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Abstract

The extended Kalman filter (EKF) has been used as the standard
technique for performing recursive nonlinear estimation in vision tracking.
In this report, we present an alternative filter with performance superior to
that of the EKF. This algorithm, referred to as the Particle filter. Particle
filtering was originally developed to track objects in clutter (multi-modal
distribution). We present as results the filter behavior when exist objects
with similar characteristic to the object to track.
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1 Introduction

The extended Kalman filter (EKF) has been used as the standard technique for
performing recursive nonlinear estimation in vision tracking [6]. The EKF al-
gorithm, however, provides only an approximation to optimal nonlinear estima-
tion. In this report, we present an alternative filter with performance superior to
that of the EKF. This algorithm, referred to as the Particle filter (Condensation
filter, as it is known in the vision community). The basic difference between the
EKF and Particle filter stems from the manner in which random variables are
represented for propagating through system dynamics. In the EKF, the state
distribution is approximated by a gaussian random variable which is then prop-
agated analytically through the first-order linearization of the nonlinear system.
This can introduce large errors in the true posterior mean and covariance of the
transformed gaussian random variables which may lead to suboptimal perfor-
mance and sometimes divergence of the filter. The Particle filter address this
problem by using a deterministic sampling approach. The state distribution is
approximated by a random variable (not necessarily gaussian), but is now rep-
resented using a minimal set of carefully chosen sample points. These sample
points completely capture the true mean and covariance of the random variable
and, when propagated through the true nonlinear system, captures the poste-
rior mean and covariance accurately to second order (Taylor series expansion)
for any nonlinearity. The EKF, in contrast, only achieves first-order accuracy.
No explicit Jacobian or Hessian calculations are necessary for the Particle fil-
ter. Remarkably, the computational complexity of the particle filter is the same
order as that of the EKF.

2 Optimal recursive estimation

Given observations yk, the goal is to estimate the state xk. We make no as-
sumptions about the nature of the system dynamics at this point. The optimal
estimate in the minimum mean-squared error (MMSE) sense is given by the
conditional mean:

x̂k = E[xk|Yk
0 ] (1)

where Yk
0 is the sequence of observations up to time k. Evaluation of this

expectation requires knowledge of the a posteriori density p(xk|Yk
0 ) . Given

this density, we can determine not only the MMSE estimator, but any "best"
estimator under a specified performance criterion. The problem of determining
the a posteriori density is in general referred to as the Bayesian approach, and
can be evaluated recursively according to the following relations:

p(xk|Yk
0 ) =

p(xk|Yk−1
0 )p(yk|xk)

p(yk|Yk−1
0 )

(2)
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where

p(xk|Yk−1
0 ) =

∫
p(xk|xk−1)p(yk|xk)dxk−1 (3)

and the normalizing constant p(xk|Yk
0 ) is given by

p(yk|Yk−1
0 ) =

∫
p(xk|Yk−1

0 )p(yk|xk)dxk (4)

This recursion specifies the current state density as a function of the previ-
ous density and the most recent measurement data. The state-space model
comes into play by specifying the state transition probability p(xk|xk−1) and
measurement probability or likelihood, p(yk|xk) . Specifically, p(xk|xk−1) is
determined by the process noise density p(wk) with the state-update equation

xk+1 = f(k,xk) + wk (5)

For example, given an additive noise model with Gaussian density, p(wk) =
N(0,Rv), then p(xk|xk−1) = N(F(xk−1),Rv). Similarly, p(yk|xk) is deter-
mined by the observation noise density p(vk) and the measurement equation

yk = h(k,xk) + vk (6)

In principle, knowledge of these densities and the initial condition p(x0|y0) =
p(y0|x0)p(x0)

p(y0)
determines p(xk|Yk

0 ) for all k. Unfortunately, the multidimen-
sional integration indicated by Eqs. (2)-(4) makes a closed-form solution in-
tractable for most systems. The only general approach is to apply Monte Carlo
sampling techniques that essentially convert integrals to finite sums, which con-
verge to the true solution in the limit.

Particle filtering [1-3] was originally developed to track objects in clutter or a
variable of interest as it evolves over time, typically with a non-Gaussian and
potentially multi-modal probability density function (pdf). The basis of the
method is to construct a sample-based representation of the entire pdf (equation
2). A series of actions are taken, each one modifying the state of the variable
of interest according to some model (equation 5). Moreover at certain times an
observation arrives that constrains the state of the variable of interest at that
time.

Multiple hypothetical state (particles) of the variable of interest xk are used,
each one associated with a weight that signifies the quality of that specific
particle. An estimate of the variable of interest is obtained by the weighted
sum of all the particles. The particle filter algorithm is recursive in nature
f(k,xk) (prediction stage), including the addition of random noise wk in order
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to simulate the effect of noise on the variable of interest. Then, each particle’s
weight is re-evaluated based on the latest measurements available (update stage).
At times the particles with small weights are eliminated, with a process called
resampling. More formally, the variable of interest (in this case the object
position xk = [ xk yk ]) at time k is represented as a set of M samples (the
"particles") Si

k = [ xi
k bi

k ] : i = 1, 2, ...,M , where the index i denotes the
particle number, each particle consisting of a hypothetical value of the variable
of interest xk and a weight b that defines the contribution of this particle to
the overall estimate of the variable, where

∑M
i=1 bi

k = 1. The figure 1 shown the
process carried out by the particle filter.

If at time k we know the pdf of the system at the previous instant k -1 then
we model the movement effect with f(k,xk) to obtain a prior of the pdf at
time k (prediction). In other words, the prediction phase uses a model in order
to simulate the effect that a movement has on the set of particles with the
appropriate noise added wk. The update phase uses the information obtained
from the measurements to update the particle weights in order to accurately
describe the moving object’s pdf. Algorithm 1 presents a formal description of
the particle filter algorithm.

3 Particle filter in Vision Tracking

Robust real-time tracking of non-rigid objects in computer vision is a chal-
lenging task. Particle filtering has proven very successful for non-linear and
non-Gaussian estimation problems. Particle filtering was originally developed
to track objects in clutter, that is to say, one of its main characteristics rep-
resents the possibility to track objects although exists the presence of other
objects that have similar characteristic.

We want to apply a particle filter in a color-based context. Color distributions
are used as target models as they achieve robustness against non-rigidity, rota-
tion and partial occlusion. Suppose that the distributions are discretized into
m-bins. The histograms are produced with the function h(xi) , that assigns the
color at location to the corresponding bin (considering xi the pixel coordinates
(x,y) ). In our experiments, the histograms are typically calculated in the RGB
space using 8x8x8 bins. To make the algorithm less sensitive to lighting condi-
tions, the HSV color space could be used instead with less sensitivity to V (e.g.
8x8x4 bins).

We determine the color distribution inside an upright circular region centered in
with radius r. To increase the reliability of the color distribution when boundary
pixels belong to the background or get occluded, smaller weights are assigned to
the pixels that are further away from the region center by employing a weighting
function
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Figure 1: Process carried out by the particle filter.5



Algorithm 1 Particle Filter Algorithm
From the particles at time-step k -1, Si

k−1 = {xi
k−1, bi

k−1

∣∣ i = 1, 2, ...,M}.
1. For each particle we calculate the cumulative probability as

c0
k−1 = 0

ci
k−1 = ci−1

k−1 + bi
k−1

∣∣∣∣ i = 1, 2, ..., M

we have in this way Si
k−1 = {xi

k−1, bi
k−1, c

i
k−1

∣∣ i = 1, 2, ..., M}.
2. We select M states (they can repeat) starting from Si

k−1 (resampling), car-
rying out the following procedure

• We generate a random number r ∈ [0, 1], uniformly distributed.

• We find , the smallest j for which cj
k−1 > r.

• The elected state is –xi
k−1 = xj

k−1

3. We spread the states {–xi
k−1

∣∣ i = 1, 2, 3..., M} using the model xi
k =

f(k, –xi
k−1) + wk.

4. For each new state xi
k we find their corresponding b starting from the mea-

surement p(y|x)obtained for each hypothesis.
5. We carry out the normalization

∑M
i=1 bi

k = 1 and build the particles Si
k =

{xi
k, bi

k

∣∣ i = 1, 2, ..., M}.
6. Once the M samples have been constructed: estimate, if desired, moments
of the tracked position at time k as

E[Si
k] =

∑M

i=1
bi
kx

i
k

6



 
 
 

                                              

e 

ix  

Figure 2: Configuration of the density of the particles, centered in xidependent
of the distance e.

k(e) =
{

1− e2 e < 1
0 otherwise (7)

where e is the distance from the region center. Thus, we increase the reliability
of the color distribution when these boundary pixels belong to the background
or get occluded. The figure 2 shows the advantage of using the distance e to
improve the reliability of the measurement.

The color distribution py = {p(u)
y }u=1,2,3,...m. at location y is calculated as

p(u)
y = f

I∑

i=1

k

(∣∣y − xi
∣∣

r

)
δ[h(xi)− u] (8)

where I is the number of pixels in the circular region, δ is the Kronecker delta
function and the normalization factor

f =
1

∑I
i=1 k

(
|y−xi|

r

) (9)

ensures that
∑m

u=1 p
(u)
y = 1.

In a tracking approach, the estimated state is updated at each time step by
incorporating the new observations. Therefore, we need a similarity measure
which is based on color distributions. A popular measure between two distribu-
tions p(u) and q(u) is the Bhattacharyya coefficient [4, 5].

ρ[p, q] =
∫ √

p(u)q(u)du (10)

Considering discrete densities such as our color histograms p = {p(u)}u=1,2,3,...m.

and q = {q(u)}u=1,2,3,...m.the coefficient is defined as
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ρ[p, q] =
m∑

u=1

√
p(u)q(u) (11)

The larger ρ is, the more similar the distributions are. For two identical nor-
malized histograms we obtain ρ = 1, indicating a perfect match. As distance
between two distributions we define the measure

d =
√

1− ρ[p, q] (12)

which is called the Bhattacharyya distance.

The proposed tracker employs the Bhattacharyya distance to update the a priori
distribution calculated by the particle filter. Each sample of the distribution
represents an ellipse and is given as

xi
k = [ xi

k yi
k ∆xi

k ∆yi
k ] (13)

where x, y specify the location of the ellipse, ∆x and ∆y the motion. As we
consider a whole sample set the tracker handles multiple hypotheses simultane-
ously.

The sample set is propagated through the application of a dynamic model

xi
k+1 = f(k,xi

k) + wi
k (14)

where f(k,xi
k) defines the deterministic component of the model and wi

k is
a multivariate Gaussian random variable. In this work we currently use an
unconstrained Brownian model for describing the region movement with velocity
∆x, ∆y and radius r.




xk+1

yk+1

∆xk+1

∆yk+1


 =




exp
(− 1

4 (xk + 1.5∆xk)
)

exp
(− 1

4 (yk + 1.5∆yk)
)

exp
(− 1

4∆xk

)
exp

(− 1
4∆yk

)


 + wk (15)

To weight the sample set, the Bhattacharyya coefficient has to be computed
between the target histogram and the histogram of the hypotheses. Each hypo-
thetical region is specified by its state vector Si

k. Both the target histogram q
and the candidate histogram pSi

k
are calculated from Eq. 3 where the target is

centered at the origin of the circular region.

As we want to favor samples whose color distributions are similar to the target
model, small Bhattacharyya distances correspond to large weights
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bi =
1√
2πσ

exp

(
−

(1− ρ[pSi
k
, q])

2σ

)
(16)

that are specified by a Gaussian with variance σ. During filtering, samples with
a high weight may be chosen several times, leading to identical copies, while
others with relatively low weights may not be chosen at all. The programming
details for one iteration step are given in the Algorithm 1.

To illustrate the distribution of the sample set, Figure 3 shows the samples
distribution considering the flesh color as target histogram q. The samples are
located around the maximum of the Bhattacharyya coefficient which represents
the best match to the target model.

Given a particle distribution Si
k, we need to find the state which defines with

accuracy the object position. Three different methods of evaluation have been
used in order to obtain an estimate of the position. First, the weighted mean
(x̂k ≈

∑M
i=1 bi

kx
i
k) be used; second, the best particle (the xj

k such that bj
k =

max(bi
k) : i = 1, 2, ...M ) and, third, the weighted mean in a small window

around the best particle (also called robust mean) can be used. Each method
has its advantages and disadvantages: the weighted mean fails when faced with
multi-modal distributions, while the best particle introduces a discretization er-
ror. The best method is the robust mean but it is also the most computationally
expensive. In cases where the object to track is surrounded of objects whose
characteristics are similar the best method is to use as state that defines the
object position the best particle.

9



 

maximum1 

maximum2 

(a)

(b)

Figure 3: a) Distribution of the sample set and b) generated multi-modal prob-
ability density function.
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