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Abstract Synaptic vesicles (SVs) fuse at active zones (AZs) covered by a protein scaffold, at
Drosophila synapses comprised of ELKS family member Bruchpilot (BRP) and RIM-binding protein
(RBP). We here demonstrate axonal co-transport of BRP and RBP using intravital live imaging,

with both proteins co-accumulating in axonal aggregates of several transport mutants. RBP, via its
C-terminal Src-homology 3 (SH3) domains, binds Aplip1/JIP1, a transport adaptor involved in kinesin-
dependent SV transport. We show in atomic detail that RBP C-terminal SH3 domains bind a proline-rich
(PxxP) motif of Aplip1/JIP1 with submicromolar affinity. Pointmutating this PxxP motif provoked
formation of ectopic AZ-like structures at axonal membranes. Direct interactions between AZ proteins
and transport adaptors seem to provide complex avidity and shield synaptic interaction surfaces of
pre-assembled scaffold protein transport complexes, thus, favouring physiological synaptic AZ
assembly over premature assembly at axonal membranes.

DOI: 10.7554/eLife.06935.001

Introduction

The primary function of the presynaptic active zone (AZ) is to regulate the release of neurotransmitter-
filled synaptic vesicles (SVs) in response to action potentials entering the synaptic bouton (Stidhof,
2012). Before AZ scaffold components (e.g., ELKS family protein Bruchpilot: BRP, Rab3-interacting
molecule (RIM)-binding protein: RBP) are integrated into synapses, however, they have to be
transported down the often very long axons. AZ scaffold proteins are characterized by strings of
interaction motifs (particularly coiled coil motifs) contributing to the avidity and tenacity of synaptic
scaffolds (Tsuriel et al., 2009). Therefore they might be considered as ‘sticky cargos’ whose
association status has to be precisely controlled during transport. Long-range axonal transport is
conducted along polarised microtubules, using kinesin-family motor proteins for anterograde and
dyneins for retrograde transport (reviewed in Maeder et al., 2014). Kinesin-1 family motor kinesin
heavy chain (KHC, also known as KIF5; Sato-Yoshitake et al., 1992, Hurd and Saxton, 1996; Takamori
et al., 2006) and Unc-104/Imac/KIF1 (Hall and Hedgecock, 1991; Pack-Chung et al., 2007) have been
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elLife digest To pass on information, the neurons that make up the nervous system connect at
structures known as synapses. Chemical messengers called neurotransmitters are released from one
neuron, and travel across the synapse to trigger a response in the neighbouring cell. The formation
of new synapses plays an important role in learning and memory, but many aspects of this process
are not well understood.

In a specific region of the synapse called the active zone, a scaffold of proteins helps to release the
neurotransmitters. These proteins are made in the cell body of the neuron, and are then transported
to the end of the long, thin axons that protrude from the cell body. This presents a challenge for the
cell, because the components of the active zone scaffold must be correctly targeted to the synapse
at the end of the axon, ensuring the active zone scaffold assembles only at its proper location.

Siebert, Bohme et al. studied how some of the proteins that are found in the active zone scaffold
of the fruit fly Drosophila are transported along axons. Labelling the proteins with fluorescent
markers allowed their movement to be examined under a microscope in living Drosophila larvae. The
results showed that two of the proteins—known as BRP and RBP—are transported along the axons
together. Further investigation revealed that a transport adaptor protein called Aplip1, which binds
to RBP, is required for this movement. Siebert, Bohme et al. established the structure of the part of
RBP where this interaction occurs, and found that mutating this region causes premature active zone
scaffold assembly in the axonal part of the neuron. The interaction between RBP and Aplip1 is very
strong, and this helps to prevent the scaffold assembling before it has reached the correct part of the
neuron. Exactly how the transport adaptor and active zone protein are separated once they reach
their final destination (the synapse) remains to be discovered.

DOI: 10.7554/eLife.06935.002

implicated in the transport of SVs, in conjunction with regulators of this process, such as Syd-1
(Hallam et al., 2002), Syd-2/Liprin-a (Serra-Pages et al., 1998, Zhen and Jin, 1999; Miller
et al., 2005; Stryker and Johnson, 2007; Wagner et al., 2009), RSY-1 (Patel and Shen, 2009),
or ARL-8 (Klassen et al., 2010; Wu et al., 2013). In Caenorhabditis elegans, SV and AZ scaffold
proteins exhibit extensive co-transport and undergo frequent pauses, with immobile phases
promoting cargo dissociation and assembly (Wu et al., 2013). Long axons, typical for Drosophila
or mammals, pose high demands for the ‘processivity’ of axonal AZ scaffold component transport.
The molecular mechanisms, which provide this processivity and thus block premature assembly
processes remain speculative, but might also be relevant in the context of axonal transport deficits of
neurodegenerative scenarios (Millecamps and Julien, 2013). In addition, we know little concerning the
composition of cargos destined for synaptic AZs.

The electron-dense AZ cytomatrix (T-bar) at the Drosophila neuromuscular junction (NMJ) is among
others composed of oligomers of BRP and RBP (Kittel et al., 2006; Fouquet et al., 2009; Liu et al.,
2011a; Ehmann et al., 2014). We report here that BRP and RBP, but no other tested AZ components,
are co-transported in discrete transport complexes along the axon. Via a screen for RBP interaction
partners, we identified the APP-like protein interacting protein 1 (Aplip1), an adaptor protein previously
implicated in SV transport. Further analysis by X-ray crystallography and calorimetry showed that
the second and third Src homology 3 (SH3) domain of RBP bind a specific N-terminal proline-rich
(PxxP) motif of Aplip1/JIP1 with more than 10-fold higher affinity than RBP binds its synaptic
ligands (Ca?*channels/RIM) by their cognate PxxP motifs. The integrity of this motif was essential
to protect axons from forming ectopic axonal synapses, which were observed in aplip T mutant axons by
electron microscopy (EM) and super-resolution light microscopy.

In summary, we characterize a mechanism of axonal AZ protein transport through a high affinity
interaction between preassembled, stoichiometric scaffold protein complexes and the transport
adaptor Aplip1. This high affinity interaction is needed to allow for effective axonal transport and to
protect from premature AZ assembly processes.

Results

The molecular basis of how axonal protein transport is coupled to AZ assembly remains largely
unexplored. We hypothesized that BRP might be co-transported with further AZ scaffold proteins, as
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transport of preformed complexes of AZ material has been suggested previously (Zhai et al., 2001,
Shapira et al., 2003; Maas et al., 2012).

RBP co-clusters with BRP in axonal aggregates of SR kinase mutants
Firstly, we chose a previously characterized mutant of a serine-arginine (SR) protein kinase at location
79D (srpk79D). The SRPK79D protein is a member of the serine-arginine protein kinase family
previously shown to be involved in mRNA splicing and processing (Wang et al., 1998). Mutants of
srpk79D form dramatic BRP aggregates in the axoplasm, while its endogenous substrates remain
elusive (Johnson et al., 2009, Nieratschker et al., 2009). The axonal aggregations here served as
a sensitive background to screen for proteins that co-accumulate together with BRP in the axon, and
therefore indicate a joint transport mechanism.

In order to visualise the aggregates forming within axons of srpk79D mutant larvae, we stained with
antibodies (Abs) directed against the BRP C- and N-terminus (Figure 1A, as control), and further
probed for the presence of additional AZ proteins, such as Liprin-o (Figure 1B) and Syd-1 (Figure 1C),
which interact with BRP at the AZ (Owald et al., 2010, 2012) and the small GTPase Rab3 that
was previously shown to regulate the distribution of presynaptic components at AZs (Figure 1D;
Graf et al., 2009). However, none of these AZ proteins showed co-accumulation with BRP in the
aggregates (B as also described in Johnson et al., 2009). Staining with anti-RBP Abs (Liu et al., 2011a),
by contrast, revealed strong co-localization of BRP and RBP in the axonal aggregates (Figure 1E).
Quantification of BRP and RBP co-localization in two different srpk79D mutant null alleles (atc
from Johnson et al., 2009; vn from Nieratschker et al., 2009) confirmed the impression that the
axonal RBP/BRP signals were of identical size (Figure 1F; mean area of axonal spots, BRPS ™
0.3797 + 0.03694 pm? in srpk79D*™C, 0.3259 + 0.02212 pm? in srpk79D*"; RBP<**™ 0.3892 +
0.02097 um? in srpk79DA7¢, 0.3696 + 0.01645 pm? in srpk79D'"; n = 8 nerves; mean + SEM),
and that BRP and RBP nearly always co-localized in these aggregates (Figure 1G; BRP<*™ co-localizing
with RBPS*™ 93.26% + 2.172 in srpk79D"™¢, 95.85% + 1.302 in srpk79D""; RBP<**™ co-localizing with
BRP<**™ 95.7% + 0.9713 in srpk79D"T¢, 94.24% + 1.162 in srpk79D""; n = 8 nerves; mean + SEM).

Thus, RBP was the only AZ protein that robustly co-accumulates with BRP in srpk79D mutant axonal
aggregates. To further explore the distribution of BRP and RBP in these aggregates we used stimulated
emission depletion (STED) light microscopy at a resolution of about 50 nm (Hell, 2007). Two-colour
STED microscopy revealed a tight and stoichiometric association of BRP and RBP in the floating axonal
aggregates of srpk79D mutants (Figure 1H), reminiscent of EM images showing T-bar super assemblies
in these axons (Figure 1H; Johnson et al., 2009; Nieratschker et al., 2009). In fact, the relative
distribution of RBP vs BRP“*"™ was very reminiscent of the organisation at mature, synaptic AZs
(Liu et al., 2011a). The tight association of BRP and RBP in these ectopic aggregates further suggested
a co-transport of both AZ components. Indeed, we could identify axonal BRP spots co-positive for RBP
(Figure 11, arrows) in wild type (WT) larvae as well. Compared to srpk79D mutant axons, WT BRP/RBP
co-positive aggregates were present at a lower frequency and displayed a ~ four times smaller average
diameter in control axons (Figure 1F, mean area of axonal spots, BRP<*™ 0.06895 + 0.01 pm? in WT;
RBPS*™ spots: 0.09184 + 0.0133 in WT; n = 8 nerves; mean + SEM).

BRP and RBP are co-transported in axons together with Aplip1
We observed active anterograde and retrograde transport of the BRP (GFP-labelled)/RBP
(cherry-labelled) co-positive spots when using intravital imaging of axons of intact larvae (Rasse
et al., 2005) (Figure 2A; Video 1). Thus, as our data strongly suggested that BRP and RBP are
co-transported, we searched for adaptor proteins coupling them to axonal motors.

RBP, via its second and third SH3 domain, is known to bind synaptic ligands such as Ca** channels
and RIM (Liu et al., 2011a). Both the SH3 domains and the cognate PxxP motifs of the synaptic
ligands are highly conserved between mammals and Drosophila (Liu et al., 2011a; Stidhof, 2012;
Davydova et al., 2014). However, in order to identify novel RBP interaction partners which might be
relevant in the context of axonal transport, we performed a large-scale yeast two-hybrid (Y2H) screen
using a construct consisting of the second and third SH3 domains of Drosophila RBP as bait (also
shown in Figure 3A). As expected, several clones representing RIM and the Ca®" channel al1-subunit
Cacophony (Cac) were isolated (not shown). In addition, the screen recovered 14 independent
fragments of Aplip1, including a full length cDNA clone (Figure 2B). Aplip1 is the Drosophila homolog
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Figure 1. Co-accumulation of Bruchpilot (BRP) and RIM-binding protein (RBP) in srpk79D axonal aggregates.
(A-E, I) Nerve bundles of segments A1-A3 from third instar larvae of the genotypes indicated labeled with the
antibodies (Abs) indicated. (A-E, H) BRP accumulated in axonal aggregates of srpk79D mutants. (B-D) Liprin-a
(B), Syd-1 (C), and Rab3 (D), did not co-localize with axonal BRP spots. (E) By contrast, RBP invariably co-localized with BRP
in these axonal aggregates. (F) Quantification of mean area of axonal BRP and RBP spots in wild type (WT) and srpk79D
mutants. BRP<**™ spots: 0.3797 + 0.03694 pm? in srpk79DA7¢, 0.3259 + 0.02212 pm? in srpk79D", 0.06895 + 0.01 pm?
in WT; RBP<**™ spots: 0.3892 + 0.02097 pm? in srpk79D"7¢, 0.3696 + 0.01645 pm? in srok79D", 0.09184 + 0.0133 in WT;
n = 8 nerves each; all panels show mean values and errors bars representing SEM; ns, not significant, p > 0.05,
Mann-Whitney U test. (G) Quantification for BRP co-localization with RBP and vice versa in srpk79D mutants. BRP<**™ co-
localizing with RBP<'*™: 93.26% + 2.172 in srpk79D"7¢, 95.85% + 1.302 in srpk79D'"; RBP<**™ co-localizing with BRP<**™:
95.7% + 0.9713 in srpk79D"7C, 94.24% + 1.162 in srpk79D'"; n = 8 nerves each; all panels show mean values and errors
bars representing SEM; ns, not significant, p > 0.05, Mann-Whitney U test. (H) Two-colour stimulated emission depletion
(STED) images of axonal aggregates in srpk79D mutants revealed that RBP< ™™ label localized to the inside of the axonal
aggregates and was surrounded by BRP<™*™ label. (I) BRP and RBP also co-localized in axonal spots of WT animals (arrow
heads show co-localization of BRP and RBP in the axon). Scale bars: (A-E, 1) 10 pm; (H) 200 nm.

DOI: 10.7554/elife.06935.003

of c-Jun N-terminal kinase (JNK)-interacting protein 1 (JIP1), a scaffolding protein that has been
shown to bind kinesin light chain (KLC; Verhey et al., 2001), Alzheimer’s amyloid precursor protein
(APP; Taru et al., 2002), JNK pathway kinases (Horiuchi et al., 2005, 2007) and the autophagosome
adaptor LC3 (Fu et al., 2014). If Aplip1 was mediating the axonal transport of RBP, moving spots co-
positive for both RBP and Aplip1 should be expected. In fact, we robustly observed co-transport
of RBP*"*™ and Aplip1°"" spots in both anterograde (Figure 2C, arrowhead; Video 2) and retrograde
(not shown) direction at a frequency consistent with the low frequency of single Aplip1°™ moving
particles (not shown). Furthermore, we observed BRP-short®™" co-transport with Aplip1°™ (Figure 2D;
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Figure 2. Live imaging of anterograde co-transport between BRP, RBP and APP-like protein interacting protein
1 (Aplip1). (A) Live imaging in intact third instar larvae showed anterograde co-transport of BRPST" and RBP<"e™.
See also, Video 1. (B) Schematic representation of Aplip1 domain structure containing two PxxP motifs, one
Src-homology 3 (SH3) domain and one C-terminal phosphotyrosine interaction domain (PID) (FL = full-length). Lines
represent Aplip1 prey fragments recovered in RBP SH3-II+l1l bait yeast-two-hybrid (Y2H) screen. Arrow indicates one
single clone that contained only the first of the two Aplip1-PxxP motifs. (C, D) Live imaging in intact third instar larvae
showed anterograde co-transport of Aplip1°7* and RBP<"*™ (C), as well as Aplip1°7" and BRP-short™"*" (D). Scale
bars: (A, C, D) 10 pm. See also, Videos 2, 3. (E) Quantification of live imaging of BRP-short™" flux (spots passing
through an axonal cross-section per minute) within the genetic backgrounds indicated. Anterograde and retrograde
BRP-short*=* flux was severely impaired in aplip1°** and aplip1™“" mutant background, which was rescued when

a genomic rescue construct for Aplip1 was introduced into the aplip 1™ mutant background. BRP-short*®" flux per
min, control (n = 14 nerves): anterograde: 5.267 + 0.975, retrograde: 2.423 + 0.604, stationary: 0.241 + 0.071;
aplip1%* (n = 28 nerves): anterograde: 0.687 + 0.098, retrograde: 0.284 + 0.125, stationary: 1.023 + 0.145; aplip1™"
Figure 2. continued on next page
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Figure 2. Continued

(n =11 nerves): anterograde: 0.808 + 0.051, retrograde: 0.085 + 0.064, stationary: 0.354 + 0.148; aplip 1!, gen rescue
(n = 26 nerves): anterograde: 3.783 + 0.861, retrograde: 2.123 + 0.239, stationary: 0.505 + 0.084. All panels show
mean values and errors bars representing SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant, p > 0.05,
Mann-Whitney U test.

DOI: 10.7554/eLife.06935.004

Video 3), as expected with similarly low frequencies as observed for RBP/Aplip1 co-transport
(not shown), further pointing towards a co-transport of RBP and BRP in conjunction with Aplip1.
We used the live imaging assay to investigate BRP transport in different aplip7 mutants to
directly address whether removal of Aplip1 affects AZ scaffold protein transport. The aplip 1™
allele completely and specifically removes the aplip1 gene and was generated by P-element
excision (Klinedinst et al., 2013). By comparison, the aplip1°** allele contains a point mutation in
the C-terminal kinesin binding domain of Aplip1 that was shown to almost completely abolish the ability
of Aplip1 to bind to KLC (Horiuchi et al., 2005). Anterograde and retrograde transport of BRP was
drastically reduced compared to controls in both aplipT mutant alleles (Figure 2E). Through the
introduction of a genomic (gen.) construct of Aplip1 into the aplip 1™ mutant background (aplip1™",
gen. rescue), however, BRP flux (spots passing through an axonal cross-section in a given time) could be
restored to WT level (Figure 2E). Quantification showed that retrograde transport in the aplip1™"
mutant situation was somewhat more affected (27x less compared to control) than anterograde
transport (7x less). Both directions appeared equally affected (about 8% less compared to controls) in
the kinesin-binding defective aplip1°“4 mutant. It is noteworthy that the transport of SV cargo in the
same mutant was reduced equally in both directions, whereas transport of mitochondria is only impaired
in the retrograde direction (Horiuchi et al., 2005).

RBP binds the transport adaptor Aplip1 via a high affinity PxxP-SH3
interaction

As our Y2H screen used the SH3-Il and -lll domains of RBP as bait (Figure 3A), PxxP motifs are
expected to mediate the interaction with Aplip1. In fact, Aplip1 contains two PxxP motifs which
were both present in most of the prey clones recovered in the Y2H screen, except for one single
clone that contained only the first more N-terminal motif (Figure 2B, arrow). Using a semi-
quantitative liquid Y2H assay and a set of Aplip1 constructs containing only either the first or the
second PxxP motif (Figure 3B), we mapped the interaction between RBP and Aplip1 to the first of
the two candidate PxxP motifs present in all clones isolated (Figure 2B). The second and third SH3
domain of RBP bound to this motif with comparable strength when measured with a semi-quantitative
liquid Y2H assay (Figure 3C; mean 3-Gal4 units for: Aplip1-PxxP1/RBP SH3-II: 24.3 + 6.6; Aplip1-PxxP1/
RBPSH3-Ill: 29.1 + 7.4; n = 3 independent experiments; mean + SEM). No binding was observed
between the second and third SH3 domains of RBP and Aplip1-PxxP2 (Figure 3C; mean 3-Gal4 units
for: Aplip1-PxxP2/RBP SH3-Il: 0.2 + 0.0; Aplip1-PxxP2/RBPSH3-Ill: 0.2 + 0.1; n = 3 independent
experiments; mean + SEM). When mutating either the PxxP1 motif of Aplip1 (P156 — A; P159 — A,
giving rise to AxxA1) or introducing mutations known to interfere with PxxP ligand binding into the

Video 1. Anterograde co-transport of BRPS™ Video 2. Anterograde co-transport of Aplip1¢™ and

and RBP<"*™. Live imaging in intact third instar larvae RBP<r*™. Live imaging in intact third instar larvae
showed anterograde co-transport of BRPSF* and showed anterograde co-transport of Aplip1°F and
RBP<"*™. Video was captured at 0.6 s per frame and RBP<"e. Video was captured at 0.6 s per frame and
played back at 7x real time. played back at 7x real time.

DOI: 10.7554/elife.06935.005 DOI: 10.7554/elife.06935.012
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individual SH3 domains of RBP (SH3-II*/SH3-II*),
the interaction was completely abolished
(Figure 3C; mean B-Gal4 units for: Aplip1-
AxxA1/RBP SH3-II: 0.1 + 0.1; Aplip1-AxxA1/RBP
SH3-Ill: 0.2 + 0.0; Aplip1-PxxP1/RBPSH3-II*:
0.1 + 0.0; Aplip1-PxxP1/RBP SH3-IlI*: 0.1 + 0.0;
Video 3. Anterograde co-transport of Aplip1°® and N = 3 independent experiments; mean + SEM).
BRP-shorts=". Live imaging in intact third instar larvae We performed isothermal titration calorimetry
showed anterograde co-transport of Aplip1°™ and BRP-  (ITC) to measure the thermodynamics of the
short™™". Video was captured at 0.414 s per frame and  binding directly and compare Aplip1/RBP
played back at 5x real time. binding quantitatively to the established synaptic
DOI: 10.7554/eLife.06935.013 ligands of RBP. We used four different constructs,
comprising either single RBP SH3 domains
(I, I, and lll) or a construct of two RBP SH3
domains (lI+lll) (see also Figure 3A). Whereas we could not detect any binding of the Aplip1
peptides to RBP SH3-I, we could determine Kp constants for the single SH3-II, SH3-1Il and the
tandem SH3-lI+lll (Figure 3D; Figure 3—figure supplement 1) domains of RBP. Both SH3-Il and
SH3-1ll single domains showed a binding affinity to Aplip1 peptides several fold stronger
compared to either Cac, RIM1 or RIM2 (Figure 3D; Figure 3—figure supplements 2-4).
However, the affinity of the Aplip1 peptides to the SH3-II+IIl domain was the highest observed
which is indicative of co-operativity between both domains in peptide binding that could
increase the local concentrations of Aplip1 at RBP binding pockets (BPs).

Finally, in order to get a deeper atomic insight into the structural basis of the binding of RBP
towards Aplip1 in comparison to its synaptic ligands, we crystallized the Drosophila RBP SH3-II
domain together with both an Aplip1 (Figure 3E; Tables 1, 2, 3) and a Cac peptide (Figure 3F;
Tables 1, 3, 4), and RBP SH3-lIl with a Cac peptide (Figure 3—figure supplement 5; Tables 1, 3).
Drosophila RBP SH3-Il and -lll share 49.2% sequence identity and adopt the canonical fold of
SH3 domains (Figure 3E,F; Figure 3—figure supplement 5). Both domains superimpose with a root
mean deviation of 0.8 A for 64 pairs of Ca-atoms. Both peptides sequences harbor the canonical
class | interaction motif +x¥PxxP (+, positively charged; x, any amino acid; ¥ hydrophobic amino
acid, see Figure 3D for sequence) and are bound into the respective SH3 domain in ‘plus’ direction.
We observed the classical poly-proline helix that allows for mainly hydrophobic protein-peptide
interaction in all three structures. We detected the same hydrogen pattern between the protein side
chains and peptide backbone in the structure of SH3-Il with Aplip1 and Cac. The major difference is
the side chain orientation of R1687 of Cac that n-stacks with its guanidinium function with Y1372,
except for one copy, where it forms a salt-bridge to E1341. The equivalent residue to R1687 of Cac
is R153 of the Aplip1 peptide, which forms, by contrast, a bidentate salt-bridge to D1336 (Table 3). A
second major difference is induced by the two consecutive proline residues in the Cac peptide.
Consequently, the peptide has a more polyproline type Il conformation that brings T1692 closer to the
protein surface and allows P1693 to deeper point in a hydrophobic pocket of the SH3-Il domain.
Whereas the C-terminal portion of the Aplip1 peptide is folded in a short 3¢ helix, the N-terminus of
the Aplip1 peptide adopts a random coil conformation with hydrophobic interactions to the surface of
SH3-Il. The Cac-derived peptide bound to SH3-lll is fully defined in the electron density. However, the
peptide main chain interaction with the SH3 domains is conserved. The side chain orientation of Cac
R1687 is again different if bound to SH3-Il or SH3-lll. In complex with SH3-Ill, R1687 forms
a bidentate hydrogen bond to SH3-Ill D1463 and E1648. A n-stacking interaction is not possible
since Y1372 of SH3-Il is replaced by SH3-1Il L1499. The central PxxP motifs of Aplip1 superimpose
well in both structures if bound to SH3-Il and SH3-Ill. Towards its C-terminus, the Aplip1-PxxP1
peptide adopts a slightly different random coil conformation compared to the structure when bound to
SH3-Il caused by two additional hydrogen bonds from T1692 and K1695 to the SH3-Il domain (Table 3).

The Aplip1-PxxP1 motif is needed for effective axonal RBP/BRP
transport

Consistent with the idea that Aplip1 is mediating RBP transport, we found axonal aggregates con-
sisting of both RBP and BRP in the aplip1°4, as well as the aplip 1™ allele (Figure 4B,C). This ectopic
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A C Aplip1 - RBP Y2H
RBP N—M—C . | rRBP | RBP | RBP | RBP
prey/bait | o s 1| SH3-1*|SH3-n| sH3--
; RBP
Baits: ) 243 | 01 | 291 | 041
SH3-Il | Aplip1-PxxP1| e | 400 | £7.4 | 0.0
— RBP . 0.1 0.2
SH3-1 | Aplip1-AxxA1 +01 n.d. +0.0 n.d.
RBP : 0.2 0.2
SH3-I1+II Aplip1-PxxP2 +0.0 n.d. +01 n.d.
mean B-Gal4 units
ITC peptides: __ RBP — RBP D peptide sequences
SH3-I SH3-II P-7P-BP6 P4P-3P-2P-1 Pﬂ P1 PZ PG P4 P5 Pﬁ P1 PE PQ
— S'Egﬁ" Aplipt  TRRREKMEE IFKNKK - -
P Cac - - | GERMEP TEASKPSTL
SHaqi+m | RIM1 - - - GEQMEQVAVRS G- -
RIM2 - - -GEQMEQLEPKGT- -
B ITC measurements
PxxP1 peotide | RBP RBP RBP
Aplip1 “—Hﬂc P SH3-Il | SH3-II | SH3-I+II
PxxP2 Aplip1 41 1.4 0.54
Apliod prevs — Aplip1-PxxP1
ARIRLDIEVS —  Aplip1-AxxA1 Cac 20.2 17.3 31.3
e AP0 Rim1 | 104 8.4 16
Rim2 20 12.5 35.7

Figure 3. Aplip1 binds RBP using a high-affinity PxxP1-SH3 interaction. (A) Schematic representation of RBP domain
structure containing three SH3 domains (I-Ill from the N-terminus) and three Fibronectin 3 (FN3) domains. The
corresponding fragments used in the large scale Y2H screen (SH3-II+1ll) and used as bait (SH3-Il and SH3-Ill) in the
Y2H assay (C) against different Aplip1 prey constructs (B) are indicated. Different isothermal titration calorimetry

Figure 3. continued on next page
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Figure 3. Continued

(ITC) peptides (SH3-I, SH3-II, SH3-IIl and SH3-lI+ll) used for ITC measurements (D) are also shown. (B) Schematic
representation of AplipT domain structure entailing two PxxP motifs, one SH3 and one C-terminal PID. Different
preys (Aplip1-PxxP1, -AxxA1 and -PxxP2) used in Y2H assay (C) are indicated. (C) Liquid Y2H assay of individual
Aplip1 prey fragments against different RBP baits. Aplip1-PxxP1 interacted with both the single SH3-Il and -IlI
domains of RBP. Mutating this first PxxP motif (Aplip1-AxxA1) construct abolished the binding. Aplip1-PxxP2
showed no interaction to RBP SH3 domains. Constructs with point-mutated RBP SH3 domains (SH3-II*, SH3-11I*)
abolished the binding to Aplip1-PxxP1. (D) Peptide sequences used for ITC measurements. Aplip1 showed the
strongest interaction with RBP compared with Cacophony (Cac), RIM1 and RIM2, with the strongest affinity (lowest
Kp) between Aplip1 and the RBP SH3-lI+lIl domain. (E, F) Crystal structure of Aplip1-peptide (E; see also, 3D for
peptide sequence) and of Cac-peptide (F; see also, Figure 3D for peptide sequence) bound to RBP SH3-II. The SH3
domain is shown in gray surface representation with (left) and without (right) the respective protein in cartoon
representation. The bound peptides are drawn in stick representation. Hydrogen bonds <3.3 A are indicated by red
dashes. In the right panel, several peptide SH3-Il complexes as observed in the asymmetric unit are superimposed
and shown in different colors. See also, Tables 1-4.

DOI: 10.7554/elife.06935.006

The following figure supplements are available for figure 3:

Figure supplement 1. ITC measurements for Aplip1 and RBP SH3 domains.
DOI: 10.7554/elife.06935.007

Figure supplement 2. ITC measurements for Cac and RBP SH3 domains.
DOI: 10.7554/eLife.06935.008

Figure supplement 3. ITC measurements for RIM1 and RBP SH3 domains.
DOI: 10.7554/eLife.06935.009

Figure supplement 4. ITC measurements for RIM2 and RBP SH3 domains.
DOI: 10.7554/eLife.06935.010

Figure supplement 5. Crystal structure of Cac-peptide bound to RBP SH3-lIl domain.
DOI: 10.7554/elife.06935.011

RBP/BRP accumulation was rescued after introducing a genomic construct of Aplip1 into the aplip 1™
mutant background (aplip1™", gen. rescue; Figure 4D). Pan-neuronal expression of an Aplip1 cDNA
equally rescued the axonal RBP/BRP accumulations (Figure 4l, quantification in K, L). Importantly,
however, the expression of an Aplip-AxxA1 cDNA construct (integrated at the same chromosomal
integration site as the control construct; expression and axonal presence confirmed with a newly
generated Aplip1 Ab; not shown) could no longer rescue the RBP/BRP accumulation phenotype
(Figure 4J, quantification in Figure 4K,L). Thus, we conclude that Aplip1 is involved in the transport
of RBP/BRP to the AZ, whereby its functionality in this context largely depends on the integrity of its
N-terminal PxxP1 motif.

Aplip1 promotes BRP transport in absence of RBP

As indicated above, BRP accumulated in the axons of aplip1 mutants as well. Thus, BRP could
be transported through Aplip1 via binding to RBP, other yet undetected co-transported AZ
proteins, or BRP could bind Aplip1 independently of RBP. We therefore created aplip1/rbp and
aplip1/brp double mutants to investigate the functional relation of RBP and BRP with regard to
Aplip1-dependent transport. While removing BRP in srpk79D mutants also abolished the axonal
RBP spots (Figure 5—figure supplement 1D), removing BRP in aplip1 mutants had no apparent
effect on axonal RBP accumulations (Figure 5B; control in Figure 5A). On the other hand,
genetic elimination of RBP did not interfere with the accumulation of BRP in aplip 1T mutant axons
(Figure 5E; controls in Figure 5C,D). Thus, BRP transport also ‘suffers’ from the absence of the
Aplip1 adaptor when RBP is removed in parallel. Hence, Aplip1 promotes BRP transport even in
the absence of RBP. To address a putative molecular basis of this relationship, we performed
a Y2H assay to test for direct interaction between five different BRP constructs and a full length
Aplip1 construct (see Figure 3B for domain structure). Despite these efforts, robust interactions
between Aplip1 and BRP fragments could not be detected (data not shown). Nonetheless, both
RBP but also BRP were easily detected in anti-GFP immunoprecipitations (IPs) from a synaptic
membrane preparation (Figure 5F; Figure 5—figure supplement 2) derived from Drosophila
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Structure RBP SH3-II RBP SH3-II RBP SH3-III
Aplip1 Cac Cac
PDB entry 4788 4789 478A
Space group c2 P2, 1222
Wavelength (A) 0.91841 0.91841 0.91841
Unit cell
a; b; c (A) 108.3; 62.4; 163.6 58.3; 122.2; 68.5 52.1; 54.3; 73.6
o By () 90.0; 90.3; 90.0 90.0; 113.2; 90.0 90.0; 90.0; 90.0
Resolution (A)* 50.00-2.09 50.00-2.64 50.00-1.75
(2.19-2.09) (2.74-2.64) (1.86-1.75)
Unique reflections 64,269 (7760) 25,229 (2591) 10,690 (1579)
Completeness* 98.9 (92.4) 96.9 (95.0) 98.7 (92.6)
<l/o(l)>* 7.7 (2.6) 8.0 (2.1) 14.2 (2.2)
Rmeas™, T 0.127 (0.533) 0.157 (0.726) 0.127 (0.663)
CCyp0* 99.1 (68.0) 98.9 (81.2) 99.7 (76.5)
Redundancy* 3.7 (3.7) 3.5(3.2) 5.6 (3.1)
Refinement
Non-hydrogen atoms 7564 6239 850

Rwork™s 0.210 (0.314) 0.255 (0.367) 0.159 (0.233)
Rirec™ § 0.236 (0.396) 0.312 (0.490) 0.208 (0.332)
Average B-factor (1&2) 40.8 52.10 18.8
No. of complexes 24 10 1
Protein residues 6484/41.0 663/51.1 74/17.6
Peptide residues 861/42.7 92/63.6 15/15.9
Buffer molecules 11/40.2 1/46.3 -
Water molecules 57/29.6 134/30.3 110/28.6
rm.s.d.#

bond length (A) 0.007 0.005 0.010

bond angles () 1.224 1.140 1.210
Ramachandran outliers (%) 0.1 0.56 0
Ramachandran favoured (%) 98.4 98.0 100

*values in parentheses refer to the highest resolution shell.

TRmeas = Zh [N/(n = N2 Zilly, — 1, I/Z. 2, where 1, is the mean intensity of symmetry-equivalent reflections and n is
the redundancy.

FTRuwork = ZnlFo — FI/ZF, (working set, no o cut-off applied).

§Rfce is the same as Ryonk, but calculated on 5% of the data excluded from refinement.

#Root-mean-square deviation (r.m.s.d.) from target geometries.

CC, coiled coail.

DOI: 10.7554/elife.06935.014

head extracts of pan-neuronal driven Aplip1-GFP cDNA construct (Depner et al., 2014). Of note,
within axons of rbp™" mutant larvae, ectopic BRP accumulations could not be observed (not shown).
Thus, we provide evidence for an RBP-independent but Aplip1-dependent transport component for
BRP, whose mechanistic details have still to be deciphered. Taken together, our results imply that
though BRP and RBP are co-transported in the WT situation, their Aplip1-dependent transport can
be genetically uncoupled.
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Table 2. Completeness of the model for RBP RBP and BRP form ectopic AZs at

SH3-Il and bound AplipT peptide the axonal plasma membrane of
RBP SH3-l  Range Aplipl  Range @aplipT mutants
chain A 13181382 chan M 153-163 The BRP flux in axons of aplip? mutants was
- — severely diminished, but not completely abolished
chain B 1318-1382  chain N 155-159 (Figure 2E). At the same time, AZ localization of
chain C "1318-1381 chain O 154-163  both BRP and RBP at synaptic terminals of aplip1
chain D *1318-1382  chain P 153-159  mutants was still observed in both aplip1 alleles
chain E 1319-1381 chain Q 151-163  (not shown), although slightly reduced (not shown).
chain F x1318-1380 chain R 153-159  This indicates that alternative transport mecha-
chain G 1318-1381 chain S 151_143 Misms and adaptors exist which operate in parallel
i H T 3181382 chan T 152156 to Aplip1, as the synaptic phenf)type is relatively
— — — weak. In fact, axonal accumulations of BRP have
chain | 11318-1362 chain U 152-163 already been described for Acyl-CoA long-chain
chain J *1318-1381 chain V 152-158  Synthetase (Acsl, Liu et al., 2011b) as well as for
chain K *1318-1381 chain W 152-163  Unc-51 (Atg1) mutants (Wairkar et al., 2009).
chain L *1318-1381 chain X 152-158 In our experiments, we found RBP to invariably

co-cluster with BRP in the mutants mentioned
(Figure 6B,C; control in Figure 6A), and equally in

147 TRRRRKLPEIPKNKK'®. Superscript 'x’ indicates addi- mutants of the Drosophila B-amyloid protein

tional N-terminal residues of RBP SH3-II originating from precursor-like (Appl; Torroja et al, 1999a,
the linker region between the protease cleavage site 1999b; Figure 6D) and Unc-76 (Gindhart et al.,

and the N-terminus. 2003; Figure 6E). The fact that RBP and BRP
DOI: 10.7554/eLife.06935.015 tightly co-accumulated in axonal aggregates of all
these transport mutants strengthens the probabil-
ity that BRP is always co-transported with RBP.
To gain a deeper insight into the substructure of the BRP/RBP accumulations in aplip1 mutant
axons, we again used two-colour STED microscopy. In contrast to the srpk79D aggregates, however,
STED images of axonal BRB/RBP accumulations were reminiscent of mature synaptic AZs (Liu et al.
2011a), with BRP<**™ signal surrounding the RBP signal, which, in turn, is oriented closer towards the
axonal plasma membrane (Figure 7A, arrow head; plasma membrane indicated by dashed line).
Interestingly, in contrast to the floating T-bar super-aggregates in srpk79D mutants (Johnson et al.,
2009; Nieratschker et al., 2009), these axonal BRP spots in aplip1 mutants were positive for Syd-1
(compare Figures 1C, 7B). Intriguingly, floating T-bars have been observed in synaptic boutons in syd-
1 mutants (Owald et al., 2010). Together, this is suggestive of a role of Syd-1 in the membrane-
anchoring of AZ proteins.
Furthermore, we asked whether BRP/RBP aggregates identified in aplip1 mutants represent ectopic
AZs forming at the axonal plasma membrane. In fact, EM analysis easily revealed T-bar structures, typical

Completeness of the model given for the 12 complexes
of RBP SH3-Il bound to the Aplip1 peptide

for synaptic terminals (Figure 7C, arrow heads, magpnification in E), at axonal plasma membranes of aplip1
mutants (Figure 7D, arrow heads, magnification in F), but never in controls (not shown). We found
these ectopic axonal T-bars surrounded by SV profiles (Figure 7D, arrows), very similar to ‘normally
positioned’ T-bars at the presynaptic terminal (Figure 7C, arrows). Consistently, the SV marker
Synaptotagmin-1 (Syt-1) was found to be associated with BRP/RBP accumulations in aplip1™"
mutants (Figure 7H, quantification in Figure 7K). This phenotype could be rescued by the
expression of an Aplip1 WT c¢DNA construct (Figure 7I, quantification in Figure 7K) but not by the
expression of the Aplip1-AxxA1 construct (Figure 7J; quantification in Figure 7K). Thus, a point-like
interaction surface of Aplip1 which binds RBP with high affinity is important to block a whole
sequence of assembly events at the axonal plasma membrane, including AZ scaffold ('T-bar’)
formation and the accumulation of SVs.

To further support the importance of adaptor protein—cargo interaction in blocking ectopic AZ
assembly we downregulated the expression of motor proteins. This also leads to transport
defects and ectopic axonal AZ protein accumulations but in principle leaving the adaptor
protein—cargo interaction intact. Interestingly, motoneuronal driven Imac-RNAi led to only
few axonal BRP/RBP accumulations although with no preference concerning their direction
in relation to the axonal plasma membrane (Figure 7—figure supplement 1B; arrow heads).
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Table 3. Hydrogen bonding interaction In contrast motoneuronal driven KHC-RNAi
Aplip1 SH3-II Distance showed prominent axonal aggregates con.sis-
— — tent of BRP/RBP but most of the time
Arg153" Asp1359°°2 24 showing an irregular, elongated shape
Arg153" Asp1336°°" 30 (Figure 7—figure supplement 1C; arrow
Arg153NH2 Asp1336°P2 2.6 heads). As mentioned above, proper T-bars
Lys154N Asn1334001 29 were identified in aplipT mutant axons with
Lys154° Asn]334N02 30 ease. In contrast, systematic EM analysis of khc
mutant axons revealed just one electron dense
Pro156° Asn1376NP? 2.8 . .
S S material that showed a T-bar-like appearance
Cac SH3-I Distance (Figure 7—figure supplement 1D; arrow
Gly1686™ Asp1359°P2 2.7 head, magnifications in E, F) but never in
Arg1687M Asp1359°9°2 28 control (ctrl) or motoneuronal driven Imac-
RNAI.
Arg1688" Asn1 3345 30 In summary, we find that the SH3-ll and -llI
Argl688°  Asn13m™® 2 29 interaction surface of RBP serves as a multi-
Pro1690° Asn1376NP2 28 functional platform for differential protein in-
Cac SH3-llI Distance teraction with either other AZ components or the
Arg1687M Asp1463°0" 29 transport adaptor and therefore, motor-cargo
linkage. Thus, interaction surfaces of RBP/BRP
Arg1687NH Glu1488°€2 3.0 , Vo .
cargo complexes’ might be shielded and
Argl687™" Glu1488° 31 blocked from undergoing premature assembly
Arg1688N Asn1461°°! 2.8 by interactions with transport adaptors, while
Arg1688° Asn1461NP2 3.0 genetically induced loss of these adaptors might
Pro1690° Asn1376N02 20 provoke premature AZ assembly.
Thr1692°¢ Asn1376NP? 29 DiSCUSSiOh
Lysté95®  Tyrlas1et 28 Large multi-domain scaffold proteins such as BRP/
Ser1697°¢ Leu1450° 2.7 RBP are ultimately destined to form stable
Hydrogen bonding interaction of RBP SH3-Il with Aplip1 scaffolds, characterized by remarkable tenacity
and Cac, as well as RBP SH3-Ill in complex with Cac. and a low turnover, likely due to stabilization by
Distance <3.2 A are given in A. multiple homo- and heterotypic interactions si-
DOI: 10.7554/eLife.06935.016 multaneously (Sigrist and Schmitz, 2011). How

these large and ‘sticky’ AZ scaffold components
engage into axonal transport processes to ensure
their ‘safe’ arrival at the synaptic terminal remains to be addressed. We find here that the AZ scaffold
protein RBP binds the transport adaptor Aplip1 using a ‘classic’ PxxP/SH3 interaction. Notably,
the same RBP SH3 domain (Il and Ill) interaction surfaces are used for binding the synaptic AZ
ligands of RBP, that is, RIM and the voltage gated Ca®" channel (Wang et al., 2002; Kaeser
etal., 2011; Liu et al., 2011a; Davydova et al., 2014), though with clearly lower affinity than for
Aplip1. A point mutation which disrupts the Aplip1-RBP interaction provoked a ‘premature’
capture of RBP and the co-transported BRP at the axonal membrane, thus forming ectopic but,
concerning T-bar shape and BRP/RBP arrangement, WT-like AZ scaffolds. The Aplip1 orthologue Jip1
has been shown to homo-dimerize via interaction of its SH3 domain (Kristensen et al., 2006). Thus, the
multiplicity of interactions, with Aplip1 dimers binding to two SH3 domains of RBP as well as to KLC,
might form transport complexes of sufficient avidity to ensure tight adaptor-cargo interaction and
prevent premature capture of the scaffold components.

Our intravital imaging experiments showed that within axons RBP and BRP are co-transport in
shared complexes together with Aplip1, whereas we, despite efforts, were unable to detect any co-
transport of other AZ scaffold components, that is, Syd-1 or Liprin-a with BRP/RBP (not shown). In
addition, STED analysis of axonal aggregates in srpk79D mutants showed BRP/RBP in stoichiometric
amounts, but also failed to detect other AZ scaffold components. Moreover, BRP and RBP co-
aggregated in the axoplasm of several other transport mutants we tested (acsl, unc-51, appl, unc-76),
consistent with both proteins entering synaptic AZ assembly from a common transport complex. Of
note, during AZ assembly at the NMJ, BRP incorporation is invariably delayed compared to the ‘early
assembly’ phase which is driven by the accumulation of Syd-1/Liprin-a scaffolds (Fouquet et al., 2009,
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Table 4. Completeness of the model for RBP  Owald et al., 2010, 2012). As the early assembly
SH3-II and bound Cac peptide phase is, per se, still reversible (Owald et al.,
2010), the transport of ‘stoichiometric RBP/BRP

RBP SH3-l Range =~ Cac  Range complexes’ delivering building blocks for the
chain A 13181381 chaina  1686-1697  yatire scaffold’ might drive AZ assembly into
chain B *1318-1381  chainb  1686-1695 3 mature, irreversible state (Owald et al., 2010),
chain C *1318-1382  chain c 1686-1697 and seems mechanistically distinct from early
chain D <1318-1381  chaind  1686-1697  scaffold assembly mechanisms.
chain E 1318-1382 chain e 1685-1694 Previous work suggested that AZ scaffold
hain F 13181382 hain f 14851493 components (Piccolo, Bassoon, Munc-13 and
ELKS) in rodent neurons are transported to
chain G 13181382 chaing  1686-1693 assembling synapses as ‘preformed complexes’,
chain H ~ 1318-1381  chainh = 1686-1693  so-called Piccolo-Bassoon-Transport  Vesicles
chain | x1318-1381  chain i 1686-1693  (PTVs; Zhai et al., 2001; Shapira et al., 2003;
chain J “1318-1382  chain 16861697 Maas et al., 2012). The PTVs are thought to be

co-transported with SV precursors (Ahmari et al.,
Completeness of the model given for the six complexes 2000; Tao-Cheng, 2007; Bury and Sabo, 2011)
iZRBP SH3-IIand the b(fwhd Cac F_)eptidé ) anterogradely mediated via a KHC(KIF5B)/
*IGRRLPPTPSKPSTL'". Superscript 'x’ indicates ad- . . .
ditional N-terminal residues of RBP SH3-II originating Syntabull/Syntaxm-.’I Cor.‘np|e).( (Cai e.t al., 2007)
and retrogradely via a direct interaction between
site and the N-terminus. Dynein light chain and Bassoon (Fejtova et al.,
DOI: 10.7554/eLife.06935.017 2009). Since their initial description, however,
further investigations of PTVs have been ham-
pered by the apparent relative scarcity of PTVs,
and by the lack of genetic or biochemical options for specifically interfering with their transport or final
incorporation into AZs.

Despite efforts we were not able to detect a direct interaction of Aplip1 and BRP although their
common transport can be uncoupled from the presence of RBP. One possible explanation could be
a direct interaction of Aplip1 to other AZ proteins that are co-transported together with BRP and RBP.
It is interesting that the very C-terminus of BRP is essential for SV clustering around the BRP-based AZ
cytomatrix (Hallerman et al., 2010). Thus, it is tempting to speculate that adaptor/transport complex
binding might block premature AZ protein/SV interactions before AZ assembly, but further analysis
will have to await more atomic details as we could gain for the RBP::Aplip1 interaction.

The down-regulation of the motor protein KHC also provoked severe axonal co-accumulations of
BRP and RBP but per se should leave the adaptor protein-AZ cargo interaction intact. In contrast to
aplip1, the axonal aggregations in khc mutants adapted irregular shapes most of the time, likely not
representing T-bar-like structures. Thus, our data suggest a mechanistic difference when comparing
the consequences between eliminating adaptor cargo interactions with a direct impairment of motor
functions. Still, we cannot exclude that trafficking of AZ complexes naturally antagonizes their ability
to assemble into T-bars.

The idea that proteins/molecules are held in an inactive state till they reach their final target has
been observed in many other cell types. For example, in the context of local translation control,
mRNAs are shielded or hidden in messenger ribonucleoprotein particles during transport so that they
are withheld from cellular processing events such as translation and degradation. Shielding is thought
to operate through proteins that bind to the mRNA and alter its conformation while at the correct
time or place the masking protein is influenced by a signal that alleviates its shielding effect (Spirin,
1996, Johnstone and Lasko, 2001). As another example, hydrolytic enzymes, for example,
lysosomes, are transported as proteolytically inactive precursors that become matured by proteolytic
processing only within late endosomes or lysosomes (Ishidoh and Kominami, 2002). Particularly
relevant in the context of AZ proteins involved in exocytosis, the H,,. domain of Syntaxin-1 folds back
on the central helix of the SNARE motif to generate a closed and inactive conformation which might
prevent the interaction of Syntaxin-1 with other AZ proteins during diffusion (Dulubova et al., 1999;
Ribrault et al., 2011).

Previously, genetic analysis of C. elegans axons forming en passant synapses suggested a tight
balance between capture and dissociation of protein transport complexes to ensure proper
positioning of presynaptic AZs. In this study, overexpression of the kinesin motor Unc-104/KIF1A

from the linker region between the protease cleavage
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Figure 4. Aplip1-PXXP1 motif is needed for its function as RBP/BRP transport adaptor. (A-D) Nerve bundles
of segments A1-A3 from third instar larvae of the genotypes indicated labeled with the Abs indicated.

(E, F) Quantification of BRP/RBP spot numbers. BRP spots per um? WT (n = 8 nerves): 0.084 + 0.010; aplip ¢
(n = 9 nerves): 0.205 + 0.025; aplip 1" (n = 8 nerves): 0.183 + 0.025; aplip1"", gen. rescue (n = 8 nerves): 0.034
+ 0.007; RBP spots per pm?2, WT (n = 8 nerves): 0.074 + 0.007; aplip1°** (n = 9 nerves): 0.180 + 0.019; aplip 1™
(n =8 nerves): 0.153 + 0.037; aplip1"", gen. rescue (n = 8 nerves): 0.025 + 0.006. All panels show mean values
and errors bars representing SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant, p > 0.05,
Mann-Whitney U test. (G-J) Nerve bundles of segment A1-A3 from third instar larvae of the genotypes
indicated labeled with the Abs indicated. BRP and RBP co-localized in control animals and accumulated in
a co-localizing fashion in axons of aplip1™" mutant animals. Re-expression of an Aplip1-WT cDNA construct
in the aplip1™ background rescued the phenotype, while re-expression of an AxxA1 construct did not.

Figure 4. continued on next page
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Figure 4. Continued

(K, L) Quantification of the number of BRP/RBP spots per pm? axon. BRP spots per pm?, control (n = 12 nerves):
0.084 + 0.010; aplip1™" (n = 16 nerves): 0.198 + 0.022; WT rescue (n = 14 nerves): 0.078 + 0.009; AxxA1
rescue (n = 14 nerves): 0.177 + 0.012; RBP spots per um?, control (n = 12 nerves): 0.071 + 0.013; aplip 1™
(n =16 nerves): 0.188 + 0.026; WT rescue (n = 14 nerves): 0.039 + 0.004; AxxA1 rescue (n = 14 nerves): 0.158 +
0.015. All panels show mean values and errors bars representing SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ns,
not significant, p > 0.05, Mann-Whitney U test. Scale bar: (A-D, G-J) 10 pm.

DOI: 10.7554/elife.06935.018

reduced the capture rate and could suppress the premature axonal accumulations of AZ/SV proteins
in mutants of the small, ARF-family G-protein Arl-8. Interestingly, large axonal accumulations in arl-8
mutants displayed a particularly high capture rate (Klassen et al., 2010; Wu et al., 2013). Similarly,
both aplip1 alleles exhibited enlarged axonal BRP/RBP accumulations. Thus, the capture/dissociation
balance for AZ components might be shifted towards ‘capture’ in these mutants, consistent with the
ectopic axonal T-bar formation. It is tempting to speculate that loss of Aplip1-dependent scaffolding
and/or kinesin binding provokes the exposure of critical ‘sticky’ patches of scaffold components such
as RBP and BRP. Such opening of interaction surfaces might increase ‘premature’ interactions of cargo
proteins actually destined for AZ assembly, thus increase overall size of the cargo complexes by
oligomerization between AZ proteins and, finally, promote premature capture and ultimately ectopic
AZ-like assembly. On the other hand, the need for the system to unload the AZ cargo at places of
physiological assembly (i.e., presynaptic AZ) might pose a limit to the ‘wrapping’ of AZ components
and ask for a fine-tuned capture/dissociation balance.

Several mechanisms for motor/cargo separation such as (i) conformational changes induced by
guanosine-5'-triphosphate hydrolysis, (i) posttranslational modification as de/phosphorylation, or
(iii) acetylation affecting motor-tubulin affinity, have been suggested for cargo unloading
(Hirokawa et al., 2010). Notably, Aplip1 also functions as a scaffold for JNK pathway kinases,
whose activity causes motor-cargo dissociation. JNK probably converges with a mitogen-
activated protein kinase (MAPK) cascade (MAPK kinase kinase Wallenda phosphorylating MAPK
kinase Hemipterous) in the phosphorylation of Aplip1, thereby dissociating Aplip1 from KLC.
Thus, JNK signaling, co-ordinated by the Aplip1 scaffold, provides an attractive candidate mechanism
for local unloading of SVs (Horiuchi et al., 2007) and, as shown here, AZ cargo at synaptic boutons. Our
study further emphasises the role of the Aplip1 adaptor, whose direct scaffolding role through binding
AZ proteins might well be integrated with upstream controls via JNK and MAP kinases. Intravital
imaging in combination with genetics of newly assembling NMJ synapses should be ideally suited to
further dissect the obviously delicate interplay between local cues mediating capturing and axonal
transport with motor-cargo dissociation.

Materials and methods

Genetics

Fly strains were reared under standard laboratory conditions (Sigrist et al., 2003) on semi-defined
medium (Bloomington recipe). For all experiments both male and female larvae were used for
analysis. The following genotypes were used: WT: +/+ (w1118). srpk79D: srpk79D™/srpk79D
(unless otherwise noted). srpk79D"": srpk79D""/srpk79D"". srpk79D%%: srpk79D*/srpk79D<. brp®/+;
srpk79D:  Df(2R)BSC29/+;  srpk79D/srpk79D.  brp™!/brp®’;,  srpk79D:  brp®’/Df(2R)BSC29;
srpk79D/srpk79D%%. rbpP+;srpk79D: Df(3R)S2.01/+; srpk79D*/srpk79D<. rbp™"/rbp®; srpk79D:
rbp®T°F"/DA3R)S201; srpk79D%/srpk79D. aplip1e: aplip1°*/aplip 1°*. aplip 1™": aplip 1°°2'*/aplip 1923,
aplip1, gen.rescue: aplip19enrescuel@13)/ap|jp 1genrescue@213)  Aplin1 cDNA rescue: control: elav/+;;
aplip192"3/+. aplip1™": elav/+;;aplip 1°%"/aplip 192, WT rescue: elav/+;UAS-Aplip1-WT/+;aplip 1?73/
aplip 1923, AxxA1 rescue: elav/+;UAS-Aplip1-AxxA1/+;aplip19%%/aplip194'3. brpP/+;aplip1°4: Df(2R)
BSC29/+; aplip1e/aplip 1. brp™!/brp™;aplip1°%*: brp*’/Df2R)BSC29; aplip1°“/aplip 1. Oké>+: OK6-
Gald/+. OK6>Aplip1-RNAirbp®/+:  OK6-Gald/UAS-aplip1-RNAi;DA3R)S2.01/+.  OKé>Aplip1-RNAi;
rbp™/P%, OK6-Gal4/UAS-aplip 1-RNAI; rbpT™°"/Df(3R)S201. acsl: acslI®®®¥/acsl’. unc51 (atg-1): atg1°7%5'/
DA(3L)BSC10. appl: applE©02*/appl PMW¥T7-518 unc-76: unc-76°°"%%/y. Aplip1°T, BRP-short®">": OKé-Gal4/UAS-
BRP-short™*;UAS-Aplip157/+.  Aplip17 RBP<*™:  OK6-Gald/OK6-Gald;UAS-Aplip15F/UAS-Aplip 157
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Figure 5. Aplip1 promotes BRP transport in absence of RBP. (A-E) Nerve bundles of segments A1-A3 from third
instar larvae of the genotypes indicated labeled with the Abs indicated. (A) Removing one copy of BRP in aplip 1<
mutants had no apparent effect on axonal RBP accumulation. (B) RBP still accumulates in brp™"aplip1°** double
mutants. (C, D) Driver control and removing one copy of RBP in motoneuronal driven Aplip1-RNAi had no apparent
effect on axonal BRP accumulation. (E) BRP still accumulates in rbp™",aplipT double mutants Scale bar: (A-E) 10 pm.
(F) Immunoprecipitation (IP) of Aplip1¢ with anti-GFP Ab from Drosophila active zone (AZ) protein-enriched
fraction was followed by Western blot (WB) analysis using anti-BRP-*?® and anti-RBPS"**". Both BRP and RBP
could be detected in Aplip1¢™* IPs, but are absent in controls (plain beads; GFP trapped beads). (For whole WBs,
see Figure 5—figure supplement 2).

DOI: 10.7554/elife.06935.019

The following figure supplements are available for figure 5:

null

Figure supplement 1. Accumulation of BRP in srpk79D mutant axons is unaffected by removing RBP.
DOI: 10.7554/elife.06935.020

Figure supplement 2. IP of Aplip1°F* with anti-GFP (Full blot).

DOI: 10.7554/eLife.06935.021

were crossed to upstream activator sequence (UAS)-RBP*"*™/UAS-RBP*™, BRPS RBP<"*: OK6-Gald/
OK6-Gal4;genomicBRP¢*/genomicBRPF* were crossed to UAS-RBP<"*Y/UAS-RBP<"*™. Live
imaging BRP-short®™® in aplip? mutant backgrounds (Figure 2E): ctrl: OK6-Gal4/UAS-BRP-
short®=" aplip 1°*: OK6-Gal4/UAS-BRP-short*®";aplip 154/ aplip 1°*. aplip 1™": OK6-Gal4/UAS-BRP-
short*">*;aplip 1°2'3/aplip 1°2™3,  aplip19en-rescue;  OK6-Gald/UAS-BRP-shorts™";aplip 19em-rescue(ex213)/
aplip 19enrescueex213)  Oké/4;UAS-KHC-RNAI. Oké/+;UAS-Imac-RNA..

Stocks were obtained from: brp®’ (Kittel et al., 2006), Df(3R)S2.01 and rbp®°"" (Liu et al., 2011a),
aplip19?"3 and aplip 19en-rescue@213) gift from Catherine Collins (Klinedinst et al., 2013), srpk79D¢
(Johnson et al., 2009), srpk79D"" (Nieratschker et al., 2009), UAS-Aplip 1/ (Horiuchi et al., 2005),
UAS-BRP-short®*™* (Schmid et al., 2008) and genomic BRP®™ (Matkovic et al., 2013). The aplip 1,
Df(2R)BSC29, acsl®*®*, acsl', atg19°73%", applBC026*, appl PHW17-518  Df(31)BSC10, unc-76°°'% lines were
provided by the Bloomington Drosophila Stock Center. UAS-Aplip1-RNAi, UAS-Imac-RNAi and
UAS-KHC-RNAI from VDRC.
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Figure 6. Several known transport adaptor mutants showed axonal BRP and RBP co-accumulations. (A-E) Nerve
bundles of segment A1-A3 from third instar larvae of the genotypes indicated labeled with the Abs indicated.
BRP and RBP accumulated in a co-localizing manner in axons of WT (A), acs/ (B), unc-51 (atg-1;, C), appl (D) and
unc-76 (E). Scale bar: 10 pm.

DOI: 10.7554/elife.06935.022

Generation of RBP<"*™¥ ¢DNA construct

RBP cDNA was assembled based on exon annotation sequence of RBP-PF isoform from flybase. cDNA
clones, AT04807; RH38268 and a gene synthesis fragment from MWG eurofins GMBH, Germany,
containing 1-1131 bp of RBP-PF isoform were used to assemble the cDNA. All the fragments were
cloned into a modified pENTR4 cloning vector described in Fouquet et al. (2009). The final pENTR4
construct contains 5499 bp RBP cDNA was recombined with pTW-Cherry gateway Drosophila
transgenic vector. Transgenic flies were generated at Bestgene Inc., CA, USA and insertion was
confirmed by genotyping.

Generation of Aplip-WT1 and Aplip1-AxxA1 construct

To generate the cDNA of Aplip1 (with WT or mutated first PXXP motif), the full length cDNA clone of
Aplip1 was kindly obtained from HYBRIGENICS Services, France and used as a template for cloning
full length Aplip1 into pENTR/D-Topo (Invitrogen, Germany) using the following primers:
Aplip1-FL-FW 5-CACCATGGCCGACAGCGAATTCGAGGAGTT-3'

Aplip1-FL-REV 5-TCGGCGCGCCCACCCTTCTACTCAATGTAG-3’

Through Gateway reaction, the construct was shuttled into GAL4/UAS vector and sent for injection
at BestGene Inc., CA, USA. Point mutations were introduced into the constructs via mutated primers
with the ‘Quick Change Il Site-Directed Mutagenesis Kit' from Stratagene, CA, USA. This induced
a change of the prolines of PxxP1 (155-PEIP-160) into alanines (155-AEIA-160) after mutagenesis.
Following primers were used:

Forward 5 CGTCGTCGCAAGTTGGCGGAAATAGCGAAAAACAAGAAATCT 3’
Reverse 5" AGATTTCTTGTTTTTCGCTATTTCCGCCAACTTGCGACGACG 3

Generation of peptides for crystallography
For crystallography constructs comprising either the RBP SH3-Il (residue 1318-1382) or SH3-llI
(residue 1441-1507) domain of RBP were amplified by PCR and cloned into the pGEX-6P1 vector
using EcoRl and Xhol restriction sites.

The following primers were used:
SH3II_for 5-CAGAATTCCGCTATTTTGTGGCCATGTTC-3’
SH3II_rev 5'-TACTCGAGTCACTCCACCTCGGAGACCAT-3’
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Figure 7. Ectopic AZ scaffold and synaptic vesicle (SV) accumulation in aplip? mutant axons. (A) Two-colour STED
images of axonal aggregates in aplip7®* mutants revealed that the structures observed (arrow heads) have identical
BRP and RBP arrangement, as recently observed at presynaptic AZs (Liu et al., 2011a). Right panels display
magnifications of single axonal AZ. Dashed lines indicate axonal plasma membrane. (B) Two-colour STED images of
axonal aggregates in aplip1°* mutants revealed that the structures observed (arrow head) have identical BRP and Syd-1
arrangement as observed at immature presynaptic AZs (Owald et al., 2010). Right panels display magnifications of
single axonal AZ. Dashed lines indicate axonal plasma membrane. (C) Terminal T-bar (arrow heads) surrounded by SVs
(arrows) taken from electron micrographs of WT third instar larvae after conventional embedding. (D) Ectopic axonal
T-bar (arrow heads) taken from electron micrographs from aplip1° mutant third instar larvae after conventional
embedding. SVs accumulate around the ectopic T-bar (arrows). (E) Magnification of (C). (F) Magnification of (D).
(G-J) Nerve bundles of segment A1-A3 from third instar larvae of the genotypes indicated labeled with the Abs
indicated. Syt-1 accumulates at a subset of axonal BRP aggregations in aplip 1™ and AxxA1 rescue (H, J) larvae, but not
in control and WT rescue larvae (G, I). (K) Quantification of the number of Syt-1 spots per pm? axon. control (n = 12
nerves): 0.004 + 0.002; aplip1™" (n = 16 nerves): 0.040 + 0.011; WT rescue (n = 13 nerves): 0.014 + 0.007; AxxA1 rescue
(n = 13 nerves): 0.052 + 0.017. All panels show mean values and errors bars representing SEM. *p < 0.05; **p < 0.01;
***p < 0.001; ns, not significant, p > 0.05, Mann-Whitney U test. Scale bars: (A, B) 500 nm; (C, D) 100 nm; (G, J) 10 pm.
DOI: 10.7554/elife.06935.023

The following figure supplement is available for figure 7:

Figure supplement 1. Ectopic AZ protein accumulations in motoneuronal driven Imac- and KHC-RNAi axons.
DOI: 10.7554/elife.06935.024
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SH3III_for 5'-CAGAATTCAACATGCCCGTGAAGCGAATG-3’
SH3lll_rev 5'-TACTCGAGTCAGTCCGCCAGGAAGTTAGA-3

The resulting constructs comprise an N-terminal GST-tag that is followed by a PreScission cleavage
site and the respective SH3 domain. Correctness of the DNA sequences was confirmed by DNA
sequencing.

Yeast two-Hybrid

The Yeast two-Hybrid screen for RBP interaction partners was carried out in collaboration
with HYBRIGENICS Services, France using the LexA system (pB27 with bait; pP6 vector with
prey) against the HYBRIGENICS Drosophila melanogaster head (adult) library. The vector maps
of the bait and prey vectors are confidential (protected under material transfer agreement).

The plasmids (pP6 and pB27) encode tryptophan (Trp) and leucine (Leu) biosynthesis genes, and
were successfully double transformed into the TATA strain lacking genes for synthesis of Leu and Trp
which can be followed by positive growth in LT media. Reporter genes for the protein—protein
interaction are HIS3, which can be later detected by growth on plates lacking histidin, as well as lacZ
which allows the detection of interaction in a more quantitative fashion with a p-galactosidase assay.
To transform the yeast cells with the pP6 and pB27 vector respectively the LiAc/single strand DNA/
PEG technique was used (Gietz and Schiestl, 2007).

The RBP constructs for Y2H were cloned into pB27 bait vector. The RBP cDNA clone AT04807
(Drosophila Genomics Resource Centre, IN, USA) was used as a template for PCR reaction. For
amplification the following primers were used:
5-CAGAATTCGGTCAACCGGGACAACCGGGG-3’
5-TAACTAGTTCAGTCGGGCGCGTCCGCCAGGA-3’

Protein sequence of the bait fragment

RBP SH3-lI+ll (length: 209 AA; Orientation C-term free [N-LexA-bait-C])
GQPGQPGQMPGAQKKPRYFVAMFDYDPSTMSPNPDGCDEELPFQEGDTIKVFGDKDADGFYWGELRG
RRGYVPHNMVSEVEDTTASMTAGGQMPGQOMPGOMGQGQGVGVGGTAQVMPGQGAPQQSMRNVS
RDRWGDIYANMPVKRMIALYDYDPQELSPNVDAEQVELCFKTGEILVYGDMDEDGFYMGELDGVRGLVP
SNFLADAPD

Liquid Y2H B-Galactosidase assay

The assay was carried out as described in JH Miller "Experiments in Molecular Genetics’ 1972 Cold
Spring Harbor Laboratories pages 352-355.

The RBP constructs for Y2H were cloned into pB27 bait vector. The RBP ¢cDNA clone AT04807
(Drosophila Genomics Resource Centre) was used as a template for PCR reaction. For amplification
the following primers were used:

RBP SH3-II
5-CAGAATTCGGTCAACCGGGACAACCGGGG-3'
5-TAACTAGTTCAGTCCTCCACCTCGGAGACC-3’

Giving rise to the following sequence

PGQPGQPGQMPGAQKKPRYFVAMFDYDPSTMSPNPDGCDEELPFQEGDTIKVFGDKDADGFYWGELR
GRRGYVPHNMVSEVED

RBP SH3-IlI
5-CAGAATTCATGCCCGTGAAGCGAATG-3’
5-TAACTAGTTCAGTCGGGCGCGTCCGCCAGGA-3'

Giving rise to the following sequence
MPVKRMIALYDYDPQELSPNVDAEQVELCFKTGEILVYGDMDEDGFYMGELDGVRGLVPSNFLADAPD
RBP SH3-II+IlI

5'-CAGAATTCGGTCAACCGGGACAACCGGGG-3’
5-TAACTAGTTCAGTCGGGCGCGTCCGCCAGGA-3’
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Giving rise to the following sequence

GQPGQPGQMPGAQKKPRYFVAMFDYDPSTMSPNPDGCDEELPFQEGDTIKVFGDKDADGFYWGELRG
RRGYVPHNMVSEVEDTTASMTAGGQMPGQMPGQOMGQGQGVGVGGTAQVMPGQGAPQQSMRNVS
RDRWGDIYANMPVKRMIALYDYDPQELSPNVDAEQVELCFKTGEIILVYGDMDEDGFYMGELDGVRGLVPS
NFLADAPD

By applying the site-directed mutagenesis strategy, different constructs were designed for RBP
using mutated primers. Mutagenesis was carried out by Dr Martin Meixner (SMB. GmbH, Germany,).
The following point mutations were used:
RBP SH3-II*: Prolinq373 — Leucin

Giving rise to the following sequence

PGQPGQPGQMPGAQKKPRYFVAMFDYDPSTMSPNPDGCDEELPFQEGDTIKVFGDKDADGFYWGELR
GRRGYVLHNMVSEVED
RBP SH3-III*: Prolinysgg — Leucin

Giving rise to the following sequence
MPVKRMIALYDYDPQELSPNVDAEQVELCFKTGEILVYGDMDEDGFYMGELDGVRGLVLSNFLADAPD

The Aplip1 prey fragment only containing the first PXXP was generated from the
full length fragment via PCR using the primers

Aplip first PXXP FW 5-CGTACTCCATGGCTGAGGACGATGAGCTGGGCGA-3’

Aplip first PXXP REV 5-CTGACTACTAGTTGGAGTCCTCGTCCATCAAGTA-3’

Giving rise to the following sequence

Aplip1-PXXP1 (length: 139 AA)
EDDELGDGLKVTLSSDGSLDTNDSFNSHRHHPLNHQDAIGGFLGMDTSGLGGNSAPVTIGASTDLLAPNT
AATRRRRKLPEIPKNKKSSILHLLGGSNFGSLADEFRNGGGGGIPPAVRSGQQRSFLSLKCGYLMDEDS

The Aplip1 prey fragment only containing the second PXXP was generated from the full length
fragment via PCR using the primers

Aplip second PXXP FW 5-CGTACTCCATGGCTCTTCTAGGTGGCTCCAACTT-3’

Aplip second PXXP REV 5'-CTGACTACTAGTTCTGGCCAAAGGGCACGC-3’

Giving rise to the following sequence

Aplip1-PXXP2 (length: 100 AA)
LLGGSNFGSLADEFRNGGGGGIPPAVRSGQQRSFLSLKCGYLMDEDSSPDSERMQSLGDVDSGHSTAHS
PNDFKSMSPQITSPVSQSPFPPPFGGVPFGQ

The Aplip1 prey fragment only containing the mutated first PXXP motif (AxxA) (see also Generation
of Aplip-WT1 and Aplip1-AxxA1 construct) was generated from the full length fragment via PCR using
the primers:
Forward 5" CGTCGTCGCAAGTTGGCGGAAATAGCGAAAAACAAGAAATCT 3’
Reverse 5" AGATTTCTTGTTTTTCGCTATTTCCGCCAACTTGCGACGACG 3’

Giving rise to the following peptide sequence

Aplip1-AXXA1 (length: 139 AA)
EDDELGDGLKVTLSSDGSLDTNDSFNSHRHHPLNHQDAIGGFLGMDTSGLGGNSAPVTIGASTDLLAPNT
AATRRRRKLAEIAKNKKSSILHLLGGSNFGSLADEFRNGGGGGIPPAVRSGQQRSFLSLKCGYLMDEDS
The BRP constructs for Y2H were cloned into pB27 bait vector. Yeast two-hybrid constructs
for BRP were obtained by PCR using the corresponding cDNA as template (modified from Wagh
et al., 2006).
To generate BRP prey fragments the following primers were used:
Forward 5° CAGCGGCCGCTCCAGTAACTAGCTCTGG 3’
Reverse 5" TAACTAGTTTATATGTGCCGCTGGTAGTC 3’
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Giving rise to the following peptide sequence

BRP-D1 (length: 359 AA)
PVTSSGVRSPGRVRRLQELPTVDRSPSRDYGAPRGSPLAMGSPYYRDMDEPTSPAGAGHHRSRSASRPPM
AHAMDYPRTRYQSLDRGGLVDPHDREFIPIREPRDRSRDRSLERGLYLEDELYGRSARQSPSAMGGYNTG
MGPTSDRAYLGDLOQHQONTDLQRELGNLKRELELTNQOKLGSSMHSIKTFWSPELKKERAPRKEESAKYSLIN
DQLKLLSTENQKQAMLVRQLEEELRLRMRQPNLEMRQQOMEAIYAENDHLQREISILRETVKDLECRVETQK
QTLIARDESIKKLLEMLOAKGMGKEEEROMFOQQOMOQAMAQKQLDEFRLEIQRRDQEILAMAAKMKTLEE
QHQDYQRHI

Forward 5° CAGCGGCCGCGATGTTCCAGCAGATGC 3’

Reverse 5" TAACTAGTTTACTGTGTGACTCTCAGCTCGGC 3’

Giving rise to the following peptide sequence

BRP-D2 (length: 339 AA)
MFQQMQAMAQKQLDEFRLEIQRRDQEILAMAAKMKTLEEQHQDYQRHIAVLKESLCAKEEHYNMLQTD
VEEMRARLEEKNRLIEKKTQGTLQTVQERNRLTSELTELKDHMDIKDRKISVLQRKIENLEDLLKEKDNQVDM
ARARLSAMQAHHSSSEGALTSLEEAIGDKEKQMAQLRDQRDRAEHEKQEERDLHEREVADYKIKLRAAESE
VEKLQTRPERAVTERERLEIKLEASQSELGKSKAELEKATCEMGRSSADWESTKQRTARLELENERLKHDLER
SONVQKLMFETGKISTTFGRTTMTTSQELDRAQERADKASAELRRTQAELRVTQ

Forward 5" CAGAATTCGAGCGGGCCGACAAGGC 3’

Reverse 5" TAACTAGTTCACATTTGCGCCTTCTC 3’

Giving rise to the following peptide sequence

BRP-D3 (length: 636 AA)
ERADKASAELRRTQAELRVTQSDAERAREEAAALQEKLEKSQGEVYRLKAKLENAQGEQESLRQELEKAQ
SGVSRIHADRDRAFSEVEKIKEEMERTQATLGKSQLQHEKLONSLDKAQNEVDHLODKLDKACTENRRLV
LEKEKLTYDYDNLQSQLDKALGOAARMQKERETLSLDTDRIREKLEKTQVQLGRIQKERDQFSDELETLKER
SESAQTLLMKAARDREAMQTDLEVLKERYEKSHAIQOKLOMERDDAVTEVEILKEKLDKALYASQKLIDEK
DTSNKEFEKMLEKYDRAQNEIYRLOSRCDTAEADRARLEVEAERSGLAASKAREDLRKLODESTRLQEACD
RAALQLSRAKECEDNARSELEHSRDRFDKLOTDIRRAQGEKEHFQSELERVTYELERAHAAQTKASASVEA
AKEEAAHYAVELEKMRDRYEKSQVELRKLODTDTFGRETRRLKEENERLREKLDKTLMELETIRGKSQYESE
SFEKYKDKYEKIEMEVQNMESKLHETSLOLELSKGEVAKMLANQEKQRSELERAHIEREKARDKHEKLLKEV
DRLRLQQSSVSPGDPVRASTSSSSALSAGERQEIDRLRDRLEKALQSRDATELEAGRLAKELEKAQM
Forward 5° CAGCGGCCGCCCTGCAACAGTCCTCGG 3’

Reverse 5 TAACTAGTTTACAACTCTGTGACCAG 3’

Giving rise to the following peptide sequence

BRP-D4 N-term (length: 348 AA)
LOQSSVSPGDPVRASTSSSSALSAGERQEIDRLRDRLEKALQSRDATELEAGRLAKELEKAQMHLAKQQEN
TESTRIEFERMGAELGRLHDRLEKAEAEREALROQANRSGGAGAAPHPQLEKHVQKLESDVKQLAMEREQL
VLOLEKSQEILMNFQKELONAEAELQKTREENRKLRNGHQVPPVAAPPAGPSPAEFQAMQKEIQTLQQK
LOESERALOQAAGPQQAQAAAAAGASREEIEQWRKVIEQEKSRADMADKAAQEMHKRIQLMDQHIKDQ
HAQMQKMQQQOMOQOQQOQAAQQAVOQAAQQQQSAAGAGGADPKELEKVRGELOQAACTERDRFQQ
QLELLVTEL

Forward 5" CAGAATTCAAGAGCAAGATGTCCAAC 3’

Reverse 5 TAACTAGTTTAGAAAAAGCTCTTCAA 3’

Giving rise to the following peptide sequence

BRP-D4 C-term (length: 227 AA)
SKMSNQEQAKQLQTAQQQVQQLOQOQVQQLOOQOMQQLOQAASAGAGATDVQRQQLEQQQOKQLE
EVRKQIDNQAKATEGERKIIDEQRKQIDAKRKDIEEKEKKMAEFDVQLRKRKEQMDQLEKSLOTOGGGAA
AAGELNKKLMDTQRQLEACVKELONTKEEHKKAATETERLLOLVOMSQEEQNAKEKTIMDLQQALKIAQ
AKVKOQAQTQQQOQOODAGPAGFLKSFF
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IP

IP of elav-Gal4/+;UAS-Aplip1°7F/+ was performed as described in Depner et al. (2014). In brief, the
experiment was performed as following, 500 pl adult fly heads were mechanically homogenized in 500 pl
lysis buffer (50 mM Tris pH 8.0, 150 mM KCI, 1 mM MgCl,, 1 mM EGTA, 10% glycerol containing
protease inhibitor cocktail [Roche, Germanyl]). 0.4% Sodium deoxycholate was added, and the
lysate was incubated on ice for 30 min. The lysate was diluted 1:1 with sodiumdeocycholat-free
lysis buffer, then 1% Triton X-100 was added and lysate was kept on the wheel at 4°C for 30 min. After
centrifugation for 15 min at 16,000xg, the supernatant was used in IPs with GFP-Trap-A beads and
blocked agarose beads as binding control (Chromotek, Germany). After incubation overnight at 4°C,
beads were washed in buffer without detergent and glycerol. Proteins were eluted from the beads with
SDS sample buffer. Afterward, the SDS-PAGE samples were subjected to Western blot (WB).

SDS-PAGE and Tris-Acetate gel electrophoresis

The gel electrophoresis for both SDS-PAGE and Tris-acetate gels was conducted according to the
standard protocols (Laemmli, 1970; Schagger, 2006). Colloidal Coomassie blue stain was used to
detect proteins based on manufacture protocol (Carl-Roth, Germany and Invitrogen). For BRP, RBP
and Aplip1, standard SDS-PAGE gels (6-12%) were used to separate the target protein.

WB analysis

Following the separation by gel electrophoresis, the proteins were transferred into a nitrocellulose
membrane by wet transfer procedure using cold transfer buffer (25 mM Tris, pH 8.0, 150 mM glycine,
20% methanol). For visualization of proteins, the membrane was stained using Ponceau-S staining
solution (Sigma-Aldrich, MO, USA). 5% milk powder in phosphate buffered saline (PBS) was used for
blocking of the membrane. Following the blocking, the membrane was incubated with the primary
Abs guinea pig BRP"=2® (1:5000, UlIrich et al., in submission) and rabbit RBP*H>"*!" (1:1000, Depner
et al., 2014) at 4°C for overnight. After several washing steps, the membrane was incubated with
horseradish peroxidase (HRP) conjugated secondary Abs (Dianova, Germany). For detection, an
enhanced chemoluminescence substrate (GE Healthcare, United Kingdom) was used and the X-ray
film (GE Healthcare) development was carried manually.

Immunostaining

Larval filets were dissected and stained as described previously (Owald et al., 2010). The following
primary Abs were used: rabbit BRPN*™ (1:500; Qin et al., 2005); rabbit Liprin-a (1:500; Fouquet et al.,
2009); rabbit Syd-1 (1:500; Owald et al., 2010); rabbit Rab3 (1:500; Graf et al., 2009); rabbit RBP<*™,
rabbit RBP*H3"+!! (1:500; Depner et al., 2014), rabbit Syt1-CL1 (1:1000; gift from N Reist [Mackler et al.,
2002], Colorado State University, CO, USA); mouse GFP (3E6) (1:500, Life Technologies, Germany),
mouse Nc82 = anti-BRP<*™ (1:100, Developmental Studies Hybridoma Bank, University of lowa, lowa
City, 1A, USA). Except for staining against Cac®™, where larvae were fixed for 5 min with ice-cold
methanol, all fixations were performed for 10 min with 4% paraformaldehyde in 0.1 mM PBS.
Secondary Abs for standard immunostainings were used in the following concentrations: goat
anti-HRP-Cy5 (1:250, Jackson ImmunoResearch, PA, USA); goat anti-rabbit Cy3 (1:500, Life
Technologies); goat anti-mouse Alexa-Fluor-488 (1:500, Life Technologies). Larvae were mounted in
vectashield (Vector labs, United Kingdom). Secondary Abs for STED were used in the following
concentrations: For Figures 1H, 7A: goat anti-mouse Atto594 (1:250); goat anti-rabbit Atto594 (1:250);
goat anti-mouse Atto647N (1:100), goat anti-rabbit Atto647N (1:100) (ATTO-TEC, Germany). For
Figure 7B: goat anti-mouse Atto590 (1:100); goat anti-rabbit star635 1:100 (Atto590 [ATTO-TEC] and
star635 [Abberior, Germany]) coupled to respective IgGs (Dianova, Germany). For Figure 7—figure
supplement 1A-C: goat anti-mouse Alexa-Fluor-488 (1:500, Life Technologies) and goat anti-rabbit
Alexa-Fluor-532 (1:500, Life Technologies) was used. For STED imaging larvae were mounted in Mowiol
(Max-Planck Institut for Biophysical Chemistry, Group of Stefan Hell) or Prolong Gold antifade reagent
(Life Technologies; Figure 7—figure supplement 1A-C).

Image acquisition, processing and analysis
Confocal microscopy was performed with a Leica TCS SP5 (all except for Figure 4G-J and Figure 7G-J)
or a Leica SP8 (Figure 4G-J and Figure 7G-J) confocal microscope (Leica Microsystems, Germany).
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STED microscopy was performed with a custom-built STED-microscope (see below). Images of fixed
and live samples were acquired at room temperature. Confocal imaging of axons was done using a z
step of 0.25 pm. The following objective was used: 63x 1.4 NA oil immersion for NMJ confocal imaging.
All confocal images were acquired using the LCS AF software (Leica, Germany). Images from fixed
samples were taken from third instar larval nerve bundles (segments A1-A3). Images for figures were
processed with ImageJ software to enhance brightness using the brightness/contrast function.
If necessary images were smoothened (0.5-1 pixel Sigma radius) using the Gaussian blur
function.

Quantifications of axonal spot number and size were performed following an adjusted manual
(Andlauer and Sigrist, 2012), briefly as follows. The signal of a HRP-Cy5 Ab was used as template for
a mask, restricting the quantified area to the shape of the axon/nerve bundles. The original confocal
stacks were converted to maximal projections and after background subtraction, a mask of the axonal
area was created by applying a certain threshold to remove the irrelevant lower intensity pixels.
The segmentation of single spots was done semi-automatically via the command ‘Find Maxima’
and by hand with the pencil tool and a line thickness of 1 pixel. To remove high frequency noise
a Gaussian blur filter (0.5 pixel Sigma radius) was applied. The processed picture was then transformed
into a binary mask using the same lower threshold value as in the first step. This binary mask was then
projected onto the original unmodified image using the ‘min’ operation from the ImageJ image
calculator. The axonal spots of the resulting images were counted with the help of the ‘analyze particle’
function with a lower threshold set to 1. The spot density was obtained by normalizing the total number
of analyzed particles to the axonal area measured via HRP. Colocalization of RBP/BRP spots (Figure 1G)
was counted manually.

Data were analyzed using the Mann-Whitney U test for linear independent data groups. Means are
annotated +SEM. Asterisks are used to denote significance: *p < 0.05; **p < 0.01; ***p < 0.001; n.s.
(not significant), p > 0.05.

STED microscopy

For Figures 1H, 7A two-colour STED images were recorded with a custom-built STED microscope
which combines two pairs of excitation and STED laser beams all derived from a single supercontinuum
laser source (Biickers et al., 2011). For Figure 7B STED microscopy was performed as previously
described in Li et al. (2014). Here, two-colour STED images were recorded on a custom-built STED-
microscope (Gottfert et al., 2013), which combines two pairs of excitation laser beams of 595 nm and
640 nm wavelength with one STED fiber laser beam at 775 nm. All STED images were acquired using
Imspector Software (Max Planck Innovation GmbH). STED images were processed using a linear
deconvolution function integrated into Imspector Software (Max Planck Innovation GmbH, Germany).
Regularization parameters ranged from 1€~ to 1e7"°. The point spread function (PSF) for deconvolution
was generated by using a 2D Lorentz function with its half-width and half-length fitted to the half-width
and half-length of each individual image. For Figure 7—figure supplement 1, STED microscopy was
performed with a Leica TCS SP5 time gated STED microscope equipped with a 100x 1.4 NA objective
using the LCS AF software (Leica) for image acquisition. Alexa-Fluor-488 and Alexa-Fluor-532 were
excited using a pulsed white light laser at 488 and 545 nm, respectively. STED was achieved with
a continous STED laser at 592 nm. In gSTED mode time gated detection started at 1.2 ns—6 ns for
Alexad88 while for Alexa532 gating time was set to 2.3 ns—6 ns. Raw gSTED images were
deconvolved using the built-in algorithm of the LAS AF software (Signal intensity; regularisation
parameter 0.05). The PSF was generated using a 2D Lorentz function with the full-width half
maximum set to 60 nm. Images for figures were processed with ImageJ software to remove obvious
background, enhance brightness/contrast and smoothened (1 pixel Sigma radius) using the
Gaussian blur function.

Live imaging and analysis

Live imaging was performed as previously described (Fiiger et al., 2007). Briefly, third instar larvae
were put into a live imaging chamber and anaesthetized with 10-20 short pulses of a desflurane-air
mixture until the heartbeat completely stopped. For assessing axonal transport, axons immediately
after exiting the ventral nerve cord were imaged for 10 min using timelapse confocal microscopy.
The flux was determined by manually counting the number of moving spots (unidirectional for >3

Siebert et al. eLife 2015;4:€06935. DOI: 10.7554/¢eLife.06935 23 of 30


http://dx.doi.org/10.7554/eLife.06935

LI FE Neuroscience

frames) passing a virtual line in the middle of the nerve bundle. Mean flux was calculated by pooling
results from at least three independent larvae and at least six nerves. If little or no flux was observed,
additional nerves were imaged to avoid any bias from selecting specific nerves.

ITC

ITC experiments were performed at 25°C on an iTC200 microcalorimeter (Malvern Instruments Ltd.,
United Kingdom). The same peptides were employed as used for the co-crystallization experiments
(see below). Lyophilized peptides were resuspended in the final buffer of the proteins (10 mM Tris-HClI
pH 7.4, 100 mM NaCl). RBP SH3-Il and SH3-Ill were both provided at a concentration of 150 pM, RBP
SH3-1I+11l was provided at 78 pM. The proteins were titrated with 16 injections of 2.5 pl of either Aplip1,
Cac, RIM1 or RIM2 peptide at a concentration of 2 mM with 2-min intervals. The released heat was
obtained by integrating the calorimetric output curves. Binding parameters were calculated using the
Origin5 software using the ‘One Set of Sites' curve fitting model provided by the software.

The following peptides were used

RBP SH3-I
RFPYDPPEEAEGELSLCAGDYLLVWTSGEPQGGYLDAELLDGRRGLVPASFVQRLVG

RBP SH3-lI
RYFVAMFDYDPSTMSPNPDGCDEELPFQEGDTIKVFGDKDADGFYWGELRGRRGYVPHNMVSEVE
RBP SH3-III
KRMIALYDYDPQELSPNVDAEQVELCFKTGEIILVYGDMDEDGFYMGELDGVRGLVPSNFLAD
RBP SH3-II+ll

RYFVAMFDYDPSTMSPNPDGCDEELPFQEGDTIKVFGDKDADGFYWGELRGRRGYVPHNMVSEVEDTT
ASMTAGGQOMPGQOMPGQOMGQGQGVGVGGTAQVMPGQGAPQHSMRNVSRDRWGDIYANMPVKRM
IALYDYDPQELSPNVDAEQVELCFKTGEIILVYGDMDEDGFYMGELDGVRGLVPSNFLAD

Aplip-PxxP1: TRRRRKLPEIPKNKK

Cac: IGRRLPPTPSKPSTL

RIM1: GROLPQVPVRSG

RIM2: GRQLPQLPPKGT

Protein expression and purification for crystallization

Protein expression was conducted using chemically competent Escherichia coli BL21-CodonPlus-RIL cells.
The cells were grown in autoinduction ZY-medium (Studier, 2005) with ampicillin and chloramphenicol
for 4 hr at 37°C. Afterwards, the temperature was decreased to 18°C, and the cells were grown overnight.
The cells were harvested by centrifugation at 8,000xg for 6 min. The cell pellet was resuspended in
resuspension buffer (40 mM Tris/HCI pH 7.5 at RT, 250 mM NaCl, 1 mM DTT, 10 mg/I lysozyme and
5 mg/l DNase ) and subsequently lysed by sonification for 20 min. The lysate was centrifuged at
56,000xg for 45 min to pellet the cell debris. The supernatant was applied for affinity chromatography
using 10 ml glutathione sepharose 4B (GE Healthcare). Hereafter, two washing steps were performed
using 80 ml washing buffer (20 mM Tris/HCI pH 7.5 at RT, 250 mM NaCl, 1 mM DTT) for each step. The
GST-tag of the respective SH3 domain was cleaved off on the beads using PreScission protease (1 mg/ml).
Therefore 40 ml washing buffer with PreScission protease in a molar ratio of 1:30 to the maximum loading
capacity of the glutathione sepharose were incubated with the beads at 4°C while gently rotating
overnight. The PreScission-cleaved constructs were purified using a Superdex 75 26/60 column (GE
Healthcare). The protein containing fractions were pooled and concentrated using a 3 kDa molecular
weight cut-off concentrator (Millipore, Germany). Protein concentrations were determined by UV-
absorption.

Crystallization and crystal cooling

For crystallization experiment the RBP SH3-Il was concentrated to 56 mg/ml and the RBP SH3-IIl to
62 mg/ml. The same peptides as for ITC measurements were used and synthesized at the Leibniz
Institute for Molecular Pharmacology with N-terminal acetylation and C-terminal amidation. The
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unsolubilized peptides were mixed in a fivefold molar excess with the protein solution and incubated for
2 hr on ice. Insoluble peptide was removed by centrifugation (16,000xg for 1 min) prior to crystallization
experiments. All crystallization experiments were carried out at 291 K in a sitting drop setup. Crystals of
RBP SH3-Il bound to the Aplip1 peptide were obtained over a reservoir solution composed of 2.2-2.6 M
ammonium sulfate, 0.1 M bicine with final pH 9. For cryoprotection, the crystals were transferred to
a reservoir solution supplemented with 25% (vol/vol) glycerol. Crystals of RBP SH3-ll bound to Cac were
obtained over a reservoir solution of 0.2 M Ca(Ac);, 0.1 M MES pH 6.0, and 20% (wt/vol)
polyethylenglycol (PEG) 8000. For cryoprotection, the crystals were transferred to a reservoir solution
supplemented with 15% (vol/vol) PEG 400. Crystals of RBP SH3-IIl bound to the Cac peptide appeared
over a reservoir solution of 0.2 M Li,SO,4, 0.1 M MES pH 6.5, and 30% (vol/vol) PEG 400. After
cryoprotection the crystals were flash-cooled in liquid nitrogen.

Diffraction data collection and analysis as well as structure
determination

Synchrotron diffraction data were collected at the beamline 14.2 of the MX Joint Berlin laboratory at
BESSY (Berlin, Germany). X-ray data collection was performed at 100 K. Diffraction data were processed
with the XDS package (Kabsch, 2010). The diffraction data of RBP SH3-II/Aplip1-PxxP1 were initially
indexed in P622. Cumulative intensity distribution analysis as well as calculation of the moment of the
observed intensity/amplitude distribution performed with PHENIX.XTRIAGE and POINTLESS (Evans,
2011) indicated an unusual intensity distribution, likely caused by twinning. For determination of the
correct space group, the diffraction data were processed in P1. Subsequently, the structure was solved by
molecular replacement with the program PHASER (McCoy et al., 2007). We used the NMR structure of
the SH3-Il domain of human RBP (PDB entry 2CSQ) as search model and could locate 24 copies of the
SH3 domain. Next the diffraction data and the coordinates of our molecular replacement were analysed
by the program ZANUDA (Lebedev and Isupov, 2014) revealing that sixfold is in fact broken and C2 is
the true symmetry, with sixfold twinning with the six twin operators: h, h, |; h, =k, —I; 1/2h — 3/2k, =1/2h —
1/2k, —k; =1/2h + 3/2k, 1/2h + 1/2k, —I; =1/2h — 3/2k, —=1/2h + 1/2k, —| and 1/2h + 3/2k, 1/2h — 1/2k, —I. In
total we could locate in the asymmetric unit 12 copies of RBP SH3-Il bound to Aplip1-PxxP1. The crystals
of RBP SH3-Il and SH3-Ill bound to the Cac peptide have P2, and 222 symmetry, respectively. Analyses of
the diffraction data of the complex of RBP SH3-Il and Cac revealed one pseudo-merohedral twin operator
(h, =k, —h =), that was later included in the refinement protocol. The structures of RBP SH3-Il and SH3-IlII
each bound to the Cac derived peptide were solved by molecular replacement with our previously
determined structure of RBP SH3-Il. The asymmetric unit of RBP SH3-Il bound to Cac contains 10
complexes and of RBP SH3-lIl bound to Cac one complex, respectively.

Refinement and validation

The refined molecular replacement solution clearly revealed the presence of the bound Aplip1-PxxP1
peptide in 2mFo — DFc and mFo — DFc electron density maps. For refinement, a set of 4.7% of Ryee
reflections was generated in P622 and then expanded to C2 to insure equal distribution of the Rgee
reflections in all six twin domains. For calculation of the free R-factor of the other two data sets, a randomly
generated set of 5% of the reflections from the diffraction data set was used and excluded from the
refinement. The structure was manually built in COOT (Emsley et al.,, 2010) and refined in REFMAC
5.8.0073 (Murshudov et al., 2011) with intensity based twin refinement. In final stages TLS refinement was
applied with every protein and peptide chain as single TLS group. The structures with bound Cac peptide
were refined with PHENIX.REFINE (Adams et al., 2010, Afonine et al., 2012). Water molecules were
picked with COOT and manually inspected. All structures were evaluated with MOLPROBITY (Chen et al.,
2010) and PROCHECK (Laskowski et al., 1993). Figures were drawn with PYMOL (DeLano, 2002).

EM

Conventional embedding was performed as described previously (Fouquet et al., 2009).

Statistics

Data were analyzed using the Mann-Whitney rank sum test for linear independent data groups (Prism;
GraphPad Software, Inc.). Means are annotated + SEM. Asterisks are used to denote significance (*p
< 0.05; **p < 0.01; ***p < 0.005; not significant, p > 0.05).
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