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We propose the π flux triangular lattice Hubbard model (π-THM) as a prototypical setup to
stabilize magnetically disordered quantum states of matter in the presence of charge fluctuations.
The quantum paramagnetic domain of the π-THM which we identify for intermediate Hubbard U
is framed by a Dirac semi-metal for weak coupling and by 120◦ Néel order for strong coupling.
Generalizing the Klein duality from spin Hamiltonians to tight-binding models, the π-THM maps
to a Hubbard model which corresponds to the (JH, JK) = (−1, 2) Heisenberg-Kitaev model in its
strong coupling limit. The π-THM provides a promising microscopic testing ground for exotic
finite-U spin liquid ground states amenable to numerical investigation.

PACS numbers: 75.10.Kt,71.10.Fd,71.10.Hf

Introduction. Two-dimensional quantum paramagnets
such as spin liquids or valence bond crystals are quan-
tum states of matter that, albeit their enormous diversity
from a theoretical standpoint, are hard to find in experi-
mental scenarios [1–4]. At the level of theoretical identifi-
cation in microscopic models, recent numerical advances
such as two-dimensional density matrix renormalization
group [5–7], pseudofermion renormalization group [8], or
variational Monte Carlo [9, 10] could provide substanti-
ated support for spin liquid regimes. Predominantly, the
strong coupling limit of a Mott state is considered which
is parametrized by spin exchange interactions.

An exception constitutes the work by Meng et al. on
the Hubbard model for the honeycomb lattice, where
quantum Monte Carlo algorithms avoid the sign prob-
lem due to lattice bipartiteness [11]. Small system sizes
suggested a non-magnetic insulating regime without va-
lence bond crystal order [11]. As larger scale calcula-
tions [12] and more refined determinations of the or-
der parameter [13, 14] revealed, however, the metal in-
sulator transition turns out to be of Gross-Neveu type,
where antiferromagnetic order sets in immediately. This
is confirmed by cluster methods operating at intermedi-
ate Hubbard U [15, 16]. What can still be taken as a
motivation from this finding is that a Dirac metal for
weak coupling might contribute to a promising scenario
for an unconventional metal-insulator transition and ex-
otic phases at intermediate coupling, which is the starting
point of our analysis.

In this Letter, we propose the Hubbard model on the
π flux triangular lattice (π-THM) as a prototypical can-
didate for quantum paramagnetic phases at intermediate
coupling. In its weak coupling limit, the band structure
of the π-THM is semi-metallic, exhibiting the same low-
energy behavior as graphene with a different Fermi veloc-
ity. The stability of this semi-metal with respect to weak

local Coulomb interactions follows from generic proper-
ties of Dirac electrons [17, 18]. In its strong-coupling
limit, positive and negative hoppings give rise to the
same spin exchange amplitude J = 4(±t)2/U , render-
ing the π-THM identical to the nearest-neighbor Heisen-
berg model on the triangular lattice yielding 120◦ Néel
order [19]. Generalizing the Klein duality [20–23] from
spin models to tight-binding models, we can relate the
π-THM to a transformed Hubbard model with bond-
selective Kitaev-like hopping amplitudes. The strong
coupling limit of this Klein-transformed model is given
by the (JH, JK) = (−1, 2) Heisenberg-Kitaev model.

As the weak and strong coupling limits are fixed, it re-
mains to be investigated whether there is a direct semi-
metal to magnet transition, or whether an intermedi-
ate paramagnetic domain emerges at the metal insula-
tor transition. We will explicate below that perturbing
away from its infinite-U limit, the short-range resonat-
ing valence bond (RVB) loops lower the energy in the
π-THM more significantly than for the regular Hubbard
model on the triangular lattice (THM). These perturba-
tive arguments are supplemented by the calculation of
single-particle spectral functions and ordering tendencies
via variational cluster approximation (VCA). For inter-
mediate Hubbard U , we find an extended non-magnetic
insulating regime, which promises to host unconventional
quantum paramagnetic states of matter.

π-THM. We consider a triangular lattice with an alter-
nating flux pattern such that a triangle threaded by a π
flux is surrounded by three triangles which are flux-free
(Fig. 1a). Note that triggered by the success in formu-
lating and manufacturing flux lattices through artificial
gauge fields in ultra-cold atomic gases [24–26], flux pat-
terns in lattice models have become an experimentally
relevant topic in contemporary AMO physics. Of partic-
ular importance is the recent proposal of “shaking” an

ar
X

iv
:1

41
1.

46
49

v2
  [

co
nd

-m
at

.s
tr

-e
l]

  7
 A

pr
 2

01
5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/199420565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

0.5

1.0

1.5

2.0

2.5

3.0

-6-4-20246-p 0 p

-p

0

p

kx

ky

⇡

⇡

⇡

⇡

⇡

⇡

⇡

⇡

⇡

⇡

⇡

⇡

~a1

~a2
+

+ +

++
+

+
+

+
�

�
+ +

+
+

�
+

+
+

�

+ �
�

� +
�

+

+
+

+
+

+

�

�

�

�

�

+

+

++

+

(a) (b)


 



















(c)

E

t

FIG. 1. (Color online) a) Flux pattern and signs of the real
nearest neighbor hoppings on the triangular lattice. The π’s
denote triangles which are threaded by a π flux. b) Contour
plot of the spin-degenerate upper band of the semi-metallic
band structure (blue spots indicate the Dirac nodes at zero
energy); the lower band follows from particle-hole symme-
try. The Brillouin zone (black) is spanned by the reciprocal
vectors b1 = 2π√

3
(1,
√

3) and b2 = 2π√
3
(−1/2,

√
3/2). (c) four-

sublattice structure of a Klein transformation. “x”, “y” and
“z” indicate the axis around which a spin rotation of angle π
is performed. The full dot sublattice remains unchanged.

optical lattice, i.e., to apply a periodic force pulse to the
optical lattice. It has been shown that staggered flux
patterns for triangular lattices can be achieved [27]. As
the Hubbard coupling can be naturally adjusted by the
optical setup, this might be one promising route towards
realizing the model subject to this paper.

In Fig. 1a, the signs of the real nearest-neighbor hop-
pings tij are shown which reproduce the alternating
flux pattern; the two-atomic unit cell is shown in yel-
low spanned by the primitive vectors a1 = (

√
3/2, 1/2)

and a2 = (−
√

3, 1). (We set the lattice spacing a ≡ 1
throughout the paper.) The band structure is spin-
degenerate and particle-hole symmetric. The Bloch ma-
trix reads h(k) =

∑
k d(k) · σ, where σα are Pauli ma-

trices related to the sublattice degree of freedom and

d(k) = t

 1 + cosa1k + cosa2k − cos (a1 + a2)k

sina1k − sina2k + sin (a1 + a2)k

2 cosa1k

 .

(1)

We find the single particle spectrum ε±σ = ±
√
d2 which

is shown as a contour plot in Fig. 1b. The Dirac nodes
are located at K± = (±π/

√
3, 0). Expanding around

the Dirac nodes yields the Lorentz-invariant Dirac theory
of graphene, along with valley and spin degeneracy and
a bare Fermi-velocity vF =

√
6t. Note that this type

of band structure has been previously mentioned as a
mean field spectrum of a U(1) liquid candidate (dubbed
U1B) [28]. Adding Hubbard interactions, we find the π-
THM governed by the Hamiltonian

Hπ-THM =
∑
〈ij〉,σ

(
tijc
†
iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓, (2)

where niσ = c†iσciσ denotes the density operator of elec-
trons at site i with spin σ.
Klein-duality map from a Kitaev-Hubbard model. The

π flux pattern on the triangular lattice allows to draw
subtle connections to iridium-based transition metal ox-
ides and Heisenberg-Kitaev models [21]. Originally pro-
posed for the honeycomb iridates (Na,Li)2IrO3 [21], the
Heisenberg-Kitaev model reads

HHK =
∑
〈ij〉

JHSiSj + JKS
γ
i S

γ
j , (3)

where, for the triangular lattice, we define γ = x for
bonds along the a1 direction, γ = y along the a2 direc-
tion, and γ = z along the vertical bonds.

We define the class of Kitaev-Hubbard models as tight-
binding band structures subject to local Hubbard U
which, in the limit of infinite U , map onto a Heisenberg-
Kitaev model (3). As explicated below, we can formu-
late a Klein duality map from our π-THM to such a
Kitaev-Hubbard model. In the past, Klein dualities have
been successfully applied to spin Hamiltonians [20–23].
Here, we generalize the Klein duality to Hubbard mod-
els, i.e., to creation and annihilation operators of elec-
trons. As for the spin models, we define four sublattices
on the triangular lattice as shown in Fig. 1c, and then
rotate the spin of the creation/annihilation operators on
the different sublattices: we rotate the first sublattice
around the x axis by π, the second around the y axis
by π, the third around the z axis by π, and the fourth
sublattice remains unchanged (Fig. 1c). Such spin rota-
tions are easily accomplished by virtue of Pauli matrices,
Uα = exp (iπ2σ

α) = iσα and Uα† = −iσα for rotations
around the α axis (α = x, y, z). The Klein-transformed
version of Eq. (2) is given by a Kitaev-Hubbard model

with a kinetic term H0 = it
∑
〈ij〉 νijc

†
iασ

γ
αβcjβ where

γ = x, y, z are defined as in (3), and σγ denote Pauli ma-
trices describing the spin degrees of freedom. The phase
convention νij = ±1 is chosen such that the hopping am-
plitude is positive in a1, a2 and (2a1 + a2) directions
and negative in opposite directions. The Hubbard term
Uni↑ni↓ is invariant under the Klein map. In the strong
coupling limit, this Kitaev-Hubbard model becomes the
(JH, JK) = (−1, 2) Kitaev-Heisenberg model of Eq. (3).

Depending on the specific values of JH and JK, the
model in Eq. (3) might give rise to nonmagnetic phases
of triangular layered iridate compounds [29–31]. From
the classical analysis, the (JH, JK) = (−1, 2) point in
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Eq. (3) is surrounded by a Z2 vortex lattice [32]. As such,
the Klein map suggests that charge fluctuations in the
π-THM, as implied by finite U , may trigger similarly
interesting effects as for the vortex lattice.

Variational Cluster Approximation. VCA is a quan-
tum cluster approach to compute single-particle spectral
functions for interacting many-body systems [33]. One
first solves a small cluster (with typically four to twelve
lattice sites) exactly and derives the corresponding full
Green’s function. Using the framework of self-energy
functional theory [34], one obtains the full Green’s func-
tion of an infinitely large lattice which is covered by the
clusters, and the individual clusters are coupled by hop-
ping terms only. The latter step represents a significant
approximation to the full many-body problem, while the
method still includes spatial quantum correlations. Em-
bedded into a grand-canonical ensemble, the configura-
tion with lowest energy is found by varying the chemical
potential as well as all single-particle parameters which
may also include the bare hopping amplitudes [16]. Three
comments about the VCA are in order which are impor-
tant for the analysis of our π-THM. (i) Variation of the
hopping t is crucial in order to guarantee the stability of
the semi-metal with respect to small U . (ii) Using the
same setup and accuracy which due to (i) exceeds most
previous VCA calculations, we do not find a nonmag-
netic insulator (NMI) phase within the honeycomb lattice
Hubbard model for intermediate U [16] as a benchmark.
(iii) The magnetic instability is investigated by means of
Weiss fields. For the 120◦ Néel order, only clusters with
multiples of three lattice sites can be used. In conjunc-
tion with the two-atomic unit cell, only 6 and 12 site
clusters are in principle suitable for the analysis of the π-
THM. Preference is of course given to 12, i.e., the largest
available cluster.

Phase diagram. For the quantitative analysis, we
employ a super-cluster construction with a 12-site and
mirror-12-site cluster (see inset Fig. 2) We first pin
the Dirac metal-insulator transition by determining the
opening of the charge gap ∆c at U/t = 9.5 (blue domain
in Fig. 2). Note that this happens at comparably large U ,
in accordance with the small spectral weight of the Dirac
metal nearby the Fermi level. In the infinite coupling
limit, the nearest neighbor Heisenberg term J = 4t2/U
dominates the virtual spatial fluctuation processes. We
apply the Weiss field associated with 120◦ Néel order and
determine the response of the π-THM. We find magnetic
order ranging only down to U/t = 13.4 (red domain in
Fig. 2). This finding is remarkable, as the regular THM,
investigated for the same setting, allows for magnetic or-
dering to the lower value of U/t = 8.5. (Quantitative de-
viations from previous VCA investigations of the regular
THM [35] derive from our consideration of cluster hop-
ping variation.) This can be understood from a strong
coupling expansion [36]. For the π-THM, up to order
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FIG. 2. (Color online). Phase diagram of (2) as obtained
by VCA. Uc1, Uc2, ∆c, and m120◦ are calculated for a lattice
covering with 12-site (mirror) clusters as sketched in the inset
(the magnetization m120◦ = 1 denotes the saturation value).
From single-particle spectra, there are three phases: semi-
metal (SM), non-magnetic insulator (NMI), and 120◦ Néel
antiferromagnetic insulator (AFM).

t4/U3, we find

H(4)
π-THM =

(
4t2

U
+

12t4

U3

)∑
〈ij〉

SiSj +
12t4

U3

∑
〈〈ij〉〉

SiSj

+
4t4

U3

∑
〈〈〈ij〉〉〉

SiSj −
80t4

U3

∑
p

[
(S1S2) (S3S4)

+ (S2S3) (S1S4)− (S1S3) (S2S4)
]
, (4)

where we use the standard notations 〈ij〉, 〈〈ij〉〉, and
〈〈〈ij〉〉〉 for first, second, and third nearest neighbors, and∑
p indicates the summation over all parallelograms (in-

cluding different orientations) which consist of two tri-
angles, 54 , where the long diagonal on the parallelo-
gram is a link between the sites with indices “2” and
“4”. (Note that spin Hamiltonians including a ring ex-
change term such as (4) were studied previously on the
triangular lattice, albeit for arbitrary coefficients inde-
pendent of a strong coupling expansion. There, a limited
range on the Heisenberg exchange coupling was assumed,
constraining it up to second [37] or nearest neigbor [38].)
Comparing π-THM against the regular THM [39, 40],
one difference is the reversed sign for the plaquette term
coefficient in (4). We compute the strength of dimer reso-
nances to investigate the effect of such higher order con-
tributions. Given a dimer loop, the transition matrix
element |E12| between two dimer configurations on that
loop determines the energy gain associated with such a
resonance. For a loop on a 2× 2 plaquette, this reads

E12 = 〈 |H(4)
π-THM| 〉 , (5)

where

| 1
2

3

4
〉 =

1

2
(|↑1↓2〉 − |↓1↑2〉)(|↑3↓4〉 − |↓3↑4〉) . (6)
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FIG. 3. (Color online). Strength of dimer loop resonances |E12| (see Eqs. 5 and 6) for the 4-site loop in panel (a) and all
6-site loops in panels (b) - (d) calculated for the π-THM and the regular THM. The insets illustrate the according resonances.
Except for (d), dimer resonances result in a larger energy gain for the π-THM than the regular THM.

In Eq. 5 the Hamiltonian H(4)
π-THM is restricted to a 2× 2

plaquette. Resonances for longer dimer loops may be cal-
culated similarly. In Fig. 3, we show the energy gain |E12|
for resonances on all dimer loops with a length of 4 and
6 lattice spacings. For the shortest 4-site loop (Fig. 3a),
|E12| is larger for the π-THM than for the regular THM.
This picture diversifies as we consider longer-loop con-
tributions (Figs. 3(b)-(d)), while the general trend from
the smallest loop size persists. The enhanced dimer res-
onances give a natural explanation for the quick drop
of magnetic order in the π-THM upon decreasing U/t.
Whether a valence bond crystal, i.e. the onset of trans-
lational symmetry breaking, or a spin liquid state might
be preferred cannot be inferred from this consideration.
(At least note that the dimer resonance does not signifi-
cantly drop from a 2-site loop to 6-site loops, which might
suggest a possibly sizable resonance to long-range dimer
loops along the RVB liquid paradigm [41–43]; see also
Refs. [44, 45].) Similarly, our analysis does not allow to
determine whether the non-magnetic insulating domain
(Fig. 2) is composed out of one or several distinct para-
magnetic phases. What our VCA analysis does allow to
determine, however, is whether collinear magnetic order
can be stabilized, as a recent variational Monte Carlo
study [37] of a similar model as Eq. (4) suggests: in the
parameter range 5 < U/t < 15, we cannot find a sta-
tionary point for the collinear magnet, thus rejecting it
as a candidate ground state. Another direction to fur-
ther understand the NMI phase within VCA might be
to allow for spatially anisotropic hoppings, where a simi-
larly big NMI domain has been found previously (see e.g.
Ref. [46]).

Conclusion. We have proposed the Hubbard model
on the π flux triangular lattice to consitute a paradig-
matic scenario for quantum paramagnets at intermediate
coupling. Via VCA, we find a non-magnetic insulating
regime for 9.5 < U/t < 13.4 framed by a Dirac semi-
metal and 120◦ Néel order which only establishes itself
close to the strong coupling limit because of significant
quantum fluctuations. The dimer resonances of the π-
THM provide further support for its propensity towards
quantum paramagnetic phases.

Several directions might be interesting to follow up on
this work. First, additional methodological approaches
should be applied to further resolve the nature of the
paramagnetic domain in the π-THM. Second, it is worth
investigating possible experimental realizations in the
context of ultra-cold atomic fermionic gases deposited in
optical flux lattices. In addition, the Klein-transformed
Hubbard model derived from the π-THM might be appli-
cable to the iridate triangular compounds where a joint
perspective from Heisenberg-Kitaev models and charge
fluctuations due to finite Hubbard U might be indispens-
able. Third, from a broader perspective, the Klein dual-
ity mapping of Hubbard models can establish a valuable
new tool to derive interesting connections between dif-
ferent lattice Hamiltonians, where one model allows to
draw implications on the other.
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[27] J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Si-
monet, A. Eckardt, M. Lewenstein, K. Sengstock, and P.
Windpassinger, Phys. Rev. Lett. 108, 225304 (2012).

[28] Y. Zhou and X.-G. Wen, cond-mat/0210662.
[29] T. Dey, A. V. Mahajan, P. Khuntia, M. Baenitz, B.

Koteswararao, and F. C. Chou, Phys. Rev. B 86, 140405
(2012).

[30] M. Becker, M. Herrmanns, B. Bauer, M. Garst, and S.
Trebst, arXiv:1409.6972.

[31] K. Li, S.-L. Yu, and J.-X. Li, arXiv:1409.7820.
[32] I. Rousochatzakis, U. K. Rössler, J. van den Brink, and
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