about route usage. This module was extended and ported to the recent 2.6 kernel series.

24 Chapter 3. Technical Aspects

Implementing a routing protocol with ASlib may require to develop additional kernel
modules to gather other information needed for route selection, like the Received Signal
Strength Indicator (RSSI).

A more generic approach is the Click modular router [9]. It tries to o�er a graph
based approach with a visual interface for packet processing, queuing, and forwarding.
It is available as a standalone module or as user space implementation but requires a
patched kernel as Click is written in C++ and would otherwise not compile against the
source tree. Although it is a step into the right direction, it is more suited to implement
software routers, as its name implies, and not routing daemons.

3.2.4 Outlook

We aspire a script and visual language based approach to implement new routing proto-
cols. To minimize maintenance and achieve portability between kernel versions a general
kernel module providing a powerful feature set shall support a user space daemon that
loads and interprets routing protocol script �les. The domain speci�c language (DSL)
has to support the implementation of various routing protocols despite their manifold
approaches. It will be the initial challenge to gather all kind of information and features
that are needed by these protocols before the language can be de�ned and an implemen-
tation started. A Python-like syntax with a high level approach is aimed for as long-term
objective.

3.3 IEEE 802.11 Stack

The lower two layers of the protocol stack that are often called the host-to-network layer
are network device dependent. In the case of wireless local area network (WLAN) this is
the IEEE 802.11 speci�c part. The Data Link Layer (DLL) is implemented as a driver
while the Physical Layer (PHY) below is located inside a radio transceiver chip or chipset.
Another component that has to be mentioned is the so called �rmware. The term �rmware
refers to a software (as binary) that is used in embedded devices.

FullMAC and SoftMAC describe two of the possible �rmware and host driver divi-
sions1. In the former case the WLAN hardware is equipped with memory that is suf-
�ciently dimensioned to hold a �rmware that takes care of most of the IEEE 802.11
protocol. Possibly due to cost reductions so called SoftMAC devices were introduced
with less memory. They use a very basic �rmware while most of the functionality is now
located in the driver. FullMAC takes load o� the host as it does most processing in
the NIC while SoftMAC might o�er more possibilities for customization if the driver is
available as source code. Firmwares are usually distributed binary only by the product
manufacturers. Thus, from an open source perspective and for sound research smaller
�rmware sizes are preferred. Alternatives like specialized chipsets implementing most of
the IEEE 802.11 protocol without the need for a �rmware are also thinkable. Most if
not all of today's current line of consumer hardware uses a SoftMAC-like �rmware to our
knowledge.

Since the emergence of WLAN hardware most driver developers did implement every-
thing that is needed to make a device usable themselves. While some code has be reused

1Please note that these terms are not standardized. FullMAC can also be named e.g. HardMAC and
SoftMAC described as ThinMAC. Most often the notion is only valid in regard to one line of products,
a group of developers, or a particular driver.

3.3. IEEE 802.11 Stack 25

for various projects there have been many di�erent drivers with much redundant code. In
2007 the community declared to move to a uni�ed stack infrastructure o�ering the same
API for every driver. It has been o�cially introduced in kernel version 2.6.22 and named
mac80211. The open sourced Devicescape stack d80211 has been used as its foundation.
From now on several features have to be implemented just once, including:

� Stack-level support for master and ad-hoc mode

� Automatic data rate adjustment

� Software MAC

� Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access (WPA)

� Quality of Service (QoS)

� Wireless Multimedia Extensions (WME)

� Link-layer bridging

� Monitor mode

� Frame injection support

� Virtual interfaces, including multiple modes used at once

Legacy drivers often make use of the ieee80211 or net80211 stacks or forks of these that
have been declared as deprecated. The former stack emerged from the Host AP project
with several contributions from Intel. The latter one was ported from FreeBSD as part of
the MadWi� project. It is scheduled that mac80211 will be stable and all existing drivers
ported until the release of the kernel version 2.6.26. Currently, several driver versions are
available for most WLAN cards based on these old and the new stack as well as in some
cases vendor provided ones. DES-Mesh currently does not make use of mac80211 as the
ad-hoc mode is not yet supported but we will switch as soon as possible to the rt2x00
driver for the Ralink chipset used in our NICs.

26 Chapter 3. Technical Aspects

CHAPTER 4

Practical Experiences & Pitfalls

In this chapter we discuss our experience with the pilot network infrastructure of the DES
testbed. In contrast to simulation environments various of the encountered problems are
not always deducible to your own developed software components, inaccurate models, or
assumptions. The properties of the hardware have to be considered as well as the complex
OS of the mesh routers. If these facts are disregarded, experiments can deliver erroneous
or inaccurate results due to miscon�guration. While such issues can be resolved at the
time of evaluation, they are often missed, unknown, or ignored. Some of the problems
bother the testbed management or even make long-term experiments unfeasible.

In the following we will start with experiences made by doing some initial measure-
ments. Subsequently, ARP related problems will be discussed. We continue with network
boot and time synchronization problems. The chapter closes with our experience regard-
ing the USB hub used to connect the WLAN cards to the router.

4.1 Antenna Separation

As described in Section 1.2 the network interface cards are connected to the mesh routers
via USB. With the experiments described in this publication we initially wanted to assure
the functional capability of the testbed hardware. It has been the intention that future
experiments shall be in a situation in which it can be assumed that observed deviations
from the expected results are not due to our infrastructure.

In this section we will focus on the initial experiments that are made up of the following
parts:

� upper bound of pure USB throughput

� measurements using 1 NIC in a multi-hop scenario

� measurements using 3 NICs in a multi-hop scenario

In a �rst step we measured the USB throughput to remove this point from the list of
possible bottlenecks. We then proceeded to do 1-hop experiments using a single NIC
collecting throughput and delay data. Based on this setup we extended the path up to
4 hops using 5 routers. Another scenario considered was the usage of three NICs at the
same time. We evaluate these measurements in regard to the multi-hop topology.

27

28 Chapter 4. Practical Experiences & Pitfalls

Figure 4.1: Map and topology of the experiment setup.

4.1.1 Basic Setup

During experiments the following basic con�guration remained unaltered. Forwarding
decisions were done based on manually entered static routing table entries using the
stock Linux kernel provided functionality. We refrained from using a routing daemon for
this simple setup because of the added time prior to the actual experiment. The ARP
cache of each router has been populated with appropriate permanent entries so that no
ARP requests had to be made during the experiments. The RTS/CTS mechanism of
IEEE 802.11 has not been utilized. We con�gured the wireless cards to use Orthogonal
Frequency Division Multiplex (OFDM) modulation in the ad-hoc mode. If no further
information is given, we used the default parameters of all mentioned tools.

4.1.2 Network Topology and Environment

The whole topology and map of our experimental setup are shown in Figure 4.1. A
subset of 5 mesh routers placed in one corner of our institute building has been selected.
Please note that the walls between the o�ce rooms are very thin and permit radio wave
propagation with low loss. The walls to the corridor on the other hand have a very high
attenuation factor.

DES-Mesh is co-located with the university wide WLAN that uses the same frequency
band. This introduces a kind of indeterminism as we cannot shut down the access points.
We deem this fact as a real world environment like as no operator of a WMN can control
other ones. Coexistence is required, especially as several more WLANs exist in our vicinity.
To decrease the interference on our testbed the initial experiments have been executed
during the night where the medium is less used and no people are present in the building.

4.1.3 Interference

First of all we wanted to have an idea about the interference (respectively the lack of
interference) of the used channels. For this, we observed the spectral separation of the
orthogonal channels with a spectrum analyzer. We let one mesh router generate data
that was sent using each of its NICs for a time of 60 s and traced the maximum received
signal strength in 12 cm distance to the corresponding antenna. As it can be seen in
Figure 4.2 the channels are indeed orthogonal and do not interfere with each other. They

4.1. Antenna Separation 29

Figure 4.2: Spectrum of three NICs using orthogonal channels. The pointers mark 2.412,
2.437, and 2.462 GHz (left to right).

are distinguishable from the noise level. This result has of course been expected and is
according to the IEEE 802.11 standard.

4.1.4 USB Throughput

To get an upper bound for the wireless performance, we measured the USB throughput.
Thus, two mesh routers were connected with each other using a host-to-host cable. We
used iperf to measure the TCP throughput over the USB network interface provided by
the Linux kernel. For the �rst measurement only the internal hubs of the Alix boards
were used. Afterwards, we connected the powered external hubs used in our routers.

A throughput of 110 Mbps has been measured in the �rst and 108 Mbps in the second
case as average of 5 runs, each with a time span of 60 s. That is signi�cant less than
the 161 Mbps we measured beforehand between an Alix and a common desktop PC.
Although the 500 MHz AMD Geode LX800 processors seems to be a limiting factor for
USB throughput, the achieved values are su�cient for our cause. A net bandwidth of 20
up to 30 Mbps is common for IEEE 802.11g based WLANs.

4.1.5 WLAN Throughput and Delay

Two mesh routers were placed within a distance of about 7 m without line of sight (routers
1 and 2 in Figure 4.1). We used �ows generated by iperf for 60 s to measure the TCP
throughput. We calculated the average of 5 runs. Delay measurements have been done
with ping sending ICMP ECHO REQUESTs. Each of these runs took 300 s, with a
sending rate of 1/s. The path length was then extended up to 4-hops. We placed the
routers to form a linear topology where only neighbored nodes could communicate with
each other on the link level.

The results of this experiment are shown in Figure 4.3. As expected the throughput
decreases with the path length and the round trip time increases quite linear with the
number of hops.

30 Chapter 4. Practical Experiences & Pitfalls

 0

 5

 10

 15

 20

 25

 0 1 2 3 4

T
h

ro
u

g
h

p
u

t
[M

b
p

s]

Hops

Channel 1
Channel 6

Channel 11

(a) Throughput

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4

T
im

e
[m

s]

Hops

Channel 1
Channel 6
Channel 11

(b) Round Trip Time (RTT)

Figure 4.3: Single-transceiver throughput and delay.

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4

T
h

ro
u

g
h

p
u

t
[M

b
p

s]

Hops

Channel 1
Channel 6
Channel 11

Sum of Throughput

Figure 4.4: Multi-transceiver throughput over 4 hops.

4.1.6 Multi-Transceiver Comparison

We repeated the above measurements with three NICs. Each of them was con�gured to
use an orthogonal channel. Again iperf was utilized - this time generating three �ows in
parallel. If a �ow was generated by the source router using the NIC con�gured to channel
x, every router receiving these packets did relay them over the same frequency. Packets
therefore traveled from source to destination without switching channels. The results are
shown in Figure 4.4.

Like in the previous experiment the e�ect of the hop-count on throughput and delay
are visible. Comparing the �ows over the three channels we observed some unexpected
behavior. In all cases one of the �ows seemed to gain a much higher throughput while
the others nearly starved. Looking at the gained throughput in conjunction with the
path length we noticed an increase of the �ow using channel 11 at hop 2 and the �ow

Channel Throughput [Mbps] Mean RTT Deviation [ms]

1 17.830 1.144

6 6.095 1.160

11 9.275 2.900

Table 4.1: Multi-transceiver throughput using 3 disjoint router pairs

4.2. Network to Data Link Layer Mapping 31

using channel 1 at hop 3. This throughput result is comprehensible as every test run is
independent of the previous ones. As can be seen, the increase of one �ow always results
in an decrease of another one. Even more interesting is the observation that in most cases
the sum of all �ows is smaller than the throughput gained using only a single network
interface at a time. System resources are left plentiful as the CPU is idling about 80%
of the time during the experiments. Thus, this factor can be ignored as source of the
phenomenon.

To get an understanding of the problem, we connected one of the NICs that had
reduced throughput per wire to the spectrum analyzer. Even though the antenna has
been missing the card could still communicate with other ones after placing the particular
routers within a distance of 2 m. Starting a single �ow, we could observe activity in the
corresponding wave band. Using multiple �ows at the same time, like described above,
the card remained silent most of the time. This fact does rebut the assumption that the
throughput reduction has been due to increased noise level at the receiver side. At this
stage one has to assume a fully transmitter based problem. Either the Clear Channel
Assessment (CCA) of the NICs, the kernel module implementation, or kernel speci�c
scheduling processes are to blame. To isolate the cause we placed 6 routers within an
o�ce and initiated 3 �ows each using one of the 3 orthogonal channels using 3 disjoint
pairs. The source routers were stacked on each other to minimize the antenna distance.
We measured 10 samples over a time of 60 s. The results are shown in Table 4.1. As it
can be seen the unfairness in throughput is less than in the previous experiment but still
present. With this experiment we �nally can exclude kernel speci�c reasons as cause.

Antenna separation remains as the source of the problem and seems to be a cru-
cial factor in wireless communication using the IEEE 802.11 standard. Multi-transceiver
testbeds have to consider this fact in the planning and evaluation of experiments.

4.2 Network to Data Link Layer Mapping

The ARP is used to resolve network layer addresses to data link layer ones. While being
connection-less and o�ering only two types of operation (request and response) pitfalls
regarding our testbed do exist nevertheless.

4.2.1 ARP Flux

One crucial problem known from network management but rarely mentioned in the domain
of multi-homed mesh networks has to be addressed. The ARP Flux symptom arises once
hosts have multiple interfaces that are con�gured with di�erent IP addresses of the same
subnetwork on a shared medium. Let us consider the following example to clarify the
problem. Host 1 possesses two network interface cards (IF1 and IF2) that are in an
up state and con�gured with layer 3 addresses IP1 and IP2. Host 2 is within radio
transmission range and wants to send some data. An ARP request is transmitted and
received by Host 1 on both network cards. The ARP implementation processes both of
them and replies two times. The problem arises because of this duplication as one of the
packets will contain the layer 2 address of IF1 and the other one the address of IF2. This
may lead to non-deterministic population of ARP caches [10].

The behavior is known as the �normal� ARP Flux symptom that is usually due to the
host owning the layer 3 addresses and not the interfaces. But in our setting we observed
a slightly di�erent and more severe problem.

32 Chapter 4. Practical Experiences & Pitfalls

Figure 4.5: ARP Problem Example: The layer 3 to layer 2 resolve process fails because
Host 2 answers with the wrong DLL address. Although the host is also reachable via
IF1 the network address is mapped to IF2. IF1 and IF2 of host 2 do not even have to
be con�gured to use the same channel. In this case host 1 does not receive any answers
because the reply is sent over a di�erent frequency.

4.2.2 Experienced Symptoms

The nodes of our wireless mesh network have been equipped with at least three IEEE 802.11g
conform network cards. Network con�guration has been done as discussed and the same
Extended Service Set IDenti�er (ESSID) and channel have been set. ARP requests to one
of these hosts always resulted in a deterministic cache population. To be more speci�c,
although the request has been received by all network interfaces, only one reply was sent.
While this might seem slightly better at �rst sight than the expected behavior, it does
lead to further problems.

Every ARP request to map the three di�erent layer 3 addresses to the corresponding
DLL addresses resulted in the same one. The problem is exempli�ed in Figure 4.5. As
research revealed the ARP implementation of the Linux kernel is the cause. The route
cache and FIB are queried to look-up a route to the originating host. This always succeeds
in one case and fails in all others. Usually the �rst interface brought up is used to send a
reply containing its layer 2 address.

Several problems based on the described �ndings can be noticed in our mesh network
testbed:

� Multiple IP addresses of foreign hosts are mapped to the same MAC address ac-
cording to the local ARP cache.

� Even the IP address out of a di�erent subnetwork con�gured for the Ethernet in-
terface cards can be reached over the wireless network. One of the wireless NIC's
layer 2 addresses is replied.

� After setting one wireless NIC to use another channel or ESSID, the correspond-
ing IP addresses can still be addressed by using the original frequency or network
identi�er if there remains one NIC with these settings on the host.

� Bringing the interface used to answer ARP requests down after another host has
stored the false mapping in his cache leads to severe delays. Up to 8 seconds have
been observed until a new ARP request is sent and a reply is received successfully.

4.2. Network to Data Link Layer Mapping 33

� After bringing an interface down that is not used to answer ARP requests, the
corresponding IP address is still reachable by other hosts although no corresponding
link exists. This is independent of the ARP cache content of the originating host.

� Using broadcast ICMP ECHO REQUESTs only one reply will be received even if neigh-
bored hosts use multiple NICs.

Based on these observations several conclusions can be made regarding experiments and
the validity of their results.

4.2.3 Impact on Experiments

As a large part of our research is and will be based on data link and network layer protocols
the impact on experiments has to be discussed. The e�ect how ARP is handled might
have a strong in�uence on routing protocols. From the network layer point of view we
normally assume when an IP address of a neighbored host can be reached, a link has
to exist. As we discussed this cannot be deduced. Evaluations of measured data gained
from network protocol experiments always have to consider the underlying links otherwise
false interpretations are possible. Let us consider a simple example: Packets destined for
IP1 mapped to IF1 could be received over IF2 additional by the ones destined to address
IP2. If we assume both interfaces use di�erent channels, media congestion of one of the
channels could arise while the other one idles. Depending on how the transferred bytes
per time unit are measured, for example per host or interface, di�erent conclusions may be
drawn from evaluation results. Misinterpretations therefore have to be avoided. Limited
data rates might not be ascribed to network congestion but rather unexpected interface
selection.

As mentioned in the previous section broadcast ICMP ECHO REQUESTs cannot be used
to detect all mesh routers' layer 3 addresses. Routing algorithms relying on this mecha-
nism will deviate from their expected behavior and/or experience a drop in performance.

The severity of these e�ects and the underlying problem have to be examined in
conjunction with the objectives of experiments. Depending on the set goals and expected
setting the current state can be either tolerable or problematic. To change the kernel
protocol stack behavior during runtime we discuss solutions in the following sections after
discussing some possible reasons for this behavior.

4.2.4 Operation System Speci�c Design Reasons

The behavior described in Section 4.2.2 has been observed running a Linux kernel of ver-
sion 2.6.22. It can be assumed that the operation system manages layer 3 addresses as
associated to the host and not to the interfaces. While this has the mentioned disadvan-
tages, there are some reasonable motives to choose such an implementation.

� First of all, in common networks each interface connects a host to a di�erent subnet-
work. Multihomed settings are usually used only because of loadbalancing reasons
or in the case of virtual hosts with virtual interfaces mapped to a shared physical
one. Some solutions have been proposed for these scenarios. We discuss them in
Section 4.2.5.

34 Chapter 4. Practical Experiences & Pitfalls

� By assigning network layer addresses to hosts a strict disjunction attributed to a
layered communication model is achieved. Forwarding is a layer 3 task. The deci-
sions made should be independent of any underlying requirements like unambiguous
DLL to network layer mappings such as in our setting.

� Reliability seems to have been one of the incentive motives. By using this approach,
hosts are reachable over any device. In real wold settings it is more of concern
that communication is possible than to deduce that all packets destined to an IP
addressed have been received only over the associated interface.

� Shorter routes might also be established. In our testbed a node could communicate
with another one by using a probably longer route than usual. This case might
arise, for example if we cannot use the channel that the packet should have used
originally and therefore would need to be relayed over intermediate routers. If a
link on another channel to the destination does exist, this one could be used instead
even if the particular routing protocol does not consider this alternative because of
the ARP resolution. Please note that such an approach needs ARP requests to be
implicitly broadcasted over all interfaces without regard of the subnet-mask.

As discussed our �ndings are based on Linux. Other operating systems like BSD or
MS Windows kernels handle the mapping di�erently.

4.2.5 Solution Approaches

For a maximum of �exibility we need a solution customizable at runtime. The following
parameters shall be con�gurable and switched on and o� in demand:

1. Hosts shall answer ARP requests when they are received over the NIC that has the
target IP address associated or without regard of the interface if the host owns the
address.

2. ARP replies shall be sent via the interface owning the target address of the ARP
request or the kernel may select the most appropriate output device.

Based on the selected settings a host will either receive ARP replies in most cases or only
if the request is sent over an interface using the same wireless channel and ESSID as the
target device.

� Cloned MAC Address: Assigning each local interface the same layer 2 address
solves the problem of non-deterministic ARP cache population (ARP Flux) by sacri-
�cing distinguishability. It is obvious we need a more advanced solution to preserve
this information.

� Ignore and Hidden Flags: The arp ignore sysctl enables us to de�ne several
modes for each device. The default con�guration for most Linux distributions is
set to reply for any local target IP address con�gured on any interface. Optionally
replies are sent only if the target IP address is con�gured on the incoming interface.
An even more restrictive setting exists that requires the sender address to be part
of the same subnetwork.

Using the �ag works as expected and solves the problem of ICMP echo requests
being answered for target IP addresses even if they belong to another subnet. In

4.3. Network Booting 35

a setting with two wireless NICs on the destination host con�gured with two IP
addresses out of the same subnetwork a severe issue remains nevertheless. For
each received ARP request arp process() tries to �nd a route to the target IP
address (a local one in this case) by calling ip route input() to query the route
cache. On cache misses the route cache respectively the FIB are queried in the next
step (ip route input slow()). Unfortunately, this is successful if the request is
received by the �rst interface and otherwise fails. Therefore, no ARP reply is sent
if a request is destined to the IP address belonging to the second interface while the
ignore �ag is set. The notion of ��rst� and �second� interface has to be understood in
this context as ��rst or second one brought up�, respectively the up-time determines
the order.

By applying an external patch the arp hidden sysctl is provided. It is very similar
to arp ignore and because of the same reasons mentioned above this approach does
not meet our requirements. Additionally, we would like to avoid kernel patches.

� Filter Flag: Setting this boolean value (arp ignore) to true allows ARP request
to be answered over the particular interface. The �nal decision whether the interface
is used depends on the set routes. Source based routing is needed which disquali�es
this solution for our problem as not all routing protocols will provide the needed
information.

� Announce Flag: The arp announce �ag lets us de�ne restriction levels for an-
nouncing the local source IP address from IP packets in ARP requests sent on the
interface.

None of the discussed approaches alone does solve our problem.

Problem Solution and Interface Con�guration

Setting arp ignore to reply only to requests for IP addresses con�gured to the particular
interface and switching spoo�ng detection o� (rp filter) leads to the desired behavior
but does not free us of all problems. Eventually, each of our three WLAN cards per
router was con�gured to an individual subnet. With this solution it is left to each routing
protocol to announce whether neighbored routers should be able to communicate crossing
the borders of the subnets and with that use di�erent channels on a path between source
and destination. Neighborhood information about the DLL is only promoted between
adjacent entities via ARP packets if they are using the same channel.

With these simple system control and network settings our testbed can be used for
evaluation with the desired �exibility. It will be an interesting task to measure the sig-
ni�cance of several di�erent settings in experiments.

4.3 Network Booting

As discussed in Section 2.2 our mesh routers have no persistent memory, like a hard disk or
�ash memory, and therefore boot over Ethernet. In some cases after cold restarts the PXE
boot ROM reports error PXE-E61. The media test failed although a cable is connected
and thus the boot process halts. We tested multiple di�erent cables but experienced the
same symptom. In some rare cases, like power failures, the mesh routers therefore might

36 Chapter 4. Practical Experiences & Pitfalls

need on-site maintenance to continue booting. The cause of this problem seems to be
related to the BIOS that we currently use in the up-to-date version 0.99. The overall
start up proceeds too fast so that the Ethernet NIC has no time to detect the link.

To �x this problem we enabled the wait for hdd option in the BIOS. This gives hard
disks more time to spin up before they get probed and accessed. The delay of several
seconds resolves our problem even though the option was intended for another cause.

4.4 Time Synchronization

The Network Time Protocol (NTP) is used to synchronize the time base of our mesh
routers with the mesh server and provides the timebase. The mesh server itself synchro-
nizes against the university time server: time.fu-berlin.de.

A severe problem arises if NTP is used along with NFS. The Alix2c2 mainboard is not
equipped with a battery to store the system time between reboots. Customized boards
with battery are available on request only for an additional charge. When the routers
are switched on, the root �le system is mounted over the network after an IP address
has been acquired via DHCP for the primary ethernet network interface. During the
System V initialization process the same network interface is brought up again but this
time synchronization is done as it is a standard feature of the Debian distribution if the
ntp-date package is installed. Suddenly the clock's time jumps several years to the future.
DHCP clients get confused by this change because their leases seem to have expired a
long time ago. The network interface is brought down to broadcast a DHCPDISCOVER and
to acquire a new IP address. This is a fatal action for the mounted root �le system. The
result is a frozen and unresponsive system.

As preliminary �x to solve the problem the interface deactivation has been removed
from DHCP client scripts.

4.5 Universal Serial Bus

After doing the initial measurements (see Section 4.1) we experienced problems with the
hardware after about 12 to 24h of up-time. The problem consists of one of our WLAN
NICs being not accessible anymore because the driver is unable to access the command
registers on the WLAN adapter. In debug mode the following error message is printed
multiple times per second and while the adapter is rendered useless.

rt2x00usb_vendor_request: Error - Vendor Request 0x07 failed for offset

0x3090 with error -71.

Once this behavior occurs, the card has to be unplugged and inserted again, forcing a
new initialization of the USB device. Optionally the mesh router can be rebooted to �x
this issue. Changing the state of the interface with ifdown and ifup does not solve the
problem. The possible points of failure are:

� Firmware image or OS speci�c driver of the WLAN card

� OS speci�c settings and USB drivers

� USB hub or extension cables

4.5. Universal Serial Bus 37

To eliminate another possible point of failure, we disabled the dynamic power man-
agement of all USB devices in the Linux kernel by setting CONFIG_USB_SUSPEND accord-
ingly. Since many USB devices do not support power management as speci�ed by the
corresponding standard, resuming a suspended device can make the device stop working
entirely. The rt2x00 driver used in the WLAN adapters supports suspend and resume,
but to �nd the cause of the problem we entirely disabled this function.

Various tests indicated that the USB hub is involved in this problem or even the main
cause. When we connect two WLAN adapters directly or via extension cables to the USB
ports of the Alix2c2 mainboard, the problem does not occur and the WLAN adapters run
for several days without any kind of error. To pin down the point of failure we ran various
tests with modi�cations to the utilized USB hub infrastructure. We eventually suspected
the power supply of the USB hub as the point of failure since measurements of the power
consumption showed, that while transmitting, a wireless network adapter came close to
the 500 mA available on each USB port. Although our USB hub is externally powered
and the available 2300 mA at 5V should be su�cient for the three NICs, there are many
reports about poor USB hardware that does not fully meet the USB 2.0 requirements.

This suspicion was also backed up by experiments with less than three NICs attached
to the USB hub which showed no errors. We then split the three NICs up and used
two of our USB hubs, each plugged into one of the mainboards USB ports. With this
con�guration the mesh router ran also error-free for several days. In the next step we
replaced the USB hub with di�erent devices by di�erent vendors. Replacing our hub with
a random no name one resulted in the same error. Experiments with a Equip 4-Port USB
hub seems to have solved the problem since all NICs are still running after several days.
Further tests will be carried out using a D-LINK DUB-H4 USB hub.

38 Chapter 4. Practical Experiences & Pitfalls

CHAPTER 5

Conclusion

In this publication we continued our report about the work-in-progress DES testbed of
100 routers deployed at the Freie Universität Berlin. We discussed the software archi-
tecture and gave an introduction to the network protocol stack of the Linux kernel. Our
�rst experiences with a pilot network setup including the encountered problems have
been described and viable solutions proposed. The practical experiences and pitfalls in
combination with the technical aspects discussed in this writing are signi�cant for all
mesh testbed installations. These challenges have to be taken care of.If they are ignored,
experiments can result in erroneous measurements and inaccurate data.

With the hybrid DES testbed the CST work group has a powerful tool for wireless
network related research and education. After �nishing the �rst stage of setup the DES
testbed will be used to do long-term experiments.

39

40 Chapter 5. Conclusion

Bibliography

[1] M. Güne³, B. Blywis, F. Juraschek, and P. Schmidt, �Concept and design of the
hybrid distributed embedded systems testbed,� Freie Universität Berlin, Tech. Rep.,
2008.

[2] �dnsmasq.� [Online]. Available: http://thekelleys.org.uk/dnsmasq/doc.html

[3] �The syslinux project.� [Online]. Available: http://syslinux.zytor.com/wiki/index.
php/The_SYSLINUX_Project

[4] K. Wehrle, F. Pahlke, H. Ritter, D. Muller, and M. Bechler, Linux Network Archi-
tecture. Prentice Hall, April 2004.

[5] J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov, �Linux Netlink as an
IP Services Protocol,� RFC 3549 (Informational), Jul. 2003. [Online]. Available:
http://www.ietf.org/rfc/rfc3549.txt

[6] �Quagga routing software suite.� [Online]. Available: http://www.quagga.net/

[7] �Gnu zebra.� [Online]. Available: http://www.zebra.org/

[8] V. Kawadia, Y. Zhang, and B. Gupta, �System services for implementing ad-hoc rout-
ing protocols,� in Proc. International Conference on Parallel Processing Workshops,
Y. Zhang, Ed., 2002, pp. 135�142.

[9] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, �The click modular
router,� ACM Transactions on Computer Systems, vol. 18, no. 3, pp. 263�297,
August 2000. [Online]. Available: http://www.read.cs.ucla.edu/click/publications

[10] M. A. Brown, Guide to IP Layer Network Administration with Linux. The Linux
Documentation Project (TLDP), 2003.

41

http://thekelleys.org.uk/dnsmasq/doc.html
http://syslinux.zytor.com/wiki/index.php/The_SYSLINUX_Project
http://syslinux.zytor.com/wiki/index.php/The_SYSLINUX_Project
http://www.ietf.org/rfc/rfc3549.txt
http://www.quagga.net/
http://www.zebra.org/
http://www.read.cs.ucla.edu/click/publications

	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Summary of the DES testbed
	1.3 Structure of the paper

	2 Software Architecture and Management
	2.1 Testbed Server
	2.2 Boot Process
	2.3 File System Organization
	2.4 User Administration
	2.5 Experiments

	3 Technical Aspects
	3.1 Linux Network Stack
	3.1.1 Sockets
	3.1.2 Routing Basics and Packet Handling
	3.1.3 Netlink Inter Process Communication

	3.2 General Routing Protocol Implementation Approaches
	3.2.1 Limitations and Differences
	3.2.2 Layer 2.5 Approaches
	3.2.3 Related Work
	3.2.4 Outlook

	3.3 IEEE 802.11 Stack

	4 Practical Experiences & Pitfalls
	4.1 Antenna Separation
	4.1.1 Basic Setup
	4.1.2 Network Topology and Environment
	4.1.3 Interference
	4.1.4 USB Throughput
	4.1.5 WLAN Throughput and Delay
	4.1.6 Multi-Transceiver Comparison

	4.2 Network to Data Link Layer Mapping
	4.2.1 ARP Flux
	4.2.2 Experienced Symptoms
	4.2.3 Impact on Experiments
	4.2.4 Operation System Specific Design Reasons
	4.2.5 Solution Approaches

	4.3 Network Booting
	4.4 Time Synchronization
	4.5 Universal Serial Bus

	5 Conclusion

