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Die vorliegende Dissertationsschrift befaßt sich mit Effekten der Frequenz einzelner 

Silben, insbesondere der Anfangssilbe eines mehrsilbigen Wortes, in der visuellen 

Worterkennung. Derartige Effekte werden als Indiz für eine an im einzelnen Wort 

enthaltenen Silben orientierte Segmentation ganzer Wörter während des Prozesses des leisen 

oder lauten Lesens – empirischer Beobachtung zugänglich gemacht in der „lexikalischen 

Entscheidungsaufgabe“ bzw. der „Wortbenennungsaufgabe“ – gewertet. Die solcher 

Schlußfolgerung zugrunde liegende Logik besagt, daß eine systematische Abhängigkeit der 

in solchen Experimenten erhaltenen Reaktionslatenzen von der experimentellen 

Manipulation der Auftretenshäufigkeit einer bestimmten Untereinheit eines Wortes die 

entsprechende sublexikalische Einheit als funktional für den Leseprozeß erscheinen läßt, 

vorrausgesetzt, daß ein gegebener Effekt ausschließlich auf die experimentelle Manipulation 

und nicht auf mit dieser eventuell konfundierte Variablen zurückzuführen ist.  

Das Konzept einer Silbe ist primär phonologischer Natur, und in der 

psycholinguistischen Forschungsliteratur finden sich zahlreiche Belege für die 

Bedeutsamkeit von Silben bei der Rezeption gesprochener Wörter, in erster Linie innerhalb 

romanischer Sprachen, deren Klangbild im Unterschied zu germanischen Sprachen als 

syllabisch akzentuierend beschrieben wird (siehe Cutler, Mehler, Norris, & Seguí, 1986; 

Mehler, Dommergues, Frauenfelder, & Seguí, 1981; Morais, Content, Cary, Mehler, & Seguí, 

1989). Aber auch den Prozeß der visuellen Worterkennung betreffend und selbst für die 

Englische Sprache, auf die sich die experimentelle Forschung in diesem Gebiet lange Zeit 

schwerpunktmäßig konzentriert hatte, wiesen einige Forschungsbefunde darauf hin, daß die 

Silbenstruktur eines Wortes auch beim Prozeß des leisen Lesens eine funktionale Rolle 

spielen könnte (Lima & Pollatsek, 1983; Millis, 1986; Prinzmetal, Treiman, & Rho, 1986; 

Spoehr & Smith, 1973; Taft & Forster, 1976; Tousman & Inhoff, 1992).  
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Jedoch wurde die Interpretation einiger dieser Befunde als Evidenz für die syllabische 

Segmentation visueller Wortformen von anderen Forschern in Frage gestellt, indem die 

Ergebnisse als Nebenprodukt rein orthographischer, an der spezifischen 

Auftretenshäufigkeit von Buchstabenfolgen orientierter Verarbeitung interpretiert wurden. 

(siehe Seidenberg 1987; 1989, Schiller 1998; 2000, siehe aber auch Rapp, 1992). 

Neuere empirische Befunde aus dem Spanischen rückten den potentiellen Charakter 

von Silben als funktionale Einheiten auch des leisen Leseprozesses aber erneut in den 

Vordergrund aktueller Forschung: Carreiras, Álvarez und de Vega (1993) sowie Perea und 

Carreiras (1998) konnten zeigen, daß Wörter, die mit einer hochfrequenten Silbe beginnen, 

längere Reaktionslatenzen in der lexikalischen Entscheidungsaufgabe nach sich ziehen als 

Wörter, deren Anfangssilbe in vergleichsweise wenigen anderen Wörtern ebenfalls enthalten 

ist. Dieser Effekt konnte von Mathey und Zagar (2002) erfolgreich für die Französische 

Sprache repliziert werden, ebenso von Conrad und Jacobs (2004) im Deutschen und damit 

erstmals in einer nicht-romanischen Sprache (siehe aber Macizo & Van Petten, 2007 für einen 

vergeblichen Replikationsversuch im Englischen). Alle genannten Forscher sehen diesen 

empirischen Effekt in der mit zunehmender Frequenz der Anfangssilbe gesteigerten 

Schwierigkeit der Identifikation eines Zielwortes innerhalb einer über die gemeinsame 

Anfangssilbe definierten Kohorte von Kandidaten begründet, die mit der Verarbeitung des 

Zielwortes interferieren. Auf der Ebene komputationaler Modelle der visuellen 

Worterkennung lassen sich solche Effekte über den Mechanismus lateraler Inhibition auf der 

Ebene von Ganzwortrepräsentationen erklären (siehe McClelland & Rumelhart, 1981; 

Grainger & Jacobs, 1996). Dieser inhibitorische Effekt der Silbenfrequenz in Aufgaben, die 

expliziten lexikalischen Zugriff erfordern, wird kontrastiert vom Befund schnellerer 

Benennungslatenzen für spanische Wörter mit hochfrequenten Silben sobald, wie in der 

Wortbenennungsaufgabe, offene Artikulationsprozesse im Zentrum des experimentellen 

Verfahrens stehen (Perea & Carreiras, 1998; siehe auch Carreiras and Perea, 2004, sowie 

Brand, Rey, Peereman, & Spieler, 2002, für ähnliche Ergebnisse im Französischen).  

 

Die vorliegende Dissertation enthält Experimente mit zweisilbigem Wortmaterial aus 

drei verschiedenen Sprachen: Deutsch, Spanisch und Französisch. Dieser 

sprachübergreifende Ansatz soll nicht nur der Breite der gelieferten Evidenz für syllabische 

Verarbeitung als wesentliches inhärentes Merkmal des Lesprozesses dienen, sondern auch 
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die hypothesengeleitete Suche nach sprachspezifischen Unterschieden solcher syllabischer 

Verarbeitung ermöglichen.  

Die drei genannten Sprachen unterscheiden sich zum Teil deutlich hinsichtlich der 

Transparenz ihrer Silbenstruktur. Diese ist im Spanischen in besonders hohem Maße 

gegeben, das Französische kennzeichnet spezifische Inkonsistenz hinsichtlich der 

orthographischen Repräsentation phonologischer Silben, während die Transparenz der 

Silbenstruktur des Deutschen von der Komplexität möglicher Konsonantenverbindungen am 

Silben An- und Auslaut beeinträchtigt sein mag und weiterhin bereits im Bereich 

zweisilbiger Wörter von morphologischer Komplexität entscheidend mitgeprägt ist.  

Aus diesen sprachspezifischen Unterschieden ergibt sich die Hypothese einer 

unterschiedlichen Ausprägung syllabischer Effekte im Vergleich der drei Sprachen.  

 

In Kapitel 1 wird überprüft, ob sich eine ähnliche Dissoziation von 

Silbenfrequenzeffekten über Aufgaben mit unterschiedlicher Involvierung offener 

Artikulation, wie sie für das Spanische beschrieben worden ist, auch im Deutschen zeigen 

läßt. Im Gegensatz zu den Befunden für das Spanische (Perea & Carreiras, 1998; Carreiras & 

Perea, 2004) ergaben sich dieselben inhibitorischen Effekte für die Frequenz der Anfangsilbe 

zweisilbiger deutscher Wörter sowohl in der lexikalischen Entscheidungsaufgabe als auch in 

der Wortbenennungsaufgabe. Dieser sprachübergreifende Unterschied läßt sich über eine 

notwendigerweise stärkere Gewichtung lexikalischer Verarbeitung bei der 

Wortbenennungsaufgabe im Deutschen erklären: Voraussetzung der korrekten Aussprache 

eines mehrsilbigen Wortes ist die Kenntnis seines Betonungsmusters, das Wissen, ob - im 

Falle eines zweisilbigen Wortes - die erste oder zweite Silbe zu akzentuieren ist. Im 

Spanischen ist ein solcher Wortakzent grundsätzlich syllabisch definiert, er liegt regelhaft auf 

der vorletzten Silbe eines Wortes. Ausnahmen sind mit orthographischen Akzenten 

gekennzeichnet oder definieren sich über das letzte im Wort enthaltene Phonem, 

orthographisch realisiert in den Buchstaben L, R, D oder Z. Somit kann das Akzentmuster 

eines jeden spanischen Wortes aus einfacher orthographisch-prälexikalischer Analyse 

erschlossen werden, und korrekte Artikulation kann initiiert werden, ohne daß das 

auszusprechende Wort notwendigerweise in vollem Umfang erkannt worden sein muß.  
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Derartiges ist im Deutschen nicht möglich, Abweichungen vom vorherrschenden 

Muster des Akzentes am Wortanfang können erst aufgrund tiefergehender 

Wortverarbeitung erschlossen werden. Der vergleichbare Einfluß der Silbenfrequenz in 

Wortbenennungsaufgabe und lexikalischer Entscheidungsaufgabe im Deutschen spiegelt die 

starke Bedeutung lexikalischer Verarbeitungsprozesse in beiden Aufgaben wieder.  

Die von Levelt, Roelofs und Meyer (1999) postulierte leichtere Wiedergabe 

hochfrequenter Silben auf der Ebene von Artikulationsprozessen konnte in diesem 

Experiment für das Deutsche nur im Bereich nichtlexikalischen Materials, dem mangels 

semantischen Gehalts ein Standardakzent auf der ersten Silbe zugewiesen werden kann, 

gezeigt werden. 

 

Grundsätzlich stellen Befunde, die eine automatische syllabische Segmentation visuell 

präsentierter Wortformen nahelegen, existierende komputationale Modelle der visuellen 

Worterkennung vor folgendes Problem: Da die meisten dieser Modelle ausschließlich für die 

Verarbeitung einsilbigen Wortmaterials konzipiert sind, verfügen sie über keine silbisch 

definierten Repräsentationseinheiten (siehe z.B.., Coltheart, Rastle, Perry, Langdon, & 

Ziegler, 2001; Grainger & Jacobs, 1996; Jacobs, Graf, & Kinder, 2003; Ziegler, Perry, & 

Coltheart, 2000; Zorzi, Houghton, Butterworth, 1998; siehe aber auch Ans, Carbonnel, & 

Valdois, 1998; für ein Modell zur Benennung mehrsilbiger Wörter). Würden sich syllabische 

Effekte bei der Verarbeitung mehrsilbigen Wortmaterials als reliabel erweisen, so würde dies 

den Geltungsbereich dieser Modelle und der von ihnen postulierten Mechanismen der 

visuellen Worterkennung in erheblichem Maße einschränken, da die meisten Wörter der 

meisten Sprachen mehrsilbig sind. 

Ein Schwerpunkt der experimentellen Erforschung der Rolle von Silben beim leisen 

Lesen innerhalb dieser Dissertation liegt deshalb in der näheren Untersuchung der 

Auftretensbedingungen des Silbenfrequenzeffektes in der lexikalischen 

Entscheidungsaufgabe, um zu ermitteln, ob dieser tatsächlich einer syllabischen 

Segmentation orthographischer Wortformen geschuldet ist. Dies war angesichts der 

bisherigen Befundlage insofern fraglich, als einer wesentlichen Konfundierung der Frequenz 

silbischer Einheiten mit rein orthographisch definierten Mustern innerhalb eines Wortes in 

den Experimenten von Carreiras et al (1993), Perea und Carreiras (1998), Mathey und Zagar 

(2002) sowie Conrad & Jacobs (2004) nicht in differenzierender Weise Rechnung getragen 



Visual recognition of complex words: The role of syllabic units .  
A cross-linguistic approach 
___________________________________________________ 

 

 VII 

wurde: Die Frequenz einer Silbe korreliert stark positiv mit der Frequenz der diese Silbe 

bildenden Buchstabenverbindung, ohne daß letztere zwangsläufig in systematischer 

Beziehung zur Silbenstruktur der betreffenden Wörter, aus deren kumulierter Frequenz sie 

sich errechnet, stünde. Empirische Effekte, die sich über die Manipulation von 

Silbenfrequenzen ergeben, könnten somit durchaus auch als Niederschlag rein 

orthographischer Verarbeitungsprozesse zu verstehen sein. 

Die getrennte und unabhängige Manipulation der Frequenz des Wortbeginns 

spanischer zweisilbiger Wörter ergab jedoch in den in Kapitel 3 dieser Dissertation 

präsentierten Experimenten differentielle und einander entgegengesetzte Effekte der 

Silbenfrequenz einerseits und der rein orthographisch definierten Bigrammfrequenz 

andererseits. Der erhaltene inhibitorische Effekt der Silbenfrequenz, der unter ähnlichen 

Kontrollbedingungen auch in einem Experiment in Französischer Sprache erhalten wurde 

(siehe Kapitel 4), ist daher ein eindeutiger Beleg für den tatsächlich syllabischen Charakter 

dieses empirischen Effektes, der somit die Hypothese einer automatischen syllabischen 

Segmentation orthographischer Wortformen bedeutend stützt. In einem weiteren in Kapitel 

3 enthaltenen Experiment fand sich darüber hinaus keinerlei Evidenz für eine Modulierung 

des Silbenfrequenzeffektes durch spezifische Muster orthographischer Redundanz, wie sie 

sich aus Überlegungen Seidenbergs (1987; 1989) hätte ableiten lassen. Die Diskrepanz dieses 

Ergebnisses zu Studien die Relation orthographischer und syllabischer Verarbeitung im 

Französischen betreffend (Doignon & Zagar, 2005; Mathey, Zagar, Doignon, & Seigneuric, 

2006) eröffnet eine interessante sprachvergleichende Perspektive hinsichtlich der 

Abhängigkeit dieser Wechselbeziehung von der Transparenz der Silbenstruktur einzelner 

Sprachen. 

Die phonologische Natur des linguistischen Konzeptes der Silbe als größte in einem 

kontinuierlichen Strom aussprechbare Lautverbindung innerhalb eines Wortes legt 

grundsätzlich nahe, daß eine syllabische Segmentation ebenfalls als von phonologischer 

Verarbeitung geprägter Prozeß zu verstehen ist, ein orthographische Wortform also während 

des Lesens in ihre phonologischen Silben zerlegt wird. Jedoch konnte eine solche spezifische 

Attribution von Silbenfrequenzeffekten aufgrund bisheriger Forschungsergebnisse nicht 

geleistet werden, da – zumindest in Sprachen mit einer konsistenten Schrift-Laut Beziehung 

wie das Deutsche und das Spanische – eine experimentelle Unterscheidung zwischen 

orthographischen und phonologischen Silben kaum zu realisieren ist.  
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In Kapitel 4 werden mehrere Experimente vorgestellt, die sich die relativ inkonsistente 

orthographische Realisierung phonologischer Silben im Französischen zunutze machen, um 

dieser theoretisch bedeutsamen Forschungsfrage nachzugehen. Manipulationen der initialen 

Silbenfrequenz französischer Wörter bezogen sich entweder auf die Frequenz 

orthographischer oder auf die Frequenz phonologischer Silben, wobei das jeweilige 

alternative Frequenzmaß konstant gehalten wurde.  

Es ergaben sich die klassischen inhibitorischen Silbenfrequenzeffekte in der 

lexikalischen Entscheidungsaufgabe nur für die Frequenz phonologischer Silben. Dieser 

Befund bestätigt die phonologische Natur syllabischer Segmentierung mehrsilbiger 

orthographischer Wortformen während des Leseprozesses. Gleichzeitig kann in Kapitel 4 

gezeigt werden, daß eine automatische syllabische Segmentierung, wie im 

Silbenfrequenzeffekt sich zeigend, in dem Maße abnimmt, wie die Frequenz der zu lesenden 

Wörter steigt, da im Falle hochfrequenter Wörter lexikalischer Zugriff vermutlich schon 

anhand ihres hinreichend gelernten Erscheinungsbildes in direkterer, von rein 

orthographische Verarbeitung geprägter Weise möglich ist. 

Fußend auf die im Rahmen dieser Dissertation erhaltenen empirischen Ergebnisse, 

beinhalten Kapitel 3 und 4 spezifische Vorschläge, wie interaktive komputationale Modelle 

der visuellen Worterkennung zu erweitern wären, um der Verarbeitung mehrsilbiger 

Wörter, welche auf Modellebene nicht ohne die Implementierung syllabischer 

Repräsentationseinheiten auskommen kann, Rechnung tragen zu können. Die diesbezüglich 

nicht hinreichende Performanz eines existierenden komputationalen Modells visueller 

Worterkennung ohne syllabische Repräsentationseinheiten (Grainger & Jacobs, 1996) wird in 

Kapitel 3 anhand der empirischen Daten aus den Experimenten zu differentiellen Effekten 

von Silben- und Bigrammfrequenz illustriert.  

Kapitel 2 ist einem weiteren spezifischen Aspekt von Frequenzeffekten in visueller 

Worterkennung und komputationaler Modellierung gewidmet: der Unterscheidung von 

type- und token basierten Frequenzmaßen und ihrer potentiell differentiellen Effekte im 

Prozeß der visuellen Worterkennung. Bezüglich empirischer Effekte der Silbenfrequenz war 

die mangelhafte Unterscheidung zwischen diesen unterschiedlichen Maßen ein weiteres 

Manko bisherigen experimentellen Vorgehens. Die Bedeutung einer solchen Unterscheidung 

wird am Beispiel der Dissoziation von Effekten orthographischer Nachbarschaftsdichte 

(type) und –Frequenz (token) in der visuellen Worterkennung verdeutlicht.  
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Die erfolgreiche differentielle Simulation beider Effekte ist ein wesentliches Merkmal 

eines einflußreichen Modells visueller Worterkennung (Grainger & Jacobs, 1996). Anhand 

spanischen Wortmaterials konnte in Kapitel 2 eine ähnliche Dissoziation für Effekte initialer 

Silbenfrequenz in der lexikalischen Entscheidungsaufgabe gezeigt werden: Nachdem die 

hohe Korrelation beider Maße experimentell aufgelöst wurde, ergab sich der klassische 

inhibitorische Effekt der Silbenfrequenz nur für das token Maß der Silbenfrequenz, während 

–zumindest unter Kontrolle der Anzahl höherfrequenter Silbenfrequenznachbarn eines 

Wortes – das type Maß der Silbenfrequenz mit kürzeren Reaktionslatenzen verbunden war.  

Die Tatsache, daß beide Effekte in ein und demselben Aufgabenkontext erwuchsen, ist 

von besonderer theoretischer Bedeutung, da dies schwer vereinbar ist mit der Art und Weise 

wie das „Multiple Read-Out Model“ von Grainger & Jacobs (1996) derartige Effekte als das 

Resultat unterschiedlichem Aufgabenkontext angepaßter unterschiedlicher 

Antwortstrategien simuliert.  
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This dissertation thesis is about syllable frequency effects in visual word recognition. 

Before the seminal study of Carreiras, Álvarez and De Vega (1993), only rather sparse 

empirical evidence for syllabic processing during the process of silent reading had been 

reported in psycholinguistic research focusing mainly on the English orthography (Lima & 

Pollatsek, 1983; Millis, 1986; Prinzmetal, Treiman, & Rho, 1986; Spoehr & Smith, 1973; Taft & 

Forster, 1976; Tousman & Inhoff, 1992). And at least some of these findings have been highly 

contested: It had been argued that they would possibly occur as a by-product of 

orthographic processing – given the relation of syllabic structure to orthographic 

redundancy (see Seidenberg 1987; 1989, see also Schiller 1998; 2000, but see Rapp, 1992). 

Longstanding evidence for the role of syllabic units had rather been obtained for the domain 

of speech perception (e.g., Cutler, Mehler, Norris, & Seguí, 1986; Mehler, Dommergues, 

Frauenfelder, & Seguí, 1981; Morais, Content, Cary, Mehler, & Seguí, 1989). 

But using the Spanish language, which unlike English is a shallow orthography with a 

consistent bidirectional spelling to sound relation and transparent syllabic structure, 

Carreiras et al. (1993, see also Perea & Carreiras, 1998) reported that words comprising high 

frequency syllables – syllables shared by many other words in identical position – were 

responded to more slowly in the lexical decision task than words with low frequency 

syllables.  

This finding suggested that during visual word recognition, orthographic word forms 

were automatically segmented into their syllabic constituents. The processing delay for high 

syllable frequency words was attributed to syllabic neighbours (words sharing a syllable 

with the target in identical position) interfering with the processing of the target (see the 

framework of interactive activation models of visual word recognition by McClelland & 

Rumelhart, 1981).  
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Such syllabic effects present a serious challenge for existing computational models of 

visual word recognition, because none of these models possesses a layer of syllabic 

representation units (see e.g., Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; Grainger & 

Jacobs, 1996; Jacobs, Graf, & Kinder, 2003; Ziegler, Perry, & Coltheart, 2000; Zorzi, Houghton, 

Butterworth, 1998; but see Ans, Carbonnel, & Valdois, 1998; for a model of naming 

polysyllabic words).  

Most of these models are exclusively implemented for the processing of monosyllabic 

words. If syllabic effects like the syllable frequency effect on lexical access proved to be 

reliable and could not be attributed to other than syllabic processing, this would present an 

important qualitative difference in the processing of polysyllabic words compared to 

monosyllabic words. In consequence, the scope of these computational models would be 

severely limited, because most words in most languages are polysyllabic.  

The inhibitory syllable frequency effect in lexical decision has since been replicated in 

two other languages, French (Mathey & Zagar, 2002) and German (Conrad & Jacobs, 2004). 

Therefore, an assumed automatic syllabic processing cannot be understood as a 

phenomenon specific to the Spanish language neither as occurring exclusively in Roman 

languages (but see Macizo & Van Petten, 2007, for a failure to replicate the effect in English). 

In contrast to the inhibition caused by syllable frequency in a task requiring lexical 

access but no overt pronunciation, words starting with high frequency syllables produced 

shorter naming latencies than words with low initial syllable frequency in naming tasks with 

visually presented word stimuli in Spanish (Perea & Carreiras, 1998; see also Carreiras and 

Perea, 2004, as well as Brand, Rey, Peereman, & Spieler, 2002, for similar data obtained in 

French). This dissociation of syllable frequency effects across different tasks was explained 

by a shift of the locus of effect to the level of motor output in the naming task (see Levelt & 

Wheeldon, 1994; Levelt, Roelofs, & Meyer, 1999). 

 

The experimental work presented in this thesis tried to further examine the nature of 

syllabic processing in visual word recognition focusing on different aspects of syllable 

frequency effects. Results are presented in four chapters using a cross language approach as 

general guideline of research: The transparency of syllabic structure varies considerably 

across different languages. This leads to the question of whether visual word recognition in 

different languages would be characterized by an automatic syllabic processing to the same 
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extent, or whether specific differences regarding syllabic processing could be observed that 

might be attributed to specific features of syllabic structure in a particular language. 

 

Chapter 1 The cross language approach in investigating effects of syllabic 

processing motivated the investigating of whether the same dissociation of syllable 

frequency effects across lexical decision and naming as suggested by the literature for the 

Spanish language would be observable using a manipulation of initial syllable frequency in 

German words and nonwords.  

In contrast to the findings of Perea & Carreiras (1998) and Carreiras & Perea (2004a) an 

inhibitory effect of syllable frequency was obtained in both tasks for German word stimuli. 

Shorter naming latencies due to initial syllable frequency were restricted to the German 

nonword stimuli. This pattern of results suggests that processes related to lexical access are 

more strongly influencing the production of overt pronunciation of polysyllabic word 

stimuli in German compared to Spanish. This finding might relate to different stress 

assignment of polysyllabic words’ in the two languages.  

In contrast to Spanish where stress is syllable timed – with the penultimate syllable 

receiving stressed -, stress in German bisyllabic words is lexically assigned depending, for 

instance, on a word’s morphology. Lexical access – being inhibited by initial syllable 

frequency – is therefore necessary in order to know which of the two syllables within a 

bisyllabic German word has to be stressed. Stress information, on the other hand, is a 

necessary prerequisite for correct pronunciation. This might be the reason why syllable 

frequency seems to influence not only lexical decision but also naming latencies for German 

words in an inhibitory manner. In contrast, the same involvement of lexical processing seems 

not necessarily to be given in Spanish, because for all Spanish words with other than 

penultimate stress, stress assignment can de inferred via prelexical processing using 

orthographic accents or the identity of the last letter in a word as sufficient stress 

information. Therefore, overt pronunciation in Spanish could theoretically already be 

initiated before lexical access has been completed and syllable frequency’s facilitative role for 

motor output processes is not cancelled out by its potential to inhibit lexical access.  

Only in the case of German nonwords, where first syllable stress is probably assigned 

by default, participants naming latencies could be shown to be influenced by the assumed 

facilitation of motor output processes due to initial syllable frequency. 
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Chapter 2 Previous research documenting inhibitory effects of syllable frequency 

in lexical decision had uncritically applied different measures of syllable frequency. They 

had either used the number of syllabic neighbours (a type measure), the cumulated 

frequency of syllabic neighbours (a token measure) or the number of higher frequency 

syllabic neighbours (being suggested by Perea & Carreiras, 1998, as probably responsible for 

the empirical effect) as independent variables.  

This was clearly weakening comparability between different studies and made a 

theoretical attribution of the empirical effect in general more difficult - see the differential 

effects of orthographic neighbourhood density and frequency in visual word recognition (see 

Andrews, 1997, for a review) - especially because all these different measures of syllable 

frequency are highly correlated.  

Furthermore, the question of whether a type or a token based measure of syllable 

frequency effect is driving the empirical effect has important implications for any future 

attempt to simulate this effect using computational modelling. The question of potentially 

differential effects of these different measures of syllable frequency was addressed by several 

experiments conducted in the Spanish language presented in Chapter 2. 

In the first of these experiments involving the independent manipulation of type and 

token syllable frequency, the typical inhibitory effect of syllable frequency on lexical access 

was obtained only for the token measure of syllable frequency, whereas the type measure 

produced a tendency of facilitation on response latencies and a significant facilitative effect 

on error rates. In a subsequent experiment using the same independent variables as in the 

previous manipulation but providing additional control for the number of higher frequency 

syllabic neighbours, the facilitative effect of type syllable frequency turned out to be 

significant in both response latencies and error rates, whereas the inhibitory effect of token 

syllable frequency remained unaffected. This pattern of results provides empirical evidence 

for what had been formulated in previous theoretical accounts of the syllable frequency 

effect in lexical decision: The locus of the effect has to be seen at a lexical level of competition 

between candidate words sharing the initial syllable with the target and competing for 

identification. The amount of interference caused by these candidates (the syllabic 

neighbours) does not depend on their mere number, but on their frequency. A similar 

argument had been used by Perea & Carreiras (1998), who proposed the number of higher 

frequency syllabic neighbours as being responsible for the inhibitory effect of syllable 
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frequency in the lexical decision task, but the present results could show that also token 

syllable frequency alone can hold responsible for this effect.  

Token syllable frequency was accordingly applied for all manipulations of syllable 

frequency in all other experiments presented in this dissertation. The observed dissociation 

for the type and the token syllable frequency measures suggests that a syllable’s frequency 

can influence the reading process in different ways at different processing levels:  

The high typicality (possibly best reflected by the type measure of syllable frequency) of 

a syllable seems to facilitate the processing of sublexical units at a prelexical processing 

stage, whereas the inhibitory potential of syllabic neighbours (reflected in the token measure 

of syllable frequency) makes lexical access to high syllable frequency words more difficult. 

Furthermore, the dissociation of these two effects that were obtained in one and the same 

task environment has important implications for computational modelling, questioning, e.g., 

the account of the dissociated effects of orthographic neighbourhood density and frequency 

given by the MROM (Grainger & Jacobs, 1996), which modulated the involvement of 

different read-out procedures as an adaptation to different task environments in order to 

successfully simulate the two effects. 

 

Chapter 3 All previous studies reporting syllable frequency effects in lexical 

decision interpreted this empirical effect as evidence for an automatic syllabic segmentation 

of orthographic word forms during the reading process. It was outlined above why this 

would present a serious challenge for computational models of visual word recognition. But 

looking closely at the relation between syllable frequency and orthographic redundancy, the 

question arises of whether this attribution of the empirical effect has not been premature.  

Syllable frequency is generally confounded with orthographic redundancy in two ways: 

First, the bigram straddling the syllabic boundary is typically less frequent than intrasyllabic 

bigrams. This phenomenon had inspired the bigram trough hypothesis (Seidenberg, 1987; 

1989), which argued that the orthographic salience of a relatively low frequent bigram at the 

syllable boundary might be the only reason for any apparent syllabic segmentation. This 

would mean that alleged “syllabic” effects might arise as a mere by-product of orthographic 

processing questioning whether phonologically or orthographically defined syllabic units 

would possess themselves the status of functional units during visual word recognition.  
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Some empirical studies reporting syllable frequency effects had tried to dismiss this 

critic by using only words not showing the bigram trough pattern at the syllable boundary 

(e.g., Carreiras et al., 1993; Perea & Carreiras, 1998). 

However, the question of whether the kind of orthographic segmentation device 

proposed by Seidenberg (1987; 1989) had any influence on syllabic processing or not, had 

never been directly examined. The first experiment presented in Chapter 3 was designed to 

fill this gap addressing the theoretically interesting question regarding a possible role of 

orthographic redundancy for syllabic segmentation with bigram troughs facilitating the 

syllabic parsing process. A manipulation of initial syllable frequency was realized in 

bisyllabic Spanish words that either showed the bigram trough pattern at the syllable 

boundary or not.  

Besides an inhibitory main effect of syllable frequency and a weak facilitation of 

response latencies in the absence (relative to the presence) of a bigram trough at the syllable 

boundary that – according to multiple regression analyses - seemed to be attributable rather 

to global patterns of orthographic redundancy than to the relative position of a bigram with 

respect to the syllable boundary, no interaction between the two effects was observed. This 

pattern of results suggesting that syllabic processing in Spanish is completely independent 

from orthographic redundancy - at least as reflected by the concept of bigram troughs – is 

partially incompatible with recent results obtained for the French language (Doignon & 

Zagar, 2005; Mathey, Zagar, Doignon, & Seigneuric, 2006).  

This discrepancy might present an interesting case of language dependent features of 

syllabic processing with orthographic redundancy becoming more important for syllabic 

segmentation in languages where transparency of syllabic structure is attenuated by the 

inconsistent mapping between phonological syllables and their orthographic 

representations. 

But there is a second natural confound between the frequency of syllabic units and 

orthographic redundancy, which is even more important for a reliable attribution of syllable 

frequency effects: A high frequency syllable can generally also be described as a high 

frequency letter cluster the definition of which does not necessarily relate to syllabic 

structure. None of the experiments reported in the previous literature had controlled for the 

frequency of the letter cluster formed by the initial syllable when applying a manipulation of 

initial syllable frequency. Therefore, all empirical effects of syllable frequency might have 
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been triggered by the frequency of a purely orthographically defined letter cluster – 

regardless of syllabic structure. Such effects of letter cluster frequency might well be 

accounted for by computational models comprising letter representation units and they 

would not necessarily present evidence for syllabic processing in visual word recognition 

(see Schiller, 1998; 2000).  

Disentangling the empirical confound of syllable frequency and letter cluster frequency, 

two experiments were conducted using bisyllabic Spanish words starting always with a two 

letter CV-syllable. These experiments involved a) the manipulation of initial syllable 

frequency controlling for the frequency of the initial bigram, and b) the manipulation of 

initial bigram frequency controlling for the frequency of the initial syllable. A perfect contrast 

for the effects of the frequency of the first two letters within a Spanish word was observed, 

depending on how this frequency was defined: Syllable frequency had an inhibitory effect on 

response latencies and error rates, whereas response latencies and error rates decreased with 

initial bigram frequency. 

Therefore, it is shown for the first time that syllable frequency effects in the lexical 

decision task cannot be understood without assuming the involvement of syllabic 

processing. 

In contrast to syllabic units, which seem to have an important role for the activation of 

whole word candidates competing with the target for identification, the frequency of 

bigrams rather seems to facilitate prelexical orthographic processing (see also Hauk et al., 

2006). Simulation data using an extended version of the MROM (Grainger & Jacobs, 1996) is 

provided showing that a model without syllabic representations is not capable of 

reproducing the syllable frequency effect when letter cluster frequency is controlled for.  

On the other hand, global lexical activation in the model (which is responsible for fast-

guess responses of the model) was shown to be sensitive to bigram frequency, even though 

this effect did not reach statistical significance. Future research has to determine whether the 

facilitative effect of bigram frequency that was obtained for words where the relevant bigram 

always coincided with the initial syllable has a specific relation to syllabic processing with 

bigram frequency possibly facilitating the processing of syllabic units. 
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Chapter 4 Even when it was shown in the experiments presented in Chapter 3 that 

syllabic processing appears to be indeed an automatic feature of polysyllabic visual word 

recognition, there is one remaining question regarding the nature of this effect. The concept 

of the syllable is derived from a phonological perspective – a syllable is defined as the largest 

combination of sounds that can be produced in an uninterrupted stream. This might lead to 

a bias to implicitly attribute syllabic effects to phonological processing without that the 

phonological nature – involving the processing of phonological vs. orthographic syllables - 

of this effect had ever been sufficiently examined.  

There is evidence for the processing of phonological syllables in visual word 

recognition from a priming study in Spanish showing comparable priming effects for 

bisyllabic words preceded by nonwords matching either the target’s initial orthographic and 

phonological syllable or the target’s phonological syllable alone (Álvarez, Carreiras, & Perea, 

2004). But generally, for manipulations of syllable frequency in Spanish and German it is 

hardly possible to distinguish between effects of orthographic and phonological syllable 

frequency because of the too consistent spelling to sound relation in these two languages. 

The French language instead, with its high degree of inconsistency regarding the 

orthographic representation of phonemes (see Ziegler, Jacobs, & Stone, 1996) offers the 

possibility to experimentally disentangle the frequencies of phonological and orthographic 

syllables. The only study investigating syllable frequency effects in French (Mathey & Zagar, 

2002) had not taken this perspective. Therefore, one lexical decision experiment including six 

critical comparisons is presented in Chapter 4 using bisyllabic French stimulus material in 

order to examine the phonological nature of syllabic processing. 

Comparison 1 revealed a significant but weak general effect of initial syllable frequency 

manipulating both orthographic and phonological syllable frequency conjointly. 

Comparison 2, manipulating orthographic and phonological syllable frequency 

independently, – controlling for the respective alternative variable – revealed a significant 

inhibitory effect of syllable frequency only for phonological syllable frequency. 

Comparison 3 involved the same manipulations using this time the number of higher 

frequency neighbours as independent variable instead of token syllable frequency. Results 

were comparable to those obtained in Comparison 2. 

Comparison 4 replicated the finding presented in Chapter 3 for the Spanish language, 

this time manipulating phonological syllable frequency: A very robust inhibitory effect of 
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syllable frequency was obtained when both orthographic syllable frequency and the 

frequency of the letter cluster forming the syllable had been controlled for. 

Comparison 5 extended the examination of possible alternative sources of syllable 

frequency effects to testing whether the frequency of the first initial phonemes within words 

starting with CV-syllables would have any significant effect on lexical access when 

controlling for initial syllable frequency. The null effect (showing a tendency towards 

facilitation) obtained in this comparison is additional evidence that only syllabic processing 

can be seen as the source of syllable frequency effects in visual word recognition. 

Comparison 6, crossing the factor syllable frequency with a manipulation of word 

frequency, revealed a significant interaction between the effects of the two factors:  

Syllable frequency was found to influence only the processing of low frequency, but not 

the processing of high frequency words.  

Taken together, the results presented in Chapter 4 show that syllable frequency effects 

in lexical decision have indeed to be seen as evidence for an automatic processing of 

phonological syllables. 

In an interactive activation model of visual word recognition containing a level of 

phonological syllable representations, these effects could arise as the result of lateral 

inhibition at the level of whole word phonological word forms, the activation of which 

would be mediated by the representations of phonological syllables. Lateral inhibition would 

be stronger for word representations containing high frequency phonological syllables, 

because inhibition would be sent out by more highly activated competing candidate 

representations than in the case of low syllable frequency words.  

The fact that this effect seems to diminish with increasing word frequency of the target 

fits well with the general architecture of models containing both orthographic and 

phonological representation units: The activation of phonological units’ representations in 

these models always requires the previous activation of their corresponding orthographic 

units’ representations. The resulting delay in the onset of phonological processing in these 

models can hinder phonological effects to arise whenever fast direct access to a high 

frequency word’s representation via the connections between orthographic representations is 

possible.  
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As a conclusion, orthographic word forms seem to be segmented into their 

phonological syllables whenever fast lexical access to the over-learned orthographic 

representations of high frequency words is not sufficient to assure lexical access in visual 

word recognition. 
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General Introduction General Introduction General Introduction General Introduction     

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________    

 

Reading is one of the basic cultural skills in modern life. Human life is hardly 

conceivable without language based communication. The possibility to write a message or a 

thought on a piece of parchment or paper or on a webpage on the internet, that other people 

are able to perceive and understand not only at the exact moment and the place where a 

verbal act is pronounced, but even many years later and wherever they are, is closely related 

to the evolution of human society. The spread of an alphabetic writing system over the 

Mediterranean by Phoenician traders between the twelfth and ninth century before Christ or 

the invention of a printing technique using moveable letter types by Gutenberg in the middle 

of the fifteenth century after Christ have been the sources of substantial progress in the 

evolution of our culture.  

From enjoying the most sophisticated products of cultural achievement like reading a 

novel or a philosophical essay to the simplest necessities of everyday life - reading the 

expiration date on a packet of food bought in the supermarket or the contraindications for a 

medication - reading has become an unavoidable part of almost any aspect of our life. 

Language in general can be described as a symbolic system assigning specific meaning 

to single words or phrases. Proficient use of this system, the understanding and production 

of speech is normally acquired during the first years of childhood. 

Reading and writing instead, is normally not being taught to children before entering 

school around the age of six and it involves an additional level of symbolic transformation:  

Linguistic contents originally belonging to the domain of sounds are represented 

visually using a symbolic system; and in the case of alphabetic writing systems, the 

combination of about 30 little signs has to provide a sufficient level of differentiation to 

represent all words of a particular language in a distinguishable manner. 
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Some writing systems like the Chinese have maintained a relatively high level of direct 

symbolic relatedness between words and their written representations using single symbols 

for single words, the formal features of which relate to the semantic proprieties of the words 

they stand for. It could in theory be argued that something similar would hold true even in 

alphabetic writing systems: That words would be recognized as entire symbols directly 

assessing a word’s meaning from its orthographic word form.  

The luminous advertising of a hotel might in fact be perceived as an integral symbol 

when arriving at night in foreign city without having to encode the specific letters “H”, “O”, 

“T”, “E” and “L”, but we are also able to fluently read and correctly pronounce words from a 

text in a foreign language without knowing what the words mean or ever having seen them 

before, at least when we are familiar with the alphabet and the phoneme inventory of this 

language and when there is a consistent relation of the language’s orthography to the latter 

one. 

Psycholinguistic research has tried for many years to improve the understanding of 

how being presented with a white page filled with many little signs can trigger the most 

complex cognitive operations on the base of associating meaning to combinations of visual 

symbols. 

The focus of interest varies considerably between different scientific approaches 

investigating the reading process, because language in general and, of course, also written 

language can be described on many different levels of decreasing grain size starting with 

entire texts going from phrases down to the word level ending up with sublexical units - not 

to mention the role of single letters’ visual features.  

The experimental work presented in this thesis focuses exclusively on processes 

underlying the recognition of visually presented isolated words. It might be argued that this 

restricted focus is problematic, because it definitely ignores or might even foil some aspects 

of the natural reading process. Single words are normally embedded in sentences with 

specific syntax and syntactic structure of phrases is known to influence the reading process 

(see e.g., Friederici, 1995; Hoeks, Stowe, & Doedens, 2004; Newman, Pancheva, Ozawa, 

Neville, & Ullman, 2001; Rösler, Putz, Friederici, & Hahne, 1993). The processing of single 

words has also been shown to depend on the context they appear in as a function of 

predictability determined by preceding information within a sentence (see e.g., Dambacher 

& Kliegl, 2007; Dambacher, Kliegl, Hofmann, & Jacobs, 2006). On the other hand, the 
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processing of more complex structures like entire texts or phrases would be impossible 

without the efficient processing of single words being their basic constituents.  

And the question of how this basic process of accessing the meaning of single (isolated) 

words in visual word recognition is achieved by the human mind is still far from being 

completely resolved. 

 

Sublexical units in visual word recognition 

 
The view that some words in some context may be recognized holistically, – see the 

example of “HOTEL” mentioned above – but that such an efficient direct access to an over-

learned visual word form can not sufficiently describe visual word recognition in general, is 

widely accepted in the field of psycholinguistics. Assuming that lexical access does not 

always occur in a holistic manner leads to the question of which parts of a word – being 

referred to as sublexical units – would play which specific role in mediating the process of 

lexical access. In other words, what are the functional units of visual word recognition? 

A wide range of theories and models – from verbal models to parallel distributed or 

localist-connectionist computational models - have been formulated or implemented to 

account for the process of lexical access in visual word recognition (see Jacobs & Grainger, 

1994; Barber & Kutas, 2007, for reviews). These models do not only differ in their degree of 

specification, their general architecture or their computational principles, they also 

operationalize specific views on which sublexical units might be functional during visual 

word recognition. 

The experiments presented in this dissertation have been designed to explore the role of 

syllabic units and their frequency during the process of silent reading in three different 

languages: German, Spanish and French.  

The classical task to examine lexical access to visually presented single words is the 

lexical decision task, introduced by Rubenstein, Lewis and Rubenstein (1971). All 

experiments presented in this dissertation used this task – together with a word naming task 

used in one experiment to examine specific influences of syllable frequency on overt 

pronunciation.  
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In the lexical decision task, participants are presented with letter strings on a computer 

screen that either represent an existing word – e.g., “HAND” or not, e.g., “HOND”. They 

have to press a button to indicate their decision upon the lexicality of the stimulus as being a 

word or a nonword. The time between the onset of stimulus presentation and the (correct) 

response to a word is generally understood as to offer a relative estimation for the time 

participants need to lexically access a presented word stimulus (but see Grainger & Jacobs, 

1996, for a model simulating lexical decision latencies as corresponding to either full 

identification or to a “fast guess”).  

Prolonged lexical decision latencies are therefore interpreted as indicating a more 

complicated processing of words possessing specific properties or being presented within a 

specific context - operationalized by the experimental design.  

 

In the following, some perspectives on how a sublexical unit can be defined will be 

briefly described. The basic patterns of the theoretical framework of an interactive activation 

models (see McClelland & Rumelhart, 1981; Grainger & Jacobs, 1996) - the results obtained in 

the experiments presented in this thesis are mainly discussed within - will be introduced.  

 

The orthographic perspective 

It is evident that single letters are the basic units that an orthographic word form in 

alphabetic writing systems is composed of. In an influential framework for modelling visual 

word recognition, the interactive activation model (McClelland & Rumelhart, 1981), visual 

feature detectors encoding the orthographic input activate corresponding letter 

representations, which in turn send activation to whole word representations containing a 

specific letter in a specific position. A word is recognized by the model when its 

representation reaches a predefined threshold of activation. The basic principles of 

interactive activation are: each representation unit sends excitatory activation to all 

corresponding units located at a superior layer of representations (e.g., word representations 

containing a specific letter) and inhibits all non-corresponding units (e.g., letter units not 

containing a specific visual feature). But activation within the model is not only spread from 
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low level to high level representations, but is also fed back from the layer of word 

representations to the layer of letter representations.  

Letter and Word units belonging to the same layer of representations (letters or words) 

possess only inhibitory connections with each other. This mechanism of lateral inhibition 

allows the model to account for effects of interference between co-activated candidate 

representations. 

The model’s architecture and an example for the (un-quantified) spread of activation 

over the model’s different representation layers are shown in Figure 1. 

 

 
Figure 1 (taken from McClelland & Rumelhart, 1981)  

Exemplary interconnections between representational units in the Interactive Activation Model of 
McClelland & Rumelhart (1981) processing the letter “T” in the first letter position of a four letter 
word. 
Note: excitatory connections are represented with an arrow at the end of the connection; 
inhibitory connections are represented with a circle at the end of the connection. 
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Adopting the principles of interactive activation and the general architecture presented 

in Figure 1, but providing their new model called MROM with a multiple read out procedure 

for generating responses in lexical decision and perceptive identification tasks, Grainger and 

Jacobs (1996) presented a computational model, which could account for a number of 

empirical effects possibly arising via purely orthographic processing in visual word 

recognition. Some important exemplary empirical findings are: 

- The word superiority effect (see Grainger & Jacobs, 1994), which refers to the 

empirical finding that correct responses to words are faster in the lexical decision task than 

correct rejections of nonwords. 

- The word frequency effect (see Grainger & Jacobs, 1996), being another classical 

finding of visual word recognition with faster responses to high frequency than to low 

frequency words. 

These two effects arise in the interactive activation model, because, in the first place, 

only words but not nonwords possess the status of representation units in the model; 

rejection of nonwords in the MROM is achieved when a time-out criterion of processing has 

been reached. Furthermore, word representations possess a resting level of activation 

corresponding to word frequency, which assures that high frequency words will reach a 

crucial threshold of activation more quickly than low frequency words. 

- Effects of orthographic neighbourhood density and frequency (e.g., Carreiras, Perea, & 

Grainger, 1997; Grainger, O'Regan, Jacobs, & Seguí, 1998; Grainger & Jacobs, 1996; see 

Andrews, 1997 for a review). 

- Positional letter frequency effects (see Grainger & Jacobs, 1993). 

In contrast to the two effects mentioned above, effects of letter frequency or 

orthographic neighbourhood relate not only to the representational status of an orthographic 

word form, but also to the representational status of single letters in the model and to the 

way letter units send activation to the level of whole word representations.  

The term “orthographic neighbour” refers to orthographic similarity between words. 

Whenever replacing a single letter within a word, e.g., DOG/DOT, would result in another 

word the respective words are called orthographic neighbours (Coltheart, Davelaar, 

Jonasson, & Besner, 1977). A target word’s orthographic neighbours’ representations would 

receive only slightly less activation in an interactive activation model of visual word 

recognition than the target’s representation itself, because they share all but one letter with 
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the target. Words with a high density of orthographic neighbourhood have been found to be 

named more quickly and to yield faster responses in the lexical decision task than words 

with few orthographic neighbours (see Andrews, 1997). The MROM accounts for the latter 

finding via its fast-guess mechanism that is sensitive to the summed activation in the model’s 

orthographic lexicon, which would increase with the number of a target’s orthographic 

neighbours. In contrast, words possessing orthographic neighbours of superior word 

frequency have been found to be recognized more slowly, at least in perceptive identification 

tasks, where unlike in lexical decision, stimuli have to be explicitly identified to fulfil the task 

demands (see Grainger et al., 1998, Grainger & Jacobs, 1996). 

Within an interactive activation model, this effect - arising as a product of interference 

between co-activated word candidates competing for identification - can be accounted for by 

the mechanism of lateral inhibition between candidates representations on the whole word 

level. A higher frequency orthographic neighbor’s representation would inhibit the target’s 

representation in an especially efficient way, because of its high resting level of activation, 

thus prolonging the time necessary for a target’s representation to reach the threshold of 

activation corresponding to “full identification” in the MROM.  

 

It is evident that such effects would not occur if words were recognized in a completely 

holistic way. Together with effects of the frequency of single letters (see Grainger & Jacobs, 

1993), they can only be understood and accounted for by computational models when single 

letters are seen as functional units of visual word recognition.  

But not only single letters, also specific letter combinations are proposed to play a 

special role for the process of visual word recognition. Such orthographically defined letter 

combinations could be bigrams - two adjacent letters - (Massaro & Cohen, 1994; but see Paap 

& Johansen, 1994) or trigrams - three adjacent letters – (Seidenberg, 1987).  

Note that a specific problem of an interactive activation model of visual word 

recognition like the one presented in Figure 1 lies in the slot based letter position coding, 

which makes them rather inflexible regarding the activation of word representations coming 

from single letter representations. In the classical model of McClelland & Rumelhart, as well 

as in the MROM (Grainger & Jacobs, 1996), the representation of a letter occurring e.g., in 

letter position two would only activate those word representation sharing this letter in 

exactly the same position.  
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The representation of the letter “I” occurring for instance in letter position two of the 

target word WILD would not activate the representation of the word THING containing this 

letter in letter position three. 

Therefore, these models cannot account for empirical effects suggesting less position-

dependent orthographic processing in visual word recognition, e.g., the letter transposition 

effect obtained with prime-target pairs as CANISO/CASINO (see Perea & Lupker, 2004; 

Schoonbaert & Grainger, 2004). To overcome the problem of too rigid letter position coding, 

different recent models use a more flexible coding scheme for letter positions within 

orthographic word forms (see Davis & Bowers, 2005; Grainger, 2007, for an overview).  

 

The morphological perspective 

Morphemes are the smallest linguistic units of a language with semantic meaning. 

Semantic is known to influence not only sentence, but also single word reading (e.g., Gold et 

al., 2006; Buchanan, Westbury, & Burgess, 2001; Hino, Lupker, & Pexman, 2002). Therefore, 

the reading system might use morphemes as functional reading units. A word can contain 

different types of morphemes: free morphemes, which can stand alone as a single word e.g., 

the two parts of the word DESKTOP, or bound morphemes, which are used exclusively 

alongside free morphemes. Examples for bound morphemes are prefixes like RETURN, 

suffixes like WIRELESS, or morphemes determining tense, plural and number. A word’s 

stem like “START” in RESTART or STARTING is referred to as root or stem morpheme. 

Anyone familiar with the German language will not question that a morphological 

segmentation of a letter string can be an important strategy for word comprehension: A 

purely orthographic analysis of words like PROMOTIONSORDNUNG, 

VERDINGUNGSUNTERLAGE or FACHBEREICHSVERWALTUNG (hard to translate 

idiosyncratic German administration terms) comprising each three bound and two or three 

free morphemes might not assure fast lexical access.  

But it is not only for the German language and not only for such extreme examples that 

empirical evidence for morphological processing in speech production and perception and in 

visual word recognition has been obtained (Roelofs & Baayen, 2002; Schiller & Costa, 2006; 

Dohmes, Zwitserlood, & Bölte, 2004; Zwitserlood, 2004; Isel, Gunter, & Friederici, 2003; 
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McKinnon, Allen, & Osterhout, 2003; Drews & Zwitserlood, 1995). Words containing 

frequent stem morphemes are responded to more quickly in the lexical decision task (De 

Jong, Schreuder, & Baayen, 2000; see also Taft 1979a). Nonwords starting with a letter string 

usually occurring as a prefix take longer to be rejected (Laudanna, Burani, & Cermele, 1994). 

Taft & Forster (1975) proposed that lexical access to prefixed words would use their stem 

morpheme as an access code implying an early “strip off” of prefixes during visual word 

recognition. Evidence from priming studies suggests that morphological processing of a 

visual word form is not restricted to words with transparent semantic structure – where 

morphemes are indeed carriers of semantic information – but occurs also for semantically 

opaque words, e.g., CORNER (Gold & Rastle, 2007; Rastle, Davis, & New, 2004). 

Morphological processing in addition to orthographic processing is a central feature of 

some computational models of visual word recognition (Giraudo & Grainger, 2003; Reichle 

& Perfetti, 2003; Schreuder & Baayen, 1995, see also Gonnerman, Seidenberg, & Andersen, 

2007; Taft, 1994). 

 

The phonological perspective 

One of the most demonstrative findings showing that orthographic or morphological 

processing alone cannot sufficiently describe all aspects of the process of visual word 

recognition is the “pseudohomophone effect” (see Ziegler, Jacobs, & Klüppel, 2001). Letter 

strings that don’t match an orthographic word form, but sound like a word when being 

pronounced have been found to be relatively hard to correctly reject in the lexical decision 

task. Examples in German would be TEHREN and FEDAN (the pronunciation of these letter 

stings corresponds to the German words for “tar” and “feather”), which seem to be much 

more word-alike even if orthographic or morphological similarity to their respective base-

words is not higher than in the case of nonword letter strings like TEFREN and FEDUN (the 

base words are TEEREN and FEDERN). This specific finding in the lexical decision task can 

only be explained when assuming that phonological encoding or internal pronunciation of 

the presented stimulus occurs even if no overt pronunciation is required by the task. In 

everyday life we can observe this phenomenon when somebody is moving his lips while 

reading a book.  
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Observing this kind of behaviour in an adult person will probably make you think that 

he or she is not extraordinary gifted. From a more general perspective, it has been shown 

that phonological processing increases with the difficulty of lexical access. But it has also 

been described as an automatic feature of the reading process (e.g., Lukatela, Eaton, Lee, 

Carello, & Turvey, 2002; Frost, 1998; Van Orden, 1987). 

The importance of phonological encoding during visual word - especially when the 

attempt of a fast direct access to an orthographic word form fails – is reflected in the 

architecture of another influential computational model of visual word recognition: The dual 

route model of visual word recognition and reading aloud (Coltheart, Rastle, Perry, 

Langdon, & Ziegler, 2001; Ziegler, Perry, & Coltheart, 2000). 

Within the phonological route of this model, letters are matched onto graphemes and 

graphemes are converted into phonemes via the application of a grapheme-phoneme 

conversion rules before the whole phonological word form can be accessed as the 

combination of the word’s phonemes. See Jacobs, Rey, Ziegler and Grainger (1998, see also 

Ziegler et al., 2001) for an extension of the MROM (Grainger & Jacobs, 1996) processing both 

orthographic and phonological sublexical units. 

A phoneme is the smallest unit of speech in a particular language affecting word 

meaning. The orthographic representation of a phoneme is called a grapheme. There is 

empirical evidence suggesting that graphemes and phonemes are functional units of visual 

word recognition (Rey, Ziegler, & Jacobs, 2000; Rey, Jacobs, Schmidt-Weigand, & Ziegler, 

1998). Languages differ considerably regarding the regularity of the relation between 

phonemes and their orthographic representations. Especially the English language is 

characterized by a high degree of respective inconsistency (see Ziegler, Stone, & Jacobs, 

1997). The phonological value of the grapheme A is not the same in the word HAVE as in the 

word CAVE (feed-forward inconsistency). On the other hand, the same phoneme can have 

different spelling realizations in different words (feed-back inconsistency). It was George 

Bernhard Shaw, who suggested that the word FISH could be spelled as GHOTI, referring to 

the fact that the phonemes comprised in this word occur in an orthographically 

unrecognizable manner in other words like ROUGH, WOMEN and NATION (see Kessler & 

Treiman, 2001; Treiman, Kessler, & Bick, 2002, for consistency effects of a word’s grapheme 

to phoneme mapping on reading and spelling performance in English).  
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Among the languages used for the experiments presented in this dissertation, both 

Spanish and German have a relatively consistent grapheme-phoneme relation. However, a 

considerable degree of inconsistency characterizes the orthographic realization of French 

phonemes, whereas the conversion of French graphemes into phonemes is relatively 

consistent (see Ziegler, Jacobs, & Stone, 1996). 

 

The role of syllabic units 

Besides a word’s phonemes, the basic phonologically defined sublexical unit 

comprising more than one phoneme or grapheme is the syllable. 

A syllable is the largest combination of phonemes within a word that can be 

pronounced in a non-disrupted stream. The point of maximum sonority within a syllable is 

called the syllable peak or nucleus. It is normally orthographically represented by a vowel 

(V) grapheme, but some orthographies also have entire words without vowels, e.g., the 

Serbo-Croatian words KRK (the name of an island) or SMRT (death). The syllabic nucleus 

can be surrounded by single (C) or several (CC, CCC) consonants either preceding it as 

syllable onset or following it as syllable coda or offset. The principle of sonority hierarchy 

within a given syllable is considered a universal feature of syllabic structure: Sonority is 

ascending towards the syllable nucleus and descending from the nucleus to the coda. The 

sonority of consonants forming syllable onset and coda generally decreases with distance 

from the syllable peak and a minimum of sonority is found at the syllable boundary. A CV-

syllable is considered the optimal syllabic structure according to the principle of a maximum 

sonority contrast within and between syllables (see Pulgram, 1970; MacNeilage & Davis, 

2001, Stenneken, Bastiaanse, Huber, & Jacobs, 2005). 

Phonemes are classified as obstruents and sonorants, according to their degree of 

sonority, which is higher for the latter ones compared to the first ones. All vowels are 

sonorants and the sonority of consonants increases from plosives to fricatives (belonging to 

the obstruent class) and from nasals to liquids (belonging to the sonorant class) (see Selkirk, 

1984; Wiese, 1996).  
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The principle of sonority hierarchy within the constituents of a syllable is illustrated for 

the German monosyllabic word KRAMPF (cramp): sonority increases within the syllable 

onset where the plosive /k/ is followed by the fricative /r/. The maximum of sonority is 

reached at the syllable nucleus formed by the vowel /&/, and sonority decreases again step 

by step towards the end via the nasal /m/ and the fricative /+/ forming the syllable coda.  

But languages differ considerably regarding the number or the type of consonants 

licensed to occur in combinations at syllable onset or coda. For instance, the Spanish 

language, which is characterized by a strong tendency to maximize the sonority contrast for 

syllabic units, only licenses a single consonant as syllable coda.  

The presence of a fricative followed by a plosive at the syllable onset – violating the 

principle of syllabic sonority hierarchy, but occurring at some word beginnings in Germanic 

languages like SPORT or STRUCTURE – would also be illegal in Spanish. The corresponding 

Spanish (lean) words are DEPORTE and ESTRUCTURA, which either eliminate one of these 

incompatible phonemes at the syllable onset or assign them to coda and onset of separate 

syllables. 

Furthermore, morphology can be more powerful in constraining syllabification of 

particular words than the principle of maximum sonority contrast - with sonority increasing 

towards the syllable nucleus. This affects syllabification in different languages differently 

depending on their morphological structure. All experiments presented in this dissertation 

will focus on the processing of bisyllabic words; and in comparison to Roman languages, 

bisyllabic German words often have more complex morphological structure. As a 

consequence, for instance, whenever a German prefix with VC syllabic structure is followed 

by a monosyllabic stem starting with a vowel, the syllabic structure of the resulting bisyllabic 

German phonological word form violates the principle of maximum sonority contrast, which 

would request a consonant syllabic onset of the second syllable to have sonority ascending 

from the syllable onset to the syllable nucleus. Instead, prefixed words like UNART (bad 

habit), or also compound words like MEINEID (false oath), are syllabified VC-VCC or CVC-

VC according to their morphological structure. Such cases never occur in bisyllabic Spanish 

words (see Conrad, Carreiras, & Jacobs, submitted). In Spanish (and, even though to a lesser 

degree, also in French), a prefixed word has to contain at least three syllables and two nouns 

cannot be combined in a compound word. Nevertheless, also in German, the principles of 
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sonority hierarchy and of maximum sonority contrast can generally be observed in the 

syllabification of bisyllabic word forms with less complex morphological structure. 

 

On the assumption that words, or at least parts of words, are phonologically encoded or 

internally pronounced during silent reading, one might expect that a word’s syllabic 

structure should influence the process of visual word recognition, because we cannot know 

how to pronounce a polysyllabic word form before we know which parts of it can be 

pronounced in a continuous stream. 

For many years – despite this rationale- evidence for syllables being functional units of 

the reading process was sparse and contested: Prinzmetal, Treiman and Rho (1986), for 

instance, reported that illusionary conjunctions where higher when two letters were part of a 

syllable than when they were not, but this finding was later on interpreted as possibly 

arising as a mere by product of orthographic redundancy (Seidenberg, 1987, 1989, but see 

Rapp, 1992; see also Lima & Pollatsek, 1983; Millis, 1986; Spoehr & Smith, 1973; Taft & 

Forster, 1976; Tousman & Inhoff, 1992, for additional evidence regarding the role of syllables 

during visual word recognition in English). 

More generally, syllabic effects had been examined more extensively in the domain of 

speech perception and note that most of the relevant studies were based on Roman 

languages (e.g., Cutler, Mehler, Norris, & Seguí, 1986; Mehler, Dommergues, Frauenfelder, & 

Seguí, 1981; Morais, Content, Cary, Mehler, & Seguí, 1989). 

The reason for the apparent lack of attention to the syllable in the domain of visual 

word recognition research might lie in the fact that most of this research had focused on the 

English language where – as a consequence of the inconsistent relation between spelling and 

sound – syllable boundaries are completely ill-defined. Instead of seeing the syllable per se 

as a functional reading unit, research on phonological processing during visual word 

recognition in English often concentrated on sub-syllabic units as e.g., syllabic onset, body 

and rime (Taft, 1992; Treiman & Chafetz, 1987). 

Given the problems with syllabic structure in English, Taft (1979b; 1987, see also 

Rouibah & Taft, 2001; Álvarez, Carreiras, & Taft, 2001) proposed a hybrid sublexical unit - as 

a substitute to the phonological syllable - as an access code for visual word recognition, the 

definition of which combines orthographic and morphological features:  



Visual recognition of complex words: The role of syllabic units 
A cross-linguistic approach 
___________________________________________________ 

 14

The basic orthographic syllable structure (BOSS) comprising all letters following the 

first letter of a word’s stem morpheme the combination of which would not result in an 

illegal word ending. 

 

But the picture changed completely with two empirical studies undertaken in two 

Roman languages, Spanish and French reporting an inhibitory effect of syllable frequency on 

lexical access in Spanish (Carreiras, Álvarez, & de Vega, 1993) and a syllabic priming effect 

for naming latencies for visually presented French words (Ferrand, Seguí, & Grainger, 1996). 

Whereas the latter finding has turned out to be a much contested empirical report (see 

Perret, Bonin, & Meot, 2006; Brand, Rey, & Peereman, 2003; Schiller, 1998, 2000), the syllable 

frequency effect in lexical decision has already been replicated in two other orthographies: 

French and German (Conrad & Jacobs, 2004), one Roman and one non-Roman language. But 

note that a recent attempt to replicate this effect in English has failed (Macizo & Van Petten, 

2007). 

 

The Focus of this investigation 

 
It was outlined above why the specific characteristics of a particular language might 

strongly determine the involvement of syllabic units in the process of silent reading. 

The experiments presented in this dissertation tried to further specify the nature of the 

syllable frequency effect from a cross-linguistic perspective.  

Experimental data from the Spanish language, which has a very consistent spelling to 

sound relation and a most transparent syllabic structure will be compared to experimental 

data from German – being almost as consistent as Spanish, but having a syllabic structure the 

transparency of which suffers from morphological constraints and considerably complex 

consonant combinations in syllabic onsets and codas. Transparency of syllabic structure in 

French, the third language used for the presented experiments and a Roman language as 

well, is - at least phonologically - comparable to the Spanish language, but the inconsistent 

orthographic representation of phonemes make this language an interesting candidate for 

studying the interplay between orthographic and phonological processing. 
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Generally, if syllabic effects in visual word recognition can reliably be distinguished 

from purely orthographic processing in visual word recognition, this would have an 

important impact on computational models of visual word recognition. Not only because it 

would make a strong case for the importance of phonological processing, but more 

specifically because most currently used computational models could not account for such 

effects for the simple reason that they don’t contain a layer of syllabic representation units 

(Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; Grainger & Jacobs, 1996; Jacobs, Graf, & 

Kinder, 2003; Ziegler, Perry, & Coltheart, 2000; Zorzi, Houghton, Butterworth, 1998; but see 

Ans, Carbonnel, & Valdois, 1998; for a model of naming polysyllabic words). 

Several outstanding questions regarding the nature of syllable frequency effects in 

general and specific aspects of computational modelling in particular will be addressed by 

the experiments presented in this thesis in the following way: 

 

In Chapter 1, the question of whether syllable frequency would influence two different 

aspects of the reading process, lexical access during silent reading and overt pronunciation 

during word naming in Spanish and German in the same or in different ways is addressed 

comparing findings from Spanish with new empirical data from German. 

Chapter 2 addresses the question of differential effects on lexical access for different 

measures of syllable frequency providing empirical data from Spanish. 

Chapter 3 examines an outstanding issue regarding the interpretation of syllable 

frequency effects as arising in fact through syllabic processing: Previous research had not 

sufficiently examined whether these effects occur independently of orthographic 

redundancy. New empirical data is presented manipulating measures of syllable frequency 

and orthographic redundancy independently for Spanish word material. 

Chapter 4 presents experiments run in French making use of the typically inconsistent 

orthographic representation of French phonological syllables in order to investigate the 

phonological nature of the syllable frequency effect in lexical decision. 

 

All four chapters have been published in international journals. Each of them is written 

to be understood independently from the rest of this thesis. Some redundancy between the 

chapters is an unavoidable consequence. 
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A comparison of Spanish findings with German data 

 

 

Markus Conrad, Prisca Stenneken & Arthur M. Jacobs 

 

 

 

Abstract 

 

Most empirical work investigating the role of syllable-frequency in visual word 

recognition has focused on the Spanish language where syllable-frequency seems to produce 

a classic dissociation: inhibition in lexical-decision-tasks but facilitation in naming. In the 

present study, two experiments using identical stimulus material in a lexical decision and a 

naming-task were run in German. In both tasks there was an inhibitory effect for words with 

a high-frequency first syllable. This pattern of results suggesting a stronger weight of lexical 

access in the naming process in German than in Spanish is discussed regarding the issue of 

stress assignment in the two languages and within the framework of word production 

models.  

 

 

 

                                                 
1 Published (2006) in Psychonomic Bulletin & Review, 13, 339-345. 
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Introduction 

 
The finding of an inhibitory effect of first-syllable-frequency has been the starting point 

for an intense debate in the field of visual word recognition. The question of whether 

syllables are automatically processed when polysyllabic words are read is of special interest, 

because, if it proves to be the case, then current computational models of visual word 

recognition that do not contain any syllabic representations would have to be revised 

(Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; Grainger & Jacobs, 1996; Zorzi, 

Houghton, & Butterworth, 1998).  

For the Spanish language the effect has been shown to be reliable in several studies 

reporting increased lexical decision latencies when the frequency of the first syllable in a 

disyllabic word is high. This inhibitory effect in a task usually requiring lexical access is 

accounted for in terms of a non-implemented interactive activation model in which 

competing word representations that are activated via the first syllable of a given target 

interfere with the processing of the target (Carreiras, Álvarez, & de Vega, 1993; Perea & 

Carreiras, 1998). More interference would be the consequence of increasing syllable-

frequency, because a syllable that is shared by many words would activate more competing 

candidates in a hypothetical mental lexicon. 

Recently, the inhibitory effect of syllable-frequency on lexical access has been replicated 

in one other romance language, French (Mathey & Zagar, 2002), and in German (Conrad & 

Jacobs, 2004), a non-romance language. 

However, the picture is less clear for the naming-task: the only language for which an 

effect of first-syllable-frequency in disyllabic words has been reported is Spanish: Perea and 

Carreiras (1998) could show that naming-latencies are reduced when first-syllable-frequency 

is high. This theoretically interesting dissociation of the syllable-frequency-effect in two 

different tasks was accounted for by Perea and Carreiras (1998) assuming that when overt 

pronunciation is required the locus of the effect would shift to motor output where high-

frequency syllables representing well-learned units of speech could be produced more 

rapidly.  



Chapter 1  
Associated or dissociated effects of syllable-frequency in lexical decision and naming 
_____________________________________________________________________ 

 19 

This argument is in line with the findings of Levelt and Wheeldon (1994), who obtained 

reduced naming-latencies when the second syllable of a disyllabic word was of high 

frequency.  

Thus, a dissociation of initial-syllable-frequency effects between lexical decision and 

naming can be stated for the Spanish language. 

Are there reasons that the same would hold true for German? A facilitative effect of 

first-syllable-frequency on naming-latencies can only appear when either: 

 

(A) The postulated facilitation on motor output is strong enough to override the 

inhibition due to syllable-frequency that must have been effective when this word 

was lexically accessed (postlexical locus of effect),  

(B) Inhibition during lexical access becomes less relevant, because words can be 

named according to phonological regularities without necessarily being fully 

identified (nonlexical locus of effect), or 

(C) Despite lexical processing, at an early moment during the time course of word 

processing the gestural stores of syllabic units do already receive activation from 

syllabic units (pre- and postlexical locus of effect). 

 

In the experiment of Perea and Carreiras (1998) documenting a facilitative effect of 

syllable-frequency in naming, also a facilitative effect of word-frequency was obtained. This 

is interpreted by the authors as strong evidence for the involvement of lexical processes in 

the naming-task in Spanish. They explain their empirical findings in the naming-task, a 

facilitative effect for first-syllable-frequency that is very robust for nonwords (Carreiras & 

Perea, 2004a; Perea & Carreiras, 1996) and diminished but still significant for words (Perea & 

Carreiras, 1998) as follows: Due to an ease of articulation at a late stage of word processing, 

the state of phonological output, high-frequency syllables are accessed and produced faster 

than low-frequency syllables and in the case of naming bisyllabic words this facilitation is 

only slightly affected but not cancelled out by the inhibitory effect of syllable-frequency on 

lexical access (Perea & Carreiras, 1998). 

The question of whether and to what extent processes related to lexical access influence 

the performance of subjects in a naming-task is a crucial issue.  
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In theory, readers in shallow orthographies should be able to correctly pronounce any 

word without necessarily fully accessing it in the mental lexicon because of a one–to-one 

translation of graphemes into phonemes. Perea and Carreiras (1998) interpret the presence of 

a word-frequency effect in their naming experiment as evidence against such a nonlexical 

strategy.  

Still, effects of word-frequency in naming have also been reported for a delayed 

naming-task by Balota and Chumbley (1985), who stated that “a large component of the 

frequency effect in the pronunciation tasks involves production rather than simple lexical 

access”. Therefore, it still seems possible to attribute the facilitative effect syllable-frequency 

on naming-latencies in the study of Perea and Carreiras (1998) to pre- or nonlexical 

processing.  

In the model presented by Ferrand, Grainger, and Seguí (1994) articulatory output units 

can be activated directly by sublexical orthographic or phonological units without the 

orthographic or phonological lexicon necessarily being involved. We suppose that at a 

prelexical level syllable-frequency might affect performance in a naming-task in Spanish and 

in German in a specific way determined by a differential involvement of lexical processing 

during the naming-task. 

German is almost as consistent as Spanish concerning the conversion of graphemes into 

phonemes, but when bisyllabic words have to be named there is a reason why it is more 

difficult to do so correctly in German than in Spanish before a word has been lexically 

accessed: Any word containing several syllables is stressed in one specific position and, 

when asked to pronounce it, a reader has to know exactly which syllable has to be stressed. 

Thus, stress information is a necessary prerequisite of correct naming. Therefore, if correct 

pronunciation is possible without lexical access, how could readers know how to stress a 

disyllabic word before they know what the word means? 

To find out whether there are statistical regularities of stress assignment in Spanish and 

in German that could help readers to correctly infer the stress pattern of a disyllabic word at 

a prelexical level, we analysed two Databases: LEXESP (Sebastián, Martí, Carreiras, & 

Cuetos, 2000) for Spanish, and CELEX (Baayen, Piepenbrock, & van Rijn, 1993) for German. 

In both languages, penultimate stress is the most common pattern: 82% of all Spanish and 

87% of all German disyllabic words have initial stress. However, the percentage of words 
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that do not follow this pattern seems high enough to assume that stress assignment in both 

languages is not unambiguous. 

Now, there is an interesting pattern that perfectly reduces this ambiguity in Spanish, 

but not in German: 

In Spanish, accents (“tilde”) are used to orthographically mark irregular stress (for the 

use of the tilde, see Real Academica Española, 1982). For all Spanish words2 without 

orthographic accent, statistically, there is one feature that predicts the word’s stress pattern 

with a reliability of almost 100%: the word’s last letter.  

A specific letter can either appear at the end of a word with penultimate stress or at the 

end of a word with ultimate stress, but never in both.  

In addition, for both words with penultimate and words with ultimate stress, there are 

only four letters that they can end with in more than 99% of the relevant cases. More than 

99% of all words with ultimate stress and no accent end with one of these letters: “r”,”l”,”d”, 

or ”z”. In contrast, all Spanish words with penultimate stress and no accent end with one of 

these letters: “a”,”o”,”s”, or ”e”.  

None of this holds true for German. There are no orthographic accents in German. 

Neither can the stress pattern of a bisyllabic German word be predicted by the identity of its 

last letter: German words with ultimate stress can end with 25 different letters, those with 

penultimate stress can end with 23 different letters.  

Given this simple account for the variance of stress pattern in Spanish we assume that 

Spanish readers are able to reliably infer the stress pattern of a disyllabic word after a 

superficial, prelexical analysis: screening for orthographic accents and final letters. The same 

would not hold true for German. Thus, Spanish but not German readers could correctly 

pronounce any word of their orthography without necessarily fully accessing the mental 

lexicon. In German this would less efficiently be possible, because one aspect of phonological 

information that is crucial for the selection of the appropriate articulatory motor program 

would not be available before lexical access is achieved: The word’s stress pattern. 

The aim of the present study is to clarify in which way syllable-frequency is influential 

in the naming-task in German where stress pattern is more ambiguous than in Spanish.  

                                                 
2 Words like „sandwich“ that are included in the database (Sebastián et al., 2000) that are not original Spanish 
words but words from other languages were excluded from this analysis. 
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If early prelexical processing is responsible for the facilitative effect of syllable-

frequency in the naming-task in Spanish, then the same effect is not likely to appear in 

German.  

If in German full lexical access is necessary for obtaining the stress pattern of a 

disyllabic word, a facilitative effect of syllable-frequency on naming-latencies as documented 

by Perea and Carreiras (1998) should strongly suffer from the inhibitory effect of syllable-

frequency on lexical access documented for lexical decision.  

If the locus of the effect is only to be seen at a late stage of processing where 

phonological output is produced after a word has been lexically accessed and its whole 

phonological word form is available, then the same effect of syllable-frequency in the 

naming-task as in Spanish should be observed in German.  

However, it is unclear whether facilitation of motor output that only arises when the 

complete phonological word form has become available is sufficient to produce facilitation 

for words with high frequency initial syllables in the naming-task, given that these words 

had already been the object of inhibitory processes related to lexical access. 

For nonwords, a different pattern of results can be expected: Nonwords are not 

supposed to have an entry in the mental lexicon and thus no lexical access will occur. For 

German nonwords, stress assignment could easily be achieved using the global stress pattern 

of German language as a default principle. 87% of bisyllabic German words have initial 

stress. Only a word’s meaning but no superficial prelexical features determine differing 

ultimate stress. When asked to pronounce a German nonword that has no meaning, subjects 

can always do so stressing the first syllable following this default principle of German stress. 

The assumed facilitation for high-frequency syllabic units at the level of motor output should 

lead to speeded naming-latencies for nonwords with high-frequency initial syllables. In the 

lexical-decision-task, syllable-frequency should cause inhibition for nonwords as well as for 

words because a high-frequency initial syllable would open a wider search space for any 

possible lexical candidate activating the representations of words sharing the nonword’s first 

syllable (Conrad & Jacobs, 2004). 
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Experiment 1 (Lexical Decision) 

 
Before investigating the effects of syllable-frequency on naming-latencies it should be 

clear to what extent the difficulty of lexical access varies within the given stimulus material. 

This was examined using a lexical-decision-task. 

Method 

Participants 

Twenty-eight students from the Catholic University of Eichstätt-Ingolstadt participated 

in the experiment. Their participation was rewarded with course credits. All were native 

speakers of German and had normal or corrected-to-normal vision. 

Stimuli and Design  

112 disyllabic German words of five and six letters length were selected from the 

CELEX-database (Baayen et al., 1993) according to the orthogonal combination of two factors 

in a within-participant 2x2 design: word-frequency and positional frequency of the first 

syllable. Words were matched across the experimental conditions for initial phoneme, 

length, number of phonemes.  

None of the words had orthographic neighbors of higher word-frequency. In addition, 

words belonging to the conditions that differed in syllable-frequency but not in word-

frequency were also matched for number of orthographic neighbors and positional 

frequency of the second syllable. 112 nonwords were constructed combining first and second 

syllables of real words. Controlling for initial phoneme, orthographic neighborhood density, 

the positional frequency of the second syllable and length, nonwords were organized in two 

groups, according to the manipulation of the factor first-syllable-frequency (high vs. low). 

Stimuli were presented in uppercase letters using Courier 24 type font. Characteristics for the 

stimuli are shown in Table 1.1. 
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Table 1.1 

Characteristics of Words and Nonwords used in Experiments 1 and 2 
Means (M) and Ranges of the Independent Variables Word Frequency (WF) and Frequency of the First Syllable 
(SF1). Means and Ranges of Variables that were held constant: Frequency of the Second Syllable (SF2), Density of 
orthographic Neighborhood (N), Stimulus Length (L) and Number of Phonemes (Ph) 

 
WF   Log WF (10)  SF1   Log SF1 (10) 

____________________________________________________________________________________________ 
Word Class M Range  M Range  M Range   M Range 

 
High WF 
High SF  633 101-9923 2.37 2.00-4.00 7445 1712-16450 3.73 3.23-4.22 
 
High WF 
Low SF  204 108-750  2.27 2.03-2.68 364 125-633  2.53 2.10-2.80 
 
Low WF 
High SF  4.26 0.67-9.17 0.53 -0.17-0.96 15136 1677-110013 3.84 3.22-5.04 
 
Low WF 
Low SF  3.92 0.50 9.00 0.48 -0.30-0.95 108 1-614  1.52 -0.08-2.78 

Nonword Class 
 
High SF        9901 1712-110013 3.77 3.23-5.04 
 
Low SF        112 0.17-786 1.10 -0.78-2.90 

 
SF2   Log SF2 (10)  N  L  Ph 

_____________________________________________________________________________________________ 
Word Class   M Range  M Range  M Range M Range M     Range 
 
High WF 
High SF  2990 108-16350 3.01 2.03-4.21 2.00 0-7 5.64 5-6 5.14 4-6 
 
High WF 
Low SF  3858 131-14485 3.26 2.12-4.16 2.89 0-8 5.64 5-6 5.25 4-6 
 
Low WF 
High SF  215 2-1279  1.79 0.30-3.11 0.71 0-3 5.64 5-6 5.29 4-6 
 
Low WF 
Low SF  364 3-1406  2.12 0.40-3.15 0.75 0-4 5.68 5-6 5.25 4-6 

Nonword Class 
 
High SF  224 0.17-1435 0.12 -0.78-3.16 0.32 0-6 5.36 5-6 
 
Low SF  207 0.17-1435 0.28 -0.78-3.16 0.21 0-3 5.48 5-6 

Note: WF = frequency of occurrence per 1 million words; SF = calculated as cumulated frequency of all words 
sharing a given syllable in identical position. 
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Apparatus and Procedure 

Each trial was initiated by a fixation point appearing at the centre of the computer 

screen for 500 ms. The fixation point was then replaced by the word or nonword stimulus 

that remained visible until participants pressed a button indicating their decision concerning 

the lexicality (“yes”-button for a word; “no”-button for a nonword) of the stimulus. No error 

feedback was given. Stimuli appeared in randomized order for each participant. There were 

ten initial training trials. 

Results and Discussion 

Words: Mean correct response-latencies and error percentages (see Table 1.2) were 

submitted to separate analyses of variance (ANOVAs) by participants and by items (F1 and 

F2, respectively). Concerning response times, the analyses revealed significant main-effects 

of both word-frequency and syllable-frequency. High-frequency words were responded to 

71 ms faster than low-frequency words, F1 (1,27) = 133.09, p ≤.0001; F2 (1,108) = 61.25, p 

≤.0001, whereas the frequency of a word’s first syllable caused a delay of 17 ms in the 

latencies, F1 (1,27) = 18.88, p ≤.0003; F2 (1,108) = 5.66, p ≤.01. There was no interaction 

between the two factors, F1 (1,27) = 0.69, p >.4; F2 (1,108) = 0.86, p >.3. 

The error data mirrored this pattern of results, showing a facilitative effect of word-

frequency with 2.2% errors for high-frequency words vs. 8.7% for low-frequency words, F1 

(1,27) = 48.13, p ≤.0001; F2 (1,108) = 15.76, p ≤.0001, and an inhibitory effect of syllable-

frequency with 7.7% errors vs. 3.2% for high vs. low syllable-frequency, respectively, F1 

(1,27) = 36.63, p ≤.0001; F2 (1,108) = 7.42, p ≤.007. The interaction between the two factors 

reached statistical significance in the analysis over subjects, high syllable-frequency 

provoking more errors in low-frequency words than in high-frequency words, F1 (1,27) = 

16.49, p ≤.0003; F2 (1,108) = 2.19, p >.1. 
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Nonwords: Correct rejections of nonwords with high first-syllable-frequency were 38 

ms slower than when the first syllable was low-frequent, F1 (1,27) = 30.59, p ≤.0001; F2 (1,110) 

= 19.23, p ≤.0001. Similarly, high first-syllable-frequency in nonwords provoked more errors 

than low first-syllable-frequency (4.4% vs. 1.8%), F1 (1,18) = 15.43, p ≤.0004; F2 (1,110) = 5.84, 

p ≤.01.  

 

The significant inhibitory effects of initial-syllable-frequency for words and for 

nonwords in the lexical-decision-task are in line with previous research in German (Conrad 

& Jacobs, 2004). 

 

 

Table 1.2 

Mean Reaction Times (RT; in Milliseconds), Standard Deviation of Reaction Times (Std. 
Dev.; in Milliseconds) and Percentage of Errors for Words and Nonwords in Experiment 1 

Words       

Word Frequency    
  

   _____________________________________ 
   High     Low  

First 
Syllable   
Frequency RT Std. Dev. % error  RT Std. Dev. % error  

High  581 76  3.2  656 101  12.1
  
Low  567 79  1.1  635 87  5.2 

Nonwords      

      First Syllable-Frequency  
    ______________________________________ 
    High     Low   
   ___________________________  __________________________ 
   RT Std. Dev. % error  RT Std. Dev. % error  
____________________________________________________________________________
   664 108  4.4  626 82  1.8 
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Experiment 2 (Naming) 

 
After establishing that with the selected stimulus material the standard inhibitory effect 

of syllable-frequency in lexical decision could be obtained, we used the same stimuli for a 

naming-task. The aim of Experiment 2 is to examine whether initial-syllable-frequency 

would produce any effect on naming-latencies in German and whether such an effect would 

be associated or dissociated with the effect in lexical decision. 

Method  

Thirty-four students from the Catholic University of Eichstaett-Ingolstadt participated 

in the experiment. Stimuli, design and procedure were the same as in Experiment 1 but this 

time the task consisted in naming a presented stimulus. Mispronunciations and voice-key 

errors were coded off-line from tapes. 

Results and Discussion 

Words: There were significant main-effects of both word-frequency and syllable-

frequency. High-frequency words were named 28 ms faster than low-frequency words, F1 

(1,33) = 37.39, p ≤.0001; F2 (1,108) = 29.11, p ≤.0001.  

But, more importantly, initial-syllable-frequency caused a delay of 11 ms on naming-

latencies, F1 (1,33) = 24.56, p ≤.0001; F2 (1,108) = 4.56, p ≤.03 (see Table 1.3). There was no 

interaction between the two factors, F1 (1,33) = 1.26, p >.2; F2 (1,108) = 0.33, p >.5. There were 

no effects on mispronunciation rates.  

Nonwords: Nonwords with a high-frequency first syllable were named 18 ms faster 

than nonwords starting with a low-frequency syllable, F1 (1,22) = 33.97, p ≤.0001; F2 (1,110) = 

6.97, p ≤.01. Additionally, fewer mispronunciations occurred when nonwords with a high-

frequency first syllable had to be named (7.5% vs. 10.8%), F1 (1,33) = 9.25, p ≤.004; F2 (1,110) = 

4.96, p ≤.03. 
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Table 1.3 

Mean Latencies of Naming Onset (ON; in Milliseconds), Standard Deviation of Naming 
Onset (Std. Dev.; in Milliseconds) and Percentage of Mispronunciations for Words and 
Nonwords in Experiment 2 

Words       

Word Frequency 
  ____________________________________________________________ 
   High     Low   
First  ____________________________ ___________________________ 
Syllable  
Frequency ON Std. Dev. % error  ON Std. Dev. % error  

High  549 80  4.2  579 101  3.9  
Low  540 75  2.6  565 90  4.0 

Nonwords      

     First Syllable Frequency  
  _____________________________________________________________ 
   High     Low   
  ___________________________  ___________________________ 
 
  ON Std. Dev. % error  ON Std. Dev. % error  
_________________________________________________________________________ 
  601 109  7.5  619 114  10.8 

 

 

 

The first important finding of Experiment 2 is that it shows for the first time that 

syllable-frequency affects naming-latencies in German. Second, an interesting pattern in the 

results of Experiment 2 is the dissociation of the effects of syllable-frequency for nonwords 

and words. We found a facilitative effect of syllable-frequency for nonwords as predicted by 

the assumption that phonological output is organized syllabically with faster access to high-

frequency units. Interestingly, this does not hold true when the given stimulus is a real word. 

For words, the results were comparable to Experiment 1 where syllable-frequency led to 

prolonged latencies in lexical decision. 
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Reanalysis of Experiments 1 and 2 

 
The fact that orthographic neighborhood and second-syllable-frequency had been 

closely controlled for in the stimulus material concerning the factor first-syllable-frequency 

but not the factor word-frequency motivated a regression analysis of the data of both 

experiments using all manipulated and control variables as predictors of response latencies 

(see Table 1.4). Analyses revealed no significant effects for any of the control variables. In 

contrast, the log of word frequency significantly predicted response latencies in a facilitative 

way in lexical decision, F(1, 105) = 40.32, p ≤.0001 and in naming, F(1, 105) = 12.22, p ≤.0008. 

Significant inhibition was the result for the log of first-syllable-frequency in lexical decision, 

F(1, 105) = 10.64, p ≤.002, and in naming, F(1, 105) = 5.48, p ≤.02. Thus, the outcome of both 

experiments was confirmed in the regression analysis. 

 

 

Table 1.4 

Pearson Product-Moment (r) and Partial Correlations (pr) Between Response Latencies and Six 
Predictors in Experiments 1(Lexical Decision) and 2 (Naming) 

 
       Lexical Decision       Naming 
 
Predictor           r     pr        r     pr 

Log Word Frequency    -.635 -.653*   -.457 -.416* 
 
Log first Syllable Frequency     .106   .255*     .110   .212* 
 
Log second Syllable Frequency   -.510 -.082   -.411 -.099 
 
Number of orthographic Neighbors  -.348   .016   -.321 -.058 
 
Number of Letters      .049   .052     .175   .191 
 
Number of Phonemes      .090 -.008     .130 -.042 

*p<.05 
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General Discussion 

 
The present study provides evidence that effects of syllable-frequency can depend on 

the specific structure of different languages. We could show again that German readers 

apparently do rely on the syllabic structure of words.  

But concerning the naming-task, the effect of first-syllable-frequency is contrary to what 

is reported for Spanish: German words are named more slowly when their first syllable is of 

high frequency. This finding does not oppose to the proposal that phonological output is 

organized by syllabic units (Ferrand, Seguí, & Grainger, 1996) and that a syllable’s frequency 

facilitates motor output (Levelt & Wheeldon, 1994). The facilitative effect of syllable-

frequency for nonwords in Experiment 2 replicates the findings of Carreiras and Perea 

(2004). Only when words are presented and lexical access becomes involved, this facilitation 

disappears. 

In order to account for this intriguing finding we propose a simple hypothesis 

emphasizing one aspect in the process of naming polysyllabic words: the consistency or 

inconsistency of stress assignment. Before a disyllabic word can be correctly pronounced, the 

reader has to know which syllable receives stress. Phonological output effects, the direction 

of which is the opposite of what is observed for lexical access, do strongly depend on the 

involvement of lexical access in the given task. Even if assuming that lexical processing is 

involved in the naming-task in Spanish (Perea & Carreiras, 1998; but see Balota & Chumbley, 

1985), the fact remains that it is possible to correctly pronounce a Spanish word without 

necessarily having accessed its mental representation. Therefore, in Spanish, where stress 

pattern can be inferred via superficial orthographic analyses syllabic units can activate their 

corresponding motor programs already at an early level of word processing before lexical 

access has occurred which leads to faster motor output for words with high initial-syllable-

frequency. 
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In German, this prelexical facilitation of motor output via syllabic units would not be 

possible, because only when lexical access is achieved the complete phonological information 

concerning a word’s syllables including the crucial information whether a syllable has to be 

stressed becomes available. The importance of processes related to lexical access in the 

naming-task in German explains the inhibitory effect of syllable frequency for words in both 

experiments. 

Taken together, the data for words and nonwords allow drawing new conclusions 

about the locus of the syllable frequency-effect in naming: Our nonword data indicate that 

the facilitation of mere motor output processes due to syllable frequency is the same in 

German as in Spanish.  

This would mean that at late stages of word processing when lexical access has already 

occurred phonological output in both languages should be influenced by syllable frequency 

in the same way. Thus, the differential effects of syllable frequency in word naming for 

Spanish and German can only be explained assuming that at an early stage of word 

processing syllable frequency influences the preparation of motor output in each language in 

a different way.  

 

The model of Levelt and Wheeldon (1994) could not account for this facilitation of 

motor output arising at a prelexical level, because the gestural stores of syllabic units in this 

model can only be accessed once the whole phonological word form is available. Therefore, 

this model predicts facilitative effects in word naming only for second but not for first-

syllable frequency, syllables are accessed successively from the syllabary after the whole 

phonological word form is available and a possible advantage for retrieving a high-

frequency first syllable would already have decayed by the time the second syllable is 

accessed and pronunciation occurs. In fact, Levelt and Wheeldon (1994) obtained effects in 

the word naming-task only for second-syllable frequency, but not for first-syllable frequency.  

In contrast, the finding of reduced naming-latencies for words with high-frequency 

initial syllables fits well with the model proposed by Ferrand et al. (1994). In their model, 

motor output is thought to be prepared not only via the phonological lexicon, but also 

directly via the sublexical input. Note that the model of Ferrand et al. (1994) has been 

formulated considering empirical results from a Romance language (French) whereas the 

Levelt and Wheeldon model rather relates to Germanic languages (Dutch and English).  
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Typically, these two groups of languages differ in the degree of stress ambiguity. In 

French, stress assignment is regular, words always having ultimate stress.  

For Spanish, we could show how stress information for a bisyllabic word can be 

obtained by a superficial orthographic analysis. In English, there is lexical stress which 

depends to some degree on the morphological structure of words. German words might 

need full lexical access before uncertainty about their stress pattern is completely resolved.  

We suggest that facilitative effects of initial syllable frequency are more likely to be 

obtained in Romance languages because of their high degree of stress consistency.  

 

An important issue for future research is the question of whether orthographic or 

phonological syllables are responsible for the segmentation of polysyllabic words. This 

question can not be answered by the present study, because the high spelling to sound 

consistency in German does not allow attributing the empirical effects to either of them 

exclusively (see Álvarez, Carreiras, & Perea, 2004 and Stenneken, Conrad, Hutzler, Braun, & 

Jacobs, 2005, for different views on this issue).  

 

In sum, we think that the proposal of stress ambiguity as a factor responsible for 

differential effects of syllable frequency in naming across different languages might motivate 

interesting cross-language research. The specific pattern of stress assignment in different 

languages is a crucial issue that models of word production would have to consider. 
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Empirical evidence from Spanish and implications for computational modelling    

    

 

Markus Conrad, Manuel Carreiras & Arthur M. Jacobs 

 

Abstract 

 

In psycholinguistic research, there is still considerable debate about whether the type or 

token count of the frequency of a particular unit of language better predicts word recognition 

performance. The present study extends this distinction of type and token measures to the 

investigation of possible causes underlying syllable frequency effects. In two lexical decision 

experiments we found a dissociation suggesting that the token measure of syllable frequency 

adequately predicts the inhibitory effect of initial syllable frequency, whereas the type 

measure led to facilitation, especially when the number of higher frequency syllabic 

neighbours was controlled for. This specific pattern of results, suggesting the involvement of 

two different processes in effects of syllable frequency, provides a strong constraint for 

current and future models of visual word recognition. 

 

 

                                                 
3 To appear (2008) in Language and Cognitive Processes, Volume 2, available online since September 2007 
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Introduction 

 
The question of how the frequency of syllables influences processing of polysyllabic 

words has led to a series of studies reporting effects of syllable frequency for a broad range 

of tasks and dependent variables across different languages. An inhibitory effect of the 

positional frequency of a word’s first syllable has so far been documented for three 

languages in the lexical decision task: Spanish (Álvarez, Carreiras, & Taft, 2001; Carreiras, 

Álvarez, & de Vega, 1993; Perea & Carreiras, 1998), French (Mathey & Zagar, 2002; Conrad, 

Grainger, & Jacobs, 2007) and German (Conrad & Jacobs, 2004; Conrad, Stenneken, & Jacobs, 

2006). Words are responded to slower when their first syllable is of high frequency. Similar 

inhibition of lexical access has also been documented for perceptual identification paradigms 

(Conrad & Jacobs, 2004; Perea & Carreiras, 1995) and eye-movement measures (Carreiras & 

Perea, 2004b; Hutzler, Conrad, & Jacobs, 2005).  

Concerning speech production, there is also evidence that the speed of naming 

bisyllabic words is modulated by syllable frequency (Carreiras & Perea, 2004a; Cholin, 

Levelt, & Schiller, 2006; Levelt & Wheeldon, 1994; Perea & Carreiras, 1998). In contrast to the 

inhibitory effect on lexical access, bisyllabic words seem to be named faster when their first 

syllable is of high frequency (but see Conrad et al., 2006, for an inhibitory effect of syllable 

frequency in naming).  

Effects of syllable frequency are evident not only in reaction times, but are also reflected 

in physiological correlates of cognitive processes. In two studies, event related potentials 

were shown to be sensitive to the manipulation of syllable frequency in lexical decision tasks 

(Barber, Vergara, & Carreiras, 2004; Hutzler, Bergmann, Conrad, Kronbichler, Stenneken, & 

Jacobs, 2004).  

Together, these results provide evidence that the syllable is a functional unit in the 

process of visual word recognition. If this is indeed the case, current computational models 

of visual word recognition will have to be revised to account for this (Coltheart, Rastle, 

Perry, Langdon, & Ziegler, 2001; Grainger & Jacobs, 1996; Jacobs, Graf, & Kinder, 2003; 
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Ziegler, Perry, & Coltheart, 2000; Zorzi, Houghton, Butterworth, 1998; but see Ans, 

Carbonnel, & Valdois, 1998; for a model of naming polysyllabic words). 

However, despite the increasing evidence for the importance of syllabic units and their 

frequency in visual word recognition, it is still not clear how syllable frequency is best 

defined or how it should be computed. Especially for a potential implementation of syllabic 

units into computational models, it is important to know how syllable frequency is 

quantified best, in order to reproduce the empirical effects. 

In the first study documenting effects of syllable frequency, Carreiras et al. (1993) used 

bisyllabic words with either high or low mean positional frequency of the two syllables. In 

subsequent studies, only the positional frequency of the initial syllable has been manipulated 

as the independent variable. Positional syllable frequency is usually computed by taking into 

account all words that share a given syllable in identical position. In general, the authors of 

studies on syllable frequency have adopted Perea and Carreiras’ (1998) theoretical account of 

the inhibitory effect of syllable frequency on lexical access:  

When reading a bisyllabic word, the first syllable of this word activates those entries in 

the mental lexicon that share this syllable in first position. These co-activated candidate 

representations interfere with the processing of the target word through the mechanism of 

lateral inhibition at the word unit level of an interactive activation model of visual word 

recognition. The consequence of increased syllable frequency would be a greater amount of 

lateral inhibition and therefore, words starting with a high-frequency first syllable take 

longer to be lexically accessed. However, what exactly is a high-frequency first syllable? In 

the literature, there are two standard ways to measure syllable frequency, both based on 

syllabic neighbours, that is, all words sharing a syllable in identical position.  

 

A) The type measure of syllable frequency: the number of syllabic neighbours. 

B) The token measure of syllable frequency: the accumulated word frequency of 

all syllabic neighbours. 

 

The comparison of type and token frequency measures has been the object of several 

empirical studies on word processing, mostly in the field of morphology, where this is still a 

controversial issue (e.g., Bailey & Hahn, 2001; De Jong, Schreuder, & Baayen, 2000; Ernestus 

& Baayen, 2003; Ernestus & Baayen, 2001).  
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In terms of the effects of syllable frequency, no empirical evidence has yet been 

provided addressing the issue of a possible differential role of these two measures.  

Furthermore, the authors of relevant studies sometimes have not even documented 

which of these measures was used as independent variable. If they did so, as did Álvarez et 

al. (2001) using type syllable frequency, or Conrad and Jacobs (2004) using token syllable 

frequency, the reasoning for their preference was of a speculative nature, as the two different 

measures had never been experimentally compared. 

To improve comparability between different studies, but also for a better theoretical 

understanding of the empirical effects obtained, it is essential to clarify the influence of each 

of the two different measures of syllable frequency in visual word recognition. The present 

study examines, in the first place, which of these measures is the better predictor of the 

inhibitory effect of syllable frequency on lexical access.  

 

However, even opposite effects of these two alternative measures could be expected 

when they are experimentally disentangled – particularly relevant here is the analogy of the 

term “syllabic neighbour” with the concept of orthographic neighbours (see Coltheart, 

Davelaar, Jonasson, & Besner, 1977). Research on the effects of orthographic neighbourhood, 

has revealed that different aspects of this variable, e.g. neighbourhood size and 

neighbourhood frequency, can influence word processing in opposite ways. Whereas 

neighbourhood size mostly leads to facilitation in the lexical decision task (see Andrews, 

1997, for a review), inhibitory effects of neighbourhood frequency have been reported (e.g. 

Carreiras, Perea, & Grainger, 1997; Grainger & Jacobs, 1996).  

In fact, the finding of opposite effects for these different measures of orthographic 

neighbourhood has had an important impact on the development of models of visual word 

recognition: A computational model with a multiple read-out procedure has been proposed 

by Grainger and Jacobs (1996) in order to account for the opposite effects of the number of 

orthographic neighbours on the one hand and of their frequency on the other. Obviously, 

then the question arises of whether a similar pattern of results can be obtained for syllabic 

neighbourhood: does the mere number of syllabic neighbours produce the same or a 

different effect from the accumulated frequency of these syllabic neighbours?  



Chapter2 
Contrasting effects of token and type syllable frequency in lexical decision. 
_____________________________________________________________ 

 39 

This question cannot be answered by the studies available to date, as for both measures 

significant inhibitory effects have been reported, but in any case the high positive correlation 

between them does not allow for a clear attribution of these effects. Note that two ERP-

studies assessing the time course of syllabic processing converged on one interesting finding: 

syllable frequency effects were found at two distinct time windows, suggesting a multi-

dimensional influence of this variable (Barber et al. 2004; Hutzler et al., 2004).  

Therefore, disentangling the effects of type and token syllable frequency might help to 

better understand the nature of syllabic processing and would provide an important 

constraint for the modelling of polysyllabic word recognition and of visual word recognition 

in general, especially if dissociated effects for the two measures were obtained. We tested for 

differential effects of token and type syllable frequency in Experiments 1A and 1B.  

 

Experiments 2A and 2B were designed to find out whether either of these two measures 

of syllable frequency would be sufficient to produce a reliable effect, when controlling for 

another variable that has been proposed to be responsible for the inhibitory syllable 

frequency effect: the number of higher frequency syllabic neighbours (Perea & Carreiras, 

1998). All together, these special constraints for the selection of stimuli might help to better 

understand the relation between familiarity-based word processing and competition 

between lexical candidates. To date, the heterogeneous findings from the domain of 

orthographic neighbourhood have been very hard to reconcile, partly, because 

neighbourhood size and frequency have rarely been manipulated independently (but see 

Carreiras et al., 1997) and the differences between experimental tasks may have largely 

contributed to the variety of results.  

The experiments in the present study involve the independent manipulation of type 

and token syllable frequency, while closely controlling for the respective alternative variable, 

and all stimuli are presented in the same task environment of a lexical decision experiment. 
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Experiments 1A and B 

Method 

Participants 

Thirty-seven students from the University of La Laguna participated in the experiment. 

All were native speakers of Spanish, with normal or corrected-to-normal vision. Their 

participation was rewarded with course credits. 

Stimuli and Design 

For each of the two experiments, two sets of 48 bisyllabic Spanish words were selected 

from the LEXESP database (Sebastián-Gallés, Martí, Carreiras, & Cuetos, 2000), according to 

the manipulation of the factor positional frequency (high vs. low) of the first syllable, 

realized as token syllable frequency in Experiment 1A and type syllable frequency in 

Experiment 1B. In consequence, in Experiment 1A type syllable frequency was controlled for, 

whereas token syllable frequency was held constant in Experiment 1B. All measures of 

syllable frequency were computed based on a word’s orthographic syllables4. In both 

experiments, the frequency of the second syllable of words was held constant, as well as 

word length, the number of orthographic neighbours and the number of higher-frequency 

orthographic neighbours and word frequency. None of the words was of high word 

frequency. Characteristics of the words in Experiments 1A and B are shown in Table 2.1. 

                                                 
4 Very recently, measures of phonological syllable frequency were also made available for Spanish orthography 
(BuscaPalabras: Davis & Perea, 2005). All syllable frequency computations used for the present study are based 
on the 16,466 bisyllabic entries in the LEXESP database (Sebastián-Gallés et al., 2000). The BuscaPalabras 
corpus contains 4,914 bisyllabic entries. This considerable reduction of corpus size relative to the LEXESP is 
due to two reasons: the elimination of words that do not stem from the Spanish language and the exclusion of 
inflected forms for nouns, verbs and adjectives. Whereas the first elimination principle is clearly an advantage of 
the BuscaPalabras, the second is a matter of debate: Some word initial syllables, for instance, are not the same in 
a verb’s infinitive form and in inflected forms. E.g., “pensar” (to think) and “pienso” (I think). However, the 
impact of these differences between corpora on the syllable frequency measures computed for our stimulus 
material was negligible: the correlation of our initial type syllable frequency measure with the orthographic one 
provided by BuscaPalabras is .93; for initial token syllable frequency the correlation is .94. Also phonological 
syllable frequency as provided by BuscaPalabras always co-varied with the orthographic syllable frequency 
measures manipulated for the present experiments, thus no hypotheses regarding differential effects of 
orthographic or phonological syllable frequency can be formulated (but see Álvarez, Carreiras & Perea, 2004, 
and Conrad et al., 2007, for this issue). 
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Table 2.1 

Characteristics of Words used in Experiments 1A and B 
Means and Ranges for the different Measures of first Syllable Frequency (SF1): Token Syllable Frequency, Type Syllable 
Frequency, Mean Frequency of Syllabic Neighbours (MeanF SN), Number of higher Frequency Syllabic Neighbours 
(HFSN), Summed Frequency of higher Frequency Syllabic Neighbours (SumF HFSN), Mean Frequency of higher 
Frequency Syllabic Neighbours (MeanF HFSN), Frequency of the highest Frequency Syllabic Neighbour (Fmax SN). 
Means and Ranges for Control Variables: Word Frequency (WF), orthographic Neighbourhood Density (N), Number of 
higher Frequency orthographic Neighbours (HFN); second Syllable Frequency (SF2) and Word Length (L).  
Means and Ranges for mean Word Token and Type Bigram Frequency (Mean Token BiF and Mean Type BiF) computed 
according to the non-positional Occurrence of Bigrams in all bisyllabic Words. P-Values (p) corresponding to t-tests for 
Significance of Mean Differences are reported for Control Variables and for Measures of Syllable or Bigram Frequency 
that were not explicitly manipulated or controlled for. 

1A Manipulated Variable: Token Syllable Frequency 

High     Low      

Mean  Range   Mean  Range      p  

Token SF1  1212 3.06 852-2262  272 2.41 100-387 
Type SF1  70  62-75   69  53-117  .63 
MeanF SN  17.60 1.22 13-34   4.05 0.59 2-5  .0001 .0001 
HFSN   15.79  2-30   7.96  0-26  .001 
SumF HFSN  1072 2.99 526-2227  155 1.98 0-312  .0001 .0001 
MeanF HFSN  105 1.89 33-418   26 1.26 0-86  .0003 .0001 
Fmax SN  336 2.47 179-704   60 1.70 18-149  .0001 .0001 
 
WF   16.06 1.02 3.00-59   14.88 1.00 2.40-58 . 79 .87 
N   10.33  1-22   10.58  0-23  .89 
HFN   2.71  0-9   2.00  0-6  .28 
Token SF2  3024 3.48 8-10867   1797 3.51 7-8037  .18 .90 
Type SF2  73  1-240   83  1-250  .59 
L   4.50  4-5   4.54  4-5  .78 
Mean Token BiF 6976 3.78 1299-14771  6107 3.72 1300-11416 .35 .48 
Mean Type BiF  521  142-941   472  142-941  .39  

1B Manipulated Variable: Type Syllable Frequency 

High     Low  

   Mean  Range   Mean  Range  p 

Token SF1  521 2.69 358-827   460 2.54 133-1441 .46 .05 

Type SF1  109  101-126   36  24-46   
MeanF SN  4.82 0.66 3-8   12.74 1.00 4-38  .0002 .0001 

HFSN   12.46  0-34   5.33  1-13  .002 
SumF HFSN  345 2.39 0-771   366 2.40 41-1019 . 78 .97 

MeanF HFSN  46 1.49 0-164   80 1.77 17-282  .04 .03 

Fmax SN  139 2.11 79-256   166 2.08 33-527  .36 .70 

 
WF   18.32 0.99 2.60-94   20.90 1.09 2.20-72  .69 .51 

N   7.66  0-22   5.17  0-20  .13 
HFN   1.50  0-9   1.33  0-9  .78 
Token SF2  766 2.92 3-3352   1125 3.18 8-5323  .40 .30 
Type SF2  43  2-141   58  2-250  .39 
L   4.88  4-6   4.79  4-6  .63 
Mean Token BiF 6195 3.71 1164-13412  5079 3.65 1048-8416 .21 .42 
Mean Type BiF  496  184-1007  417  163-768  .16 

Note: Frequency counts are given per million occurrences 
For all token measures, means and p-values corresponding to a logarithmic transformation of these measures 
(Log10) are presented in italics. 
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For all words used as stimuli in any of the experiments reported in this study, a strict 

criterion was applied in order to rule out the possibility that the effects obtained might be 

due to processes that do not necessarily rely on syllabic structure: the frequency of the 

bigram representing the syllable boundary within a word was always at least as high as the 

mean frequency of all other bigrams of the word.  

Thus, when readers apparently perform a segmentation of words into sublexical units 

corresponding to syllables, this segmentation has to refer to syllabic structure per se and can 

not be achieved by purely orthographic processing which focuses on a remarkably low-

frequency bigram within a word, referred to as “bigram trough” (Seidenberg, 1987; 1989).  

In addition, in order to control for possible effects of syllabic structure, only words 

starting with a CV-syllable were used. These restrictions, together with the need to 

disentangle two strongly correlated variables - token syllable frequency and type syllable 

frequency - resulted in a severe limitation of the number of words that could be used as 

stimuli in the experimental design. Therefore, it was necessary to use some of the words of 

Experiments 1A and B again as stimuli for Experiments 2A and B where an additional 

variable, the number of higher frequency syllabic neighbours, was controlled for. However, 

there was no overlap of the stimulus material between Experiments 1A and B. 

Because of the very close logical analogy between the four experiments in this study, 

we presented all four stimuli sets together in one experimental session. Therefore, all 

reported effects are based on the performance of identical subjects, which clearly enhances 

the comparability of analogous empirical effects, because the amount of variance caused by 

individual performance of subjects in each experiment can be considered as equal. Any word 

that was used as an item in more than one experiment was only once presented in the 

experimental session. 

Nonwords were constructed by combining the first syllable of a stimulus word with 

another letter string that exists as a second syllable in Spanish. Nonwords were made 

difficult to reject by ensuring that there were always at least four Spanish words that could 

be considered orthographic neighbours of this nonword.  
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Apparatus and Procedure 

Stimuli were presented in lowercase letters on a 17” Samtron color monitor (resolution 

1024x768 pixel, 75 Hz) driven by a GenuineIntel computer. Stimulus presentation and 

response recording was controlled by EXPE 6.02 software (Pallier, Dupoux, & Jeannin, 1997). 

Subjects were seated approximately 50-60 cm in front of the computer screen. They 

were instructed to make a decision concerning the lexicality of the stimulus as quickly and as 

accurately as possible, pressing a “yes”-button for a word and a “no”-button for a nonword. 

The complete stimulus list contained 119 words and 119 nonwords. The experiment lasted 

about fifteen minutes. Order of stimulus appearance was randomized for each participant. 

Stimuli remained visible until a response was given with an inter-trial interval of 1000 

milliseconds. There were ten initial training trials. 

 

Results and Discussion 

In this and the following analyses, mean correct response latencies and error 

percentages (see Table 2.2) were submitted to separate analyses of variance (ANOVAs) by 

participants and by items (F1 and F2, respectively). For all experiments reported in this 

study, response latencies differing more than two standard deviations from the mean for 

each subject and experimental condition were excluded from the analyses. This led to the 

exclusion of 4.4% of the data. Moreover, items with error rates exceeding 50 percent5 were 

excluded from all analyses. Generally, words were responded to 143 ms faster than 

nonwords, F1 (1,36) = 132,82, p<.0001; F2 (1,233) = 251.76, p<.0001. No significant effect of 

lexicality was obtained for the error data. One of the word stimuli in Experiment 1B had to 

be excluded from the analysis, because of its corresponding error rate. 

 

Experiment 1A (token frequency).  Concerning response latencies, there was a 

significant effect of the factor token syllable frequency. Words were responded to 45 ms 

slower when their first syllable was of high frequency measured as token syllable frequency, 

F1 (1,36) = 16.84, p <.0003; F2 (1,46) = 5.60, p <.03.  

                                                 
5 Before the rejection of outlier response latencies 
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A similar effect appeared in the analysis of error rates, significant in the analysis over 

subjects, words provoked more errors when starting with a high than with a low-frequency 

first syllable (9.5% vs. 6.2%), F1 (1,36) = 6.57, p <.02; F2 (1,46) = 1.53, p >.2. 

 

Experiment 1B (type frequency).  Concerning response latencies, syllable frequency 

caused no significant effect when realized as type syllable frequency. In contrast to the 

inhibitory effects of Experiment 1A, responses were 6 ms faster for words with many than 

with few syllabic neighbours, p>.6. This facilitative tendency in response latencies, although 

far from being statistically significant, was underlined by an effect in the analysis of error 

rates, significant over subjects, where words with many syllabic neighbours provoked less 

errors (4.5% vs. 8.5%) than those with few, F1 (1,36) = 9.78, p <.004; F2 (1,45) = 1.95, p >.1. 

 

Table 2.2 

Mean Reaction Times (RT; in Milliseconds), Standard Deviation of Reaction Times (Std. 
Dev. in Milliseconds) and Percentage of Errors for Words in Experiment 1A and B 

Experiment 1A 
Token Syllable Frequency 

High       Low  

RT   716       671  
Std. Dev.  142       102  
% error  9.5       6.2  

Experiment 1B  
Type Syllable Frequency 

High       Low 

RT   685       691  
Std. Dev.  119       117  
% error  4.5       8.5  

 

 

 

The outcome of Experiments 1A and B provides an answer to the question of which 

measure of syllable frequency is appropriate in order to obtain the inhibitory effect on lexical 

access described in the literature. A clear and reliable inhibitory effect is obtained when 

token syllable frequency is manipulated, controlling for the type measure, whereas there is 

no inhibition at all on response latencies, but a significant facilitative effect on error rates in 

the inverse case. Thus, the inhibitory effect of syllable frequency seems not to be driven by 

the number of times a syllable appears in the dictionary of a language, but by the number of 

times it actually appears in everyday language.  
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This frequency of usage is reflected only by the token measure, which takes into 

account the frequency of words sharing a given syllable. 

Regarding a potential effect of type syllable frequency that would be independent from 

token syllable frequency, the outcome of Experiments 1A and B does not allow for any 

reliable conclusions. Even if responses were faster to words with many syllabic neighbours 

than to words with few, this mean difference was not statistically significant.  

A significant facilitative effect of type syllable frequency was only obtained in the 

analysis of error rates over participants. Perea and Carreiras (1998) have argued that the 

number of higher frequency syllabic neighbours of a word is responsible for the inhibitory 

effect of syllable frequency on lexical access. As evident from Table 2.1, this variable co-

varied with the manipulation of both type and token syllable frequency in Experiments 1A 

and B. The fact that words with high type syllable frequency have many higher frequency 

syllabic neighbours may have prevented a facilitative effect for this syllable frequency 

measure from significantly appearing in the response latencies in Experiment 1B. A potential 

facilitative effect for the type measure of syllable frequency might be obtained when the 

inhibitory influence of both token syllable frequency and of the number of higher frequency 

syllabic neighbours is controlled for. We controlled for this variable in Experiments 2A and 

2B. It is also important to examine whether the inhibitory effect of token syllable frequency 

in Experiment 1A will still be obtained when controlling for the number of higher frequency 

syllabic neighbours – proposed as the source of this effect by Perea & Carreiras (1998). 
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Experiments 2A and B 

Method 

Participants and procedure were the same as in Experiments 1A and B. 

Stimuli and Design 

Two sets of 40 bisyllabic Spanish words were selected from the LEXESP database 

(Sebastián-Gallés et al., 2000). In parallel to Experiments 1A and B, the manipulated factors 

were positional token frequency of the first syllable in Experiment 2A and positional type 

frequency of the first syllable in Experiment 2B. The same selection and matching criteria as 

in Experiment 1 were applied. In addition, the number of higher frequency syllabic 

neighbours was held constant between the conditions of the factor syllable frequency (see 

Table 2.3). 

We mentioned previously why only a very limited number of words could be used for 

the experiments of the present study. The stimuli list of Experiments 2A and B is a subset of 

the one used for the previous experiments, to which some new words were added in order to 

achieve control of an additional variable. Specifically, 15 of the 40 words of the stimulus set 

of Experiment 2A were taken from the stimuli of Experiment 1A, whereas 32 of the 40 

stimuli of Experiment 2B were items taken from Experiment 1B. Seven words were present 

in both stimuli lists of Experiments 2A and 2B. Thus, Experiments 2A and B can be 

considered an enhanced version of Experiments 1A and B, controlling for the influence of 

one variable, the number of higher frequency syllabic neighbours, that had systematically co-

varied with the experimental factors of Experiments 1A and B. 
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Table 2.3 

Characteristics of Words used in Experiments 2A and B 
Means and Ranges for the different Measures of first Syllable Frequency (SF1): Token Syllable Frequency, Type 
Syllable Frequency, Mean Frequency of Syllabic Neighbours (MeanF SN), Number of higher Frequency Syllabic 
Neighbours (HFSN), Summed Frequency of higher Frequency Syllabic Neighbours (SumF HFSN), Mean 
Frequency of higher Frequency Syllabic Neighbours (MeanF HFSN), Frequency of the highest Frequency Syllabic 
Neighbour (Fmax SN). 
Means and Ranges for Control Variables: Word Frequency (WF), orthographic Neighbourhood Density (N), 
Number of higher Frequency orthographic Neighbours (HFN); second Syllable Frequency (SF2) and Word Length 
(L). 
Means and Ranges for mean Word Token and Type Bigram Frequency (Mean Token BiF and Mean Type BiF) 
computed according to the non-positional Occurrence of Bigrams in all bisyllabic Words. P-Values (p) 
corresponding to t-tests for Significance of Mean Differences are reported for Control Variables and for Measures of 
Syllable or Bigram Frequency that were not explicitly manipulated or controlled for. 

 

2A Manipulated Variable: Token Syllable Frequency 

High     Low    

   Mean  Range   Mean  Range  p 
Token SF1  1282 3.07 826-2262  321 2.50 174-387 
Type SF1  83  40-122   84  32-117  .94 
HFSN   13.25  4-27   12.70  2-26  .82 
MeanF SN  17.21 1.17 7-34   4.08 0.60 3-6  .0001 .0001 

SumF HFSN  1151 3.00 537-2227  218 2.31 72-312  .0001 .0001 
MeanF HFSN  113 1.95 28-418   22 1.31 11-44  .0001 .0001 
Fmax SN  428 2.58 218-761   70 1.80 25-104  .0001 .0001 
 
WF   10.91 0.91 2.80-31   10.53 0.87 2.40-35  .90 .72 

N   10.10  0-22   9.00  0-23  .65 
HFN   2.30  0-9   1.95  0-9  .66 
Token SF2  2145 3.26 3-9745   1103 3.05 3-5323  .20 .53 
Type SF2  57  1-118   64  1-250  .71 
L   4.55  4-5   4.65  4-6  .57 
Mean Token BiF 6540 3.71 1164-19419  5582 3.69 1300-11416 .44 .78 
Mean Type BiF  524  142-1223  442  146-822  .25  

 

2B Manipulated Variable: Type Syllable Frequency 

High     Low  

   Mean  Range   Mean  Range  p 
Token SF1  780 2.77 358-4175  490 2.56 133-1441 .18 .05 

Type SF1  110  101-136   36  29-46   
HFSN   6.65  0-15   5.35  1-13  .34 
MeanF SN  7.20 0.73 3-42   13.53 1.02 4-38  .04 .006 

SumF HFSN  516 2.41 0-3834   384 2.40 54-1019  .50 .95 
MeanF HFSN  97 1.73 0-548   85 1.77 13-282  .70 .78 

Fmax SN  242 2.23 79-1634   176 2.09 33-527  .42 .21 
 
WF   29.07 1.25 5.20-94   24.41 1.17 2.20-72  .58 .59 
N   8.60  2-21   6.10  0-20  .19 
HFN   1.65  0-9   1.50  0-9  .84 
Token SF2  767 3.08 29-3352   1665 3.38 19-7646  .12 .20 
Type SF2  47  1-141   67  4-250  .34  

L   4.90  4-6   4.75  4-6  .46 
Mean Token BiF 5719 3.68 1164-13412  4495 3.58 1048-8416 .18 .29 
Mean Type BiF  517  184-1007  391  163-768  .05 

Note: Frequency counts are given per million occurrences 
For all token measures, means and p-values corresponding to a logarithmic transformation of these measures 
(Log10) are presented in italics. 
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Results and Discussion 

One word in each Experiment 2A and B had to be excluded from the analyses, because 

of an error rate higher than 50 percent. Mean response latencies and error rates for words in 

Experiments 2A and B are shown in Table 2.4. 

 

Experiment 2A (token frequency):  Concerning response latencies, there was a 

significant effect of the factor token syllable frequency. Responses were 50 ms slower to 

words with high than with low initial token syllable frequency, F1 (1,36) = 21.22, p <.0001; F2 

(1,37) = 7.43, p <.01. The same inhibitory effect of token syllable frequency appeared in the 

analysis of error rates, with words provoking more errors when starting with a high than 

with a low-frequency first syllable (11.4% vs. 4.2%), F1 (1,36) = 38.14, p <.0001; F2 (1,37) = 

4.87, p <.04. 

 

Experiment 2B (type frequency): The analysis revealed a significant effect of the 

factor type syllable frequency. Responses to words with many syllabic neighbours were 27 

ms faster than to words with few, F1 (1,36) = 14.36, p <.0007; F2 (1,37) = 4.25, p <.05. 

Consistently and significant in the analysis over subjects, less errors (3.0% vs. 7.1%) occurred 

for words with high than for words with low type syllable frequency, F1 (1,36) = 10.38, p 

<.003; F2 (1,37) = 2.21, p >.1. 

 

There are two interesting features in the results of Experiment 2: First, the token 

frequency of the first syllable still produced an inhibitory effect on lexical access, even when 

the number of higher frequency syllabic neighbours was held constant.  

Second, the consequence of this control of the number of higher frequency syllabic 

neighbours is a clearer facilitative effect of type syllable frequency, the number of syllabic 

neighbours per se. Now, this effect that had only been obtained for error rates in Experiment 

1B is also present for response latencies. This evidence for a facilitative effect of type syllable 

frequency completes the comparison of type and token syllable frequency in visual word 

recognition, suggesting a differential and dissociated influence of these two frequency 

measures.  
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It might be argued that the facilitative effect obtained in Experiment 2B cannot be 

attributed exclusively to type syllable frequency, because, as evident from Table 2.3, words 

in the relevant conditions also differ to some degree in the overall mean type frequency 

count of their bigrams. But this difference is exclusively due to the type frequency of the 

words’ first bigram, which coincides, with the initial syllable of these words. Therefore, we 

believe that the empirical effect is better attributed to type syllable frequency than to overall 

orthographic redundancy. Still, the fact that there was an important overlap for the stimulus 

materials of Experiments 1 and 2 may be considered a methodological weakness, 

questioning the validity of discussing the data of Experiment 2 as the outcome of a separate 

experiment that is independent from Experiment 1. Therefore, we decided to re-run 

Experiment 2 using only the word stimuli of Experiments 2A and B, with a different set of 

participants who had not participated in the lexical decision experiment described above.  

 

 

Table 2.4 

Mean Reaction Times (RT; in Milliseconds), Standard Deviation of Reaction Times (Std. 
Dev. in Milliseconds) and Percentage of Errors for Words in Experiment 2A and B 

Experiment 2A 

Token Syllable Frequency (HFSN controlled for) 

High      Low   

RT   728      678  
Std. Dev.  128      94  
% error  11.4      4.2  

Experiment 2B 

Type Syllable Frequency (HFSN controlled for) 

High      Low   

RT   659      686  
Std. Dev.  98      117  
% error  3.0      7.1  

Note: HFSN = Number of higher frequency syllabic neighbours 
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Experiments 3A and B 

Method 

Apparatus and procedure were the same as for the Experiments described above, apart 

from the fact that the stimulus list now contained only seventy-three words and nonwords 

respectively. The same stimuli as in Experiment 2 were used. Forty-seven students from the 

University of La Laguna participated in the experiment.  

Results and Discussion 

The empirical effects described above for Experiment 2 also appeared in the data 

analyses of what now has been conducted as a separate Experiment 3 (see Table 2.5). 

Two words from the stimulus material of Experiment 3A and one word from the 

stimulus material of Experiment 3B had to be excluded because of high error rates. 

Generally, words were responded to 119 ms faster than nonwords, F1 (1,46) = 54,32, 

p<.0001; F2 (1,139) = 176.78, p<.0001. No significant effect of lexicality was obtained in the 

analysis of error rates. Analyses revealed a significant inhibitory effect of token syllable 

frequency on response latencies, with a delay of 45 ms for words with high syllable 

frequency relative to words with low syllable frequency, F1 (1,46) = 36.11, p <.0001; F2 (1,36) 

= 8.40, p <.007. This inhibitory effect was also present in error rates, significant in the analysis 

over subjects, with 7.4 % errors for high and 5.3% errors for low token syllable frequency 

words, F1 (1,46) = 5.71, p <.03; F2 (1,36) = 1.59, p >.3. These inhibitory effects for token syllable 

frequency were again contrasted by a significant facilitative effect of type syllable frequency 

when controlling for the number of higher frequency syllabic neighbours: Responses to 

words were 29 ms faster when their initial syllable was shared by many than by few other 

words, F1 (1,46) = 15.93, p <.0003; F2 (1,37) = 5.19, p <.03. Concerning error rates, this time 

there was no significant effect of type syllable frequency. Given that also the effect of token 

syllable frequency on error rates was no longer statistically significant in the analysis over 

items in Experiment 3A and that error rates were generally reduced when comparing the 
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present analyses with the output of Experiment 2, we conclude that this change in the 

pattern of results in the error data is best attributed to the fact that the reduced stimulus list 

for this replication of Experiment 2 allowed participants to perform the task more accurately.  

 

Table 2.5 

Mean Reaction Times (RT; in Milliseconds), Standard Deviation of Reaction Times (Std. 
Dev. in Milliseconds) and Percentage of Errors for Words in Experiment 3A and B 

Experiment 3A 

Token Syllable Frequency (HFSN controlled for) 

High     Low    

RT   732     687  
Std. Dev.  91     88  
% error  7.4     5.3  

Experiment 3B  

Type Syllable Frequency (HFSN controlled for) 

High     Low    

RT   664     693  
Std. Dev.  82     90  
% error  3.7     4.2  

Note: HFSN = Number of higher frequency syllabic neighbours 
 

 

 

Both the inhibitory effect of token and the facilitative effect of type syllable frequency 

on response latencies in Experiment 2 were successfully replicated. Still, one might argue 

that the specific design of the present experiments might lead to a false interpretation of the 

present results as evidence for dissociated effects of type and token syllable frequency. That 

is, when manipulating type syllable frequency and controlling for both token syllable 

frequency and the number of higher frequency syllabic neighbours in Experiments 2 and 3 B, 

words with low type syllable frequency might have some syllabic neighbours with especially 

high word frequency. Such very high-frequency syllabic neighbours might have interfered 

with the processing of the target in an especially efficient way. Therefore, what appears to be 

a facilitative effect of type syllable frequency - a processing advantage for words with many 

syllabic neighbours - might in fact result from especially high inhibition for words with a few 

very high-frequency syllabic neighbours.  
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However, the information provided in Table 2.3 questions such an alternative 

interpretation of the effects in Experiment 2 and 3B: not only did the number of higher 

frequency syllabic neighbours not co-vary with the manipulation of type syllable frequency 

in Experiment 2 and 3B, but neither did their accumulated mean and maximum word 

frequency. To further explore how different operationalizations of syllable frequency affect 

performance in the lexical decision task, we conducted multiple regression analyses on the 

data of Experiments 1 and 2, where a total of 119 words were responded to by the same 

group of participants6 

 

Re-analyses of Experiments 1 and 2 

 
In a first analysis, the two measures of syllable frequency used as independent variables 

in Experiments 1 and 2, type and token syllable frequency, as well as word frequency were 

log-transformed before being used as predictors of response latencies and error rates. We 

obtained a facilitative influence of word frequency on both response latencies, F (1,114) = 

47.30, p <.0001, and error rates, F (1,114) = 28.81, p <.0001. Furthermore, this analysis 

confirmed the pattern of results obtained in Experiment 1 and 2: For token syllable frequency 

there was a significant inhibitory effect on response latencies, F (1,114) = 11.86, p <.0009 and 

error rates, F (1,114) = 5.29, p <.03. A facilitative influence of type syllable frequency was 

revealed after the influence of the two other factors had been partialized out by the multiple 

regression analysis. This effect was marginally significant in the analysis of response 

latencies, F (1,114) = 3.06, p <.09, and significant in the error data, F (1,114) = 6.46, p <.02. 

Coefficients of correlations and partial correlations between predictors and the dependent 

variables are given in Table 2.6. 

                                                 
6 Words that had been excluded from the analyses of Experiments 1 and 2 were not used in multiple regression 
analyses either. 
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Table 2.6 

Pearson Product-Moment (r) and Partial Correlations (pr) between Response Latencies (RT) and Error Rates 
(%err) and three Predictors for Words used in Experiments 1 and 2. The Predictors are: Log (10) of Word 
Frequency (LogWF), Log (10) of Token Frequency of the first Syllable (LogSF), Type Frequency of the first 
Syllable.  
P-values (p) for Multiple Regression Analyses where all Factors were entered at the same Step. Increment of R² 
(incr. R²) for entering each Predictor into a Stepwise Regression Analysis. Order of Entry (1.,2.,3.). 

  RT      %err 

  r pr p incr. R²   r pr p incr. R²) 

LogWF  -.50 -.54 .0001 .2528 (1.)  -.43 -.45 .0001 .1816 (1.) 

LogSF   .16   .31 .0008 .0535 (2.)   .06  .21 .02 .0353 (3.) 

Type SF -.06 -.16 .08 .0181 (3.)  -.17 -.23 .01 .0218 (2.) 

  total: R²=.324 R²adj.=.307   total: R²=.239 R²adj.=.219 
 

 

Beside the distinction between type and token measures, the frequency of a word’s 

syllabic neighbourhood can be numerically expressed in several alternative ways. All these 

alternative syllable frequency measures are more or less systematically affected by the 

experimental manipulations we used for these experiments.  

As evident from Tables 2.1 and 2.3, the only one of these measures that systematically 

co-varied with all experimental manipulations regardless of whether type or token frequency 

was the independent variable was the mean frequency of syllabic neighbours. This variable 

increased with the manipulation of token syllable frequency and decreased with the 

manipulation of type syllable frequency. Note that this cannot be considered a confound, 

because the mean frequency of syllabic neighbours will automatically be affected when 

either of these two syllable frequency measures is manipulated while controlling for the 

other. The way that token and type syllable frequency are mathematically combined when 

calculating the mean frequency of syllabic neighbours – with the former being divided by the 

latter - makes this variable a promising candidate for a single predictor that could account 

for both the inhibitory effect of token syllable frequency and the facilitative effect of type 

syllable frequency.  
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We therefore conducted additional multiple regression analyses using the Log of mean 

frequency of syllabic neighbours and the Log of word frequency as predictors of response 

latencies and error rates7. Besides the facilitative influence of word frequency on response 

latencies, F (1,114) = 49.53, p <.0001 and error rates, F (1,114) = 30.27, p <.0001, the analyses 

revealed a significant inhibitory effect of the factor mean frequency of syllabic neighbours on 

both response latencies, F (1,114) = 18.78, p <.0004 and error rates, F (1,114) = 6.83, p <.02 (see 

Table 2.7). 

 

Table 2.7 

Pearson Product-Moment (r) and Partial Correlations (pr) between Response Latencies (RT) and Error Rates 
(%err) and two Predictors for Words used in Experiments 1 and 2. The Predictors are: Log (10) of Word 
Frequency (LogWF) and Log (10) of the mean Frequency of syllabic Neighbours (Log MeanF SN).  
P-values (p) for Multiple Regression Analyses where all Factors were entered at the same Step. Increment of R² 
(incr. R²) for entering each Predictor into a Stepwise Regression Analysis. Order of Entry (1.,2.,3.).  

   RT      %err 

   r pr p incr. R²   r pr p incr. R² 

LogWF   -.50 -.55 .0001 .2528 (1.)  -.43 -.46 .0001 .1816 (1.) 

Log MeanF SN    .21  .33 .0003 .0799 (2.)   .16  .24 .01 .0459 (2.) 

total: R²=.333 R²adj.=.321   total: R²=.227 R²adj.=.214  

 

 

The amount of variance explained by this predictor was comparable to that accounted 

for by the two predictors token syllable frequency and type syllable frequency in the 

previous analyses. In fact, concerning response latencies, the explanation of variance was 

slightly better for the factor mean frequency of syllabic neighbours when compared to the 

combined influence of the two separate predictors and it was slightly worse concerning error 

rates. Thus, besides confirming the dissociation of the effects of type and token syllable 

frequency, the outcome of the multiple regression analyses introduces a new variable, the 

possible significance of which for the interpretation of the present results will be discussed in 

more detail during the General Discussion section. 

                                                 
7 Token or type syllable frequency measures could not be used as additional predictors for these analyses 
because of the problem of co-linearity. For instance, the correlation between the Log of token syllable frequency 
and the Log of the mean frequency of syllabic neighbours was .83.  
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Finally, it seemed worthwhile to examine whether our empirical effects could possibly 

have been affected by word imageability. This variable has been shown to influence response 

latencies in lexical decision (Kroll & Merves, 1986) and it appears to be correlated with, for 

example, measures of orthographic neighbourhood (Bowers, Davis, & Hanley, 2005; see also 

Davis, 2005). We had not attempted to control for this variable when selecting our material, 

but after collecting corresponding imageability ratings, we discovered a confound between 

this variable and the token syllable frequency manipulation in Experiments 1A and 2A. 

Mean imageability values were higher for words with low than with high token syllable 

frequency (5.57 vs. 4.67 in Experiment 1A; p<.03 and 5.46 vs. 4.48; p<.04 in Experiment 2A). 

Regarding the manipulation of type syllable frequency in Experiments 1B and 2B, mean 

word imageability did not vary systematically between experimental conditions (4.91 vs. 

4.52; p>.3 for high and low type syllable frequency in Experiment 1B and 4.85 vs. 4.40; p>.3 in 

Experiment 2B). Therefore, we decided to conduct a post-hoc comparison in order to see 

whether the inhibitory effect of token syllable frequency obtained with the present stimulus 

material might have resulted from a confound with word imageability, as high imageability 

could possibly have enhanced the processing of stimuli with low token syllable frequency. 

Within the material of Experiments 1 and 2, we identified a minimum number of words that 

had to be excluded in order to assure a sufficient control for the variable word imageability 

(p>.9) without affecting any other control variable. We obtained a set of 96 (out of 119) words 

that could be used for such a post hoc comparison, including the orthogonal manipulation of 

the factor token syllable frequency of the first syllable (high vs. low). The corresponding 

analyses revealed, again, a significant inhibitory effect of token syllable frequency: words 

with a high-frequency initial syllable were responded to 28 ms slower than words starting 

with a low-frequency syllable, F1 (1,36) = 18.28, p<.0001; F2 (1,94) = 4.76, p<.04. This effect 

was mirrored by a tendency of high syllable frequency words to provoke more errors than 

low syllable frequency words (8.2% vs. 6.8% respectively), F1 (1,36) = 2.97, p<.09; F2 (1,94) <1. 

We conclude, therefore, that the inhibitory token syllable frequency effects obtained in 

Experiments 1 and 2A are not due to a confound with word imageability. 
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General Discussion 

 
The experiments reported in this study investigated the issue of whether type and 

token measures of syllable frequency have the same or differential effects on lexical decision 

performance. Previous studies have used either one of these two highly correlated measures 

indiscriminately. Therefore, the question has remained unresolved of which one was 

responsible for the inhibitory effect of syllable frequency in lexical decision, as well as the 

issue of potentially dissociable effects of these two frequency measures.  

By disentangling the high correlation between these two measures when selecting the 

stimulus material, we were able to show in Experiment 1 that the token measure and not the 

type measure of syllable frequency is driving the inhibitory effect on lexical access. 

Additional control for the number of higher frequency syllabic neighbours in 

Experiments 2 and 3 led to even more clear-cut results. Whereas the inhibitory effect of token 

syllable frequency remained unaffected, a significant facilitative effect for type syllable 

frequency was obtained. Multiple regression analyses using the data of Experiments 1 and 2 

confirmed this pattern of results suggesting dissociated effects of token and type syllable 

frequency in lexical decision. 

 

Establishing a methodological standard of how to compute syllable frequency in order 

to obtain a specific effect seemed a useful aim, given the increasing interest in the role of 

syllables in visual word recognition. The dissociation between the effects of token and type 

syllable frequency – which might best be reflected by the measure of mean frequency of 

syllabic neighbours - is the most interesting novel finding among the present results. In 

contrast to speech production (Carreiras & Perea, 2004a; Cholin et al., 2006; Perea and 

Carreiras, 1998), facilitative syllable frequency effects on lexical access have never been 

reported before. But note that, more generally, the frequency of sublexical units has mostly 

been shown to enhance processing of the words they are embedded in.  
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Subcomponent frequency (Nuerk, Rey, Graf, & Jacobs, 2000), the frequencies of bigrams 

(Massaro & Cohen, 1994; but see Paap & Johansen, 1994), trigrams (Seidenberg, 1987), of the 

BOSS (Taft, 1979) or of stem morphemes (de Jong, Schreuder, & Baayen, 2000) could serve as 

examples of this.  

Also concerning syllable frequency, even if inhibition due to the processing of syllabic 

neighbours were the final result of a competition process that is triggered by the 

segmentation of polysyllabic words into their syllabic constituents, it seems plausible to 

assume that word processing would be speeded by a syllable’s frequency at some stage of 

the reading process (see also Barber et al., 2004; Hutzler et al., 2004).  

Thus, the dissociated effects of token and type syllable frequency might relate to 

different processing stages during visual word recognition in the following way: Inhibition 

due to the frequency of syllabic neighbours (token syllable frequency) would be effective at a 

lexical processing stage, whereas the facilitative type frequency effect could arise during 

prelexical processing, where a syllable’s familiarity or typicality – which might best be 

expressed by type syllable frequency - would enhance the initial processing of the 

orthographic input - possibly by facilitating the syllabic parsing process. We believe that the 

type measure of syllable frequency – the number of words containing a given syllable - is 

more appropriate to reflect a syllable’s typicality within a given language than the token 

measure. Unlike the type measure, a syllable’s token frequency – which is related to the 

frequency of occurrence of words - can be strongly modulated by the elevated frequency of a 

single or a few words containing this syllable. 

 

Our results provide important constraints for computational models of visual word 

recognition in two ways. First, the syllable frequency effects reported here add to the 

evidence for syllabic processing in reading. The lack of syllabic representations within most 

computational models of visual word recognition leads to the assumption that they would 

fall short in simulating these results (e.g., Coltheart et al., 2001; Grainger & Jacobs, 1996; 

Jacobs et al., 2003; Ziegler et al. 2000; Zorzi et al., 1998; but see Ans et al., 1998).  

Second, the question arises of how the specific dissociation of type and token syllable 

frequency effects could be accounted for, even if a computational model contained syllabic 

representations.  
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The question of whether type and token frequency-based effects can be accounted for 

by one and the same mechanism is an important issue for computational modelling of word 

recognition. For instance, regarding the effects of morphology in speech production, there is 

debate about the necessity of separate token-sensitive and type-sensitive mechanisms 

(Moscoso del Prado Martín, Kostic, & Baayen, 2004; Moscoso del Prado Martín, Ernestus, 

and Baayen, 2004).  

As far as visual word recognition is concerned, our empirical findings are highly 

reminiscent of the pattern of results obtained for orthographic neighbourhood, where 

facilitative effects of neighbourhood density were contrasted by inhibitory effects of 

neighbourhood frequency. The need to account for these dissociated effects has been an 

important motivation in the development of an influential computational model of visual 

word recognition, the multiple read-out model (MROM; Grainger & Jacobs, 1996). This 

interactive activation model (McClelland & Rumelhart, 1981; Jacobs & Grainger, 1992) 

implements a multiple read-out procedure providing two different mechanisms to achieve 

word identification, for example, in a perceptual identification task - or a correct “yes” 

response in a lexical decision task:  

The activation of a single word entry in the model’s lexicon reaches a specified 

threshold μ corresponding to the complete identification of the target word. 

Or, the global activation in the lexicon is high enough to allow for a “yes” response 

(according to the threshold σ of the model) without one single word having to be fully 

recognized.  

 

The facilitative neighbourhood density effect is simulated in MROM when responses 

are given as a function of global lexical activation corresponding to a fast-guess for words 

with many orthographic neighbours, whereas the presence of higher frequency orthographic 

neighbours would cause a delay in the processing which is necessary for the target word’s 

representation to reach its identification threshold.  

The findings related to orthographic neighbourhood effects in visual word recognition 

have generally been very heterogeneous and this may have been partly due to a lack of 

control for other relevant variables (see Andrews, 1997 for a review). The studies reporting 

orthographic neighbourhood effects have mostly lacked sufficient control for, for example, 

neighbourhood frequency or number of higher frequency orthographic neighbours when 
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manipulating neighbourhood density and vice versa. Especially in the presence of 

dissociated effects for a specific variable, sufficient control for the different 

operationalizations of this variable is essential to be able to draw reliable conclusions 

regarding their dissociation.  

It is important to note that how the multiple read out process of the MROM accounts 

for the heterogeneous findings on orthographic neighbourhood has been strongly influenced 

by the fact that these effects appear to be dependent on specific task demands varying 

between, perceptual identification and lexical decision, for example, or with the 

characteristics of nonwords in lexical decision.  

In the present study, manipulating one variable and controlling for the other, we 

obtained dissociated effects for type and token syllable frequency occurring in exactly the 

same task environment. The question of whether such a specific pattern of effects could 

possibly occur within the architecture of a model like MROM deserves careful examination. 

 

The common interpretation of the inhibitory syllable frequency effect stresses the 

difficulty of identifying a target word among a cohort of competing candidate 

representations. Within a computational model, competition between syllabic neighbours at 

the level of whole word representations could explain why words with high syllable 

frequency take longer to be responded to. Thus, an inhibitory effect of syllable frequency 

might best be accounted for by the μ process of the MROM. The computational principles of 

this model would also predict that such an effect is obtained for token syllable frequency 

when type syllable frequency is controlled for, but not in the inverse case. The amount of 

lateral inhibition a word unit competing with the target for identification would send out to 

the target’s representation depends on this competing unit’s resting level of activation, which 

is a function of word frequency. If syllabic units modulate the activation of whole word 

representations, then a target’s syllabic neighbours would all form part of a cohort of word 

representations activated by the target. Lateral inhibition would increase with the summed 

frequency or resting level of activation of single units (reflected by token syllable frequency) 

within two cohorts of competing word representations of equal size (reflected by type 

syllable frequency). This would not be the case with increasing cohort size (type syllable 

frequency) when the summed frequency of word representations (token syllable frequency) 

is the same for two cohorts.  
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In other words, the amount of inhibition coming from word units in the syllabic 

neighbourhood does not depend on the number of these competitors but on their frequency 

of occurrence. Perea and Carreiras (1998) proposed that the number of higher frequency 

syllabic neighbours was the best measure to account for the inhibitory effect of syllable 

frequency, and control for this variable explains why the facilitative effect of type syllable 

frequency was more robust in Experiments 2B and 3B than in Experiment 1B. However, the 

results of Experiments 2A and 3A, where the inhibitory effect of token syllable frequency 

remained robust despite this control, stress the importance of the absolute frequency levels 

of syllabic neighbours for the observed inhibition of lexical access. 

How could a computational model account for the facilitative effect of type syllable 

frequency? 

It has been remarked that to account for dissociated effects within the same 

representational level of a model is not a simple matter (De Jong et al., 2000). In the MROM’s 

account of the dissociated effects of orthographic neighbourhood density and frequency, a 

change of participant strategy, modulated by specific task conditions, could determine the 

dominance of processes related either to target identification or to fast-guess in a specific 

experiment (see also the diffusion model of the lexical decision task, Ratcliff, Gomez, & 

McKoon, 2004, for an account of how a specific task environment can modulate the 

distribution of response latencies). But how could both kinds of effects emerge in parallel in 

one and the same experimental task environment, as in the present experiments?  

 

With regard to the present data, the assumption that only type but not token syllable 

frequency –two measures which are closely analogous to orthographic neighbourhood 

density and frequency – would lead to a preferential use of the σ process of the MROM 

corresponding to a fast-guess faces some problems: the global lexical activation within the 

model is the summed activation of all word representations whose resting levels correspond 

to their word frequency. Because token syllable frequency is computed as the cumulated 

frequency of all syllabic neighbours of a word, the global lexical activation within the model 

would initially be the same for two cohorts of syllabic neighbour representations differing in 

type but not in token frequency. In turn, global lexical activation would be higher for a 

cohort characterized by high token syllable frequency compared to a cohort of equal type but 

low token syllable frequency.  
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How could the σ process of the model, therefore, be responsible for the facilitative type 

syllable frequency effect and why should this facilitation not also apply to token syllable 

frequency? In the following we will formulate two hypotheses as possible answers to these 

questions: 

 

1. We argued above why type syllable frequency might be a good estimate of the 

typicality of a given syllable within a language. A prelexical processing advantage for 

syllabic units of high typicality could be implemented in a model with syllabic 

representation units, by assigning them a resting level of activation determined by type 

syllable frequency (see Mathey, Zagar, Doignon, & Seigneuric, 2006, for a related proposal). 

In this case, the activation of whole word representations via syllabic representations 

corresponding to syllables of high type frequency would be especially efficient.  

Therefore, correct responses corresponding either to full identification or to a successful 

fast-guess could be especially speeded by type syllable frequency. Note that this theoretical 

account of the facilitative type syllable frequency effect does not imply a change in 

participant task performance strategy. It rather implies that the dissociation of type and 

token syllable frequency effects arises at different processing or representational levels 

related to a) the familiarity of sublexical units and b) competition on the whole word level. 

But these effects might even be accounted for in a more straightforward manner without the 

need for an additional parameter such as the resting level of activation for syllabic units. 

 

2. Multiple regression analyses of the present data showed that the mean frequency of 

syllabic neighbours is an excellent predictor of response latencies, explaining even more 

variance than the two separate predictors token and type syllable frequency together. The 

opposite influence of the two factors token and type syllable frequency could be adequately 

summarized in the regression analyses by a single predictor the calculation of which mirrors 

their specific influence by dividing one of them by the other. Therefore, these opposite effects 

could well be accounted for not only under the same task conditions, but also within the 

same representational layer of a model – the layer of whole word representations. For 

computational models, this mean frequency of syllabic neighbours might be an interesting 

variable, because it relates to the specific distribution of activation across a cohort of 

competing word candidate representations (syllabic neighbours in this case).  
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Given that two cohorts of syllabic neighbours do not differ regarding the summed 

frequency of their single word representation units (token syllable frequency), the 

distribution of activation (modulated by the resting levels of single word representations) 

over the cohort of syllabic neighbours would become flatter the more word units it contains 

(with increasing type syllable frequency). We call a distribution with a low mean and a high 

standard deviation “flat”, whereas a distribution with a high mean and a low standard 

deviation will be referred to as “steep”.  

Simulations with the MROM have shown that in the case of the neighbourhood 

frequency effect, lateral inhibition was most effective when coming from a restricted number 

of competing word representations (Grainger & Jacobs, 1996). Inhibition was highest in the 

presence of only one higher frequency orthographic neighbour .The resulting activation 

distribution could be described as a steep one with a pronounced peak. In contrast, in a 

competitors’ cohort of increased size, no single representational unit would become 

prominent enough to efficiently inhibit the target’s representation.  

This means that in a flat activation distribution, competing word units would cancel 

each other out in terms of their ability to interfere with the processing of the target. The size 

of the cohort of word representations that is co-activated by the presentation of the target 

could therefore influence response times in the MROM in a facilitative manner, either 

because a target representation that is not the object of strong inhibition might more easily 

reach the identification criterion, or because its increasing contribution to global lexical 

activation would trigger a “yes” response when the σ threshold of the model is reached. This 

would hold true even if global lexical activation should initially not differ between two 

cohorts of syllabic neighbours of great and small size matched on summed word frequency. 

It might be argued that this account of the facilitative effect of type syllable frequency is 

questionable, because facilitation is partly understood as the absence of inhibition8. 

However, the question is whether in a multidimensional and complex nonlinear dynamic 

system such as the reading process, these can be considered clearly separate phenomena.  

 

                                                 
8 The assumption of a truly facilitative type syllable frequency effect was supported by the outcome of an 
additional experiment where we tried to encourage a “fast guess” strategy by the use of nonwords that were easy 
to reject, presenting the word stimuli of the present experiments to another group of participants. In this 
experiment, a significant facilitative effect of type syllable frequency was also obtained for the material of 
Experiment 1B, whereas all other effects remained the same. 



Chapter2 
Contrasting effects of token and type syllable frequency in lexical decision. 
_____________________________________________________________ 

 63 

It remains to be seen which, or if any of our hypotheses on how a computational model 

could account for the present empirical findings can be confirmed by simulation studies. In 

any case, the present results provide a good example of empirical findings that strongly 

constrain the development of models of visual word recognition, showing also how 

simulation studies with such models could help in turn to understand the processes 

underlying such empirical effects



 

 

.
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Empirical and simulation data from Spanish    

 

Markus Conrad, Manuel Carreiras, Sascha Tamm, & Arthur M. Jacobs 

 

Abstract 

 

Over the last decade, there has been increasing evidence for syllabic processing during 

visual word recognition. If syllabic effects would prove to be independent from orthographic 

redundancy, this would seriously challenge the ability of current computational models to 

account for the processing of polysyllabic words. Three experiments are presented to 

disentangle effects of the frequency of syllabic units and orthographic segments in lexical 

decision. In Experiment 1 we obtained an inhibitory syllable frequency effect that was 

unaffected by the presence or absence of a “bigram trough” at the syllable boundary. In 

Experiments 2 and 3 an inhibitory effect of initial syllable frequency but a facilitative effect of 

initial bigram-frequency emerged when manipulating one of the two measures and 

controlling for the other in Spanish words starting with CV-syllables. We conclude that 

effects of syllable frequency and letter cluster frequency are independent and arise at 

different processing levels of visual word recognition. Results are discussed within the 

framework of an interactive activation model of visual word recognition. 

                                                 
9 Published (in press) in Journal of Experimental Psychology, Human Perception and Performance 
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Introduction 

 
Reading is one of the basic cognitive skills necessary for modern life. Much research in 

the field of cognitive psychology has focused on reading and computational models have 

been constructed to simulate the process of visual word recognition. However, while most 

words in many languages are polysyllabic, most current computational models deal 

exclusively with the processing of monosyllabic words (Coltheart, Rastle, Perry, Langdon, & 

Ziegler, 2001; Grainger & Jacobs, 1996; Ziegler, Perry, & Coltheart, 2000; Zorzi, Houghton, & 

Butterworth, 1998; but see Ans, Carbonnel, & Valdois, 1998 for an exception). Whether and 

how polysyllabic words are segmented into their syllabic constituents during silent reading 

in different orthographies is still an open question. The first evidence for the assumption of 

syllabic processing was provided for the English language (e.g., Prinzmetal, Treiman, & Rho, 

1986; Spoehr & Smith, 1973; Tousman & Inhoff, 1992). However, one important argument 

against the proposal of syllables being functional units of visual word recognition was 

formulated by Seidenberg (1987, 1989): He argued that a typical feature of orthographic 

redundancy within polysyllabic words could explain such empirical findings without any 

necessary reference to syllabic units: the bigram forming the boundary between two syllables 

is typically less frequent than intra-syllabic bigrams and therefore what might appear to be 

evidence for syllabic parsing could also be understood as the consequence of purely 

orthographic processing (but see Rapp, 1992; Carreiras & Marín, submitted).  

 

More recently, a new approach towards the investigation of syllabic processing has 

been taken by research in Spanish, which, unlike English, has a shallow orthography with 

transparent syllabic structure: The finding of an inhibitory effect for the positional frequency 

of a word’s initial syllable, first reported by Carreiras, Álvarez, and de Vega (1993) has since 

been successfully replicated for two other languages, French (Mathey & Zagar, 2002), 

another Roman language, and German (Conrad & Jacobs, 2004), a non-Roman language. 

Words starting with a high-frequency syllable, a syllable that also forms the initial syllable of 

many other words, are responded to faster in lexical decision than words with low initial 
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syllable frequency. In addition, syllable frequency has been shown to influence 

neurocognitive correlates of the reading process, such as event related potentials (Barber, 

Vergara, & Carreiras, 2004; Hutzler et al., 2004) and hemodynamic responses (Carreiras, 

Mechelli & Price, 2006).  

Some of the studies reporting syllable frequency effects in lexical decision also tried to 

dismiss the criticism of Seidenberg (1987) by using only words that did not show the typical 

pattern of a bigram trough at the syllable boundary (e.g., Carreiras et al., 1993; Perea & 

Carreiras, 1998). Successfully replicating the syllable frequency effect, these studies showed 

that the presence of a bigram trough at the syllabic boundary is at least not a necessary 

condition for obtaining such a syllabic effect. Thus, the bigram trough hypothesis doesn’t 

seem to be a sufficient explanation for the apparent syllabic segmentation of polysyllabic 

words. Instead, the syllable frequency effect is generally interpreted as evidence for an 

automatic syllabic segmentation of visually presented words: after a syllabic segmentation of 

the input, the first syllable activates the representations of words sharing this syllable in 

identical position and competition between these is responsible for the observed delay in the 

processing of words with high-frequency initial syllables (e. g., Perea & Carreiras, 1998).  

Reconciling the view of syllables as functional units of visual word recognition and the 

importance of orthographic redundancy, Doignon and Zagar (2005) showed that the 

tendency for illusory conjunctions following syllabic structure was strongest when bigram 

troughs coincided with the syllable boundary of bisyllabic French words. Illusory 

conjunctions for syllabic units were attenuated but generally still observable when the 

syllable boundary did not coincide with a bigram trough10. Doignon and Zagar (2005) 

concluded that both phonological – relying on phonological syllables - and orthographic 

processing –relying on bigram troughs – would characterize the segmentation of 

orthographic word forms.  

                                                 
10 The effect of syllable boundaries on illusory conjunctions was completely absent for words starting with a 
three-letter syllable in Experiment 2 of Doignon and Zagar (2005), but we believe that this specific result should 
be handled carefully. Internal syllabic structure (e.g., CCV vs. CVC) of words was not controlled for within the 
material of this experiment, initial syllables with a consonant orthographic offset (e.g., dan_ser) occurring more 
often in the condition where bigram troughs did not coincide with syllable boundaries. This might be important, 
because consonants forming the orthographic offset of French syllables are often not pronounced or become part 
of a nasal vowel phoneme, which might present a problem fort the mapping between phonological syllables and 
their orthographic representations. Furthermore, some words (e.g., piano, ruiné), which might be interpreted as 
trisyllabic strongly contributed to the specific empirical pattern of results -. If, e.g., the word “ruiné” would be 
parsed as “ru-i-né” instead of “rui-né”, this would make the low-frequency second bigram “ui” (characterized as 
intra-syllabic in this experiment) an inter-syllabic bigram coinciding with a syllabic boundary, undermining the 
experimental manipulation. 
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In any case, most current computational models would probably fall short in 

accounting for polysyllabic word processing being mediated by syllabic units because of 

their lack of syllabic representations. However, the question of whether the processing of 

syllabic units in visual word recognition occurs independently of orthographic redundancy 

or letter cluster frequency is not yet resolved. This is because a high-frequency syllable can 

generally also be described as a high-frequency letter cluster, independently of syllabic 

structure.  

Thus, regarding the nature of the syllable frequency effect, it remains to be shown that a 

cohort of competing word representations would in fact be activated by the target’s initial 

syllable rather than by an initial letter cluster. In other words, it is unclear whether this 

empirical effect really reflects syllabic processing or whether it could also be understood as 

an effect of the frequency of letter clusters that are not syllabically defined.  

The difficulty of making a clear statement regarding the nature of the syllable frequency 

effect is a general problem in the literature on syllable frequency effects in lexical decision. 

Although the syllable is mostly understood as a phonological concept, it is unclear – even 

when assuming that the effect were due to syllables and not to non-syllabically defined letter 

clusters - whether this effect has to be attributed to phonological syllables or to their 

orthographic representations. The main reason for this is that the manipulated variable in all 

available studies was orthographic syllable frequency – being hard to disentangle from 

phonological syllable frequency at least in shallow orthographies as Spanish and German. 

Some empirical evidence for a phonological base of syllabic effects in visual word 

recognition has been provided by Álvarez, Carreiras and Perea, (2004). They reported similar 

priming effects for primes that matched only the phonological but not the orthographic 

initial syllable of a target word compared to primes that matched both the phonological and 

the orthographic initial syllable of the target. More recently, Mathey, Zagar, Doignon and 

Seigneuric (2006) made a theoretical proposal of how effects related to both the processing of 

phonological syllables and orthographic letter clusters could be integrated into the 

architecture of an interactive activation model. They presented empirical data from a lexical 

decision task where an inhibitory initial syllable frequency effect occurred only for words 

starting with a high-frequency letter cluster. In the presence of a low-frequency letter cluster 

at the word beginning syllable frequency rather seemed to yield facilitation of word 

processing (Experiment 2 of Mathey et al., 2006).  
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They concluded that a phonological route containing syllabic units was activated via 

orthographic redundancy. However, the empirical data is scarce and not completely 

conclusive11. Therefore, given the important theoretical impact of this question, clearly more 

empirical data is needed for a better understanding of the relation between orthographic 

redundancy and syllabic processing.  

 

Generally, and in contrast to syllabic effects, effects of the frequency of letter clusters or 

of orthographic redundancy could theoretically be accounted for by current computational 

models. Empirical effects related to syllabic units could be accounted for by processing 

mechanisms sensitive to orthographic redundancy in the two following ways: 

Any apparently syllabic segmentation could be achieved by a processing mechanism 

sensitive to the presence of a bigram trough that typically occurs at the syllabic boundary 

(Seidenberg 1987; 1989). 

Regardless of syllabic structure, any effect of the frequency of a syllabic unit could arise 

as an effect of the frequency of the letter cluster representing the syllable. This would be in 

line with the findings of Schiller (1998; 2000) who stated that segmental overlap rather than 

syllabic congruency was influencing primed word naming - see also Experiment 1 of Mathey 

et al. (2006) showing an inhibitory effect for the frequency of a word’s initial letter cluster not 

only when these letters were the initial syllable but also when they formed the beginning of a 

monosyllabic word. 

 

Given the systematic relation between syllable frequency and letter cluster frequency, 

the claim for a round of revision of computational models of visual word recognition (e. g., 

Álvarez, Carreiras, and Taft, 2001; Carreiras et al, 1993; Conrad & Jacobs; 2004; Perea & 

Carreiras, 1998) would take another perspective if syllabic effects can be seen as effects of 

orthographic redundancy or at least cannot reliably be distinguished from these.  

                                                 
11 Note that the size of the syllable frequency manipulation in Experiment 2 of Mathey et al. (2006) was much 
stronger in the case of high- than of low-frequency orthographic letter clusters; a relatively high number of 
syllabic neighbors was only present in the condition of high orthographic frequency/high syllable frequency. 
This represents a problem for the interpretation of the observed interaction between the effects of syllable 
frequency and letter cluster frequency as well as for an interpretation of the absence of a significant letter cluster 
frequency effect in this experiment of Mathey et al. (2006). 
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In this case, polysyllabic word processing might successfully be simulated applying the 

principles of modeling monosyllabic word processing without the involvement of syllabic 

representation units.  

 

The present study addresses the question of the relatedness of syllabic and 

orthographic processing in the following ways: Experiment 1 readdresses the bigram trough 

hypothesis examining whether there are comparable effects of syllable frequency in the 

presence and in the absence of a bigram trough at the syllabic boundary. Experiment 2 aims 

to replicate the syllable frequency effect while controlling for the frequency of the letter 

cluster forming the initial syllable (the first bigram in words starting with a CV syllable). 

Experiment 3 is conducted to see if there is any effect of initial bigram-frequency for 

bisyllabic words when syllable frequency is controlled for (for effects of bigram-frequency 

and positional letter frequency in monosyllabic word processing, see Massaro & Cohen, 

1994; Grainger & Jacobs, 1993).  

The existence of qualitatively different processing mechanisms during visual word 

recognition related to syllable frequency and to bigram-frequency, would seriously question 

the ability of computational models that do not include syllabic representations to account 

for the processing of polysyllabic words. Whereas adding a layer of syllabic representations 

might be the first step of solving this problem at least for localist connectionist models, such 

a pattern of results would be a substantial challenge for connectionist models that don’t 

contain any representational units. However, if no independent effects of syllable and 

bigram-frequency are obtained, then current computational models could easily be extended 

to account for polysyllabic word reading without the need to implement a specific syllabic 

processing mechanism.  
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Experiment 1: Syllable frequency and bigram troughs 

 
Some empirical studies have already shown that the syllable frequency effect can be 

obtained when words do not show the critical pattern of a bigram trough at the syllabic 

boundary. In doing so they contradicted the idea that the effect would only occur because 

orthographic redundancy offered a segmentation device for the extraction of the relevant 

sublexical unit (the syllable or the correspondent letter cluster). However, it has never been 

experimentally tested whether syllable frequency effects and bigram troughs really have any 

type of systematic relation within the process of visual word recognition. That is, even if 

syllabic effects can be obtained without the presence of a bigram trough at the syllable 

boundary, a hypothesis taking into account the proposals of Mathey et al. (2006) and 

Doignon and Zagar (2005) could be that a bigram trough at the syllable boundary would 

facilitate the syllabic parsing process and syllable frequency effects should therefore be more 

pronounced in the presence than in the absence of such a pattern. In turn, a syllable 

frequency effect that would prove to be unaffected by the presence or absence of a bigram 

trough at the syllable boundary would rule out the “bigram trough hypothesis” as a possible 

source of syllabic processing in visual word recognition at least in Spanish. This is an issue 

that studies using only words not showing this critical bigram trough pattern have not 

completely resolved. On the contrary, using such a specific control means to implicitly 

acknowledge that bigram troughs would be important for the processing of syllables.  

This is an important outstanding question for a more detailed understanding of the 

relation between orthographic redundancy and syllabic processing. Experiment 1 directly 

manipulates the frequency relation between the bigram at the syllabic boundary and the 

remaining bigrams of a bisyllabic word. A syllable frequency manipulation as a second 

experimental factor will provide information about any hypothetical modulation of the 

syllable frequency effect in lexical decision depending on bigram troughs. 
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Method 

Participants 

Forty-six students of the University of La Laguna participated in the experiment. Their 

participation was rewarded with course credits. All were native speakers of Spanish and had 

normal or corrected-to-normal vision. 

Stimuli and Design 

108 bisyllabic Spanish words were selected from the LEXESP database (Sebastián-

Gallés, Martí, Carreiras, & Cuetos, 2000) according to the orthogonal combination of two 

factors in a within-participant 2x2 design: relative frequency of the bigram at the syllable 

boundary (relative to the mean frequency of the remaining intra-syllabic bigrams; presence 

vs. absence of a bigram trough at the syllable boundary) and positional frequency of the first 

syllable (high vs. low). E.g., “li-“ is a high-frequency first syllable in Spanish whereas “fo-“ is 

a low-frequency initial syllable. Accordingly, the word “lila” (purple) was placed in the 

“bigram trough - high syllable frequency” category because of the relatively low frequency 

of the bigram “il” (relative to the mean frequency of the intra-syllabic bigrams “li” and “la”) 

whereas the word “liso” entered the “no bigram trough - high syllable frequency” category 

because “is” is a relatively frequent Spanish bigram (compared to the mean frequency of “li” 

and “so”). The entry of the words “foto” and “foca” into the two different conditions for low 

syllable-frequency words was determined by the different relative bigram frequencies of 

“ot” (low) and “oc” (high). Syllable frequencies and bigram frequencies were computed on 

the base of all bisyllabic entries in the LEXESP database.  

Syllable frequency measures for all experiments in the present study refer to 

orthographic syllables given in this database. Syllable frequencies were computed position-

specific: a first syllable’s frequency relates to all bisyllabic words sharing this syllable in first 

position, a second syllable’s frequency relates to all bisyllabic words sharing this syllable in 

second position. Because the focus of the present study is to investigate the relation between 

syllabic processing and orthographic redundancy we computed all bigram frequency or 

letter cluster frequency measures used for the present experiments analogously.  
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All bigram frequencies are also computed position-specific referring to all bisyllabic 

entries in the database. All syllable and bigram frequency measures are token counts. 

Previous studies on syllable frequency effects had uncritically either used the token (e.g., 

Conrad & Jacobs, 2004) or the type syllable frequency measure (e.g., Álvarez et al, 2001) as 

independent variable, but a recent study has shown that – although the two measures are 

highly correlated – it is the token and not the type measure of syllable frequency that is 

driving the inhibitory syllable frequency effect in lexical decision (Conrad, Carreiras, & 

Jacobs, 2007). 

A word was entered in the “bigram trough at the syllable boundary” condition when 

the mean frequency of all intra-syllabic bigrams (preceding or following the syllable 

boundary) was at least about 1000 per million occurrences superior to the one’s at the inter-

syllabic boundary. In order to enter the “no bigram trough at the syllabic boundary” 

condition, a word’s inter-syllabic bigram’s frequency had to be superior (at least about 200 

per million occurrences) to the mean frequency of all intra-syllabic bigrams. The ranges for 

initial syllable frequency were the following: less than 300 per million occurrences for low 

syllable frequency and more than 600 per million occurrences for high syllable frequency 

words. Words were matched across cells for length, word surface frequency, mean frequency 

of all bigrams, positional frequency of the second syllable, frequency of the letter cluster 

forming the second syllable, number of orthographic neighbors and number of higher 

frequency orthographic neighbors. Word stress was also controlled for. Between two and 

four words in each experimental condition containing twenty-eight words had ultimate 

stress, all other words had penultimate stress. Characteristics for words used in Experiment 

1 are shown in Table 3.112. As a consequence of the special selection criteria for the material 

in the experiments of the present study, it was unavoidable that some initial syllables 

appeared repeatedly within the words of one experimental condition.  

                                                 
12 For all experiments, stimulus characteristics are reported only for words that actually entered the analyses of 
the experimental data. 
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Table 3.1 

Characteristics of Words used in Experiment 1 
Means, Ranges and Standard Deviations (SD) for  
- Independent Variables: Difference (DIFF) between the mean Frequency of all intra-syllabic Bigrams (BF IntraSyll) and the frequency of the inter-syllabic Bigram (BF Bound); positional 
Frequency of the first Syllable (SF1) 
- Variables related to the Bigram Trough Manipulation: Frequency of the least- (BF Min) and of the highest-frequent Bigram (BF Max) in a Word 
- Variables correlated with initial Syllable Frequency (SF1): positional Frequency of the first two (FL2) and three (FL3) Letters and positional Frequency of the Letter Cluster representing the first 
Syllable (FLSyll) 
- Control Variables: Whole Word mean Bigram Frequency (BF Word), Word Frequency (WF), Familiarity (Fam), Concreteness (Concr), Word Length (L), Density of orthographic Neighborhood 
(N), Number of higher Frequency orthographic Neighbors (HFN), positional Frequency of the second Syllable (SF2)  
Probability Values are given for Mean Differences across the different Cells of the two experimental Factors Syllable Frequency (p(SF)) and relative Bigram Frequency at the Syllable Boundary 
(p(trough)). 

Bigram Trough at the Syllable Boundary     No Bigram Trough at the Syllable Boundary 
   High SF1   Low SF1    High SF1   Low SF1 
   Mean SD Range  Mean SD Range   Mean SD Range  Mean SD Range  p (SF)  p (trough) 

BF_IntraSyll  2417 1186 1216-5872 2592 863 1160-5010  1760 517 1048-3393 1476 910 421-3850 p>.85  p>.0001 
BF_Bound  553 519 15-2268  558 391 7-1445   3294 918 2208-5562 3492 1451 1013-5849  p>.89  p<.0001 
DIFF   1864 878 1035-4187 2034 640 1093-3565 - -1534 980 -3475- -273 -2016 1408 -4685- -229  p>.85  p<.0001 
BF Min  543 513 15-2245  419 312 7-1224   1079 460 55-2295  774 743 16-3363  p<.06  p<.0001 
BF Max  3745 2355 1780-13111 4584 2444 1377-13111  3562 1257 2208-7834 3609 1492 1302-6268 p>.25  p>.13 
BF Word  1875 936 999-4971 2017 708 776-4119  2167 489 1473-3502 2010 891 642-4148  p>.94  p>.38 
SF1   1101 644 607-2728 149 89 12-298   1291 923 621-4175 122 81 6-268   p<.0001  p>.52 
FL2   2087 1226 974-4205 1276 1005 31-3821   1896 1029 974-4398 1059 940 15-3821  p<.0003  p>.40 
FL3   380 506 2-1609  146 258 4-1054   473 440 13-1428  199 299 4-1054  p<.002  p>.34 
FLSyll  1740 1266 692-4205 870 923 28-2711   1666 1056 755-4398 581 513 7-1253  p<.0001  p>.44 
 
WF   14.58 16.90 1-71  13.03 12.90 1-46   14.34 14.47 2-55  11.50 13.19 2-57  p>.45  p>.76 
Fam*   4.80 1.12 2.57-6.45 5.13 0.91 3.50-6.70  5.03 1.05 2.75-6.35 5.45 0.91 3.38-6.73 p>.07  p>.20 
Concr*  4.72 1.00 3.00-6.88 4.46 1.10 2.88-6.47  4.44 1.18 2.50-6.39 5.32 0.96 2.75-6.74 p>.16  p>.17 
L   4.61 0.72 4-6  4.62 0.64 4-6   4.83 0.70 4-6  4.72 0.54 4-6  p>.66  p>.21 
N   7.83 5.77 0-23  8.08 4.77 0-18   8.46 6.52 0-25  7.16 5.48 0-19  p>.64  p>.85 
HFN   2.43 2.81 0-10  2.46 2.20 0-7   2.83 2.46 0-8  2.40 2.22 0-8  p>.67  p>.73 
SF2   2393 2207 11-8035  3033 2582 8-8035   2677 3013 37-10867 2794 3066 14-10867 p>.49  p>.99 

* These variables had not explicitly been controlled for when selecting the stimulus material of Experiments 1-3. Mean rating values of familiarity and concreteness – ranging from 1 (“not 
familiar/concrete at all”) to 7 (“very familiar/concrete”) - are taken from the BuscaPalabras database (Davis & Perea, 2005) or - if not provided in this database - have been collected from Spanish 
speakers that had not participated in Experiments 1-3. 
Note: Frequency counts are given per million occurrences, taken from the LEXESP database (Sebastián-Gallés et al., 2000) 
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In order to prevent that repetition of initial syllables would influence participants’ 

performance, for each experiment of the present study, filler items with alternative initial 

syllables were used in order to provide a more natural reading context. Nonwords for all 

experiments in this study were constructed by combining the first syllable of a word 

stimulus with another syllable that exists as a second syllable in Spanish. Thus, initial 

syllables did not differ between words and nonwords and all nonwords were pronounceable 

and orthographically legal.  

Apparatus and Procedure 

Stimuli were presented in lowercase letters using Courier 24 type font on the computer 

screen. Participants were instructed to make a decision concerning the lexicality of the 

stimulus as quickly and as accurately as possible, pressing a “yes”-button for a word and a 

“no”-button for a nonword. Response buttons were located on the keyboard of the computer. 

Stimulus presentation and response recording was controlled by EXPE 6.02 software (Pallier, 

Dupoux, & Jeannin, 1997). The stimulus list contained 250 words (108 experimental stimuli 

and 142 filler items) and 250 nonwords. The order of appearance of the stimuli was 

randomized for each participant. The stimulus remained visible until any response was 

given with an inter-trial interval of 1000 ms. There were ten initial training trials. The whole 

experiment lasted about twenty minutes. 

 

Results and Discussion 

Mean correct response latencies and error percentages (see Table 3.2) were submitted to 

separate analyses of variance (ANOVAs) by participants and by items (F1 and F2, 

respectively). Response latencies differing more than two standard deviations from the mean 

for each participant and experimental condition were excluded from the analyses. This led to 

the exclusion of 4.6% of the data of Experiment 1. Ten of the word stimuli in Experiment 1 

had to be excluded from the analysis, because their corresponding mean error rates were 

higher than 45%. The same exclusion criteria for outlier rejection and for the exclusion of 

error prone word stimuli were applied in all analyses presented in this study. 

Words were responded to 19 ms slower when they had a bigram trough at the syllabic 

boundary than when they had not.  
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This mean difference was significant only in the analysis over participants, F1 (1,45) = 

7.15, p <.02; F2 (1,94) = 0.52, p >.4. There was no effect on error rates. Syllable frequency 

caused significant effects on both response latencies and error rates: words were responded 

to 42 ms slower when starting with a high- than with a low-frequency syllable, F1 (1,45) = 

24.31, p <.0001; F2 (1,94) = 5.79, p <.01. Consistently, more errors (11.3% vs. 7.5%), occurred 

for words starting with high- than with low-frequency syllables, F1 (1,45) = 22.81, p <.0001; 

F2 (1,94) = 3.46, p <.07. Importantly, there was no interaction between the effects of the two 

factors, either in response latencies, p>.9, or in error rates, p >.3. 

 

Table 3.2 

Mean Reaction Times (RT; in Milliseconds), Standard Deviation of Reaction Times (Std. 
Dev. in Milliseconds) and Percentage of Errors for Words in Experiment 1 

 
Bigram Trough at the Syllable Boundary 

 
    Yes    No   
Syllable __________________________  __________________________ 
Frequency RT Std. Dev. % error  RT Std. Dev. % error 

High  815 140  10.7  796 137  12.0  
Low  773 130  7.8  754 114  7.3 

 
 

One might wonder to what degree this pattern of results - suggesting no importance of 

bigram troughs for the syllable frequency effect - might be influenced by the fact that a 

relatively large number of error prone items were excluded from the analyses. In order to 

verify if the lack of significance of the main effect of bigram trough in the item analysis and 

the absence of an interaction of this effect with the syllable frequency effect are due to this 

loss of statistical power we conducted additional ANOVAs, using all words presented in the 

experiment. 

This time we obtained an inhibitory syllable frequency effect of 44 ms, F1 (1,45) = 27.66, 

p <.0001; F2 (1,104) = 6.67, p <.01. More errors (18.9% vs. 10.7%), occurred for words starting 

with high- than with low-frequency syllables, F1 (1,45) = 79.44, p <.0001; F2 (1,104) = 4.47, p 

<.03. A main effect of bigram troughs at the syllable boundary was still present in the 

participant analysis with words being responded to 16 ms slower when having a bigram 

trough at the syllable boundary, but again, this effect was far from being significant in the 

analysis over items, F1 (1,45) = 5.15, p <.02; F2 (1,104) = 0.32, p >.5.  
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No effect for this factor was obtained on error rates. Regarding response latencies, 

again, there was no interaction between the effects of the two factors, p>.9, but such an 

interaction was observed in the error data, with a syllable frequency effect on error rates 

being more pronounced in the presence than in the absence of a bigram trough at the syllable 

boundary (20.6% vs. 9.8% relative to 17.2% vs. 11.6%), F1 (1,45) = 8.16, p <.0006; F2 (1,104) = 

0.47, p >.4. But note that this effect was significant only in the analysis over participants - 

where it had failed to reach statistical significance after the exclusion of highly error prone 

items. We therefore believe that this specific effect is best attributed to idiosyncratic 

characteristics of some words in the experimental material the exclusion of which from the 

analyses has not systematically affected the results of Experiment 1 in general. 

The outcome of Experiment 1 confirms that the appearance of an effect of syllable 

frequency does not depend on the presence of a bigram trough at the syllabic boundary. 

Importantly, the relation between these two phenomena was directly addressed for the first 

time. It turned out that the relative frequency of the bigram forming the syllabic boundary 

has absolutely no impact on the size of the syllable frequency effect. This suggests that 

bigram troughs do not modulate syllabic processing at all, at least in Spanish. One remaining 

question is how the processing advantage (19 ms) for words not showing the bigram trough 

pattern might best be interpreted when a relation between bigram troughs and syllabic 

processing is not assumed. In fact, the manipulation characterizing the material of 

Experiment 1 involves not only the specific position of a relatively low frequency bigram (at 

the syllable boundary or not) but also has some impact on overall features of orthographic 

redundancy. As evident from Table 3.1, the mean frequency of all bigrams of a word did not 

differ significantly between words in the two conditions of the bigram trough manipulation 

(presence vs. absence), but it tended to be higher for words without bigram troughs at the 

syllable boundary. Moreover, words with the typical bigram trough pattern at the syllable 

boundary often comprise at least one bigram of considerably low absolute frequency, which 

is not necessarily the case for words without a bigram trough at the syllable boundary. This 

variable had not been taken into account for the selection of the experimental material. 

Reanalyzing the material, we found a significant difference between the two conditions of 

the bigram trough manipulation regarding the frequency of the least frequent bigram of a 

word – computed regardless of whether this bigram formed the syllable boundary or not.  
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Words with a bigram trough at the syllable boundary often contained one bigram the 

frequency of which was much lower than the respective frequencies of all bigrams in words 

without a bigram trough at the syllable boundary. It might well be the case that this specific 

feature of orthographic redundancy – the presence of one very low-frequency bigram within 

the orthographic word form – might explain why words with a bigram trough at the syllable 

boundary were responded to slower than words without such a bigram trough. Such an 

effect would not necessarily have anything to do with the specific position of this low 

frequency bigram at the syllable boundary – in other words, it might have no relation to a 

word’s syllables or to syllabic processing. We tested this hypothesis running a multiple 

regression analysis of the data of Experiment 1. Beside word surface frequency and the 

frequency measures of the first and the second syllable, the following bigram frequency 

measures were entered as predictors for response latencies in Experiment 1: the frequency of 

the bigram at the syllable boundary, the mean frequency of all intra-syllabic bigrams (both 

being related with syllabic structure) and the frequencies of the words’ least frequent and 

highest frequent bigram (no relation to syllabic structure). All these token frequency 

measures were log-transformed before being entered into the regression model. Multiple 

regression analysis revealed a significant facilitative effect of word frequency, F1 (1,97) = 

31.58, p <.0001, and a significant inhibitory effect of initial syllable frequency, F1 (1,97) = 7.92, 

p <.007. In addition, there were significant facilitative effects for the frequency of both the 

highest-frequent, F1 (1,97) = 6.05, p <.02, and the least-frequent bigram within a word, F1 

(1,97) = 4.77, p <.04. No other effects were statistically significant. Coefficients of correlations 

and partial correlations between predictors and the dependent variables are given in Table 

3.3.  
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Table 3.3 

Pearson Product-Moment (r) and Partial Correlations (pr) between Response Latencies 
(RT) and seven Predictors for Words used in Experiment 1. The Predictors are: Log (10) of 
Word Frequency (Log WF), Log (10) of Token Frequency of the first (Log SF1) and 
second (Log SF2) Syllable, the Bigram at the Syllable Boundary (Log BF Bound), the 
mean Frequency of all intra-syllabic Bigrams (Log IntraSyll), the Frequency of the least-
frequent (Log BF Min) and the highest-frequent Bigram (Log BF Max). 

    r    pr  

Log WF   -.500    -.510** 
Log SF1    .192     .284**  
Log SF2   -.053    -.016  
Log BF Bound  -.248     .096 
Log BF IntraSyll  -.015     .187 
Log BF Min   -.200    -.224*  
Log BF Max   -.270    -.251*  

* p<.05 
** p<.01 

 

It is especially interesting that a hypothetical influence of the frequency of the bigram at 

the syllable boundary was partialized out by the multiple regression analysis. An effect of 

this bigram’s frequency as suggested by the ANOVAs computed on the experimental data is 

apparently not due to the fact that this bigram is straddling the syllable boundary. We 

conclude that the bigram trough effect in Experiment 1 is best understood as an overall 

orthographic redundancy effect. Bigram frequency seems to generally enhance the 

processing of orthographic word forms and a very low frequency bigram slows down this 

processing regardless of whether this bigram is located at the syllable boundary or not. 

 

The most important outcome of Experiment 1, however, is the absence of an interaction 

between the effects of syllable frequency and of the presence or absence of a bigram trough 

at the syllabic boundary in the ANOVA results, suggesting that syllabic effects are 

independent of orthographic redundancy in terms of bigram troughs at the syllable 

boundary. It might be argued that these results are incompatible with the ones of Doignon 

and Zagar (2005) who had reported an attenuation of the illusory conjunction effect for 

syllabic units when the syllable boundary did not coincide with a bigram trough. But there is 

an important difference between the illusory conjunction paradigm and the lexical decision 

task. The latter one is generally understood as assessing lexical access, which is not 

necessarily required in the former one.  
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The fact that participants in the illusory conjunction task perceive two letters as being 

more or less related as a function of both syllabic organization and orthographic redundancy 

– and that in consequence the specific illusory conjunction effects can cancel each other out – 

does not necessarily imply that a mediation of lexical access by phonological syllables as we 

propose it has to be influenced by orthographic redundancy or bigram troughs. The results 

of Doignon and Zagar (2005) suggest that both types of information (syllabic and 

orthographic) can make a sublexical unit more salient. But they would not allow for any 

exact conclusions about how both types of processing mechanisms would interact during the 

process of lexical access as assessed by the lexical decision task. Bigram troughs and 

orthographic redundancy may well play an important role for the reading process in some 

orthographies.  

The point of Experiment 1 is to show that syllabic processing during word reading – as 

reflected by the syllable frequency effect - at least in Spanish is unaffected by bigram troughs. 

Furthermore, the discrepancy between the effects of Doignon and Zagar (2005) and those 

presented in the present study might be an interesting case for a cross-linguistic perspective. 

We will refer to this issue in the General Discussion.  

 

In any case, the results of Experiment 1 don’t allow the conclusion that the syllable 

frequency effect or syllabic processing in general were completely independent of 

orthographic redundancy. The frequency of the letter cluster being the syllable of words in 

Experiment 1 was always higher for high syllable frequency words than for low syllable 

frequency words. Therefore, it is important to examine whether the syllable frequency effect 

could be understood as an orthographic letter cluster frequency effect, because this would 

strongly question the syllabic or phonological nature of this effect. 

In Experiment 2 we tested whether the standard effect of first syllable frequency can be 

obtained when controlling for initial letter cluster frequency. A syllable frequency effect that 

would prove to be independent from the syllable’s letter cluster’s orthographic frequency 

would be an important argument for syllabic processing in visual word recognition. 
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Experiment 2: Manipulation of syllable frequency controlling for bigram 

frequency 

Method 

Participants 

Forty-six students of the University of La Laguna participated in the experiment. Their 

participation was rewarded with course credits. All were native speakers of Spanish and had 

normal or corrected-to-normal vision. 

Stimuli and Design 

72 bisyllabic Spanish words were selected from the LEXESP database (Sebastián-Gallés 

et al., 2000) according to the factor positional frequency of the first syllable (more than 1200 

vs. less than 550 per million occurrences). All words started with a CV syllable of two letters 

length. Words were equated on second syllable frequency, word surface frequency, length, 

number of orthographic neighbors and number of higher frequency orthographic neighbors. 

Twelve words in each experimental condition had ultimate stress; all other words had 

penultimate stress. Concerning orthographic redundancy, all the following frequency 

measures were controlled for: mean frequency of all bigrams, frequency of the initial bigram, 

frequency of the initial trigram, frequency of the inter-syllabic bigram, mean frequency of all 

intra-syllabic bigrams (see Table 3.4). The specific relation between initial syllable frequency 

and initial bigram-frequency within the material of Experiment 2 may be highlighted by two 

example words from the stimulus material: “barril” (barrel) and “fuga” (flight) do not 

considerably differ in the frequency of the orthographic letter cluster forming their initial 

syllable (1864 vs. 1878 per million occurrences for the bigrams “ba” and “fu”), but “ba-“ is a 

high-frequency initial syllable (1220 per million occurrences) which is not the case for “fu-“ 

(134 per million occurrences). This is because for the majority of all Spanish words starting 

with the letters “ba” these letters form the initial syllable.  
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In contrast, the majority of Spanish words starting with the letters “fu” have a different 

syllable structure, e.g., “fuerte” (strong and “funda” (sheath) the initial syllables of which are 

“fuer-“ and “fun-”. 

 

Table 3.4 

Characteristics for Words used in Experiment 2 
Means and Ranges for the independent Variable: Positional Frequency of the first Syllable (SF1). Means and 
Ranges for Control Variables: Positional Frequency of the first two (FL2), three (FL3), and four (FL4) Letters, 
mean Frequency of all intra-syllabic Bigrams (BF IntraSyll), Frequency of the inter-syllabic Bigram (BF Bound), 
whole Word mean Bigram Frequency (BF Word), Word Frequency (WF), Familiarity (Fam), Concreteness 
(Concr), Word Length (L), Density of orthographic Neighborhood (N), Number of higher Frequency orthographic 
Neighbors (HFN), positional Frequency of the second Syllable (SF2). Probability Values (p) are given for Mean 
Differences across the different Cells of the Factor Syllable Frequency. 

 

First Syllable Frequency 

High        Low 

 

  Mean SD Range    Mean SD Range  p 

 

SF1  1796 551 1220-2742   354 133 133-526 

 

FL2  2225 550 1586-3017   2242 694 1265-3084 p>.90 

FL3  156 199 7-875    109 259 6-1564  p>.40 

FL4  39 57 2-182    28 25 3-118  p>.30 

FLSyll  2225 550 1586-3017   2223 703 1265-3084 p>.99 

BF Word 1908 840 678-3871   1696 793 584-4215 p>.28 

BF_IntraSyll 1703 624 801-3318   1733 735 763-3701 p>.85 

BF_Bound 2606 3051 36-10690   1705 1952 13-10690 p>.14 

DIFF  -903 3192 -9751-2758   28 1991 -8633-3185 p>.14 

 

WF  12.73 12.18 2-46    12.39 9.32 2-42  p>.89 

Fam  4.93 1.11 2.63-6.63   5.06 1.00 2.75-6.46 p>.62 

Concr  4.72 1.28 1.75-6.88   4.91 1.23 2.75-6.88 p>.54 

L  4.72 0.63 4-6    4.67 0.72 4-6  p>.75 

N  9.84 7.72 1-25    8.67 7.94 0-28  p>.53 

HFN  2.28 2.50 0-9    1.83 2.47 0-9  p>.46 

SF2  1619 2717 6-10867    1316 2147 3-8035  p>.60 

Note: Frequency counts are given per million occurrences, taken from the LEXESP database (Sebastián-Gallés et 
al., 2000) 
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Apparatus and Procedure 

These were the same as in Experiment 1. The stimulus list contained 250 words (72 

experimental stimuli and 178 filler items) and 250 nonwords. Nonwords were constructed in 

the same way as in Experiment 1. 

Results and Discussion 

Outlier rejection led to a loss of 4.6% of the data in Experiment 2. Four words out of the 

stimuli of Experiment 2 had to be excluded because of excessive error rates. Analyses 

revealed significant effects of syllable frequency on both correct response latencies and error 

rates (see Table 3.5). Words were responded to 62 ms slower when starting with a high- than 

with a low-frequency syllable, F1 (1,45) = 42.37, p <.0001; F2 (1,66) = 15.40, p <.0002. 

Consistently, more errors (11.8% vs. 6.3%) occurred for words with high-frequency initial 

syllables, F1 (1,45) = 21.83, p <.0001; F2 (1,66) = 4.34, p <.04. 

 

Table 3.5 

Mean Reaction Times (RT; in Milliseconds), Standard Deviation of Reaction Times (Std. 
Dev. in Milliseconds) and Percentage of Errors for Words in Experiment 2. 

 
Syllable Frequency 

    _____________________________________ 
    High     Low   
  __________________________  __________________________ 
  RT Std. Dev. % error  RT Std. Dev. % error  
_________________________________________________________________________ 
  794 139  11.8  732 107  6.3  

 
 

The inhibitory effect of initial syllable frequency in lexical decision was once again 

replicated. Importantly, for the first time it could be shown to be independent of the 

frequency of the letter cluster forming the first syllable, initial bigram-frequency in this case, 

using only words starting with a two letter CV-syllable. This means that the effect is truly 

syllabic in nature. It can only be explained as a consequence of syllabic processing, because 

the frequency of the initial bigram, the relevant alternative orthographic unit, had been 

controlled for. To complete the contrast of the effects of syllable frequency and letter cluster 

frequency, it is important to see how initial bigram-frequency influences lexical decision 

latencies when syllable frequency is controlled for. This was the aim of Experiment 3. 
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Experiment 3: Manipulation of bigram frequency controlling for syllable 

frequency 

Method 

Participants 

Thirty-nine students of the University of La Laguna participated in the experiment. All 

were native speakers of Spanish and had normal or corrected-to-normal vision. Their 

participation was rewarded with course credits. 

Stimuli and Design 

68 bisyllabic Spanish words were selected from the LEXESP database (Sebastián-Gallés 

et al., 2000) according to the factor frequency of the initial bigram (more than 3000 vs. less 

than 1250 per million occurrences). Eight words in the condition of high and six words in the 

condition of low initial bigram frequency had ultimate stress; all other words had 

penultimate stress. All words started with a CV syllable of two letters’ length. Words were 

equated on second syllable frequency, word surface frequency, length, number of 

orthographic neighbors and number of higher frequency orthographic neighbors. Words 

were also equated on first syllable frequency and on the number of higher frequency syllabic 

neighbors of the first syllable (see Table 3.6). Examples from the stimulus material: the initial 

syllables “da-“ and “ti-“ are of comparable frequency in Spanish (864 vs. 856 per million 

occurrences), but the initial bigram “ti” is often included in words with an initial syllable 

structure other than CV, e.g., “tiempo” (time) with the syllable “tiem-“ and “tinto” (red 

wine) with the syllable “tin-“. Accordingly, the word “timón” (helm) (initial bigram-

frequency: 3805 per million occurrences.) was placed in the high initial bigram-frequency 

category contrary to the word “dama” (lady) (initial bigram-frequency: 1179 per million 

occurrences) which entered the low frequency category, because the majority of words 

starting with the bigram “da” have the same initial syllable structure as “dama”. 
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Table 3.6 

Characteristics for Words used in Experiment 3 
Means and Ranges for the independent Variable: Positional Frequency of the first Bigram (FL2). Means and 
Ranges for Control Variables: Mean Frequency of the remaining Bigrams (BF2-5), Positional (Word Ending) 
Frequency of the remaining Letter Cluster (FL3-6), positional Frequency of the first Syllable (SF1), Number of 
higher Frequency syllabic Neighbors of the first Syllable (HFSN1), Word Frequency (WF), Familiarity (Fam), 
Concreteness (Concr), Word Length (L), Density of orthographic Neighborhood (N), Number of higher 
Frequency orthographic Neighbors (HFN), and positional Frequency of the second Syllable (SF2). Probability 
Values (p) are given for Mean Differences across the different Cells of the Factor Initial Bigram Frequency. 

 
Initial Bigram Frequency 

High        Low 

  Mean SD Range    Mean SD Range  p 

FL2  4161 967 3084-5988   1016 247 488-1222 
 
BF 2-5  1574 1239 296-4931   1695 911 228-3716 p>.65 
FL 3-6  3093 3926 55-13384   2196 2551 2-10867  p>.27 
 
SF1  781 236 358-1102   828 195 411-1058 p>.38 
HFSN1  15.45 10.40 2-42    15.56 8.81 3-35  p>.96 
 
WF  13.79 13.28 1-47    12.16 13.80 2-55  p>.62 
Fam  4.98 0.99 2.63-6.39   4.76 1.19 2.88-6.61 p>.43 
Concr  5.08 1.16 2.63-6.88   4.86 1.00 2.75-6.54 p>.41 
L  4.45 0.62 4-6    4.44 0.56 4-6  p>.94 
N  10.90 5.43 0-21    10.32 7.30 0-25  p>.71 
HFN  2.87 2.33 0-8    3.09 3.01 0-10  p>.74 
SF2  2724 3416 55-10867   2115 2567 2-10867  p>.41 

Note: Frequency counts are given per million occurrences, taken from the LEXESP database (Sebastián-Gallés 
et al., 2000) 
 

 

Apparatus and Procedure 

They were the same as in Experiment 1. The stimulus list contained 250 words (62 

experimental stimuli and 188 filler items) and 250 nonwords. Nonwords were constructed in 

the same way as in Experiment 1. 

 

Results and Discussion 

Outlier rejection led to a loss of 4.1% of the data of Experiment 3. Four words out of the 

stimuli of Experiment 3 had to be excluded because of excessive error rates. Analyses 

revealed significant effects of initial bigram-frequency on both correct response latencies and 

error rates (see Table 3.7).  
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Words were responded to 36 ms faster when starting with a high- than with a low-

frequency bigram, F1 (1,38) = 15.65, p <.0004; F2 (1,62) = 4.13, p <.05. Consistently, more 

errors (10.3% vs. 16.6%) occurred for words starting with a low- than with a high-frequency 

bigram, F1 (1,38) = 21.26, p <.0001; F2 (1,62) = 5.07, p <.03. 

 

 

Table 3.7 

Mean Reaction Times (RT; in Milliseconds), Standard Deviation of Reaction Times (Std. 
Dev. in Milliseconds) and Percentage of Errors for Words in Experiment 3. 

 
Bigram Frequency 

   ______________________________________ 
   High     Low   
  __________________________  __________________________ 
  RT Std. Dev. % error  RT Std. Dev. % error 

  766 104  10.3  802 110  16.6  

 

 

The interesting outcome of Experiment 3 is that an alternative frequency count of what 

from a superficial view could be considered the same sublexical unit, the first two letters of a 

bisyllabic word, produced the opposite effect to that in Experiment 2. Whereas initial syllable 

frequency had prolonged response latencies to bisyllabic words starting with a two-letter 

syllable in Experiment 2, this time the frequency of the initial bigram caused a facilitative 

effect when syllable frequency was controlled for. That means there is a perfect contrast for 

effects of syllable frequency and letter cluster frequency: When the first two letters can be 

defined as a syllabic unit and when their frequency is computed accordingly, inhibition of 

lexical access is the consequence of increasing syllable frequency. The opposite, a facilitative 

effect, is obtained for initial letter cluster frequency when the frequency of the first two 

letters is computed in a purely orthographic manner, not taking into account syllabic 

structure. 
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Simulations with the MROM using the data of Experiments 2 and 3 

 
It has been claimed that an interactive activation model of visual word recognition (e.g., 

Grainger & Jacobs, 1996) might account for the inhibitory effect of syllable frequency on 

lexical access when implemented with a layer of syllabic representations (see Álvarez et al, 

2001; Conrad & Jacobs, 2004). Before going into the details of the possible architecture of 

such a future model during the General Discussion, it was useful to test the performance of 

an existing functional version of the Multiple Read-Out Model (MROM, Grainger & Jacobs, 

1996) without syllabic representations in a null-model approach (Jacobs et al., 1998) with 

regard to the empirical effects of Experiments 2 and 3. The MROM can generate a “yes” 

response in the lexical decision task through two different processes: Either activation of a 

single word unit (μ) reaches a threshold M corresponding to the identification of the target, 

or global activation in the lexicon (σ) reaches a threshold ∑ corresponding to a “fast guess”.  

 

Because the model does not contain any syllabic representations, we predict that it 

would fail to simulate the syllable frequency effect in Experiment 2, where letter cluster 

frequency was controlled for. However, the model might well be capable of reproducing the 

facilitative bigram frequency effect in Experiment 3, due to activation sent from letter units to 

word representations in the orthographic lexicon. For words containing a high-frequency 

bigram, global activation in the orthographic lexicon of the model might increase sufficiently 

to trigger a quick yes-response of the model via the ∑-criterion of the MROM.  

Note that the model’s behavior with regard to the manipulation of bigram frequency 

would offer a good prediction of how such a model without syllabic representations would 

behave regarding manipulation of syllable frequency co-varying with letter cluster 

frequency.  

The model was implemented with a lexicon of 6,242 bisyllabic Spanish words, 

including bisyllabic entries of the LEXESP database (Sebastián-Gallés et al., 2000) with a 

frequency of at least 1 per million occurrences.  
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All parameters of excitatory and inhibitory connection weights between different 

representation units in the model were the same as in Grainger and Jacobs (1996).  

Given that word length in Experiments 2 and 3 varied between four and six letters, it 

was necessary to enable the model for the processing of stimuli with different length13. The 

model was presented with a subset of the stimulus material of Experiments 2 and 3. For both 

experiments, fifty-six words each were selected out of all words that had been used in the 

respective previous analyses, with the constraint that not only mean word length, but also 

the exact number of four- five- and six-letter words had to be equated between conditions 

(see Footnote 4). This selection procedure preserved an optimal match between conditions 

(according to the manipulation of initial syllable frequency on the one hand and of initial 

bigram frequency on the other) on variables known to influence the MROM’s performance: 

word frequency, orthographic neighborhood density and number of higher frequency 

orthographic neighbors (all p-values for t-tests for significant mean differences >0.7).  

Each stimulus was processed by the model during thirty cycles and activation values 

for global activation (σ) and for the most activated single unit in the orthographic lexicon (μ) 

were recorded. We conducted consecutive t-tests in order to examine if the manipulations of 

syllable- and bigram frequency significantly affected any of the two activation parameters of 

the MROM mentioned above at any of the processing cycles of the model. These tests did not 

reveal any significant results (all p-values >0.2). Note that there was some oscillation due to 

use of different word lengths in the values of global lexical activation during the first 

processing cycles, but all curves stabilized after cycle number nine.  

For cycles nine to thirty, no single t-test resulted in a p-value less than 0.6. Despite this 

lack of significant mean differences of activation on single processing cycles, global lexical 

activation was slightly increased between cycles thirteen to twenty for words with high 

compared to low initial bigram frequency (see Figure 2).  

                                                 
13 Range of word length in the lexicon was three to eight letters. For all words with less than eight letters, the 
respective (missing) letter positions were filled with blanks. Blanks in specific letter positions did not activate 
word representations, but inhibited the representations of words having a letter in that specific position. E.g., 
when presented with a four letter target, all five letter words’ representations in the model’s lexicon received 
inhibition coming from the blank in position five of the target. Note that this model is not able to correctly 
account for a word length effect in visual word recognition – five and six letter words always receiving more 
summed activation from their corresponding letter representations than four letter words. But for the present 
purpose, the simulation of syllable and bigram frequency effects, this should not be a problem as long as word 
length remains closely controlled for within the stimulus material. Implementing the model with differential 
letter-to-word-unit activation weights for different stimulus lengths (which would be a possible solution to the 
paradoxical behaviour of such a model regarding the issue of word length effects) might in turn have resulted in 
bigram- or syllable frequency being less effective in longer compared to shorter words. 



Chapter 3 
Syllables and bigrams: Orthographic redundancy and syllabic units affect visual word recognition at different processing levels. 
_______________________________________________________________________________________________________ 

 89 

No such modulation of global lexical activation could be observed for the manipulation 

of syllable frequency, neither seemed any of the two manipulations to affect the activation 

level of the most activated single word representation in the model’s lexicon.  
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Figure 2 

Mean µ and σ activation functions in the MROM according to the manipulations of initial 

syllable frequency and initial bigram frequency for words in Experiments 2 and 3 

Note: Error bars are giving standard errors of means.  

 

 

This pattern of results is partly compatible with our hypothesis that the σ-process of the 

MROM might be sensitive to bigram frequency. The possible responses given separately via 

the two criteria of the model are presented in Figure 3. Whereas the M-threshold for 

responses via the μ-activation of the model is a fixed value - set at 90% of the asymptotic 

value of the corresponding mean activation function - the setting of the ∑-threshold is more 

flexible in order to enable the model to account for task specific effects and to make the 

probability of a “fast-guess” depend on early processing phases of the stimulus.  
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Depending on the global lexical activation during cycles two to seven, the ∑-threshold 

of the model can be shifted up- or downwards. Here, we decided to apply a fixed ∑-

threshold because of the slightly oscillating σ-activation functions during these cycles, but 

the threshold was set at a relatively liberal value of 95% of the corresponding asymptotic 

value, in order to increase the chance of an effect of bigram frequency to arise in the model’s 

∑-responses.  

As evident from Figure 3, responses corresponding to the ∑-criterion of the model were 

somewhat faster for words with high than with low initial bigram frequency, but this effect 

failed to reach statistical significance, F(1,54) = 2.68; p>0.1. Analyses revealed no effect at all 

regarding responses via the ∑-criterion for the manipulation of syllable frequency, F<1. 

Furthermore, no effects were obtained for either of the two manipulations on responses via 

the M-criterion of the MROM, both F<1.  
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Figure 3 

Mean cycle numbers of responses as occurring separately by the two response 

mechanisms of the MROM according to the manipulations of initial syllable frequency (SF) 

and initial bigram frequency (BF) for words in Experiments 2 and 3 

Note: Error bars are giving standard errors of means. 
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Finally, even if the tendency of bigram frequency to speed responses via the ∑-criterion 

can be considered as modest evidence for the hypothesis that the MROM might account for 

the empirical effect in Experiment 3, this tendency is attenuated when the responses 

corresponding to the two different criteria are combined (i.e., always choosing the faster of 

the two).  

Even when applying a liberal ∑-criterion, the final output of the MROM only reveals a 

very small tendency of responses being faster to words with high than with low bigram 

frequency, F(1,54) = 1.42; p>0.3. Final responses of the model compared to the data of 

Experiments 2 and 3 are presented in Figure 414. 
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Figure 4 

Comparison of the MROM’s final output with the experimental data of Experiments 2 and 3 

Note: Error bars are giving standard errors of means. 

 

 

 

                                                 
14 The empirical data is based on the same words that were used for the simulations. Both the effects of syllable 
frequency (79ms) and of bigram frequency (52ms) were statistically significant, F(1,54) = 14.96; p<0.0004; 
F(1,54) = 4.06; p<0.05 
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Thus, it appears that the actual MROM is not capable of accounting for an effect of 

syllable- or bigram frequency in visual word recognition. Whereas the absence of an initial 

syllable frequency effect – with initial bigram frequency being controlled for - in the 

simulation data is no surprise, given that the model does not contain syllabic 

representations, the model’s failure to significantly account for the initial bigram frequency 

effect in Experiment 3 deserves further consideration.  

We had hypothesized that such an effect might occur in the model as a function of 

increasing global lexical activation due to the frequency of initial bigrams in the stimulus 

words. Note that such an argument is not without problems, because even if the activation of 

many word representations sharing a high-frequency bigram would certainly lead to an 

increase in global lexical activation, these word representations would also compete with 

each other via lateral inhibition. A response via the M-criterion of the MROM could therefore 

have been delayed or inhibited to the same extend that a response via the ∑-criterion was 

expected to be speeded by bigram frequency. It is not trivial to predict which of the two 

processes would prove to be predominant in the model’s output. The present simulation 

data provided no evidence that the μ-process of the MROM is sensitive to bigram frequency, 

but the observed increase of global lexical activation was not significant either.  

 

In any case, the absence of a significant bigram frequency effect in the simulation data 

means that the MROM apparently allows for word representations to significantly influence 

the model’s behavior only when these words share more than two letters (in the case of 

stimuli varying between four and six letters length) with the target (but see Grainger & 

Jacobs, 1993 for positional letter frequency effects in monosyllabic words).  
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General Discussion 

 
The experiments of the present study were designed to test for the nature of an effect 

that has repeatedly been quoted as evidence for automatic syllabic processing during visual 

word recognition: the syllable frequency effect. Whether this effect can really be attributed to 

the processing of syllables or whether it could rather be understood as a by-product of 

purely orthographic processing is the main question addressed in the present study. The 

present experimental results provide clear evidence that the syllable frequency effect in 

lexical decision occurs independently of bigram troughs or letter cluster frequency. 

Experiment 1 showed that the inhibitory effect of initial syllable frequency remains 

unaffected by the presence or absence of a bigram trough at the syllabic boundary 

(Seidenberg, 1987, 1989). Therefore, at least for the Spanish language, it can no longer be 

argued that an apparent syllabic segmentation could occur as a by-product of or would be 

facilitated by purely orthographic processing that would use a typically low-frequent bigram 

at the syllabic boundary as a segmentation device.  

Experiment 2 shows that the inhibitory effect of syllable frequency can also be obtained 

when the frequency of the letter cluster forming the syllable (the first bigram in words 

starting with a two letter CV-syllable) is controlled for. This important finding provides the 

missing link in the line of argument in favor of syllabic processing in visual word 

recognition: Previous studies controlled for the confound of syllable frequency with 

orthographic redundancy by using only words that did not show the bigram trough pattern 

at the syllable boundary. Yet, the fact that in most cases a high-frequency syllable is also a 

high-frequency letter cluster remained a critical point of this approach, because it allowed for 

an alternative interpretation of these results: it might not be the frequency of syllabic units 

but the frequency of letter clusters, which can be understood as purely orthographical 

without any reference to syllabic units, that might have triggered the empirical effects 

attributed to syllable frequency.  
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The considerable size (62 ms) of the syllable frequency effect when bigram-frequency 

was controlled for is perfectly in line with the outcome of Experiment 3 where a facilitative 

effect of initial bigram-frequency was obtained when syllable frequency was held constant.  

 

The main contribution of the present results to a better understanding of polysyllabic 

word processing lies in the finding that one and the same sublexical unit seems to be 

functional in opposite ways depending on how it is defined and how, in consequence, its 

frequency is computed. The frequency of a word’s first two letters (the first syllable) had an 

inhibitory effect in Experiment 2, where the manipulated variable syllable frequency was 

computed taking into account the frequency of all bisyllabic Spanish words starting with the 

same two letters as a syllable. In contrast, in Experiment 3, the frequency of the first two 

letters was computed referring to all bisyllabic words starting with the same two letters 

regardless of whether they formed the initial syllable or not. This time, response latencies to 

words decreased with increasing frequency of the first bigram. These findings suggest that 

syllabic units and orthographic letter clusters affect polysyllabic word reading at different 

processing levels.  

It appears that the activation of lexical candidates competing with each other for 

identification during polysyllabic word recognition is strongly mediated by syllabic units 

whereas the frequency of orthographically defined units as bigrams rather seems to enhance 

early prelexical processing.  

Bigram frequency might facilitate prelexical orthographic processing in general (see the 

outcome of the multiple regression analyses of the data of Experiment 1; see Massaro & 

Cohen, 1994, for a facilitative bigram-frequency effect in a letter search task; see also Hauk et 

al., 2006), but the fact that initial bigrams in Experiment 3 always formed the initial syllable 

of target words leaves open the possibility that this empirical effect could relate to syllabic 

processing with bigram frequency facilitating the syllabic parsing of orthographically 

presented words. 

 

This contrast between effects of syllable frequency and letter cluster frequency presents 

a serious challenge for any model of visual word recognition that is not sensitive to syllabic 

structure. In our view, a model that aims to account for this contradictory role of the same 

sublexical unit needs some implemented definitions of how such a sublexical unit can be 
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characterized (syllable and/or bigram) according to which it will be assigned a specific role at 

different processing stages.  

Parallel distributed models (e.g., Seidenberg & McClelland, 1989; Plaut, McClelland, 

Seidenberg, & Patterson, 1996), in particular, would face some serious difficulties with 

regard to the present results. In the first place, these models do not comprise a mechanism of 

lateral inhibition which could account for the competition between candidate words. Instead, 

they would always predict facilitative effects for the frequency of sublexical units. The 

inhibitory syllable frequency effect would most probably fall beyond their scope. 

Furthermore, it is unclear how they could possibly account for the two different effects of the 

first two letters’ frequencies (syllable-frequency and bigram-frequency) without postulating 

the involvement of different representational units. 

With regard to localist connectionist models, simulations run with the MROM 

(Grainger & Jacobs, 1996), a model containing a mechanism of lateral inhibition between 

candidate words, have shown that this model cannot simulate the inhibitory syllable 

frequency effect without containing syllabic representations. Regarding the facilitative effect 

of bigram frequency in Experiment 3, the architecture of the MROM comprising connections 

between letter and whole word representations would in principle allow for such an effect of 

purely orthographic letter cluster frequency to arise in the simulations. Word processing in 

the model seemed to be sensitive to bigram frequency to some extent: global lexical 

activation within the model was increased for words with high frequency bigrams during 

processing cycles thirteen to twenty. But these differences did not reach statistical 

significance.  

Clearly, more empirical work is necessary to examine whether such an empirical effect 

is independent from syllabic structure. As regards the relatively low degree of sensitivity of 

the MROM (without syllabic representations) to bigram frequency, this problem might 

possibly be resolved by the adjustment of parameter weights- provided that the effect would 

prove to be purely orthographic in nature - without any relation to syllabic units.  
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Figure 5 

The possible Architecture of an Interactive Activation Model of polysyllabic visual Word Recognition 

 

 

On the other hand, a localist connectionist model containing several different 

representation layers – one of them for syllabic units - could in theory deal with such 

opposite effects of the frequency of the same first two letters, because activation would be 

sent out from the first two letter units in different ways: letter representations would directly 

activate whole word representations containing the target letters. They would also activate 

syllabic representations, which would subsequently send activation to the word level. The 

possible architecture of such an interactive activation model of polysyllabic visual word 

recognition is sketched in Figure 5. The model contains both an orthographic and a 

phonological lexicon and activation spreads from letter representations via grapheme, 

phoneme and syllabic representations on to whole word representations in the two lexica. A 

“yes” response in lexical decision would occur when an activation threshold for a single 

word representation (corresponding to identification of the target) or for global lexical 

activation (corresponding to a “fast-guess”) is reached in one of the two lexica of the model 
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(see Grainger & Jacobs, 1996; Jacobs, Rey, Ziegler, & Grainger, 1998). Syllabic representations 

are located in the phonological route of the model mediating the activation of phonological 

word representations (see Mathey, et al., 2006, for a similar proposal). Syllables are generally 

seen as phonological units and there is evidence for a phonological nature of syllabic 

processing also in visual word recognition (Álvarez et al., 2004). The fact that within our data 

syllabic effects were shown to be independent from orthographic redundancy is additional 

support for this view. 

 

The inhibitory effect of initial syllable frequency would occur in the model, because an 

initial phonological syllable’s representations would activate a cohort of syllabic neighbors’ 

representations in the phonological lexicon that would interfere with the processing of the 

target by the mechanism of lateral inhibition. The size of this cohort and its inhibitory 

potential would increase with syllable frequency explaining the processing delay for words 

with high syllable frequency. We had argued that the failure of the MROM to significantly 

reproduce an effect of bigram frequency is probably due to the fact that word 

representations sharing only a small amount of letters with the target do not become 

sufficiently activated. Regarding syllabic processing in the model, this problem might be 

resolved by strengthening the connection weights between initial syllabic units and the 

phonological lexicon (see Álvarez, Carreiras, & de Vega, 2000, for differential effects of first 

and second syllable frequency). Furthermore, a phonological syllable always represents 50% 

of a bisyllabic phonological word form. In contrast to bigrams, which are not represented as 

specific multi-letter units in the model, syllabic units would activate a well-defined cohort of 

candidate representations – the syllabic neighborhood. Syllable-mediated activation over the 

phonological lexicon would be less widespread than activation over the orthographic lexicon 

coming from the representations of all letters of the target. This might ensure sufficient 

sensitivity of the model to syllable frequency with syllabic neighbors’ representations getting 

sufficiently activated to compete with the target for identification.  

For the present study we only used words of relatively low word frequency, but the 

model makes the prediction that syllabic processing in visual word recognition would 

become less important with increasing word frequency, because fast access to high frequency 

word representations would be possible via the orthographic layers of the model, which do 

not contain syllabic representations.  
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Phonological processing in the model always requires the previous activation of 

orthographic representation units and will therefore always be somewhat delayed relative to 

orthographic processing. This is in line with the finding that syllable frequency effects are 

always more pronounced for low frequency than for high frequency words (Perea & 

Carreiras, 1998; Conrad & Jacobs, 2004). It might be argued that an increasing cohort of co-

activated candidate representations sharing a phonological syllable would also lead to an 

increase in global lexical activation and that responses corresponding to a fast guess could 

foil or contrast the hypothesized delay of identification for high syllable frequency words in 

a model with a multiple-read-out procedure.  

But note that responses according to the ∑-criterion of the MROM are strongly 

dependent on early processing phases of the model, because ∑-thresholds are adjusted as a 

function of global lexical activation values during the first seven cycles of the model (see 

Grainger & Jacobs, 1996). As outlined above, the processing of phonological syllable 

neighbors within the model would take place at a relative late processing stage and fast-

guess responses to high syllable frequency words might therefore not play an important role 

in the model’s output. 

 

Now, even when assuming the existence of automatic syllabic processing in visual 

word recognition, one crucial question remains to be resolved: how would the reading 

system achieve a syllabic segmentation of the orthographic input? We could show in 

Experiment 1 that the presence or absence of a bigram trough at the syllable boundary of 

Spanish words does not modulate syllabic processing as reflected by the syllable frequency 

effect. Still, orthographic redundancy might play a role for syllabic processing in that 

syllables become more salient when being formed of letter clusters with a high orthographic 

frequency (see Mathey et al., 2006). Within the model we propose, a high frequency bigram’s 

letter representations would receive more feedback activation from the orthographic lexicon 

than those representing a low- frequency bigram. In consequence, they would more 

efficiently activate a corresponding syllabic unit at the layer of phonological syllables.  

Therefore, the facilitative bigram frequency in Experiment 3 could arise in the model, 

because high frequency initial bigrams corresponding to a word’s initial syllable would 

facilitate the syllabic parsing process allowing for a faster access to a word’s representation 

in the phonological lexicon (see Conrad et al., 2006, for a discussion on why syllabification is 
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a necessary prerequisite for the processing of phonological word forms). Two recent ERP-

studies provide additional evidence for this line of argument regarding the interplay 

between orthographic and phonological processing during the time course of visual word 

recognition: These studies reporting syllable frequency effects on ERP-waves during lexical 

decision consistently obtained significant effects of syllable frequency on two distant time 

windows. Both Barber et al. (2004) and Hutzler et al. (2004) obtained increased negativity for 

words with high relative to low initial syllable frequency around the N400 component of the 

ERP-signal. This relatively late effect was interpreted as to reflect competition between 

syllabic neighbors at the level of whole word representations (see Perea & Carreiras, 1998; 

see Holcomb, Grainger, & O’Rourke, 2002, for an N400 effect for words with many 

orthographic neighbors, see also Goslin, Grainger, & Holcomb, 2006).  

But high syllable frequency also produced an early increase of negativity in the ERP-

signal between 150-300 ms in the study of Barber et al (2004) and between 190-280 ms in 

Hutzler et al’s (2004) experiment (see Carreiras, Vergara, & Barber, 2005, for a P200 effect of 

syllabic congruency for words presented in colors that matched or mismatched syllabic 

structure). The onset of these early syllable frequency effects was prior to typical markers of 

lexical access as the effects of word frequency in Barber et al. (2004) or of lexicality in Hutzler 

et al. (2004), which did not start before 350 ms. Therefore, these effects seem to arise during 

prelexical processing. Initial bigram frequency has been shown to influence the ERP-signal as 

early as 100 ms after stimulus presentation in visual word recognition (Hauk et al., 2006). 

Note that there was no control for the confound between syllable- and letter cluster 

frequency in the studies of Barber et al. (2004) and Hutzler et al. (2004). The early effects of 

syllable frequency they obtained might reflect the moment when phonological syllables 

become salient or are identified within the orthographic input and letter cluster frequency 

might play a crucial role during this process.  

 

In general, given the opposite effects of syllable frequency and bigram frequency and 

the independence of the syllable frequency effect from bigram troughs at the syllable 

boundary, our data make a stronger case for the importance of the syllable in visual word 

recognition with regard to the relation between orthographic redundancy and syllabic 

processing than recent studies in French (Mathey et al., 2006; Doignon & Zagar, 2005).  
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Apart from some problems with the material used in these studies, these differences 

might result from specific properties of the different languages at hand. Whereas the French 

language is characterized by a considerable degree of inconsistency in particular in the 

mapping form phonemes to graphemes (see Ziegler, Stone, & Jacobs, 1996), the mutual 

mapping between phonemes and graphemes in Spanish is very consistent and this has 

important consequences for the transparency of syllabification in Spanish orthographic word 

forms.  

An analysis of syllabification for all bisyllabic words in the LEXESP database 

(Sebastián-Gallés et al., 2000) revealed that correct syllabic parsing for all Spanish 

orthographic word forms is possible following some very simple principles of segmentation 

(Conrad, Carreiras, & Jacobs, in revision): the Spanish language allows for a very restricted 

number of consonant clusters within one syllable. The maximum number of consonants at 

the syllabic onset is two and generally only one consonant is licensed as a syllabic offset15.  

Syllabification in Spanish is perfectly described by the principles of maximum syllabic 

onset and of a maximum sonority contrast at the syllable boundary: whenever one single 

consonant grapheme occurs between two vowels in a Spanish word, this consonant forms 

the onset of a syllable. A pattern of three consonant graphemes is always parsed as follows: 

the first segment is a syllabic offset and the two subsequent ones form a syllabic onset. The 

only ambiguity in terms of how to syllabically parse a given number of consonant 

graphemes between two vowels is given when two consonant graphemes occur together. But 

even in this case, correct syllabification can always be achieved without the involvement of 

lexical knowledge, because any given combination of two specific consonant graphemes can 

only occur either within a Spanish syllable or has to be separated by a syllabic boundary. It 

never occurs that both possibilities exist for the same two consonants16. 

The regularity of syllabification in Spanish and the simplicity of the principles by which 

syllable boundaries can be identified within the Spanish orthography make it plausible that 

Spanish readers would implicitly make use of such principles for the segmentation of 

polysyllabic word forms.  

                                                 
15 The only exceptions from these rules are syllabic offsets including one consonant plus the consonant “s” 
which is added to the syllabic offset because it cannot be combined within the letter “t” at the onset of a 
subsequent syllable. Example words are “instante” (moment) or “obstar” (to hinder). 
16 E.g., “bl” or “br” can only be syllabic onsets like in the words “hablar”, or “abrir” whereas “st” or “rt” will 
always include a syllable boundary like in words as “hasta” or “huerto”. 
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This would mean that they would not necessarily need additional information from 

orthographic redundancy in order to identify and process a word’s phonological syllables. A 

model of visual word recognition might therefore be implemented with a syllabic parsing 

mechanism that is sensitive to these principles. Hutzler, Ziegler, Perry, Wimmer and Zorzi 

(2004) as well as Perry, Ziegler and Zorzi (2007) have shown how a computational model can 

learn such “rules” when presented with an input characterized by specific regularities. In the 

model presented in Figure 5, this syllabic parser would perform a syllabic segmentation of 

the target and determine the activation of phonological syllables’ representations. In 

addition, these phonological syllable representations would receive activation from their 

corresponding letter representations via the principles of interactive activation, but clearly, 

orthographic redundancy would not be the necessary base for syllabic processing to occur. 

Using such a syllabic parser in languages with a transparent orthography and regular 

syllabification and suppressing its activity in languages with less transparent syllabic 

structure might enable the model to account for language specific differences in syllabic 

processing. Suppressing the syllabic parser and its “rule-based” unambiguous syllabic 

segmentation would involve an increased probability for orthographic redundancy to 

influence the activation of syllabic representations. Stressing the competition between 

different syllabic representational units based on activation from lower level representational 

units might assure a better account for syllabic processing in languages with less transparent 

syllabic structure. 

In any case, our results show that the recognition of polysyllabic words in visual word 

recognition cannot be fully understood without taking into account the involvement of 

syllabic processing. Adding to the already vast literature showing phonological influences 

on visual word recognition (e.g., Carreiras, Ferrand, Grainger, & Perea, 2005; Ferrand & 

Grainger, 1992; Frost, 1998; Lukatela & Turvey, 1994; Grainger & Ferrand, 1994; Lukatela, 

Eaton, Lee, Carello, & Turvey, 2002; Lukatela, Frost, & Turvey, 1998; Perfetti & Bell, 1991; 

Pollatsek, Perea & Carreiras, 2005; Pollatsek, Lesch, Morris, & Rayner, 1992; Van Orden, 

1987; Van Orden; Johnston, & Hale, 1988), the present findings suggest that during visual 

word recognition, phonological rather than orthographic processing involves the emergence 

of clusters at an intermediate level between basic sublexical units (letters, graphemes and 

phonemes) and whole word forms. These phonological clusters – a word’s syllables – seem 

to have an important role for the activation of word candidates.
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Abstract 

 

We report one Experiment designed to allow six critical comparisons in order to 

investigate whether syllable frequency effects in visual word recognition can be attributed to 

phonological or orthographically defined syllables. Whereas only a weak effect was obtained 

when both orthographic and phonological syllable frequency were conjointly manipulated in 

Comparison 1, robust effects for phonological and null effects for orthographic syllable 

frequency were found in Comparisons 2 and 3. Comparisons 4 and 5 showed that the 

syllable frequency effect does not result from a confound with the frequency of letter or 

phoneme clusters at the beginning of words. The syllable frequency effect was shown to 

diminish with increasing word frequency in Comparison 6. These results suggest that 

visually presented polysyllabic words are parsed into phonologically defined syllables 

during visual word recognition. 

 

                                                 
17 Published (2007) in Memory & Cognition, 35 (5), 974-983. 
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Introduction 

 

The syllable has enjoyed a privileged status in many accounts of how humans 

recognize both spoken (e.g., Cutler, Mehler, Norris, & Seguí, 1986; Mehler, Dommergues, 

Frauenfelder, & Seguí, 1981; Morais, Content, Cary, Mehler, & Seguí, 1989) and printed 

words (Lima & Pollatsek, 1983; Millis, 1986; Prinzmetal, Treiman, & Rho, 1986; Spoehr & 

Smith, 1973; Taft & Forster, 1976; Tousman & Inhoff, 1992). Initial support for the 

hypothesized role of the syllable during visual word recognition was provided by Carreiras, 

Álvarez, and de Vega (1993) who found an effect of syllable frequency on lexical decision 

latencies to visually presented Spanish words. More precisely, lexical decision was sensitive 

to the frequency of the first syllable of disyllabic words, with longer latencies to words with 

high initial syllable frequency. Carreiras et al. (1993) interpreted the observed processing cost 

for words with high frequency first syllables as the result of interference caused by the 

representations of other words sharing the same initial syllable (in analogy with accounts of 

the interfering effects of orthographic neighbors - Grainger, O’Regan, Jacobs, & Seguí, 1989).  

The inhibitory effect of syllable frequency in Spanish (Carreiras et al., 1993) has been 

replicated in a number of studies (e. g., Álvarez, Carreiras, & Taft, 2001; Perea & Carreiras, 

1998) and has also been found in other languages: French (Mathey & Zagar, 2002), another 

Romance language but also German (Conrad & Jacobs, 2004), a non Romance language. This 

research has allowed several alternative explanations, not related to syllabic representations, 

to be discarded. The syllable frequency effect proved not to be confounded with 

orthographic neighborhood (Perea & Carreiras, 1998), nor with morpheme frequency 

(Álvarez et al., 2001). Furthermore, syllable frequency effects have also been in found in 

electrophysiological investigations measuring ERPs (Barber, Vergara, & Carreiras, 2004; 

Hutzler, Bergmann, Conrad, Kronbichler, Stenneken, & Jacobs, 2004) and eye movements 

(Carreiras & Perea, 2004b; Hutzler, Conrad, & Jacobs, 2005). Nevertheless, two outstanding 

questions remain concerning the interpretation of such syllable frequency effects. These 

questions are the focus of the present study. 
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First, all studies reporting an inhibitory effect of syllable frequency to date have 

confounded the influence of orthographically and phonologically defined syllables. This is 

because in many languages, including Spanish and German, it is not easy to disentangle the 

two. Spanish is almost perfectly consistent regarding the relation of spelling and sound. The 

graphemes V and B as well as the graphemes Y and LL which are pronounced in the same 

way, or the graphemes C and G the pronunciation of which is determined by the following 

vowel are rare examples of inconsistency. Also in German an inconsistent transcription of 

graphemes into phonemes and of phonemes into graphemes is rather the exception than the 

rule. Inconsistency in German is mainly related to the issues of vowel length and terminal 

devoicing, but this inconsistency is typically resolved by the surrounding context at least 

regarding the transcription of graphemes into phonemes. E.g., a vowel sound in German 

words is short when followed by two consonants and it is long when followed by a single 

consonant or when the letter H is present between the vowel and subsequent consonants - 

the letter D is pronounced in a similar way as the letter T only when occurring in final 

position.  

Theoretically, it is important to distinguish the influence of orthographically and 

phonologically defined syllables since this will provide important constraints concerning the 

possible locus of this effect within a general architecture for word recognition. For example, 

Taft (1979) has proposed an account of visual word recognition in which orthographically 

defined syllables play a key role, whereas in Ferrand, Seguí, and Grainger’s (1996) model, it 

is phonologically defined syllables that have functional significance (see also, Colé, Magnan, 

& Grainger, 1999). 

Second, all studies to date reporting an inhibitory effect of syllable frequency have 

confounded syllable frequency with initial segment frequency (letter and/or phoneme 

clusters). Words with a higher first syllable frequency will also tend to have higher initial 

letter and phoneme frequencies, independently of whether or not these initial letter or 

phoneme clusters form a syllable. Thus, what researchers have called a “syllable” frequency 

effect could in fact be an effect of initial cluster frequency (Schiller, 1998, 2000). Furthermore, 

the way cluster frequencies vary within and across syllable boundaries, has also been 

proposed as a possible confounding variable (Seidenberg, 1987, 1989; but see also Rapp, 

1992).  
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Thus, for example bigram frequency is typically greater within a given syllable than at 

the boundary of two syllables, creating what Seidenberg referred to as a “bigram trough”. 

Carreiras et al. (1993) had tried to rule out an alternative explanation for their empirical 

effects by assuring that the word stimuli they used did not show the bigram trough pattern. 

However, the confound with initial cluster frequency still remains, and no attempt has 

been made to remove this confound in prior experimentation.  

The present study uses the French language in an attempt to answer these two key 

questions. The French orthography has some inconsistency regarding its transcription of 

graphemes into phonemes, e.g., the first syllable “de” is pronounced as /de/ in “dessin” 

(drawing) and as /d*/ in “dessous” (beneath), but French can be considered highly 

inconsistent in the way phonemes can be represented by graphemes. Ziegler, Jacobs, and 

Stone (1996) presented a statistical analysis of the spelling to sound consistency for the 

bodies of monosyllabic French words showing 12% inconsistency for the spelling to sound 

mapping and 79% inconsistency for the mapping of sound to spelling. As a consequence, the 

fact that a specific phonological syllable can be written in different ways is a common feature 

of the French language (an example in English would be the initial syllable /si/ in “ceiling” 

and “seaman”. Examples of French words sharing the same phonological syllable are 

“cigare”, “cyclone” and “sirène”).  

Therefore in French it is possible to experimentally disentangle the frequencies of 

orthographically and phonologically defined syllables and also to distinguish syllable 

frequency from letter and phoneme cluster frequency. In the present study we designed a 

single experiment that included all the appropriate comparisons to allow us to address these 

two key questions.  

We first attempted to replicate the general effect of syllable frequency in French. Then 

we examine the orthographic versus phonological nature of syllable frequency effects in two 

comparisons involving i) the cumulated word frequency of first syllable neighbors, and ii) 

the number of higher frequency first syllable neighbors. We examine the true syllabic nature 

of syllable frequency effects in two further comparisons involving i) a control for initial 

cluster frequency while syllable frequency is varied and ii) a manipulation of initial cluster 

frequency while syllable frequency is controlled. Finally, the question of the mandatory 

character of syllabic processing is addressed in a comparison manipulating syllable 

frequency within different ranges of word frequency.  
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The Experiment 

Method  

Participants 

Forty-one students from the University of Provence participated in the experiment. 

Their participation was rewarded with course credits. All were native speakers of French 

and had normal or corrected-to-normal vision. 

Design and Stimuli. 

The words tested in this experiment were all bisyllabic with initial CV syllables (except 

for some words in comparison 2 that started with a different syllable structure), and all 

carefully controlled for bigram frequency profile (the frequency of the bigram straddling the 

word’s two syllables was always as least as high as the mean frequency of the other bigrams, 

such that none contained a bigram trough pattern at the syllable boundary). The LEXIQUE 

Database (New, Pallier, Brysbaert, & Ferrand, 2004) for the French language includes about 

40000 bisyllabic words for which the phonological syllables but not orthographic syllables 

are listed. Combining this database with an additional list giving orthographic syllables for 

French words18, we obtained 9673 bisyllabic words for which both phonological and 

orthographic syllables were available. Applying the above mentioned selection criteria 

(bigram troughs and syllabic structure) and considering only nouns and adjectives of length 

4-8 letters and with a printed frequency of at least 0.5 per million of occurrences, the number 

of words that could possibly enter any experiment examining syllabic effects was reduced to 

579. When trying to experimentally disentangle several statistical measures that are highly 

correlated (e.g., phonological and orthographic syllable frequency, the frequencies of the first 

bigram and of the first two phonemes) it was impossible to find enough words that could 

serve as items in several completely independent experiments without any overlap of items 

between them.  

                                                 
18 We are grateful to Ronald Peereman, Université de Bourgogne, for providing this database. 
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Therefore, instead of performing 6 different experiments with overlapping sets of 

stimuli, we decided to perform a single experiment containing the complete set of stimuli 

that would have been tested in the 6 different experiments, but without stimulus repetition. 

We then performed 6 different analyses on 6 distinct but overlapping subsets of stimuli 

drawn from the total set of stimuli that were tested. A total of 278 different words were 

tested in the Experiment, and the total number of words involved in all 5 analyses was 490. 

Prior to the presentation of each of the 6 analyses (Comparisons 1-6) we describe the 

stimulus characteristics relative to the particular subset of stimuli involved.  

This experimental procedure has the following advantages. When comparing the effects 

of closely related measures, it may be of interest to directly compare the strength of the 

corresponding empirical effects. With the present experimental approach, these effect sizes 

are directly comparable, because they are based on the performance of the same group of 

participants. Furthermore, the greater number of words within one experimental session 

including several experimental comparisons will result in a more natural reading context. 

Nonwords were orthographically legal, pronounceable bi-syllabic letters strings in French, 

and had at least one orthographic neighbor amongst existing French words. About five 

percent of the nonwords were pseudohomophones. 

Apparatus and Procedure 

Stimuli were presented in uppercase letters using Courier 24 type font on a 17‘‘ 

ProNitron color monitor (resolution 1024x768 pixel, 75 Hz) driven by an Umax Pulsar 

computer. Stimulus presentation and response recording was controlled by PsyScope 

software (V. 1.2.4 PPC; Cohen, MacWhinney, Flatt, & Provost, 1993). At the utilized viewing 

distance of 50 cm the stimuli subtended a visual angle of approximately 1.7 degrees. Each 

trial was initiated by a fixation point appearing at the center of the screen for 500 ms. The 

fixation point was then replaced by a blank screen (0 ms), followed by the word or nonword 

stimulus that remained visible until participants pressed a button indicating their decision 

concerning the lexicality (“yes”-button for a word; “no”-button for a nonword) of the 

stimulus. The time between the onset of stimulus presentation and the response was 

measured as the dependent variable. There were also ten initial training trials. Participants 

were tested individually in a quiet room. The stimulus list contained 278 words and 278 

nonwords. Order of appearance of items was randomized for each participant.  
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Comparison 1: General syllable frequency 

 
The first comparison was designed to verify that the inhibitory effect of syllable 

frequency is reliable in French. Prior reports of such an effect (Mathey & Zagar, 2002) had 

manipulated number of higher frequency syllabic neighbors rather than the traditional 

syllable frequency manipulation. Number of higher frequency syllabic neighbors had been 

proposed by Perea and Carreiras (1998) as the strongest predictor of inhibitory effects related 

to syllable frequency. Therefore it might be the case that a standard manipulation of syllable 

frequency (e.g., Carreiras et al., 1993) would be less reliable in French. 

 

Stimuli and Design 

100 words were selected in order to manipulate the positional frequency (high vs. low) 

of the first syllable. Syllable frequency was computed as the cumulated word frequency (i.e., 

a token count) of all bisyllabic words sharing the initial syllable of the target word (see 

Conrad, Carreiras, & Jacobs, submitted, for differential effects of type and token measures of 

syllable frequency in lexical decision). Syllable frequency was computed separately for both 

the orthographic and the phonological realization of any given syllable. A word was 

considered of high syllable frequency when its syllable frequency was at least 600 per 1 

million of occurrence in both the orthographic and the phonological syllable frequency 

count, e.g., the word “parrain” (godfather), and of low syllable frequency with less than 200 

per million occurrences in both counts, e.g., the word “neveu” (nephew)19.  

Words were matched across conditions for the following variables: word frequency, 

word length, length of the first syllable, orthographic and phonological neighborhood 

(density and number of higher frequency neighbors), positional frequency of the second 

syllable (orthographic and phonological). All words were of low word frequency (less than 

10 occurrences per million). Characteristics for words used in Comparison 1 are presented in 

Table 4.1. 

                                                 
19 All examples words for the different Comparisons in this study are taken from the stimulus material of the 
corresponding Comparison. 



Visual recognition of complex words: The role of syllabic units 
A cross-linguistic approach 
___________________________________________________ 

 110

 

Table 4.1 

Characteristics of Words used in Comparison 1 
Means and Ranges of the Independent Variable (IV): orthographic and phonological 
Frequency of the first Syllable (SF1orth; SF1phon).  
Means and Ranges of Control Variables: Word Frequency (WF), Word Length (L), Length 
of the first Syllable (SL1), Density of orthographic and phonological Neighborhood (North, 
Nphon), Number of higher Frequency orthographic and phonological Neighbors (HFNorth, 
HFNphon), orthographic and phonological Frequency of the second Syllable (SF2orth, 
SF2phon). 

 
   Syllable Frequency (orthographic and phonological) 

   High     Low 

   Mean  Range   Mean  Range 

SF1orth IV 992  622-1744  126  9-186 
Sf1phon IV 1000  632-1509  130  9-195 
WF  3.11  0.5-9   3.16  0.5-9 
L   6.52  5-8   6.42  5-8 
SL1  2.04  2-3   2.04  2-3 
North  1.52  0-7   1.42  0-6 
HFNorth  0.66  0-4   0.56  0-5 
Nphon  4.80  0-18   5.20  0-19 
HFNphon  1.80  0-10   1.64  0-12 
SF2orth  19  1-152   22  1-140 
SF2phon  53  1-381   59  1-254 

Note: Frequency counts are given per million occurrences 

 

 

Results and Discussion 

In this and the following analyses, mean correct response latencies and error 

percentages (see Table 4.2) were submitted to separate analyses of variance (ANOVAs) by 

participants and by items (F1 and F2, respectively). For all comparisons reported in this 

study, response latencies differing more than two standard deviations from the mean for 

each participant and experimental condition were excluded from the analyses. This led to the 

exclusion of 3.8% of the data of Comparison 1. Thirteen of the word stimuli in Comparison 1 

had to be excluded from the analysis, because their corresponding mean error rates were 

higher than 45 percent (the same exclusion criterion was applied in all reported 

comparisons). 
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Analyses revealed an effect of syllable frequency on response latencies that was 

significant in the analysis over participants: Words were responded to 23ms slower when 

their first syllable was of high frequency than when it was of low frequency, significant in 

the participant analysis, F1 (1,40) = 7.96, p <.008; F2 (1,85) = 2.54, p >.1.  

Error rates also increased with syllable frequency – 13.5% vs. 11.8% for high syllable 

frequency vs. low syllable frequency words- although this effect did not reach statistical 

significance, F1 (1,40) = 3.72, p <.07; F2 (1,85) <1.  

 

Table 4.2 

Mean Reaction Times (RT; in Milliseconds). Standard Deviation of Reaction Times (Std. 
Dev.; in Milliseconds) and Percentage of Errors for Words in Comparison 1 

 
Syllable Frequency (orthographic and phonological) 

High     Low   

RT   754     731  
Std. Dev.  139     122  
% error  13.5     11.8  

 

 

Comparison 1 has established a standard syllable frequency effect in French, that is 

somewhat weaker than the effect of higher frequency syllabic neighbors reported by Mathey 

and Zagar (2002), and less reliable than prior reports of syllable frequency effects in Spanish 

and German. However, our count of first syllable frequency explicitly applied to both 

orthographic and phonological syllable frequency. These two frequencies converge 

automatically in a consistent orthography like Spanish or German, but they differ to some 

degree in an orthography with as inconsistent phoneme to grapheme mapping as French. 

The question of whether the standard effect of syllable frequency is mediated by 

orthographic and phonological syllable frequency in the same way is an open question of 

theoretical interest. On the hypothesis that orthographic and phonological syllables influence 

visual word recognition in different ways, then the strength of the empirical effect in 

Comparison 1 might have suffered from the fact that orthographic and phonological syllable 

frequency were conjointly manipulated in this comparison. Comparison 2 was designed to 

examine the influence of phonological and orthographic syllable neighborhood separately. 
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Comparison 2: Orthographic vs. phonological syllables 

Stimuli and Design 

Comparison 2 A. 60 words were selected in order to manipulate the positional 

frequency (high vs. low) of the first syllable, realized as orthographic syllable frequency. 

Orthographic syllables were considered high-frequency when having a frequency of at least 

530, and were considered low-frequency when having a frequency of less than 245 per 

million of occurrences. The frequency of the phonological first syllable was held constant 

across the two cells of the design. Example words are “canal” (canal) and “kayak” (kayak) 

which share their initial phonological syllable, but the orthographic syllable “ca” is of high 

frequency (573 per million occurrences) whereas “ka” is of low frequency (7 p.m.o.). 

Comparison 2 B. 60 words were selected in order to manipulate the positional 

frequency (high vs. low) of the first syllable, realized as phonological syllable frequency. 

Ranges set for the manipulation of phonological syllable frequency where the same as for 

orthographic syllable frequency in Comparison 2A. The frequency of the orthographic first 

syllable was held constant across the two cells of the design. Example words are “cigogne” 

(swan) and “tomate” (tomato) which have initial orthographic syllables of comparable 

frequency (173 vs. 177 p.m.o.), but differ in phonological syllable frequency, because the 

phonological syllable /si/ of “cigogne” increases much in frequency (653 p.m.o.) due to 

words like “sirop” (syrup) which share this phonological syllable, whereas the contribution 

of alternative orthographic realizations to the frequency of the phonological syllable /tO/ of 

“tomate” (195 p.m.o.) is less important. 

Words in both Comparisons 2 A and B were equated on the same variables as words in 

Comparison 1 across the two cells of the factor syllable frequency (see Table 4.3). None of the 

words was of high printed frequency (100 or more per 1 million of occurrences).  

Results and Discussion 

Outlier rejection led to a loss of 5% of the data in each Comparisons 2 A and B. Three 

words out of the stimuli of Comparison 2 A and two word stimuli out of Comparison 2 B 
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had to be excluded because of excessive error rates. Mean response latencies and error rates 

for words in Comparison 2A and B are shown in Table 4.4. 

 

Table 4.3 

Characteristics of Words used in Comparison 2 
Means and Ranges of the Independent Variable (IV): orthographic Frequency of the first 
Syllable (SF1orth) in Comparison 2A - phonological Frequency of the first Syllable 
(SF1phon) in Comparison 2B.  
Means and Ranges of Control Variables: phonological Frequency of the first Syllable 
(SF1phon) in Comparison 2A - orthographic Frequency of the first Syllable (SF1orth) in 
Comparison 2B, Word Frequency (WF), Word Length (L), Length of the first Syllable 
(SL1), Density of orthographic and phonological Neighborhood (North, Nphon), Number 
of higher Frequency orthographic and phonological Neighbors (HFNorth, HFNphon), 
orthographic and phonological Frequency of the second Syllable (SF2orth, SF2phon). 

Comparison 2A  
     Orthographic Syllable Frequency   

    High    Low 
   Mean  Range  Mean  Range 
SF1orth IV  608  530-908  174  7-240 
SF1phon*  595  49-689  1011  218-10036 
WF   14.26  1-86  13.98  0.5-72 
L   6.00  5-7  6.00  5-7 
SL1   2.00  2-2  2.07  2-3 
North   2.10  0-9  1.70  0-7 
HFNorth  0.97  0-9  0.53  0-4 
Nphon  6.87  0-19  6.60  0-17 
HFNphon  1.30  0-10  1.80  0-11 
SF2orth  51  1-279  72  0.5-715 
SF2phon  92  1-1031  155  1-815 

Comparison 2B 
     Phonological Syllable Frequency   

    High     Low 
   Mean  Range   Mean  Range 
SF1phon IV  1308  532-10036  168  5-241 
SF1orth  311  3-574   289  174-908 
WF   12.15  0.5-86   11.04  0.5-62 
L   6.27  5-7   6.27  5-7 
SL1   2.20  2-4   2.17  2-3 
North   1.40  0-6   1.67  0-7 
HFNorth  0.43  0-5   0.40  0-4 
Nphon  7.93  1-21   5.77  0-14 
HFNphon  2.10  0-8   1.73  0-11 
SF2orth  113  1-1764   76  0.5-715 
SF2phon  189  1-2544   146  0.5-815 

Note: Frequency counts are given per million occurrences 
* The relatively high numerical mean difference for this variable between the two 
conditions of the factor orthographic syllable frequency is due to one outlier. It is not 
statistically significant, p>.2 

 

Comparison 2 A. For orthographic syllable frequency analyses revealed no effect 

on response latencies. Words were responded to 6 ms slower when their first syllable was of 

high orthographic frequency than when it was of low orthographic frequency,  
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but this mean difference was far from significance, p>.4. No significant effect of 

orthographic syllable frequency on error rates was obtained either, p >.1. 

Comparison 2 B. For phonological syllable frequency there was a significant effect 

of syllable frequency on response latencies: Words were responded to 42 ms slower when 

their first syllable was of high phonological frequency compared to low phonological 

syllable frequency, F1 (1,40) = 14.69, p ≤.0004; F2 (1,56) = 5.29, p <.03. This inhibitory effect of 

phonological syllable frequency was also present in the error data where it reached statistical 

significance in the analysis over participants, F1 (1,40) = 6.57, p <.02; F2 (1,56) = 1.31, p >.2. 

Words with high frequency phonological first syllables provoked more errors than words 

with low frequency phonological syllables, 11.2% vs. 7.9% respectively.  

 

Table 4.4 

Mean Reaction Times (RT; in Milliseconds). Standard Deviation of Reaction Times (Std. 
Dev.; in Milliseconds) and Percentage of Errors for Words in Comparison 2 A and B 

Comparison 2 A         

    Orthographic Syllable Frequency 

High      Low  
RT   695      689  
Std. Dev.  117      107  
% error  10.8      9.0  

Comparison 2 B          

    Phonological Syllable Frequency 

High      Low  
RT   712      670  
Std. Dev.  131      97  
% error  11.2      7.9  

 

Comparison 2 has shown a robust inhibitory effect of syllable frequency on response 

latencies only when phonological syllable frequency is manipulated and not for orthographic 

syllable frequency. These results strongly suggest that phonologically defined syllables are 

the basis of syllable frequency effects.  

Comparison 3 provides a further examination of orthographic versus phonological 

syllable frequency effects, but this time defined in terms of the number of higher frequency 

syllabic neighbors. As noted before, Perea and Carreiras (1998) found that number of higher 

frequency syllabic neighbors was a better predictor of response latencies than the standard 

syllable frequency measure. 
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Comparison 3: Number of higher frequency syllabic neighbors 

 

Stimuli and Design 

Comparison 3 A.  76 words were selected in order to manipulate the number of 

higher frequency orthographic syllabic neighbors ((high (> 17) vs. low (< 15)) of the first 

syllable. The number of higher frequency phonological syllabic neighbors of the first syllable 

was held constant across the two cells of the design. For example, “famine” (famine) and 

“sauveur” (savior) have a comparable number of higher frequency phonological syllabic 

neighbors (18 vs. 19) but differ in the number of higher frequency orthographic syllabic 

neighbors (18 vs. 4). This is because of high frequency words as “social” (social) that share 

the phonological but not the orthographic first syllable with “sauveur”. 

 

Comparison 3 B.  78 words were selected in order to manipulate the number of 

higher frequency phonological syllabic neighbors ((high (> 17) vs. low (< 15)) of the first 

syllable. The number of higher frequency orthographic syllabic neighbors of the first syllable 

was held constant across the two cells of the design. Example words are “ciseau” (chisel) and 

“dilemme” (dilemma) with respectively ten and eleven higher frequency orthographic 

syllabic neighbors. The phonological syllable /si/ is shared by many relatively high frequency 

words with an orthographic syllable other than “ci”, e.g., “silence” (silence) which is not the 

case for the phonological syllable /di/. In consequence, there are thirty-five vs. twelve higher 

frequency phonological syllabic neighbors for the words “ciseau” and “dilemme”. 

Words in both Comparisons 3 A and B were equated on the same variables as words in 

Comparison 1 across the two cells of the experimental factor (see Table 4.5). None of the 

words was of high word frequency (100 or more per 1 Million of occurrence).  
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Table 4.5 

Characteristics of Words used in Comparison 3 
Means and Ranges of the Independent Variable (IV): Number of higher Frequency Syllabic 
Neighbors of the first orthographic Syllable (HFSN1orth) in Comparison 3A - Number of 
higher Frequency Syllabic Neighbors of the first phonological Syllable (HFSN1phon) in 
Comparison 3B. 
Means and Ranges of Control Variables: Number of higher Frequency Syllabic Neighbors 
of the first phonological Syllable (HFSN1phon) in Comparison 3A - Number of higher 
Frequency Syllabic Neighbors of the first orthographic Syllable (HFSN1orth) in 
Comparison 3B; Word Frequency (WF), Word Length (L), Length of the first Syllable 
(SL1), Density of orthographic and phonological Neighborhood (North, Nphon), Number 
of higher Frequency orthographic and phonological Neighbors (HFNorth, HFNphon), 
orthographic and phonological Frequency of the second Syllable (SF2orth, SF2phon). 

Comparison 3A  

   Number of orthographic higher Frequency Syllabic Neighbors 

   High     Low 

   Mean  Range   Mean  Range 
 
HFSN1orth IV 20.79  18-38   10.79  1-14 
HFSN1phon  20.29  10-36   20.03  13-88 
WF   4.01  0.5-17   4.20  0.5-18 
L   6.39  5-8   6.26  5-8 
SL1   2.05  2-3   2.13  2-3 
North   2.24  0-7   2.29  0-10 
HFNorth  0.97  0-4   0.68  0-4 
Nphon  6.03  0-30   7.00  0-20 
HFNphon  1.79  0-6   2.11  0-9 
SF2orth  53  0.5-325   53  0.5-204 
SF2phon  103  0.5-731   146  1-1031 

Comparison 3B  

   Number of phonological higher Frequency Syllabic Neighbors 

    High     Low 

   Mean  Range   Mean  Range 
 
HFSN1phon IV 25.46  18-88   10.92  4-14 
HFSN1orth  14.15  1-20   12.90  10-19 
WF   2.89  0.5-10   2.99  0.5-16 
L   2.21  2-3   2.08  2-3 
North   1.90  0-7   2.36  0-6 
HFNorth  0.90  0-4   0.97  0-4 
Nphon  7.36  0-30   6.59  0-19 
HFNphon  2.18  0-6   2.28  0-10 
SF2orth  54  0.5-325   48  0.5-241 
SF2phon  156  1-1804   134  0.5-596 

Note: Frequency counts are given per million occurrences 
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Results and Discussion 

Outlier rejection led to a loss of 3.8% of the data in Comparison 3 A and of 3.4% in 

Comparison 3 B. Eight words out of the stimuli of Comparison 3 A had to be excluded 

because of excessive error rates. The same was the case for ten words in Comparison 3 B. 

Mean response latencies and error rates for words in Comparison 3 A and B are shown in 

Table 4.6. 

 

Comparison 3 A.  Mean response latencies did not differ for words with many or 

few higher frequency orthographic syllabic neighbors. Error rates slightly increased with the 

number of higher frequency orthographic syllabic neighbors, 14.1% vs. 12.2%, but this 

difference was not statistically significant, F1 (1,40) = 3.41, p <.08; F2 (1,66) <1. 

 

Comparison 3 B.  Analyses revealed a significant inhibitory effect on response 

latencies: responses were 32 ms slower to words with many than to those with few higher 

frequency phonological syllabic neighbors, F1 (1,40) = 12.73, p <.002; F2 (1,66) = 4.69, p <.04. 

There was also an inhibitory effect –significant in the analysis over participants- in the error 

data, 14.2% vs. 9.5% errors for words with many vs. few higher frequency phonological 

syllabic neighbors, F1 (1,40) = 15.68, p <.0003; F2 (1,66) = 3.16, p <.09. 
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Table 4.6 

Mean Reaction Times (RT; in Milliseconds). Standard Deviation of Reaction Times (Std. 
Dev.; in Milliseconds) and Percentage of Errors for Words in Comparison 3 A and B 

Comparison3 A 

Number of higher Frequency orthographic syllabic Neighbors 

High       Low  

RT   743       744  
Std. Dev.  131       143  
% error  14.1       12.2  

Comparison 3 B  

Number of higher Frequency phonological syllabic Neighbors 

High       Low  

RT   747       715  
Std. Dev.  136       135  
% error  14.2       9.5  

 

 

 

The differential effects of orthographic and phonological syllable frequency found in 

Comparison 2 are even more clear-cut in Comparison 3. In the response latencies there was 

an inhibitory effect of the number of higher frequency phonological syllabic neighbors but 

no hint of an effect for the number of higher frequency orthographic syllabic neighbors. 

Thus, again we have clear evidence that it is phonologically defined syllables that are driving 

syllable frequency effects in visual word recognition (for effects of phonological syllable 

frequency in speech production see Cholin, Levelt, & Schiller, 2006). 

However, as noted in the introduction, there is one remaining issue that must be 

addressed before one can safely interpret syllable frequency effects as evidence for syllabic 

processing. Words that have a high first syllable frequency also have high initial 

letter/phoneme cluster frequencies. Comparison 4 was designed to examine effects of 

phonological syllable frequency while controlling for initial letter cluster frequency. 
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Comparison 4: Effects of phonological syllable frequency with letter cluster 

frequency controlled for 

Stimuli and Design 

70 words were selected in order to manipulate the phonological frequency (high vs. 

low) of the first syllable. Phonological syllables were considered high-frequency when 

having a frequency of at least 570, and were considered low-frequency when having a 

frequency of less than 45 per million occurrences. The following frequency measures were 

held constant across the two cells of the experimental design: the frequencies of the first 

bigram, the first trigram, the first quadrigram, and the frequency of the letter cluster 

representing the first syllable. The frequencies of these letter clusters were computed in a 

similar way as it had been described for syllable frequency in order to assure that the 

numerical correlations of these alternative variables with the syllable frequency measures 

used in this study were as close as possible. This should guarantee a most valid control for 

these alternative variables in this Comparison. The frequency of the first bigram was 

computed as the cumulated frequency of all bisyllabic words sharing this bigram in initial 

position. This was done independently of whether this first bigram was the word’s first 

syllable or not. The same procedure was applied to compute the frequency of a words’ first 

initial three or four letters (the first trigram or quadrigram). Similarly, the frequency of the 

letters representing the initial syllable was computed as follows: the cumulated frequency of 

all bisyllabic words starting with these letters regardless of whether they represent the first 

syllable or not. Given that the initial syllables of words used in the experiment differed in 

orthographic length, this last variable might be an important one to control for because it 

reflects the pure orthographic non-syllabic frequency of the first syllable in a more flexible 

way than initial bigram or trigram frequency.  

Words were also equated on the same variables as words in Comparison 1 across the 

two cells of the experimental factor (see Table 4.7). None of the words was of high word 

frequency (100 or more per 1 Million of occurrence).  
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Table 4.7 

Characteristics of Words used in Comparison 4 
Means and Ranges of the Independent Variable (IV): phonological Frequency of the first 
Syllable (SF1phon). 
Means and Ranges of Control Variables: Word Frequency (WF), Word Length (L), Length 
of the first Syllable (SL1), Density of orthographic and phonological Neighborhood (North, 
Nphon), Number of higher Frequency orthographic and phonological Neighbors (HFNorth, 
HFNphon), orthographic and phonological Frequency of the second Syllable (SF2orth, 
SF2phon), Frequency of the first Bigram (Ffirst2L), Frequency of the first Trigram 
(Ffirst3L), Frequency of the first Quadrigram (Ffirst4L) and Frequency of the Letter 
Cluster forming the first Syllable (FsyllL). 

 
    Phonological Syllable Frequency   

  High     Low 

Mean  Range   Mean  Range 

SF1phon IV 651  574-1410  169  42-242 
WF  10.86  0.5-86   12.81  1-93 
L  6.09  5-7   6.09  5-7 
SL1  2.06  2-3   2.03  2-3 
North  1.94  0-9   1.89  0-6 
HFNorth 0.89  0-9   0.66  0-5 
Nphon 6.69  0-19   7.91  0-30 
HFNphon 2.11  0-15   1.54  0-8 
SF2orth 45  0.5-279   42  2-279 
SF2phon 85  1-596   100  2-571 
Ffirst2L 666  8-1866   659  267-1477 
Ffirst3L 117  0.5-269   120  2-412 
Ffirst4L 32  0.5-218   38  1-133 
FsyllL 593  8-919   647  267-1477 

Note: Frequency counts are given per million occurrences 

 

Example words are “cigogne” (swan) with a high (653 p.m.o.) and “piscine” 

(swimming-pool) with a low (160 p.m.o.) phonological syllable frequency. For these two 

words there is no relevant difference for the frequencies of the letter cluster forming the 

initial syllable, the first bigram in this case (277 vs. 284 p.m.o.). This is because of the 

inconsistent phonological first syllable /si/ of “cigogne” but also because of the fact that for 

forty percent of bisyllabic words starting with the bigram “pi” this bigram is not the first 

syllable, e.g. “pincée” (pinch). In contrast, “ci” is the initial syllable of seventy-six percent of 

bisyllabic words starting with the bigram “ci”. 
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Results and Discussion 

Outlier rejection led to a loss of 4.7% of the data in Comparison 4. Five words out of the 

stimuli of Comparison 4 had to be excluded because of excessive error rates. Mean response 

latencies and error rates for words in Comparison 4 are shown in Table 4.8. 

 

Table 4.8 

Mean Reaction Times (RT; in Milliseconds). Standard Deviation of Reaction Times (Std. 
Dev.; in Milliseconds) and Percentage of Errors for Words in Comparison 4  

 
Phonological Syllable Frequency 

(Letter Cluster Frequencies controlled for) 

High      Low   

RT   723      667  
Std. Dev.  118      95  
% error  12.4      8.6  

 

 

Words with a high phonological syllable frequency were responded to 56ms slower, F1 

(1,40) = 48.313, p ≤.0001; F2 (1,63) = 11.87, p <.002, and less accurately, F1 (1,40) = 14.81, p 

<.0004; F2 (1,63) = 2.03, p >.1, than words with a low phonological syllable frequency (12.4% 

vs. 8.6% errors). The effect on error rates was significant in the analysis over participants. 

 

Comparison 4 shows that even if syllable frequency correlates systematically with the 

frequency of the letter cluster forming the orthographic syllable, the effect of syllable 

frequency in lexical decision proved to be independent of the frequencies of any letter cluster 

at the beginning of a word. Therefore, what had already been suggested by Comparisons 2 

and 3 could again be confirmed: the syllable frequency effect in lexical decision seems to 

have its base in phonological processing where phonological syllables are used as sublexical 

units mediating the segmentation of polysyllabic words.  

However, given that it is phonological and not orthographic syllables that are driving 

the syllable frequency effects obtained in the present study, it could well be argued that it is 

initial phoneme cluster frequency, and not bigram or trigram frequency that is the potential 

confounding variable. Comparison 5 was therefore designed to test for effects of initial 

phoneme frequency while controlling for the frequency of the first phonological syllable. 
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Comparison 5: Effects of phoneme cluster frequency with syllable 

frequency held constant 

Stimuli and Design 

46 words were selected in order to manipulate the frequency of the first two phonemes 

(high vs. low). Initial biphone frequency was computed in the same way as the frequency of 

the first bigram in Comparison 4. Initial biphones were considered high-frequency when 

having a frequency of at least 325, and were considered low-frequency when having a 

frequency of less than 215 per million occurrences. The frequency of the first syllable was 

held constant across the two cells of the experimental design. Example words are “garant” 

(guarantor) and “rivage” (coastline) that differ in initial biphone frequency (424 vs. 224 

p.m.o.) but do not differ considerably in initial phonological syllable frequency (193 vs. 202 

p.m.o.), because the first two phonemes of “garant” more often form the beginning of other 

bisyllabic words without forming their initial syllable, e.g., “gardien” (guard) than is the case 

for the first two phonemes of the word “rivage”. Words were equated on syllable frequency 

according to all of the following realizations of syllable frequency: orthographic and 

phonological first syllable frequency, number of higher frequency syllabic neighbors of both 

the orthographic and the phonological syllable. Words were also equated on the same 

variables as words in Comparison 1 across the two cells of the experimental factor (see Table 

4.9). None of the words was of high word frequency (100 or more occurrences per million).  

 

Results and Discussion 

Outlier rejection led to a loss of 4.5% of the data. Three words out of the stimuli of 

Comparison 5 had to be excluded because of excessive error rates. Mean response latencies 

and error rates for words in Comparison 5 are shown in Table 4.10. Responses were 13ms 

faster to words with high frequency initial biphones. This difference was not statistically 

significant, p>.4. No effect was obtained for the error data, F<1.  



Chapter 4 
Phonology as the source of syllable frequency effects in visual word recognition: Evidence from French 
____________________________________________________________________________________ 

 123

 

Table 4.9 

Characteristics of Words used in Comparison 5 
Means and Ranges of the Independent Variable (IV): Frequency of the initial Biphone 
(Ffirst2PH).  
Means and Ranges of Control Variables: orthographic and phonological Frequency of the 
first Syllable (SF1orth, SF1phon), Number of higher frequency syllabic Neighbors of the 
orthographic and of the phonological first Syllable (HFSN1orth, HFSN1phon), Word 
Frequency (WF), Word Length (L), Length of the first Syllable (SL1), Density of 
orthographic and phonological Neighborhood (North, Nphon), Number of higher 
Frequency orthographic and phonological Neighbors (HFNorth, HFNphon), orthographic 
and phonological Frequency of the second Syllable (SF2orth, SF2phon). 

 
     Frequency of the first Biphone   

    High     Low 

   Mean  Range   Mean  Range 

Ffirst2PH  IV 425  327-871   231  212-244 
SF1phon  239  126-344   222  202-241 
SF1orth  226  73-401   212  202-233 
HFSN1orth  10.04  1-25   9.7  1-27 
HFSN1phon  11.74  1-29   10.48  1-30 
WF   7.47  1-33.   6.76  0.5-30 
L   6.26  5-8   6.13  5-8 
SL1   2.17  2-3   2.00  2-2 
North   2.52  0-6   1.91  0-6 
HFNorth  0.91  0-5   0.65  0-4 
Nphon  8.78  0-20   6.65  0-13 
HFNphon  1.96  0-7   2.26  0-11 
SF2orth  89  1-715   75  0.5-715 
SF2phon  171  1-731   126  0.5-695 

Note: Frequency counts are given per million occurrences 

 

Comparison 5 showed that initial biphone frequency did not significantly affect lexical 

decision latencies when initial syllable frequency was controlled. Therefore, we have 

successfully excluded the role of both initial orthographic and phonological cluster 

frequency as potential sources of syllable frequency effects.  

 

Table 4.10 

Mean Reaction Times (RT; in Milliseconds). Standard Deviation of Reaction Times (Std. 
Dev.; in Milliseconds) and Percentage of Errors for Words in Comparison 5 

 
Frequency of the first Biphone 

High     Low   

RT    712     725  
Std. Dev.   100     135  
% error   13.5     13.0  
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The conjoined output of Comparisons 1 to 5 indicates that syllables are functional units 

during visual word recognition and that syllabic processing is phonological in nature. 

However, it remains to be seen whether or not this type of phonological processing based on 

the syllabic structure of polysyllabic words is an obligatory feature of silent reading, 

occurring independently of word frequency. Previous studies have reported an interaction 

between effects of word frequency and syllable frequency, with syllable frequency effects 

being stronger for low frequency words (for error rates in Experiment 1 and for response 

latencies in lexical decision in Experiment 3 of Perea & Carreiras, 1998; for both dependent 

variables: Conrad & Jacobs, 2004). Comparison 6 was therefore designed to test whether the 

syllable frequency effect is modulated by word frequency. 

 

Comparison 6: Effects of phonological syllable frequency as a function of 

word frequency 

Stimuli and Design 

96 words were selected according to the orthogonal manipulation of the factors word 

frequency and initial phonological syllable frequency. A word was considered low-

frequency when it had a frequency of less than four per million occurrences. Words with a 

frequency between five and one hundred per million occurrences were placed in the high-

frequency category. The ranges of initial syllable frequency were above 570 for high syllable 

frequency words and below 225 per million occurrences for low syllable frequency words. 

“Salive” (saliva) and “museau” (muzzle) are examples for high frequency words with high 

respectively low syllable frequency. “Microbe” (germ) and “tisane” (herb tea) are examples 

for this syllable frequency manipulation within low frequency words. Across the four cells of 

the experimental design the following variables were held constant (see Table 4.11): Word 

length, length of the initial syllable, orthographic and phonological neighborhood (density 

and number of higher frequency neighbors), positional frequency of the second syllable 

(orthographic and phonological). All words started with a CV-syllable.  
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Table 4.11 

Characteristics of Words used in Comparison 6 
Means of the Independent Variables (IV): Word Frequency (WF) and phonological Frequency of the first 
Syllable (SF1phon).  
Means and Ranges of Control Variables: Word Length (L), Length of the first Syllable (SL1), Density of 
orthographic and phonological Neighborhood (North, Nphon), Number of higher Frequency orthographic and 
phonological Neighbors (HFNorth, HFNphon), orthographic and phonological Frequency of the second 
Syllable (SF2orth, SF2phon). 

 
       Word Frequency   

    High      Low  

  Syllable Frequency    Syllable Frequency 

   High   Low   High   Low 

  Mean Range  Mean Range  Mean Range  Mean Range 

WF IV 15.59 5-86  17.6 5-93  2.26 1-4  2.28 1-4 
SF1phon IV 909 574-1509 158 13-218  906 574-1509 163 42-223 
L  6.63 5-8  6.5 5-8  6.42 5-8  6.42 5-8 
SL1 2.00 2-2  2.04 2-3  2.13 2-3  2.08 2-3 
North 1.67 0-5  1.71 0-5  1.58 0-7  1.42 0-3 
HFNorth 0.25 0-3  0.17 0-2  0.50 0-3  0.63 0-2 
Nphon 5.17 0-17  5.04 0-19  4.50 0-11  5.08 0-15 
HFNphon 0.38 0-3  0.42 0-3  1.46 0-4  1.42 0-5 
SF2orth 36 5-143  50 7-241  31 1-241  30 1-187 
SF2phon 69 5-252  80 8-394  84 1-394  93 2-360 

Note: Frequency counts are given per million occurrences 

 

 

Results and Discussion 

Outlier rejection led to a loss of 4.8% of the data. Mean response latencies and error 

rates for words in Comparison 6 are shown in Table 4.12. Analyses revealed a significant 

effect of word frequency with high frequency words being responded to 83ms faster than 

low frequency words, F1 (1,40) = 73.99, p ≤.0001; F2 (1,92) = 52.60, p ≤.0001. Error rates also 

decreased with word frequency, 14.4% errors occurred for low frequency words vs. 5.0% for 

high frequency words, F1 (1,40) = 55.26, p ≤.0001; F2 (1,92) = 33.74, p ≤.0001. A significant 

inhibitory effect was obtained for the factor syllable frequency. Responses were 35ms slower 

to words starting with a high frequency syllable than to those with low frequency initial 

syllables, F1 (1,40) = 15.54, p ≤.0003; F2 (1,92) = 10.67, p <.002. More errors (11.2% vs. 8.1%) 

were provoked by high syllable frequency than by low syllable frequency words, the effect 

was significant in the participant analysis, F1 (1,40) = 9.97, p <.004; F2 (1,92) = 3.67, p <.06.  
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There was a significant interaction between the two factors word frequency and syllable 

frequency in both the analyses on response latencies and error rates. The syllable frequency 

effect on response latencies was stronger for low frequency words than for high frequency 

words (63ms vs. 7ms), F1 (1,40) = 19.43, p ≤.0001; F2 (1,92) = 6.57, p <.02. Syllable frequency 

led to increased error rates only for low frequency words, F1 (1,40) = 21.05, p ≤.0001; F2 (1,92) 

= 5.84, p <.02.  

 

 

Table 4.12 

Mean Reaction Times (RT; in Milliseconds). Standard Deviation of Reaction Times (Std. 
Dev.; in Milliseconds) and Percentage of Errors for Words in Comparison 6 

 
Word Frequency 

  _____________________________________________________________ 
   High     Low   
  ___________________________ __________________________________ 
  RT Std. Dev. % error  RT Std. Dev. % error 
Syllable 
Frequency 
  ____________________________________________________________ 
High  670 124  4.6  782 163  17.9 
Low  663 104  5.4  719 125  10.9 

 

 

 

The results of Comparison 6 show that the syllable frequency effect interacts with word 

frequency, and is only robust in low frequency words. This fits with the results of previous 

studies (Conrad & Jacobs, 2004; Perea & Carreiras, 1998) showing a greater sensitivity to 

syllabic processing as word frequency diminishes. 
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General Discussion 

 
The results of the present study provide an innovative perspective on the role of 

syllables in visual word recognition, and more generally on the role of phonology in reading. 

Our study is based on a finding known as the syllable frequency effect, a phenomenon that 

has been replicated in several studies now in both Spanish and German (Álvarez et al., 2001; 

Carreiras et al., 1993; Conrad & Jacobs, 2004; Conrad, Stenneken, & Jacobs, 2006; Perea & 

Carreiras, 1998). It refers to the finding that polysyllabic words that have an initial syllable 

that is shared by many other polysyllabic words (i.e., a high syllable frequency) are harder to 

recognize than polysyllabic words that have initial syllables of low frequency. Comparison 1 

of the present study showed that syllable frequency effects in French are also apparent when 

applying this standard manipulation of syllable frequency (the only previous study of 

syllable frequency effects in French had used a higher frequency syllabic neighbor 

manipulation, Mathey & Zagar, 2002). Having established a basic syllable frequency effect in 

French, analogous to the effects previously reported for Spanish and German, Comparisons 

2-5 were designed to examine two outstanding issues concerning such effects:  

 

1) are they driven by orthographically defined or phonologically defined syllables?  

2) are they true syllabic effects and not simply the result of correlated changes in 

initial cluster (orthographic or phonological) frequency?  

 

Comparison 2 demonstrated a robust inhibitory effect for phonological syllable 

frequency in contrast with a null effect (a small trend to inhibition) on response latencies for 

orthographic syllable frequency. Comparison 3 confirmed this pattern applying a 

manipulation of the number of higher frequency syllabic neighbors. Again, syllable 

frequency only affected response latencies when the syllable was defined phonologically, 

and not when it was defined orthographically. Comparisons 4 and 5 allowed us to rule out 

the possibility that syllable frequency effects are in fact effects of initial letter or phoneme 

cluster frequency and nothing to do with syllables.  
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Comparison 4 found a robust effect of syllable frequency when the frequency of word 

initial letter clusters (bigrams and trigrams) was held constant.  

Comparison 5 showed that the frequency of a word’s two initial phonemes (biphone 

frequency), a variable that is strongly correlated with phonological syllable frequency 

especially for CV syllables, did not produce a significant effect on response latencies when 

syllable frequency was controlled for. Finally, Comparison 6 showed that syllable frequency 

effects were only robust in low frequency words. Therefore, the results of the present study 

suggest that syllable frequency effects indeed reflect processing of syllable-sized units during 

visual word recognition, and also suggest that these syllable-sized units are defined 

phonologically. The influence of such syllabically structured phonological processing is most 

evident during the recognition of low frequency words.  

 

A recent masked priming study by Álvarez, Carreiras, and Perea (2004) also provided 

evidence that syllable effects in visual word recognition are phonological rather than 

orthographic effects. Primes that shared their initial syllable with target words facilitated 

target word recognition even when the syllable has a different orthographic realization (e.g., 

the pronunciation of the Spanish orthographic syllables BI and VI is the same).  

Thus, the effects of syllabic manipulations with polysyllabic words add to the already 

vast literature showing phonological influences on visual word recognition (e.g., Ferrand & 

Grainger, 1992, 1994; Frost, 1998; Grainger & Ferrand, 1994; Lukatela, Eaton, Lee, Carello, & 

Turvey, 2002; Lukatela, Frost, & Turvey, 1998; Lukatela & Turvey, 1994; Perfetti & Bell, 1991; 

Pollatsek, Lesch, Morris, & Rayner, 1992; Van Orden, 1987; Van Orden; Johnston, & Hale, 

1988). These phonological influences can be accommodated by a model in which sublexical 

orthographic representations (i.e., letters, graphemes) are immediately converted into 

sublexical phonological representations (i.e., phonemes) during the processing of a printed 

word (Ferrand et al., 1996; Grainger & Ferrand, 1994; Jacobs, Rey, Ziegler, & Grainger, 1998). 

 

What the present results tell us is that this process of sublexical conversion from 

orthography to phonology also involves syllable-sized representations. The conversion of 

graphemes into phonological syllable representations could easily be achieved for most 

polysyllabic words in a language like French where inconsistency in the mapping of 

graphemes into phonemes is rather the exception than the rule (see Ziegler et al., 1996) and 
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where syllabic boundaries are clearly defined (see Ferrand et al., 1996; Kaye, & Lowestamm, 

1984; for syllabification algorithms in French, see Dell, 1995; Laporte, 1993).  

Thus, on presentation of a printed word, a sublexical orthographic code generates 

activation in the appropriate set of phoneme representations that then converge on syllabic 

representations. These syllable-sized units only receive bottom-up input via phoneme 

representations, and are therefore phonologically defined syllables. The syllable 

representations then control activation at the level of whole-word orthographic and 

phonological representations. On presentation of a polysyllabic word, all whole-word 

representations that are connected with the first syllable of the target word will therefore 

receive activation from that syllable representation and compete with the target word for 

recognition. This is how inhibitory effects of syllable frequency arise.  

 

Comparison 6 of the present study examined whether or not syllable frequency effects 

are influenced by word frequency. The results showed that the effect of phonological syllable 

frequency diminished with increasing word frequency. This finding fits with our 

phonological interpretation of syllable frequency effects. In models of visual word 

recognition that postulate a direct orthographic route to meaning and an indirect 

phonological route (e.g., Ferrand et al., 1996; Grainger & Ferrand, 1994; Jacobs, et al., 1998), it 

is clear that phonological influences will depend on speed of processing in the direct route. 

Orthographic processing may be too fast in high frequency words for the sublexical 

computation of phonology (including phonological syllables) to significantly influence a 

lexical decision response based on activity in whole-word representations (Grainger & 

Jacobs, 1996). 

 

Finally, to end on a methodological note, the present study tested a relatively large set 

of pre-planned orthogonal contrasts in a single experiment. This has the advantage of 

allowing comparisons of different experimental manipulations on the basis of data obtained 

from the same set of participants in the same testing conditions. It also has the advantage of 

examining effects involving quite small numbers of stimuli (due to the massive constraints 

on stimulus selection) embedded in a larger more heterogeneous stimulus set.  
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Given the evidence for effects of list composition on performance in standard word 

recognition tasks (e.g., Gordon, 1983; Lupker, Brown, & Colombo, 1997; Perea, Carreiras, & 

Grainger, 2004), large heterogeneous lists of stimuli have the advantage of reducing effects 

that are uniquely due to the repetition of stimuli from a particular experimental condition 

(via trial-to-trial adjustments in response criteria – Perea et al., 2004). It is obvious that 

“normal” extra-laboratory reading rarely involves the successive presentation of stimuli 

fulfilling the highly specific stimulus selection criteria that we typically apply in laboratory 

experiments. 

In conclusion, the present study provides further support in favor of a model of visual 

word recognition in which the rapid sublexical computation of phonology from orthography 

involves phonologically defined syllable-sized representations. These syllabic 

representations control activation at the level of whole-word representations such that high 

frequency initial syllables activate many such whole-word representations which then 

compete with the target word for identification 
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The question of whether a syllabic segmentation of orthographic word forms during 

visual word recognition was an automatic feature of visual word recognition was the most 

important motivation for the experimental work presented in this thesis.  

An inhibitory effect of syllable frequency in the lexical decision task obtained for 

several orthographies (Spanish, Carreiras et al., 1993, French, Mathey & Zagar, 2002, and 

German, Conrad & Jacobs, 2004) had suggested that this might be the case, but a reliable 

attribution of these empirical effects had remained difficult, because these studies had not 

allowed for a clear distinction between purely orthographic (without relation to syllabic 

structure) and truly syllabic processing as possibly underlying the empirical results. 

Furthermore, the question of whether an assumed syllabic processing would relate to 

phonological or orthographic syllables couldn’t either be answered by these studies. 

Several experiments presented in this dissertation were designed to further examine the 

nature of the syllable frequency effect during the process of silent reading and they provide 

clear evidence regarding these two outstanding questions: 

 

1. Data obtained for the Spanish and French orthography showed that the inhibitory 

initial syllable frequency effect in lexical decision can be obtained when controlling for the 

frequency of the letter cluster forming the initial syllable (see Experiment 2 of Chapter 3 and 

Comparison 4 of Chapter 4). The effect, therefore, has to relate to the processing of syllabic 

units. The facilitative effect of initial bigram frequency controlling for initial syllable 

frequency obtained for the Spanish orthography (see Experiment 3 of Chapter 3) underlines 

the distinctive character of purely orthographic processing on the one hand and syllabic 

processing on the other.  
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It appears that syllabic units in contrast to orthographically defined letter clusters as 

bigrams strongly mediate the activation of word candidates competing with each other 

during visual word recognition. The processing of bigrams rather appears to be an inherent 

feature of prelexical processing.  

 

2. Data obtained for the French orthography where particular phonological syllables 

can have different spelling realizations allows attributing the syllable frequency effect in 

lexical decision to the processing of phonological syllables (see Comparisons 2 and 3 of 

Chapter 4). Comparison 6 of Chapter 4 revealed that syllabic processing as reflected by the 

syllable frequency effect diminishes with increasing word frequency. 

 

Taken together, these empirical results seem to offer the following conclusion: 

Phonological encoding during the process of silent reading involves an automatic 

syllabic segmentation of orthographic word forms into their phonological syllables - at least 

when a fast and direct access to a high frequency orthographic word form via purely 

orthographic processing is not sufficient for lexical access. 

I am tempted to state that the experiments presented in this dissertation therefore 

provide an affirmative answer to the question of whether phonological syllabic segmentation 

is an important feature of visual word recognition. Yet, what is far less clear is how this 

syllabic segmentation is achieved by the reading system. 

Event related potential studies revealing the time course of visual word recognition 

could offer useful evidence regarding the relation between orthographic and syllabic 

processing. Two recent ERP-studies distinguished between an early (prelexical) effect of 

initial syllable frequency at around 200 ms and a late (lexical) effect around 400 ms (Barber et 

al., 2004; Hutzler et al., 2004). An even earlier effect of initial bigram frequency with an onset 

at 100 ms was reported by Hauk et al. (2006). Whether the early “syllabic” effects in the 

studies of Barber et al. (2004) and Hutzler et al. (2004) can really be attributed to prelexical 

processing of syllables or whether they rather have to be seen as resulting from purely 

orthographic (non syllabic) processing, is difficult to determine, because the natural 

confound between syllable- and letter cluster frequency had not been controlled for in these 

studies.  
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On the other hand, it is also unclear whether the effect of initial bigram frequency with 

initial syllable frequency controlled for reported in Chapter 3A where initial bigrams always 

formed the initial syllables of targets has a relation to syllabic processing – with high 

frequency bigrams facilitating the syllabic parsing process – or whether it is best understood 

as a phenomenon of purely orthographic processing in a more restricted way.  

A differential examination of the respective onsets of effects of  

a) general orthographic prelexical processing,  

b) encoding of basic phonological units, and  

c) encoding of phonological syllabic units  

and the respective durations of these phenomena during the time course of visual word 

recognition as reflected by the ERP-signal would be a useful aim for future research.  

 

Another main research goal is the implementation of a functional computational model 

that could account for the processing of polysyllabic words. 

The evidence for syllabic processing in visual word recognition presented in this 

dissertation shows that the simple extension of the principles of modelling monosyllabic 

word processing to the processing of words of increased length would not be sufficient to 

account for the processing of polysyllabic words - differing qualitatively from monosyllabic 

word processing. A theoretical proposal on how the inhibitory effect of syllable frequency 

could arise in an interactive activation model of visual word recognition has already been 

made by Carreiras et al. (1993) and Perea and Carreiras (1998) and some specific implications 

for computational modelling arising from the new empirical evidence presented have been 

outlined in this dissertation (see Chapters 2-4). However, the basic problem regarding a 

successful simulation of syllabic processing does not consist in implementing an interactive 

activation model with a layer of syllabic representation units. The crucial question, instead, is 

how these syllabic units would become activated as a function of the model’s processing of 

the orthographic input. In other words, what would be the syllabic parsing mechanism of 

such a model? 

Seidenberg (1987; 1989) had made a straightforward proposal on how syllabic units 

could emerge out of the orthographic input via orthographic processing: whenever a very 

low frequency bigram (relative to the surrounding bigrams) would be found, this could be 

“interpreted” as the boundary between two sublexical units.  
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But it was shown in Experiment 1 of Chapter 3 that the presence or absence of a bigram 

trough at the syllable boundary did not have any influence on syllabic processing as 

reflected by the strength of the syllable frequency effect – at least in Spanish (but see 

Doignon & Zagar, 2005; Mathey et al., 2006, for different proposal regarding the French 

orthography).  

Based on an extensive analysis of all bisyllabic words included in the database for the 

Spanish language (Sebastián-Gallés et al., 2000), I have formulated an alternative proposal on 

how a correct syllabic segmentation in this language could be achieved relying on a basic 

encoding of letters or graphemes as consonants and vowels on the one hand and phonotactic 

regularities on the other (see Chapter 4, see also Conrad et al., submitted). According to the 

principles of sonority hierarchy and of a maximum sonority contrast at the syllable 

boundary, which perfectly describe the syllabification of bisyllabic Spanish words, assigning 

a single consonant occurring between two vowels to a syllabic onset and analyzing the 

sonority relation within a multiple consonant cluster would suffice for a correct 

syllabification of all bisyllabic Spanish word forms. 

Even if some empirical data comparing lexical decision latencies for words differing in 

the complexity of syllabic structure seems to support this assumption (see Conrad et al, 

submitted manuscript), clearly more experiments have to be conducted in order to verify if 

and to what extent readers do in fact rely on these principles of syllabification when 

processing polysyllabic Spanish words. The outcome of such experiments could be used for 

implementing a computational model with a syllabic parsing mechanism. Such a model 

might well be able to account for polysyllabic word processing in an orthography with such 

transparent syllabic structure as Spanish. But the question arises of whether such a model 

would also prove to be capable of sufficiently simulating empirical affects obtained in other 

orthographies with more complex and less transparent syllabic structure? 

Extensive analyses of the respective databases would be a first necessary step for 

establishing potential regularities – including their limitations - of syllabification in these 

languages. For instance, it is evident that – even if the principle of sonority hierarchy 

characterizing syllabification can be seen as universal – the simple and transparent rules 

characterising syllabification of bisyllabic Spanish orthographic word forms will not 

sufficiently describe syllabification in other orthographies.  
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E.g., encoding the letter N as a consonant and assigning it accordingly to syllable onset 

or coda would often be misleading in French, where this letter can belong to a nasal vowel’s 

orthographic representation. In German, assigning a single consonant letter occurring 

between to vowels within a bisyllabic word automatically to a syllabic onset, would result in 

a syllabic parsing error for many morphologically complex bisyllabic words, even if this 

letter represents a single consonant grapheme, because morphological structure of bisyllabic 

German words predominantly affects whole words’ syllabification even if this results in a 

violation of syllabic sonority hierarchy.  

A roadmap towards developing a computational interactive activation model that 

might successfully account for syllabic processing in several orthographies should include 

the following steps: 

 

1.) Implementation of a Null-model - enabled to process orthographic word forms of 

different (and increased) word lengths but not containing syllabic representations 

(see the extension of the MROM used for simulating the empirical results presented 

in Chapter 3). Such a model should probably fail to account for any effects 

specifically related to syllable frequency or syllabic structure. 

2.) Implementation of different model variants containing syllabic representations. These 

model variants would allow comparing the outcome of different types of syllabic 

processing – distinctively operationalized within the architecture of a localist-

connectionist model - corresponding to different theoretical views on the nature of 

syllabic processing as arising  

a) via top down activation of syllabic units from phonological whole word 

representations (see Levelt, Roelofs, & Meyer, 1999). 

b) via bottom up activation of syllabic units from lower level representations of 

graphemes and phonemes following the principles of interactive activation. 

c) via a rule base syllabic parsing mechanism reflecting either global principles 

of syllabification (sonority hierarchy) or language specific regularities of 

syllabification and phonotactics. 

3.) Parameter-tuning and comparison of the different model variants with regard to the 

outcome of empirical studies. 
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4.) Cross validation of the optimal model variant with classical findings of visual word 

recognition. Before proposing a new powerful model for the processing of 

polysyllabic words, it would be necessary to show that such a model would still be 

able to account for more basic effects of visual word recognition, effects that existing 

models have already successfully simulated. E.g., the word superiority effect 

(Grainger & Jacobs, 1994), the word frequency effect (Grainger & Jacobs, 1996), effects 

of neighbourhood density and frequency (Grainger & Jacobs, 1996) or the 

pseudohomophone effect (Ziegler et al., 2001).  

 

A coordinated procedure within a cross linguistic computational modelling approach 

investigating language specific features of syllabic processing would offer the interesting 

perspective to use a specific model variant that has proven to offer a satisfying account of 

syllabic processing in a particular language as a Null-model for syllabic processing in 

another language. For instance, assigning syllabic representations with a resting level of 

activation corresponding to syllable frequency might enhance syllabic parsing in 

orthographies with less transparent syllabic structure.  

With regard to the languages used for the experiments presented in this dissertation, 

another specific prediction for the German orthography would be the following: A model 

with a phonology-based syllabic parsing mechanism but no morphological representation 

units could most probably not sufficiently account for the processing of morphologically 

complex bisyllabic German words. Generally, and in contrast to the relation between 

orthographic and syllabic processing, the relation between morphological and syllabic 

processing has not been examined in the experiments contained in this dissertation. This 

does not present a problem for the Spanish and French data, because bisyllabic words – 

exclusively being used in all of the presented experiments - in these languages do generally 

not show a high degree of morphological complexity and syllable boundaries in these 

languages generally less often coincide with morpheme boundaries than in German. And 

they almost never do so in the case of bisyllabic words. In Spanish, for instance, an “o” or an 

“a” is regularly added to a noun or adjective’s stem indicating a word’s grammatical gender. 

Therefore, – besides a few monosyllabic exception words like PAN (bread) – all Spanish 

nouns and adjectives are at least bisyllabic. Prefixed Spanish words therefore have to 

comprise at least three syllables.  
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All regular Spanish verb forms are at least bisyllabic and typically a Spanish word’s 

stem is the initial syllable plus one letter (in the case of non prefixed words). The same is true 

– although to a lesser extent - for the French orthography. In any case, prefixed bisyllabic 

French words had not been used as stimuli for the experiments presented in Chapter 4. 

Therefore a confound between syllabic and morphological processing can be excluded for 

the experiments presented in this dissertation that were conducted using the Spanish or 

French language (see also Álvarez et al., 2001, for contrasting effects of syllable frequency 

and effects of the frequency of the BOSS in Spanish, see as well Domínguez, Alija, Cuetos, & 

de Vega, 2006, for differential effects of prefixes and other initial syllables without specific 

morphological status).  

Also for German, where syllable boundaries in bisyllabic words often coincide with 

morpheme boundaries, an inhibitory effect of initial syllable frequency has already been 

obtained using stimulus material where initial syllables never coincided with morphemes 

(Conrad & Jacobs, manuscript in preparation). This shows that syllabic processing in 

German cannot be understood as a by product of morphological processing, but the general 

structure of the German language allowing for an – in principle – indefinite creation of new 

words via the combination of single morphemes makes an important role of morphological 

processing in visual word recognition in German very plausible (see Schriefers, Jescheniak, & 

Hantsch, 2005; Zwitserlood, 2004; Zwitserlood, Bölte, & Dohmes, 2000, Dohmes et al., 2004, 

for evidence of morphological processing in German speech perception and production). 

Note that the construction of compound words like the German words HAUSTÜR (front 

door), BRIEFKASTEN (mailbox) is not used to express the same relation between two 

concepts in Roman languages; the corresponding expressions in French or Spanish would 

connect single words via a preposition: e.g., “PORTE DE LA MAISON, BOITE AUX 

LETTRES; or PUERTA DE LA CASA (BUZON, the Spanish translation of mailbox is a single 

bisyllabic word, but not a compound).  

From a long term perspective, a comprehensive future model of polysyllabic word 

recognition would never be complete without taking into account the role of morphological 

processing (see Giraudo & Grainger, 2003; Reichle & Perfetti, 2003; Schreuder & Baayen, 

1995, see also Gonnerman, et al., 2007, for computational models including morphological 

processing). 
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But even when trying to simulate only syllabic effects arising during the processing of 

bisyllabic words - which seems to be the next logical step for developing a computational 

model of polysyllabic word processing - the scope of such a model for the German language 

would most probably be limited, if such a model would not include a processing device for 

the specific interplay between syllabic and morphological processing in the case of syllables 

coinciding with morphemes. 
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Stimulus MaterialsStimulus MaterialsStimulus MaterialsStimulus Materials    

Table A 1 

Words used in Experiments 1 (Lexical Decision Task; LDT) and 2 (Naming) of Chapter 1 
together with their corresponding mean correct response latencies (RT; in Milliseconds) 
and error percentages (%Err) 

 

Words with high Word Frequency 

High initial Syllable Frequency   Low initial Syllable Frequency 

  LDT  Naming    LDT  Naming 
 
  RT %Err RT %Err    RT %Err RT %Err 
 
BEGINN 560 07 523 06  BAUER 604 04 523 03 
BESUCH 499 00 511 00  BESSER 578 04 507 03 
BEVOR 609 07 554 12  BILDEN 581 04 544 00 
BEZIRK 696 21 615 06  BITTEN 580 00 536 03 
BISHER 609 00 570 00  BODEN 554 04 531 00 
DAHER 570 07 516 09  DENKEN 555 00 522 03 
DAVON 646 11 538 12  DIREKT 574 00 554 03 
DIENEN 632 00 613 00  DOLLAR 596 00 533 00 
GEFAHR 573 00 557 03  GELTEN 602 00 536 00 
GENUG 569 04 527 03  GRENZE 550 04 573 03 
GEWALT 531 00 510 03  GRUPPE 604 00 570 03 
HABEN 561 00 550 00  HANDEL 515 00 564 00 
HINAUS 643 11 560 12  HILFE  569 00 508 03 
HINTER 566 00 525 09  HOTEL 539 00 519 03 
JEDOCH 579 07 558 03  JUNGE 548 00 509 03 
KOMMEN 551 00 561 00  KOSTEN 551 00 533 03 
MACHEN 567 00 517 03  MONTAG 530 00 529 03 
MITTE 535 00 488 06  MUSIK 550 04 524 03 
MITTEL 576 00 509 03  MUTTER 541 00 515 06 
NATUR 575 00 525 06  NENNEN 585 04 539 03 
RECHEN 658 04 556 00  RUFEN 613 00 544 00 
REDEN 568 00 546 03  RUHIG 535 00 575 00 
SACHE 593 00 576 03  SELBER 617 04 561 03 
SOGAR 610 11 573 03  SETZEN 596 00 586 12 
SOLDAT 548 00 574 03  SORGE 582 00 561 06 
SOWOHL 581 00 574 03  SUCHEN 523 00 569 03 
WASSER 526 00 527 03  WARTEN 545 04 511 00 
WIRKEN 577 00 565 06  WARUM 567 00 516 03 
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Table A 1 continued 

 

Words with low Word Frequency 

High initial Syllable Frequency   Low initial Syllable Frequency 

  LDT  Naming    LDT  Naming 
 
  RT %Err RT %Err    RT %Err RT %Err 
 
BECHER 575 00 540 00  BAGGER 647 07 566 00 
BEGABT 624 04 547 09  BARON 696 11 559 03 
BEINAH 685 11 574 06  BENGEL 590 07 539 06 
BELEBT 632 00 589 00  BERGAB 733 11 591 15 
BELEG 673 00 543 03  BONBON 653 00 561 09 
DATIV 709 11 571 03  DIPLOM 580 00 599 00 
DERBY 814 50 618 09  DOPPEL 559 00 530 03 
DERLEI 828 54 646 03  DOSIS 688 07 535 00 
GEHIRN 575 04 531 03  GEISEL 576 00 547 06 
GELEIT 708 14 597 03  GIEBEL 713 04 611 06 
GENICK 781 21 594 03  GIGANT 668 14 608 03 
GESELL 687 11 606 06  GOTIK 678 11 559 00 
HAPERN 744 36 577 12  HEKTIK 683 07 573 06 
HAREM 856 39 613 03  HEROLD 728 25 550 15 
JAWORT 681 04 557 03  JAUCHE 662 07 561 03 
KOMMA 617 00 583 03  KOBOLD 666 04 591 03 
MAGIE 617 07 543 09  MOLLIG 630 00 545 00 
MAGNET 630 07 540 03  MUFFIG 639 04 561 03 
MAKEL 635 00 557 06  MUSKEL 577 00 538 09 
NAGELN 665 00 581 03  NOTAR 592 00 534 09 
REGUNG 695 07 597 00  RANZIG 685 11 573 00 
REPORT 658 11 580 00  ROSIG 597 04 569 06 
SALAT 546 00 539 03  SALTO 682 07 581 03 
SATAN 623 07 575 06  SENKE 610 00 570 03 
SELIG 559 04 584 03  SEUCHE 606 00 575 00 
SOPRAN 792 29 648 03  SUPPE 573 04 565 03 
WIRBEL 566 00 558 00  WALZE 579 00 531 00 
WIRTIN 709 11 584 06  WIMPER 624 04 562 00 
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A-IV 

Table A 2 

Nonwords used in Experiments 1 (Lexical Decision Task; LDT) and 2 (Naming) of 
Chapter 1 together with their corresponding mean correct response latencies (RT; in 
Milliseconds) and error percentages (%Err) 

 
High initial Syllable Frequency   Low initial Syllable Frequency 

  LDT  Naming    LDT  Naming 
 
  RT %Err RT %Err    RT %Err RT %Err 
 
BEILER 914 40 593 06  BAGZEN 638 00 633 00 
BEIMA 690 00 586 00  BAPOT 632 00 648 12 
BEMUD 638 04 585 06  BASJE 622 04 602 09 
BETOL 653 00 585 00  BIPIK  603 00 645 45 
BEVIS 661 04 564 13  BRUGIL 642 00 680 18 
BISSAK 687 04 587 12  BUWUT 656 07 624 17 
DASAM 756 08 563 03  DAKWAK 636 00 666 15 
DAVIS 890 39 539 09  DOTPOD 692 00 615 13 
DERDIR 641 04 638 10  DRUPIR 656 04 676 29 
DIEBUZ 618 00 631 00  DUFSAM 703 04 625 03 
DIEPOM 732 11 673 08  DUSGUS 611 04 621 03 
EINMUD 841 25 583 06  EHFAM 660 04 642 13 
EINRIM 704 00 651 21  EHJAK 558 00 688 03 
EINZEN 831 25 581 03  EHVET 580 00 668 14 
ENTGOS 662 00 583 06  ELGOS 615 07 594 00 
ENTLOG 726 04 590 03  ELGUS 598 00 585 03 
ENTNEM 707 07 596 19  ELHIR 602 00 653 12 
ENTSIR 663 00 632 13  ELKUM 619 00 582 03 
ENTZIV 613 00 636 19  ENFUS 631 00 581 19 
GEBOP 617 00 621 12  GEKZEN 672 04 632 14 
GEGOS 663 04 591 03  GEMJOK 568 00 612 10 
GEJAK 569 00 610 03  GITOL 608 00 670 10 
GERIM 657 04 607 13  GOFAT 585 00 579 06 
GEVID 598 00 604 03  GOVID 631 04 581 03 
GEVIT 606 00 588 03  GUSMOG 586 00 603 09 
HAGOS 633 04 569 09  HAFZU 653 04 618 13 
HAPES 670 00 556 12  HENON 629 00 602 00 
HINLA 634 04 584 03  HIMPES 670 00 556 06 
HINRUB 750 00 587 09  HUKBUK 597 04 639 13 
INGOR 796 08 562 00  ISGID  594 00 599 06 
INLOD 602 00 616 09  ISVIS  574 00 631 03 
INRIM 632 04 586 06  ISWAK 556 00 562 00 
JAFAM 617 00 605 03  JAKDAK 575 00 589 13 
JALIZ  618 04 623 06  JAKPES 571 00 627 06 
JAPIR  652 00 565 03  JARFAM 606 00 625 29 
JAVIS  649 04 564 06  JUMGLU 596 04 694 27 
JEVIT  568 00 567 03  JUNNIT 611 00 582 03 
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Table A 2 continued 

 
KOMSI 655 04 620 09  KELIN 733 12 614 19 
KOMVIS 704 04 615 09  KUGZIV 588 00 714 12 
LEVET 670 04 584 00  LAVOI 587 00 577 09 
NEUGA 611 07 564 00  NEFMIT 629 00 659 03 
NEUKUM 636 07 575 03  NEPMIT 614 00 650 21 
NEUSI 644 00 555 12  NETSI  616 00 585 12 
NEUZI 609 00 574 03  NULFON 617 00 604 19 
PROBUG 699 00 682 14  PARGUS 706 04 624 06 
PROGID 676 04 694 17  PERPET 659 08 649 07 
PROIST 791 04 715 31  POKPON 712 00 674 41 
PROPOM 720 00 681 19  PONLAK 656 00 674 10 
RETEI 676 00 663 23  REGTEI 703 00 665 14 
UMHUB 669 04 590 03  ULMUD 640 00 590 12 
UMJAK 596 00 588 03  ULPET 607 04 567 00 
UMNOT 817 42 637 00  ULRUF 668 00 610 06 
UMTAM 659 00 644 03  URBID 664 15 566 12 
UMVER 652 00 595 03  URDAN 622 04 606 03 
ZULOG 683 00 663 00  ZENBUS 655 00 649 09 
ZUWAK 617 00 610 10  ZODIR 603 04 609 03 
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Table B 1 

Words used in Experiment 1 (Chapter 2) together with their corresponding mean correct 
response latencies (RT; in Milliseconds) and error percentages (%Err) 

Experiment 1 A      Experiment 1 B 

 

Initial Token Syllable Frequency   Initial Type Syllable Frequency 

High   Low    High   Low 

 RT %Err   RT %Err    RT %Err   RT %Err 

 
luna 620 00 bebé 602 00  botín 769 03 furia 633 00 
mural 758 03 beca 655 03  botón 609 03 furor 780 21 
muro 702 11 bella 651 03  labio 664 03 fusil 736 03 
musa 733 11 belén 668 00  labor 714 00 helio 901 42 
mutuo 820 11 beso 594 03  lacio 839 32 hilo 731 06 
nota 648 05 betún 845 22  latín 637 03 honor 701 00 
vaca 620 06 burra 732 11  ligue 740 09 horror 704 00 
vago 695 08 fecha 643 00  limón 631 03 hotel 632 03 
vagón 732 14 feria 645 06  morro 728 12 humor 632 03 
valla 768 12 feroz 685 06  pino 648 00 junio 664 03 
valle 686 03 feto 669 00  piso 608 00 llano 668 03 
vano 745 24 foco 647 09  recién 781 03 lleno 661 06 
vapor 681 00 foro 698 15  robot 678 00 necio 779 26 
vara 914 28 forro 741 23  rosa 602 03 nene 707 06 
varón 689 06 fosa 723 09  rosal 701 08 neto 845 36 
vaso 662 00 foto 621 06  tablón 668 00 nube 667 00 
vela 648 03 goma 668 00  tabú 712 03 nuca 690 14 
velar 715 03 gorra 594 08  taco 686 03 tubo 640 00 
vello 730 16 gota 628 06  tacón 676 06 tumor 734 00 
veloz 679 00 jamón 640 00  talla 684 06 turrón 661 00 
vena 716 05 jarra 673 06  talle  62 vocal 620 03 
venus 724 06 pila 755 03  taller 662 00 voraz 814 33 
vera* 776 55 talón 767 09  tapiz 727 03 voto 655 05 
veraz 848 08 tarro 698 08  tasa 680 09 zorro 617 03 
*This word entered the analyses, because its corresponding error percentage has been 
below the exclusion criterion of 50 percent before the rejection of outlier response 
latencies. 
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Table B 2 

Words used in Experiment 2 (Chapter 2) together with their corresponding mean correct 
response latencies (RT; in Milliseconds) and error percentages (%Err) 

Experiment 2 A      Experiment 2 B 

 

Number of Higher Frequency syllabic Neighbours controlled for 

Initial Token Syllable Frequency   Initial Type Syllable Frequency 

High   Low    High   Low 

 RT %Err   RT %Err    RT %Err   RT %Err 

 
debut 835 29 bebé 584 00  barrio 666 03 furia 633 00 
helio 901 41 bello 734 00  bola 615 00 fusil 736 03 
licor 706 08 belén 660 00  botín 697 03 helio 852 44 
lila 832 06 beso 598 03  botón 609 03 hilo 735 06 
limón 635 03 betún 813 21  labio 664 03 honor 697 00 
lino 748 08 feroz 685 06  labor 672 00 horror 709 00 
lirio 780 14 feto 669 00  latín 636 03 hotel 632 03 
mono 739 00 foca 628 03  licor 688 08 humor 632 03 
mural 758 03 gorro 614 00  limón 631 03 julio 636 03 
muro 702 11 pila 738 03  pino 648 00 llano 650 03 
musa 721 11 pino 648 00  piso 608 00 lleno 661 06 
mutuo 820 11 rural 709 11  recién 728 03 neto 847 37 
nasal 677 03 tablón 668 00  salud 611 03 nube 667 00 
natal 735 06 tabú 712 03  solar 703 03 nudo 746 08 
rara 715 03 tacón 676 06  taco 661 03 nulo 796 26 
tenis 621 03 talle  62  tacón 676 06 tubo 640 00 
tiro 641 11 talón 733 09  talla 684 06 tumor 731 00 
tirón 710 06 tapiz 703 03  talle  62 turrón 661 00 
vela 661 03 tarro 698 08  taller 662 00 vocal 620 03 
vera* 829 51 voto 655 05  tasa 674 09 voto 655 05 
*This word entered the analyses, because its corresponding error percentage has been 
below the exclusion criterion of 50 percent before the rejection of outlier response 
latencies. This was not the case in Experiment 3. 
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A-VIII 

Table C 1 

Word Stimuli used in Experiment 1 (Chapter 3); corresponding mean correct Response Latencies (RT; in 
Milliseconds) and Percentage of Errors (%Err) 

 

     Bigram Trough at the Syllable Boundary 

Yes        No 

___________________________________________ ____________________________________________ 

Frequency of the first Syllable    Frequency of the first Syllable  

High    Low    High    Low   

 
  RT %Err   RT %Err   RT %Err   RT %Err 

 
ansia  919 26 asma  880 10 antro  1084 34 asta  1018 67 
desliz 950 21 brava  830 12 credo  942 16 breva  982 25 
forja  896 17 bruma  826 09 crema  706 00 chelo  930 67 
hebra  979 24 bruta  712 04 fino  751 11 clero  801 07 
letal  837 05 buda  825 27 heno  951 60 fobia  727 02 
lila  778 11 cheque 830 07 hombro 703 07 foca  662 04 
litro  748 02 choque 799 02 honor  732 04 foco  717 00 
lujo  678 00 duelo  714 04 horror  725 00 folio  758 02 
mulo  852 16 foto  686 07 lacia  911 74 foro  728 13 
muro  780 07 frita  794 09 lana  680 02 forro  773 05 
musa  786 09 furor  795 04 liso  666 00 foso  774 21 
plaga  805 04 giro  742 00 malla  995 17 freno  677 09 
plagio 1015 11 grito  664 02 manual 741 02 fresa  705 04 
proa  947 30 gula  898 30 meca  972 45 genial  700 07 
progre 1173 93 humor  630 00 nasa  881 22 genio  676 04 
puma  715 05 kilo  746 02 noble  696 04 goce  904 31 
quema 775 05 manga  846 02 plana  741 16 gorro  663 00 
quieta 854 00 nube  700 02 plano  675 02 junio  728 02 
rojo  665 00 nudo  762 02 prosa  904 07 manta  787 02 
rota  777 04 nula  817 10 pueril  958 48 piano  660 04 
sede  934 30 nulo  844 14 recia  1074 34 plena  716 13 
suma  760 07 ruda  896 27 roce  805 09 tinta  658 00 
trapo  779 07 rumor  727 05 socia  894 40 vocal  719 00 
vate  846 84 rural  797 02 tambor  768 02 yegua  955 05 
veda  833 76 salva  840 13 vaca  666 02 yema  858 09 
velo  792 09 water  936 68 valla  877 08 yeso  762 07 
veto  905 65 zumo  688 00 vano  845 11 yodo  963 15 
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Table C 2 

Word Stimuli used in Experiment 2 (Chapter 3); corresponding mean correct 
Response Latencies (RT; in Milliseconds) and Percentage of Errors (%Err) 

 
High Frequency of the first Syllable  Low Frequency of the first Syllable 

  Mean RT %Err     Mean RT %Err 

 
baba  826  02   ciclo  727  02 
babor  1058  58   ciclón  762  03 
bala  884  07   cifra  757  02 
ballet  791  21   cima  740  00 
balón  715  13   cita  690  00 
banal  954  57   doblez  871  17 
barra  718  07   dote  822  32 
barril  779  02   dócil  796  05 
barro  737  00   dólar  739  05 
bata  773  00   fuga  684  05 
mecha  890  00   fugaz  738  02 
mechón 788  07   furia  715  02 
mella  1008  62   furor  771  04 
melón  714  02   fusil  731  07 
mesón  870  09   nube  681  02 
meta  718  04   nuca  805  16 
metal  708  02   nudo  752  02 
metro  720  00   pico  696  07 
nasa  895  22   pila  766  00 
nasal  744  02   pilar  806  03 
natal  777  11   pino  663  07 
nato  961  42   pipa  726  00 
naval  816  05   pito  752  15 
nave  780  02   piña  633  02 
nazi  905  31   quicio  823  42 
nácar  921  24   tabla  724  02 
sabor  663  00   tablón  699  00 
saco  748  02   tabú  764  02 
sacra  872  44   taco  692  00 
saga  944  29   tacón  710  07 
sagaz  965  41   taller  658  04 
sana  720  07   talón  761  09 
sapo  675  04   tapa  637  00 
saque  818  26   tapiz  735  02 
savia  930  20   tarro  775  10 
saña  1049  68   tasa  691  14 
 



Visual recognition of complex words: The role of syllabic units 
A cross-linguistic approach 
___________________________________________________ 

 
 
A-X 

Table C 3 

Word Stimuli used in Experiment 3 (Chapter 3); corresponding mean correct 
Response Latencies (RT; in Milliseconds) and Percentage of Errors (%Err) 

 
High Frequency of the first Bigram   Low Frequency of the first Bigram 

  Mean RT %Err     Mean RT %Err 

 
cuba  743  05   daga  835  28 
cubo  673  03   dama  690  03 
culo  674  00   danés  924  29 
cuna  730  05   dato  792  18 
cupo  885  17   daño  694  03 
cura  708  00   hebra  1007  35 
miga  789  24   hedor  954  27 
mili  813  73   heno  986  44 
milla  900  22   hilo  724  03 
millar  841  12   himen  1117  49 
millón  696  03   hipo  835  22 
mimo  908  25   hito  941  32 
mina  870  16   lidia  810  19 
mirón  830  05   ligue  796  08 
mitin  1242  70   lino  729  10 
pudor  746  00   lirio  909  14 
puma  814  20   liso  655  05 
puro  740  03   litio  1012  39 
puta  706  05   locuaz  916  35 
puñal  743  03   lona  801  24 
puño  722  00   losa  894  21 
tajo  789  28   lote  775  11 
tapia  848  23   líder  713  00 
tapón  698  00   necio  904  21 
taza  659  03   neto  901  26 
tibio  843  17   rabia  717  03 
tigre  694  03   radar  776  13 
tilo  854  59   rama  762  03 
timo  799  18   rapaz  899  17 
timón  818  08   raso  873  24 
tino  842  36   rata  640  00 
tiro  803  11   rayo  778  11 
tirón  743  06   raza  693  08 
tiza  723  05   raíz  717  03 
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Table D 1 

Words used in Comparison 1 (Chapter 4) with their corresponding mean Response Latencies (RT; in 
Milliseconds) and Percentages of Errors (%err) 

 
High Syllable Frequency     Low Syllable Frequency 

 RT %err   RT %err  RT %err   RT %err 

 

colombe 697 00 milice  784 29 biceps 747 15 girafe  675 02 
comète 721 10 milliard 727 00 billard 678 10 gorille  723 05 
coriace 840 20 millième 753 05 binette 868 37 halage   88 
correct .641 00 mineur 680 02 biseau  51 hamac  726 10 
courroie 763 10 minime 971 24 burin 891 39 hameau 768 07 
courroux 742 34 minium  71 bécasse739 00 hareng  715 22 
donneur 680 02 minois  824 24 dallage 49 homard 702 12 
dorure 929 27 minou  834 12 damas  76 juteux  852 20 
faillite 825 22 morose 864 29 danois 748 20 loriot   80 
falot   88 morue  753 02 danseur617 00 neveu  714 07 
famine 715 07 panache 766 10 femelle691 02 nigaud  773 12 
fanal   73 parade  714 07 fenouil 757 20 nomade 775 15 
fanion  51 paraphe  71 fourreau725 20 pileux   46 
farouche 772 07 parrain 685 02 féroce 690 02 pillage  789 07 
jarret  781 12 parure  764 12 gaillard772 17 pilote  699 12 
maillot 645 02 penaud  49 galette 706 02 pilule  684 20 
malice 665 07 semoule 682 02 galoche797 29 pinède  799 27 
mamelle 775 07 serein  775 07 galop 659 10 pirogue 829 20 
manette 853 22 serin  828 34 galère 647 02 piscine  607 00 
maniaque 754 02 sommier 719 05 gamelle763 05 romance 652 02 
manioc 847 41 sonate  798 39 garrigue912 12 tomate  573 05 
manège 653 02 vinyle  839 37 garrot 796 15 tonique 668 02 
marelle 860 27 viseur  716 15 gavroche847 20 tonneau 736 00 
marraine 761 12 visière  750 07 gigogne 46 torride  696 05 
microbe 758 10 visuel  691 00 gigot 731 10 vorace  803 10 
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Table D 2 

Words used in Comparison 2 (Chapter 4) with their corresponding mean Response Latencies (RT; in 
Milliseconds) and Percentages of Errors (%err) 

Comparison 2A      Comparison 2B 

 

Orthographic Syllable Frequency    Phonological Syllable Frequency 

High    Low    High    Low 

  RT %err   RT %err   RT %err   RT %err 

 

caillou 707 00 aisance 811 12 anchois 772 07 besace  791 22 
camion 590 00 bolide  840 32 bolide  839 32 besogne 765 12 
canal  612 05 bonnet  693 07 bonnet  693 07 fortune 628 00 
dollar 628 05 cellule  640 05 cachot  782 05 furie  752 05 
donnée 601 00 chorale 723 15 caillou  694 00 fusil  636 00 
dorure 884 27 cigogne 774 10 chorale 723 15 fusion  663 02 
microbe 725 10 ciseau  776 07 cigogne 772 10 fusée  660 05 
milice 784 29 forum  738 07 ciseau  756 07 hussard 815 34 
million 709 02 forêt  620 00 haleine 705 12 liseron  822 41 
minet 740 22 fusil  663 00 hommage 659 00 musée  620 00 
minime 948 24 fusion  685 02 honneur 618 00 oubli  625 00 
minium . 71 fusée  675 05 horreur 652 02 perron .  46 
minois 816 24 haleine 705 12 kayak  798 24 placard 641 02 
minou 819 12 hommage 654 00 message 660 02 planeur 737 10 
minuit 644 07 honneur 606 00 mécène 880 41 planète 613 00 
minute 615 02 horreur 652 02 mégot  678 05 purée  629 00 
misère 653 00 kayak  795 24 méthode 619 05 tennis  604 00 
mécène 895 41 liseré  855 34 péché  625 05 terrain  668 02 
mégot 704 05 livret  657 07 pétoche 901 29 terreau  710 27 
méthode 619 05 livrée  703 07 rameau 715 05 terreur  640 02 
perron . 46 légume 601 00 ramure .  46 terrier  732 05 
rameau 710 05 oubli  644 00 rappel  616 02 terrine  654 07 
rappel 616 02 purée  640 00 raton  883 29 terroir  639 00 
raton  846 29 péché  625 05 sauveur 687 02 ticket  601 02 
saillie 783 22 pétoche 867 29 scierie  825 37 tison  798 32 
salade 632 02 sauveur 662 02 silex  750 10 tissage  702 05 
saline . 49 ticket  601 02 sillage  783 17 tomate  573 05 
salive 652 02 tisane  683 07 sillon  719 07 verrou  669 05 
salon  656 02 tison  817 32 sirop  613 05 verrue  666 02 
serrure 654 05 tissu  631 02 sûreté  639 00 vertige  638 00 
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Table D 3 

Words used in Comparison 3 (Chapter 4) with their corresponding mean Response Latencies (RT; in 
Milliseconds) and Percentages of Errors (%err) 

Comparison 3A      Comparison 3B 

Higher Frequency Orthographic Syllable Neighbors Higher Frequency Phonological Syllable Neighbors 

Many   Few    Many    Few 

  RT %err   RT %err   RT %err   RT %err 
bigot   54 banal  690 02 balai  625 00 banal  690 02 
bivouac 798 41 battue  729 05 bivouac 798 41 bandé  832 12 
bonasse  54 bolide  897 32 bonasse  54 biceps  771 15 
bourrade 811 44 centime 727 05 canard  622 00 bourreau 710 00 
bourru 792 27 choral  743 32 carreau 780 00 courrier 649 00 
carreau 780 00 chorale 723 15 centime 727 05 curare   63 
denier 942 34 ciseau  776 07 centième 682 02 dilemme 780 27 
famine 738 07 commis 728 10 choral  773 32 disette   51 
finance 676 02 curare   63 chorale 723 15 fatal  656 05 
fusain 740 22 disette   51 cigogne 772 10 furie  752 05 
galet  777 07 dorure  950 27 ciseau  809 07 fusée  675 05 
lanière 782 15 fatal  656 05 famine  738 07 girafe  675 02 
larynx 832 10 fauvette 745 34 fauvette 745 34 haché  682 02 
milice 784 29 forain  845 12 finance 664 02 halage   88 
millième 724 05 forum  759 07 fusain  740 22 hamac  726 10 
nacré  693 07 furie  752 05 galet  777 07 juron  772 07 
panique 628 02 galette 7 06 02 galon  811 34 loriot   80 
parade 758 07 garant  919 29 kayak  830 24 légume 601 00 
parent 615 00 juron  831 07 milice  784 29 meneur 688 00 
paresse 679 02 kayak  819 24 morue  744 02 menuet  51 
paroi  703 12 loriot   80 mégot  704 05 mural  713 12 
pillage 789 07 légume 601 00 pillage  832 07 narine  708 02 
pommeau 746 22 morose 852 29 pommeau 746 22 penaud  49 
recul  651 02 mural  713 12 pétoche 870 29 pesée  837 24 
reproche 703 00 salade  632 02 saillie  783 22 salade  632 02 
saillie 783 22 sauveur 687 02 sauveur 714 02 tenaille 781 10 
semoule 710 02 serrure  654 05 sensé  742 20 terreau  705 27 
serein 757 07 sillage  777 17 silex  750 10 terreux 777 24 
serin  830 34 sillon  719 07 sillage  777 17 terrien  754 24 
surhomme 914 15 sommaire 610 00 sirop  613 05 terrier  746 05 
tamis  744 32 sonnette 653 02 sommier 753 05 terrine  644 07 
tanière 734 15 sonné  693 05 surhomme 913 15 tonique 668 02 
terrien 754 24 sérum  874 10 sérum  851 10 vallon  723 24 
tigré  810 12 tignasse 921 17 tamis  744 32 vareuse  73 
varech  78 tonique 712 02 tanière  734 15 venelle  49 
venelle  49 vaillant 739 17 tigré  823 12 veneur   63 
visière 717 07 vallon  740 24 tonus  638 05 venin  743 15 
visuel 691 00 vareuse  73 vaurien 765 32 verrue  701 02 
        visuel  691 00 vorace  774 10 
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Table D 4 

Words used in Comparison 4 (Chapter 4)with their corresponding mean 
Response Latencies (RT; in Milliseconds) and Percentages of Errors 
(%err) 

 

Phonological Syllable Frequency  

High      Low 

   RT %err     RT %err 

 

bolide  839 32   benêt  761 44 
bonnet  693 07   besace  794 22 
chorale  723 15   forum  695 07 
cigogne  772 10   forêt  620 00 
ciseau  823 07   galet  710 07 
kayak  798 24   galette  695 02 
message  660 02   galon  775 34 
microbe  725 10   galop  659 10 
milice  784 29   galère  647 02 
million  709 02   garage  663 05 
minet  750 22   garant  761 29 
minime  911 24   halage   88 
minium   71   hamac  726 10 
minois  841 24   hameau 746 07 
minou  838 12   hareng  698 22 
minuit  644 07   hasard  621 05 
minute  625 02   livret  637 07 
misère  653 00   livrée  710 07 
mécène  903 41   pilule  674 20 
mégot  704 05   piscine 607 00 
méthode  619 05   romance 652 02 
péché  625 05   tennis  604 00 
pétoche  888 29   tension 653 05 
saillie  783 22   terrain  649 02 
salade  652 02   terreur  640 02 
saline   49   terrier  705 05 
salive  652 02   terrine  644 07 
salière  777 10   terroir  671 00 
salon  656 02   tomate  573 05 
sarrau   93   tonnage  46 
sauveur  687 02   tonneau 681 00 
silex  750 10   tonus  638 05 
sillage  742 17   verrou  669 05 
sillon  720 07   verrue  701 02 
sirop  613 05   volume 583 02 
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Table D 5 

Words used in Comparison 5 (Chapter 4) with their corresponding mean 
Response Latencies (RT; in Milliseconds) and Percentages of Errors 
(%err) 

 

Frequency of the first Biphone  

High      Low 

   RT %err     RT %err 

 
dilemme  798 27   benêt  771 44 
fauvette  733 34   besace  797 22 
forum  702 07   fureur  714 07 
galette  716 02   furie  752 05 
galon  898 34   fusain  740 22 
galop  659 10   fuseau  689 00 
galère  647 02   fusil  637 00 
gamelle  768 05   fusée  660 05 
garage  692 05   liseron  834 41 
garant  869 29   liseré  982 34 
garrot  813 15   lisière  697 10 
landau   46   livret  642 07 
latex  699 07   livrée  703 07 
lentille  638 00   muraille 692 05 
saison  679 02   murette  51 
tailleur  641 02   museau 676 05 
taillis   46   musette 733 12 
talon  669 07   rivage  727 00 
talus  773 39   ticket  601 02 
tamis  744 32   tignasse 921 17 
tatouage  669 05   tison  885 32 
terrasse  629 02   tissage  706 05 
venin  722 15   tissu  617 02 
 

 

 



Appendix D 

 A-XVII 

Table D 6 

Words used in Comparison 6 (Chapter 4) with their corresponding mean Response Latencies (RT; in 
Milliseconds) and Percentages of Errors (%err) 

 

Word Frequency 

High        Low 

Syllable Frequency      Syllable Frequency 

High    Low    High    Low 

  RT %err   RT %err   RT %err   RT    %err 

 
bonnet 687 07 besogne 725 12 bolide  839 32 biceps  736 15 
camion 623 00 billard  666 10 choral  743 32 fourreau 725 20 
correct 652 00 danseur 602 00 chorale 723 15 furie  752 05 
faillite 810 22 femelle 683 02 ciseau  796 07 fusain  728 22 
farouche 797 07 fureur  694 07 comète 716 10 fuseau  677 00 
fatal  638 05 fusion  677 02 coriace 840 20 gigot  744 10 
maillot 645 02 fusée  670 05 courroie 763 10 hareng  747 22 
manège 653 02 féroce  658 02 donneur 670 02 homard 691 12 
million 709 02 gaillard 711 17 dorure  921 27 lentille  662 00 
mineur 680 02 galop  659 10 marelle 865 27 mural  719 12 
minuit 611 07 garage  668 05 microbe 758 10 nigaud  764 12 
minute 615 02 hameau 750 07 milice  784 29 nomade 763 15 
misère 642 00 hasard  621 05 millième 724 05 pillage  782 07 
méthode 619 05 muraille 711 05 minou  829 12 romance 652 02 
panique 671 02 museau 658 05 morue  744 02 terreau  742 27 
parade 693 07 musette 694 12 mécène 882 41 terreux 809 24 
paresse 679 02 pilote  685 12 panache 738 10 terrier  709 05 
recul  651 02 piscine 607 00 parure  764 12 terrine  644 07 
reproche 705 00 rivage  715 00 pesée  842 24 tignasse 880 17 
salive 652 02 tennis  604 00 pétoche 876 29 tisane  723 07 
sillage 774 17 terrain  679 02 saillie  783 22 tissage  725 05 
sillon  715 07 terrasse 620 02 serein  775 07 tomate  573 05 
sommaire 602 00 terreur  640 02 sommier 726 05 tonus  638 05 
sonnette 653 02 volume 583 02 sonate  798 39 torride  696 05 
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