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Light materials with high thermal conductivity and low thermal expansion have a wide application 

potential for the thermal management of high performance electronics, in particular in mobile and 

aerospace applications. We present here metal matrix composites with a mixture of graphite flakes and 

pitch based carbon fibres as filler. The production by Spark Plasma Sintering orients the filler particles 

on to a plane perpendicular to the pressing axis. The obtained materials have lower density than 

aluminium combined with a thermal conductivity significantly outperforming the used metal matrix. 

Depending on the ratio of the filler components, a low thermal expansion along the pressing direction 

(high graphite flakes content) or across the pressing direction (high carbon fibre content) is achieved. 

For a 1:3 ratio of carbon fibres to graphite we measured an isotropic reduction of the thermal expansion 

of the matrix by up to 55%. We present a detailed characterisation of composites with two aluminium 

alloys as matrix and an overview of the properties for six different metal matrices including magnesium 

and copper. With the goal of a technical application, we show that the described properties are intrinsic 

to the material compositions and are achieved with a wide spectrum of production methods. 
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carbon fibres 

1. Introduction 

The growing performance and power density of electronic components makes heat dissipation 

challenging [1, 2]. Ideal thermal dissipation via heat sinks is achieved by a direct contact with the cooled 

components without an interlayer of thermal paste. However, for a direct contact the low coefficient of 
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thermal expansion (CTE) of electronic components must match the CTE of the heat sink [1–3], a 

condition that cannot be fulfilled by common metals such as copper and aluminium. Metal matrix 

composites with high thermal conductivity (TC) and low CTE were proposed in several research works 

as high performance heat sinks, mostly combining highly conducting metal matrices with graphite [4–

12] or carbon fibres [3, 13–16] fillers, which have high TC and low CTE in a plane or along the axis. 

The highest TC values were obtained using macroscopic fillers with low surface/volume ratio in order to 

minimise the effect of the interface thermal resistance [17]. Three-phases and four-phases composites 

with fibres and flakes mixtures were reported for the mechanical reinforcement of polymers [18–20], 

however rarely in a metal matrix for the control of the thermal properties. Prieto et al [21] reported 

composites produced by gas pressure infiltration with Al-12Si matrix and 88vol% of carbon fibres and 

other particles, including graphite flakes. A two-directional reduction of the CTE was reported. 

In previous studies we analysed the thermal properties of metal matrix composites produced by spark 

plasma sintering (SPS). The uniaxial pressing of the SPS oriented the filler particles leading to 

anisotropic thermal properties. The TC increased in a plane perpendicular to the force direction (x,y-

plane) and decreased along the direction of force (z-axis). The CTE was dependent on the filler 

geometry: using carbon fibres as a filler we reduced the CTE in the x,y-plane down to 3 ppm K-1 [16], 

whereas with graphite flakes as a filler we obtained a CTE along the z-axis as low as -10 ppm K-1 [9–

11]. The CTE reduction for carbon fibres composites is explained by the low axial CTE and high 

modulus of the fibres. The z-axis CTE of the graphite-metal composites is lower than the z-axis CTE of 

both matrix and filler, which cannot be explained by a rule of mixture. This effect is object of intensive 

studies and we attributed it to a macroscopic stretch of slightly folded graphite flakes by the expanding 

matrix [11]. Due to its high elasticity modulus, we exclude a significant strain in the crystal lattice of 

graphite. 

In this paper, we present composites with a mixture of graphite and carbon fibres as fillers to tune a 

reduced CTE along one, two or three axes. We showed the effect of substituting part of the filler with 

silicon to have higher isotropy and compared various metal matrices to optimise selected parameters. 

Heat sinks have different geometries depending on the device they are mounted on. The composition of 

the presented material can be tuned in order to have a low CTE parallel to the interface with the cooled 

component and high TC in direction the heat shall be dissipated. Further, the high flexibility in the 

thermal design might allow further applications. 

For one combination of filler and matrix we discuss in detail the effect of variations of the production 

parameters. Sinter pressure, temperature and heating rates are found to have minimal influence on the 
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thermal properties of the obtained composite, which is essential for use of the material beyond the lab 

scale. The special conditions obtained by Spark Plasma Sintering (high heating rates, electrical current 

flow through the sample) are not essential for the sintering of aluminium. Simpler powder metallurgy 

methods like hot pressing, in spite of the lower heating rates, may be used to sinter materials with 

similar thermal properties. 

2. Materials and methods 

Metal matrix composites were sintered by SPS starting from mixtures of metal alloy powders with 35% 

or 50% volume concentration of graphite flakes (Gr) and carbon fibres (CF). For all materials, density, 

TC, CTE and tensile strength were measured (Paragraph 3.3, Table 1). 

2.1 Preparation of the powder mixtures 

The following metal powders were used as matrices for the composites: 

• Aluminium alloy Al2024, (Al-4.4Cu-0.6Mn-1.4Mg, 50 µm), Ecka Granules, Germany 

• Metal powder mixture Alumix 231, (Al-14Si-2.5Cu-0.5Mg, 50 µm), Ecka Granules, Germany 

• Metal powder mixture Alumix 431, (Al-5.5Zn-2.5Mg-1.5Cu, 50 µm), Ecka Granules, Germany 

• Aluminium powder (50 µm), Ecka Granules, Germany 

• Magnesium alloy Mg-0.9Ca, Helmholtz-Zentrum Geesthacht, Germany 

• Copper powder (3 µm, dentritic), Sigma Aldrich, US 

Al2024 and Mg-0.9Ca are prealloyed powders, while Alumix 231 and Alumix 431 are mixtures of pure 

metals that form the alloy in the sintering process. 

The following highly thermally conducting fillers were used: 

• Large graphite flakes Ma3095, (500 x 10 µm), NGS Naturgraphit, Germany 

• Milled pitch based carbon fibres, XN100-25M, (250 x 10 µm), Nippon Graphite Fiber 

Corporation, Japan 

Crystalline graphite can have an in-plane TC as high as 2000 W m-1 K-1 [22]. The used CF have an axial 

TC of 900 W m-1 K-1 (supplier data), which is two orders of magnitude higher than the TC of common 

polyacrylonitril-based CF [23]. Moreover, pitch based CF have higher elasticity moduli than PAN-based 

CF. The in-plane CTE of the graphite and the axial CTE of the CF is approximately -1 ppm K-1. 

The powders were gently mixed in a mortar for few minutes, avoiding damage of the fibres and 

excessive oxidation of the metals. Mechanical mixing of the powders by ball milling could be used only 

for copper-graphite mixtures [9], while it deteriorated the thermal properties of the composites with light 

metal matrix and with CF filler. 

2.2 Standard samples preparation 
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The composites were produced by SPS in a Dr. Sinter 211-Lx (experimental setup in the supplementary 

material S1). Cylindrical samples with 6 mm diameter and 4-5 mm height and disc-shaped samples with 

25 mm diameter and 1-2 mm thickness were sintered with the following parameters: 

• Temperature: 500°C (Alumix 231), 550°C (Al2024, Alumix 431), 600°C (Al, Mg-0.9Ca, Cu) 

• Heating rate: 100-50 K min-1 (cylindrical samples), 50-20 K min-1 (disc-shaped samples), the 

reduced rate was used for the last 100 K before reaching the maximal temperature. 

• Holding time at the maximal temperature: 2-4 minutes. 

• Applied uniaxial pressure: 50 MPa  

• Atmosphere: vacuum of 1 Pa 

• Heat treatment after sintering: 2 h at 350°C (Al, Mg-0.9Ca), T6 for the aluminium alloys (2h at 

490°C, water quenching, 12h at 190°C for Al2024; 2h at 480°C, warm water quenching and 12h 

at 180°C for Alumix 231 and Alumix 431) 

For aluminium and magnesium alloys, the highest possible sintering temperature was chosen to optimise 

the densification and TC since the strong oxide layer of the metal powders must be overcome. High 

heating rates were chosen since they should limit the grain growth in the metal matrix [24–26], which 

helps achieving the optimal strength [27]. 

The degree of alignment of the fillers on the x,y-plane is dependent on the compression ratio, i.e. the 

ratio between the density of the powder mixture and the density of the sintered sample [16]. The 

structure of a sample section is visible in Fig. 1. 

   

Fig. 1  Micrographs of a composite showing the planar distribution of dark carbon fibres and graphite in the bright 

aluminium alloy matrix. Side view (left, dark field, perpendicular to the x,y-plane) and top-view (right, bright field, parallel 

to the x,y-plane). Composition: Al2024 matrix with 50vol% of filler mixture, 1:3 ratio of carbon fibres to graphite. 

2.3 Sample preparation for production method comparison 
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For the material composition with Al2024 matrix and 50vol% mixture of carbon fibres and graphite in 

1:3-ratio, we produced samples with a wide range of sinter parameters (temperature of 400-550°C, 

pressure of 2-50 MPa, variable pressure profiles, heating rates of 10-100 K min-1, no current flow, 

samples with 0.3-6 g mass). Samples with identical compositions were produced by hot-pressing in a 

self-built set up with a temperature of 470°C, holding time of 30 min and pressure of 60 MPa. After 

fabrication the samples had a cylindrical shape with 10-20 mm diameter and 4-5 mm height. For 

dilatometry measurements cubes of 4-5 mm side were cut. The thermal conductivity was measured on 

discs with 20 mm diameter and 5 mm thickness. 

2.4 Characterisation 

Thermal diffusivity was measured on the disc-shaped samples by the flash method with a Netzsch 

LFA447 NanoFlash (details in the supplementary material S2). In plane measurements (thermal 

diffusivity in the x,y-plane) were performed by the radial heat flow method for thin samples [28] and by 

cutting thick samples to slices (3 mm in thickness). The TC was obtained by multiplication of the 

measured thermal diffusivity with the specific heat capacity and the density, determined, respectively, 

by the rule of mixture and the geometric method (details in the supplementary material S3). For one 

composite, the temperature evolution of the TC was measured between 20°C and 110°C. CTE 

measurements were performed with the cylindrical samples in a dilatometer Linseis L75XH1000. We 

performed four cycles between 40°C and 150°C with a heating rate of 1 K min-1. 

The tensile strength was measured in x,y-direction with a Zwick Z010 tensile tester. The disc-shaped 

samples were manually milled to a dog-bone shape with a width of 5 mm and a gage length of 8 mm as 

previously shown for graphite-metal composites [11], by which we also demonstrate the machinability 

of the composites. 

The aluminium carbide content of the composite was determined by gas chromatography–mass 

spectrometry (GC-MS) measurements. Aluminium carbide is in limited amounts essential for the 

bonding between filler and matrix, but large amounts may deteriorate the thermal properties of the 

composite. For the CG-MS measurements the composite material was dissolved in NaOH solution and 

the methane amount emitted during the hydrolysis of aluminium carbide, according to Equation 1, was 

measured by a Shimadzu GCMS-QP2010 Plus. The method is described in more detail by Segl et al 

[29]. 

Al4C3 + 4 NaOH + 12 H20 ⇌ 4 Na+ Al(OH)4- + 3 CH4↑  

Eq. 1: Hydrolysis reaction of aluminium carbide with sodium hydroxide to form methane 

 

3. Results and discussion 



6 

 

We previously characterised composites with graphite flakes [11] and pitch based CF [16] in different 

concentrations between 0vol% and 65vol%. In this study we present the results about composites with a 

fixed filler concentration of 35vol% or 50vol% with variable CF:Gr-ratio. A high graphite flakes content 

reduces the z-CTE [11], while a high CF content reduces the x,y-CTE [16]. Combining the two fillers 

materials with intermediate properties are produced. We present detailed results for the aluminium 

alloys Al2024 and Alumix 231, as well as an overview about four further metal matrices for an 

optimisation of single parameters. Finally, we discuss the effect of different production parameters on 

composites with Al2024 matrix and 50vol% filler with 1:3 CF:Gr-ratio. It shall be noticed that the CTE 

was measured directly, while the TC was derived from the thermal diffusivity as described in Section 

2.4 and in the supplementary material S3. 

3.1 Al2024 matrix 

The TC and CTE for composites with Al2024 matrix and 50vol% of variable proportions of carbon 

fibres and graphite flakes are plotted in Fig. 2. Clearly, the TC of the matrix (130 W m-1 K-1) for the 

sintered powder) was increased by both fillers in x,y-direction and decreased in z-direction. The CTE of 

the matrix (24.7 ppm K-1) was decreased in x,y-direction by the carbon fibres and in z-direction by the 

graphite flakes, whereby isotropy in CTE was achieved at approximately 1:3 CF:Gr-ratio. Hereby, the 

volumetric CTE increased from 35 ppm K-1 for CF filler to a maximum of 40 ppm K-1 at 2:2 CF:Gr-ratio 

down to 27 ppm K-1 for Gr filler. All values are well below the 75 ppm K-1 of the matrix material. 
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Fig. 2. TC and CTE for composites with Al2024 matrix as a function of the CF:Gr-ratio. 

 

The tensile strength measured in the x,y-plane ranged from 40 to 50 MPa, independently from the 

CF:Gr-ratio. An exception were the samples with pure graphite filler, which achieved only 25 MPa. 
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Since the CF are smaller than the graphite flakes, the composites with high CF concentration were more 

homogeneous and easier to machine in small and thin shapes. 

3.2 Alumix 231 matrix 

In order to reduce the anisotropy and increase the strength for all filler compositions, a second series of 

measurements was performed with Alumix 231 matrix (Fig. 3). The high silicon content (14%) of this 

metal powder mixture reduces its CTE to 18.5 ppm K-1, therefore a filler concentration of 35vol% was 

sufficient to achieve a similar CTE to other aluminium alloys at 50vol% filler concentration. A lower 

filler concentration leads to a higher isotropy of the composite. Similarly to the composites with Al2024 

matrix, for a CF:Gr-ratio of approximately 1:3 isotropic CTE was achieved. The volumetric CTE 

remained approximately constant with a maximum of 45 ppm K-1 at 3:1 CF:Gr-ratio and a minimum of 

38 ppm K-1 for only Gr filler. The pure Alumix 231 matrix has 55 ppm K-1. 
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Fig. 3. TC and CTE for composites with Alumix 231 matrix as a function of the CF:Gr-ratio. 

 

Thanks to the lower filler concentration we measured for these composites significantly higher tensile 

strengths of 60-95 MPa. No clear correlation was observed to the CF:Gr-ratio. 

3.3 Metal matrix comparison 

Using the 1:3 CF:Gr ratio and 50vol% filler concentration, we characterised further composites with 

different metal matrices in order to optimise different parameters. In particular, we achieved higher TC 

with pure aluminium and copper, the lowest density with Mg-0.9Ca matrix (hereby the calcium 

improved the sinterability of the magnesium powder [30]). Clearly, copper outperformed the other light 

metal matrices in most parameters since it has higher TC, lower CTE and better sintering properties, but 

the density of its composites are over twice as high. With the Alumix 431 mixture, which has a similar 
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composition to the 7xxx high performance aluminium-zinc alloys, we did not achieve the highest 

strength, differently from our previous results with graphite flakes as a filler [11]. The results for all 

matrices are summarised in Table 1. 

 

Table 1. Comparison of the properties of composites with different metal matrices and 50vol% of 1:3 CF:Gr as filler 

(35vol% for Alumix 231). The parameter marked in red was optimised. 

 Al2024 Alumix 231 Alumix 431 Aluminium Mg-0.9Ca Copper 

TC (x,y)  /  W m-1 K-1 340 285 335 390 370 495 

TC (z)  /  W m-1 K-1 42 51 39 45 42 71 

CTE (x,y,z)  / ppm K-1 11 14 12 19 15 12 

Density  /  kg m3 2370 2450 2400 2300 1950 5400 

Tensile strength  /  MPa 46 80 38 13 38 63 

 

3.4 Production methods 

For a wide technical application of a material it is helpful if the needed physical properties are not 

derived from a very specific production process, but are intrinsic to the material itself. We chose the 

composite with Al2024 matrix and 50vol% filler with 1:3 CF:Gr-ratio to investigate the effect of 

variations in the production parameters. 

For a more complete characterisation of this material, a temperature dependent TC measurement was 

performed (Table 2). The thermal diffusivity was measured at four different temperatures and multiplied 

with the respective density and specific heat capacity to obtain the TC. We observed a slightly lower 

decrease in TC than in graphite [31].  

Table 2. Temperature dependent TC measurements. Thermal diffusivity (TD) measured by xenon-flash, density 

calculated by dilatometry results, specific heat capacity cp calculated by rule-of-mixture from the literature values for Al2024 

[32] and graphite [33]. 

Temperature TD (x,y/z) / mm2 s Density / kg m-3 cp / J kg-1 K-1 TC (x,y/z) / J m-1 K-1 

20°C 179 / 21.3 2370 799 339 / 40.3 

50°C 172 / 19.4 2368 843 343 / 38.8 

80°C 155 / 17.9 2366 887 326 / 37.6 

110°C 131 / 17.0 2364 931 293 / 37.5 

 

In the following production method comparison, we showed that the high heating rates and the current 

flow of the SPS are not necessary to achieve the optimal thermal properties. Instead, simpler production 

techniques such as hot-pressing are sufficient. The theoretical density of the analysed material is 

2490 kg m-3. The experimentally measured densities range between 2350 kg m-3 and 2430 kg m-3 for 
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most production methods. No clear correlation was observed to the sintering parameters nor to the 

thermal properties. Only for samples sintered below 500°C or below 10 MPa pressure the densities 

reduced to 2260 kg m-3, which resulted in higher porosity and lower TC. 

In the first experiment series we investigated the effect of the heating rate (HR) and of the current flow. 

In order to simulate the hot pressing in the SPS system keeping the other parameters unchanged, we 

reduced the HR from 50-20 K min-1 (disc-shaped sample) or 100-50 K min-1 (cylindrical samples) to 20-

10 K min-1 in the heating phase (up to 450°C and 450-550°C) and limited it to -30 K min-1 in the cooling 

phase (Low HR). Further, we coated the graphite crucible with boron nitride (BN) to avoid the current 

flow through the sample. Finally, we increased the holding time at the maximal temperature to 30 min. 

We observed little influence of the HR and current flow, as visible in Table 3. Longer sintering times 

slightly improved the TC. With the same powder, samples were produced by standard hot-pressing with 

slightly different parameters (470°C, 60 MPa, 30 min). Again, both the TC and the CTE remained 

mostly unchanged. These samples had different shapes and were milled for the thermal characterisation. 

This might have degraded the inner structure, which explains the slightly higher CTE of the hot-pressed 

composite. 

 

Table 3. Simulation of the hot-pressing conditions in a SPS system by reduction of the heating rate (HR), interruption of 

the current flow by boron nitride coating (BN) and increase of the holding time at maximal temperature to 30 minutes. 

Comparison with samples produced by hot-pressing. Effect on the TC, CTE and density of the composites. 

 TC (x,y)  /  W m-1 K-1 TC (z)  /  W m-1 K-1 CTE (x,y,z)  / ppm K-1 Density  /  kg m3 

Standard 330 43 12,0 2370 

Low HR 345 41 13,5 2350 

BN coating 330 41 12,5 2390 

Low HR + BN coating 320 38 11,5 2330 

Standard, 30’ holding 355 40 12,5 2390 

Hot press 345 51 12 (x,y), 15 (z) 2430 

  

 

In the second experiment series we investigated the effect of the sintering temperature on the composite 

(Table 4). Clearly, higher temperatures had a positive effect on the densification and TC, however, 

between 500°C and 550°C little differences were noticed. The high temperature helps breaking the oxide 

layer of the aluminium powders. For comparison, in copper matrix composite similar results were 

observed for temperatures between 600 and 900°C. 
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Table 4. Investigation of different sintering temperatures. Effect on the TC, CTE and density of the composites. 

 TC (x,y)  /  W m-1 K-1 TC (z)  /  W m-1 K-1 CTE (x,y,z)  / ppm K-1 Density  /  kg m3 

Standard (550°C) 330 43 12,0 2370 

500°C 340 39 12,5 2370 

450°C 295 38 12,5 2320 

400°C 205 24 13,0 2260 

  

Very low heating rates, long holding times and high process temperatures increase the probability 

aluminium carbide production at the matrix-filler interface, which harms the physical properties of the 

composite [34, 35]. On the other hand, the carbide layer might enhance the contact between matrix and 

filler, as was reported for Al-CNT composites [36]. Although the correlation with the sinter parameters 

is clear, the Al4C3 concentration in our composites is not significant (Table 5). These results are 

supported by the findings of Etter et al. [37],  who neither found significant amounts of Al4C3 in 

graphite/aluminium composites produced by gas pressure infiltration at temperatures of 670 °C. 

Therefore it could be shown, that excessive Al4C3 formation is of no concern for solid state processing 

routes, in contradiction to liquid state processing [38]. 

 

Table 5. Aluminium carbide concentration for different production parameters. 

Sinter temperature / °C Heating rate / K min-1 Holding time / min Carbide concentration / ppm 

500 50-20 2 0.75  

550 50-20  2  0.89 

550 20-10  2  1.05  

550 50-20  30  0.98  

 

In the third experiment series we investigated the effect of the SPS pressure (uniaxial pressure on the 

powders). We tried to apply the pressure only during the heating phase and to release it at the beginning 

of the cooling phase (50-50-2 MPa), alternatively to release it before the heating phase, similarly to 

traditional powder metallurgy processes (50-2-2 MPa), in which the powders are pressed and heated in 

two steps. Eventually we repeated the sinter process at reduced pressure of 10 MPa (Table 6). We 

noticed the advantage of a contemporaneous application of pressure and temperature, characteristic of 

SPS and hot-pressing in comparison to traditional sintering techniques, in which the powders are first 

compressed and then heated. A slight improvement of the thermal properties was observed for a reduced 

pressure during the cooling phase. 
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Table 6. Investigation of different pressure profiles. Effect on the TC, CTE and density of the composites. 

 TC (x,y)  /  W m-1 K-1 TC (z)  /  W m-1 K-1 CTE (x,y,z)  / ppm K-1 Density  /  kg m3 

Standard (50 MPa) 330 43 12,0 2370 

50-50-2 MPa 345 44 11,0 2370 

50-2-2 MPa 290 36 11,5 2320 

10 MPa 360 36 11,5 2370 

  

We further investigated the oxidation effect by exposing the powder mixture to air at 150°C for 24 h, 

which had no deleterious effect on the sintered samples. Finally, we measured TC of CTE of larger 

samples machined to smaller size and different shape. Here, we observed over 50% higher z-TC than in 

the thin disc-shaped samples and slightly higher CTE. 

 

4. Conclusion 

We sintered metal matrix composites with aluminium alloy matrices and a mixture of pitch based carbon 

fibres and graphite flakes as fillers by Spark Plasma Sintering. The uniaxial pressing orients the fillers 

leading to high thermal conductivity in a plane (330-350 W m-1 K-1). The in-plane thermal expansion was 

reduced by adding carbon fibres, the through-plane expansion by addition of graphite flakes. With an 

optimised carbon fibre to graphite ratio, an isotropic reduction of the thermal expansion was achieved 

(11-14 ppm K-1). By substitution of part of the filler with silicon, higher isotropy of the material and 

significantly higher tensile strength were achieved (up to 95 MPa). A magnesium alloy matrix was used 

to produce very low density composites (<2000 kg m3), pure aluminium and copper were used to 

maximise the thermal conductivity (in-plane CTE approaching 500 W m-1 K-1 for the copper matrix). 

Finally, we showed that the high heating rate and the current flow of the SPS are not necessary to 

achieve the optimal thermal properties. A similar composite material was sintered by hot-pressing, 

which requires simpler and cheaper equipment. 
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