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Thermal transport and Wiedemann-Franz law in the disordered Fermi liquid
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We study thermal transport at low temperatures in the disordered Fermi liquid with short-range interactions.
Gravitational potentials are used as sources for finding the heat density and its correlation function. For a
comprehensive study, we extend the renormalization group (RG) analysis developed for electric transport by
including the gravitational potentials into the RG scheme. Our analysis reveals that the Wiedemann-Franz law
remains valid even in the presence of quantum corrections caused by the interplay of diffusion modes and the
electron-electron interaction. In the present scheme this fundamental relation is closely connected with a fixed
point in the multiparametric RG flow of the gravitational potentials.
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Introduction. Thermal conductivity (κ) measures the ability
of a system to conduct heat in response to an applied temper-
ature gradient. In a Fermi liquid, electric and thermal conduc-
tivity are tightly linked to each other by the Wiedemann-Franz
law (WFL), κ = L0σT , where L0 = π2/3e2 is the Lorenz
number, T is the temperature, and e is the electron charge
[1]. The validity of the WFL in an ordinary Fermi liquid is
closely connected with the quasiparticle description [2–4]. At
low temperatures, however, transport in disordered conductors
is not governed by the rare scattering of quasiparticles on
impurities, but rather by diffusive modes and their interactions.
The interplay of the slow diffusive modes gives rise to singular
quantum corrections to various physical quantities including
conductivity, thermal conductivity, specific heat, and tunneling
density of states [5,6]. The question arises about the fate of the
WFL in the presence of these strongly interacting collective
modes.

Simultaneous measurements of thermal and electric con-
ductivities at low temperatures are frequently used as a means
for testing the applicability of the quasiparticle description
[7–11]. In this context, a violation of the WFL is often
interpreted as evidence for physics beyond the Fermi-liquid
paradigm. Is the reverse statement also true? Do systems with
elements of non-Fermi-liquid behavior necessarily violate the
WFL? Here, we address this question in the context of the
singular quantum corrections arising in a disordered Fermi
system at low temperatures, T � 1/τ , where 1/τ is the elastic
scattering rate. The temperature dependencies of both thermal
conductivity and electric conductivity are strongly affected
by these singular corrections. As we will show, thermal
and electric transport are nevertheless tightly linked to each
other, so that the WFL remains valid even at the lowest
temperatures. The system studied in this Rapid Communi-
cation provides an example in which elements of non-Fermi-
liquid behavior are not accompanied by a violation of the
WFL.
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A systematic treatment of quantum corrections in disor-
dered electron systems has been developed in a renormaliza-
tion group (RG) approach on the basis of a field-theoretic
description, the nonlinear sigma model (NLσM) [12]. The RG
analysis with the inclusion of electron-electron interactions
leads to coupled flow equations for the diffusion constant, the
frequency, and the interaction constants [12–15]; for a review
see [6,16–18]. Unfortunately, thermal transport has so far not
been considered in the framework of the NLσM formalism. In
this work, we study thermal transport in the disordered Fermi
liquid [19,20] by further developing the NLσM approach
to the RG analysis. The main difficulty in the theoretical
description of thermal phenomena is that the heat density
and heat current operators are more complicated than their
analogs for charge transport. For the RG analysis, we introduce
time-dependent “gravitational potentials” [21–23] as source
fields in the microscopic action. The heat density correlation
function can be found by a variation of the action with
respect to these source fields. Knowledge of the correlation
function then allows one to determine the specific heat and the
thermal conductivity. We show how the use of the gravitational
potentials can be merged with the NLσM formalism. This step
requires special care since the gravitational field couples to the
disorder term in the action, which in turn plays a crucial role
for the derivation of the sigma model.

The presence of the gravitational potentials in the NLσM
complicates the RG analysis. If the Hamiltonian density
h = h0 + hint consists of N terms, then the gravitational
potentials couple to N different terms in the action. All these
terms undergo distinct RG transformations, resulting in the
necessity to distinguish the gravitational potentials depending
on the part of the Hamiltonian density they couple to. The
question arises as to what is the character of the RG flow, when
effectively several potentials are involved. The answer is that
the logarithmic corrections originating from energies in the
RG interval (T ,1/τ ) can be absorbed into the scale-dependent
RG charges of the extended model, i.e., the model which also
includes the gravitational potentials. The calculation reveals
that once all corrections are taken into account all gravitational
potentials remain unrenormalized: there exists a fixed point in
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the multi-parametric flow of the gravitational potentials. This
implies that after performing renormalizations one may return
to the original description of the system but with renormalized
Fermi-liquid parameters determined by the current scale of the
RG procedure. This makes clear why the WFL holds during
the course of the RG procedure.

Keldysh action and the correlation function. We start
our considerations with the Keldysh partition function Z =∫

D[ψ†,ψ] exp(iS[ψ†,ψ]). The action is first limited to S =
Sk , where

Sk[ψ†,ψ] =
∫
C
dt

∫
r
(ψ†i∂tψ − k[ψ†,ψ]) (1)

is defined on the Keldysh contourC [24,25]. Here, k = h − μn,
where h and n are the Hamiltonian density and particle density,
μ is chemical potential, and ψ = (ψ↑,ψ↓), ψ† = (ψ∗

↑,ψ∗
↓)

are vectors of Grassmann fields accounting for the fermionic
degrees of freedom with two spin components. A peculiar
feature of thermal transport is that the action Sk is determined
by the heat density k, i.e., precisely by the quantity we
study.

We are interested in the retarded heat density cor-
relation function χkk(x1,x2) = −iθ (t1 − t2)〈[k̂(x1),k̂(x2)]〉T ,
where x = (r,t), k̂ = ĥ − μn̂ is the heat density operator
and the angular brackets denote thermal averaging. Keldysh’s
contour technique is very suitable for finding correlation func-
tions of this kind: Introducing fields on the forward (+) and
backward (−) paths of the Keldysh contour, one may define the
classical (cl) and quantum components (q) of the heat density
symmetrized over the two branches of the contour, kcl/q =
1
2 (k+ ± k−) [25]. Then, the retarded correlation function can
be obtained as χkk(x1,x2) = −2i〈kcl(x1)kq(x2)〉, where the
averaging is with respect to the action Sk . After introducing
the source term Sη = 2

∫
x
[η2(x)kcl(x) + η1(x)kq(x)] into the

action, S = Sk + Sη, one can find χkk as

χkk(x1,x2) = i

2

δ2Z
δη2(x1)δη1(x2)

. (2)

The thermal conductivity κ can be found from the disorder-
averaged correlation function 〈χkk(x1,x2)〉dis = χkk(x1 − x2)
as [19]

κ = − 1

T
lim
ω→0

(
lim
q→0

[
ω

q2
Im χkk(q,ω)

])
. (3)

This expression is typical for a transport coefficient related to
a conserved quantity.

Gravitational potentials and NLσM. The Hamiltonian
density h = h0 + hint is chosen to describe a Fermi liquid in a
static disorder potential

h0 = 1

2m∗
∑

α

∇ψ∗
α (x)∇ψα(x) + udis(r)n(x), (4)

hint = 1

4
n(x)

(
ν−1F

ρ

0

)
n(x) + s(x)

(
ν−1Fσ

0

)
s(x). (5)

Here, ν is the density of states per spin, F
ρ,σ

0 are the Fermi-
liquid parameters, m∗ is the effective mass, and udis is the
disorder potential. Further, s = 1

2

∑
αβ ψ∗

ασ αβψβ is the spin
density. We anticipate that in the diffusive limit T τ � 1, which

we will study here, only the zeroth angular harmonics will be
effective.

To proceed further, we perform the Keldysh rotation
[25,26] and decouple the interaction terms using a Hubbard-
Stratonovich field θ l

k , where the index k = 1,2 counts the
two Keldysh components (1,2 correspond to cl,q), and the
index l = 0–3 denotes the density and spin density interaction
channels. After this decoupling one can write the action as

S =
∫

x

�†{i∂t − [udis − μ](1 + η̂) + θ̂ lσ l}�

−
∫

x

1

2m∗ ∇�†(1 + η̂)∇� +
∫

x


θT γ̂2

1 + η̂
f −1 
θ. (6)

From now on, �(x) and �†(x) are fields with two Keldysh
components (their spin indices are not shown); the hat symbol
indicates matrices in Keldysh space. The matrices θ̂ and
η̂ are defined as η̂ = ∑

k=1,2 ηkγ̂k , θ̂ l = ∑
k=1,2 θ l

kγ̂k , where
γ̂1 = σ̂0, γ̂2 = σ̂x , and σ̂0,σ̂x are Pauli matrices in Keldysh
space. The Pauli matrices σl in Eq. (6) act in spin space.
The matrix f = diag(Fρ

0 ,F σ
0 ,F σ

0 ,F σ
0 )/2ν distinguishes the

different interaction channels.
The disadvantage of the representation in Eq. (6) is that

the gravitational potentials couple to the disorder potential
udis, thereby complicating the derivation of the NLσM. In the
following manipulations we exploit the structural similarity
between the source term and the k term in the action. We use
this fact to devise a transformation that releases the disorder
term from the explicit dependence on the gravitational fields
[27]. After that, the σ model can be derived following the
conventional scheme. The mentioned transformation reads
as � →

√
λ̂�, �† → �†

√
λ̂, where λ̂ = 1/(1 + η̂). (The

arising Jacobian is featureless; its only function is to remove
disconnected contributions proportional to the heat density
itself.) Since the gravitational potentials can be considered
as arbitrarily slow, a term proportional to (∇η̂)2 emerging
from this transformation may be ignored. As a result, the
gravitational potentials are removed from h0 − μn at the
expense of introducing source fields into the time-derivative
term and a change in the structure of the interaction part

S = 1

2

∫
x

�†(iλ̂
−→
∂ t − i

←−
∂ t λ̂)� −

∫
x

�†(udis − μ − λ̂θ̂ lσ l)�

−
∫

x

1

2m∗ ∇�†∇� +
∫

x


θT (γ̂2λ̂)f −1 
θ. (7)

Most importantly, the disorder part of the action does not
contain the gravitational potentials anymore. From here on,
the NLσM can be derived along the standard lines [6,28–32];
it may be written as S = Sdm + Sηη, where

Sdm = πνi

4
Tr[D(∇Q̂)2 + 2iz{ε̂,λ̂}δQ̂],

+ i

2
(πν)2〈Tr[λ̂θ̂ lσ lδQ̂]Tr[θ̂ kσ kδQ̂]〉. (8)

Here, Q̂, δQ̂, λ̂, and θ̂ are matrices in Keldysh and spin
space as well as in the frequency domain. In particular,
(λ̂r)εε′ = λ̂r,ε−ε′ and the same for θ̂ , while Q̂εε′ generally
depends on both frequency arguments. The structure of δQ̂

will be specified further below. Tr covers all degrees of
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freedom including spin as well as integration over coordinates.
The brackets symbolize the contractions 〈θ0

k,r,ωθ0
l,r′,−ω′ 〉 =

i
2ν

(�ρ/2)γ kl
2 δr−r′2πδω−ω′ and for spin degrees of free-

dom 〈θα
k,r,ωθ

β

l,r′,−ω′ 〉 = i
2ν

(�σ/2)γ kl
2 δr−r′2πδω−ω′δαβ , where

�ρ = F
ρ

0 /(1 + F
ρ

0 ), �σ = Fσ
0 /(1 + Fσ

0 ). Finally, note the pa-
rameter z in the frequency term anticipating its renormalization
in the presence of the electron-electron interaction [12]; the
initial value is z = 1. The charge z plays a central role for
thermal transport [19], and at the metal-insulator transition
[33–35]. The abandoned term Sηη is quadratic in the source
fields, and accounts for the contribution of fermions to the
static part χ

st,0
kk . It is disconnected from the diffusion modes,

which are described by Sdm.
The matrix Q̂ can be parametrized as Q̂ = Û σ̂3

ˆ̄U , where
Û ˆ̄U = 1; the deviations δQ̂ = Q̂ − σ̂3 describe diffusive
degrees with energies �1/τ . For δQ̂(εε′) = uεδQ̂εε′uε′ the
temperature of electrons enters through the distribution func-
tion encoded in û:

ûε =
(

1 Fε

0 −1

)
, Fε = tanh

( ε

2T

)
. (9)

The (retarded) diffusive propagation is described byD(q,ω) =
1/(Dq2 − izω), the so-called diffuson.

Specific heat. In order to illustrate the use of the gravita-
tional potentials, we start our discussion with the calculation of
the specific heat c. It comprises a trivial electronic part c0 and
a contribution of diffusion modes cdm, which we are interested
in. Note that the diffusion modes give rise to the heat density
kdm
η1

(x1) = (i/2)δZdm/δη2(x1)|η2=0, where Zdm is determined
by Sdm of Eq. (8). To find kdm

η1
, we have to expand λ̂ = 1 − η1 −

η2(1 − 2η1)γ̂2 in Eq. (8). Taking the derivative with respect
to η2 results in two terms determining the heat density of
the diffusion modes; one term originating from the frequency
part and the other one from the interaction part of the action.
The specific heat can be found directly by differentiating the
heat density with respect to temperature in the absence of the
classical gravitational potential η1, i.e., from kdm

η=0. Calculating
the two terms for kdm

η=0 in the Gaussian approximation, we find

kdm
η=0 = −1

2

∫
q,ω

zωBω[D − D1 + 3(D − D2)]

− 1

2

∫
q,ω

ωBω(�ρD1 + 3�σD2). (10)

Here, we introduced propagators for diffusion in the
singlet and triplet spin channel, D1,2 = 1/(Dq2 − iz1,2ω),
where z1 = z − �ρ , z2 = z − �σ ; Bω = cot(ω/2T ) is
the bosonic distribution function. Further manipulations
allow us to present the heat density in the form kdm

η=0 =
1
2

∫
q,ω

ωBωDq2[z1D1D1 + 3z2D2D2 − 4zDD]. According to
this formula, the heat density of diffusions is determined by the
energy weighted with the distribution function and multiplied
by the spectral function of the diffusion modes. Differentiation
with respect to temperature gives cdm = ∂T kdm

η=0. The integrals
obtained after differentiation are logarithmic and depend on
parameters which are themselves determined by the RG flow.
The analysis of such quantities has to be performed in the
framework of the RG. The contribution of fermions stays

inert in the present discussion. Analysis of the fermionic
and the diffusion mode parts of the specific heat leads to the
conclusion [36] that in the disordered Fermi liquid as a result
of renormalizations c = zcFL, where cFL = 2π2νT /3.

Generally, we are interested in the correlation function χkk

which can be decomposed into a static and a dynamical part,
χkk = χ st

kk + χ
dyn
kk . As we shall see below, the static part is

directly related to the specific heat as χ st
kk = −cT . For finding

the thermal conductivity κ , in turn, it will be sufficient to know
Im χkk(q,ω) = Im χ

dyn
kk (q,ω). Our study of χkk(q,ω) will be

based on an RG treatment in the presence of the gravitational
potentials, keeping in mind their dependence on q and ω.

RG analysis in the presence of the gravitational potentials.
For the discussion of the dynamical part of the correlation
function it is sufficient to expand λ̂ ≈ 1 − η̂ in the action. We
study here the renormalization of the sources generated by
η1. It will be preferable to use the interaction amplitudes in
the form 1

2 (�ρδαδδβγ + �σσ αδσ βγ ) = �1δαδδβγ − �2δαγ δβδ ,
where �1 = 1

2 (�ρ − �σ ) and �2 = −�σ . To this end, one
should consider the following action:

Sζ = πνi

4
Tr[D(1 + ζ̂D)(∇Q̂)2 + 2iz{ε̂,1 + ζ̂z}δQ̂]

+ i

2
(πν)2

2∑
n=1

〈
Tr

[(
1 + ζ̂�n

)
φ̂nδQ̂

]
Tr[φ̂nδQ̂]

〉
, (11)

where ζ̂X(r,ε + ω,ε) = ûε+ωγ̂1ûεζX(r,ω) for X ∈
{D,z,�1,�2}. In the following we shall also use notations ζi

and Xi with i = 1 . . . 4. The contractions for the fields φn,
n = 1,2 generate the proper interaction terms with �1 and �2.
The initial conditions are obtained from a comparison with
Eq. (8), ζz = ζ�1 = ζ�2 = −η1, ζD = 0. The field ζD

was introduced to account for the possibility that the sources
migrate to the kinetic term during the RG procedure.

The general structure of the RG corrections is determined
by the number of independent integrations over momenta.
Each integration leads to an additional power in the inverse
dimensionless conductance, which is the small parameter of
the RG expansion. At a given order of the RG expansion, the
dependence on the interaction amplitudes can be accounted
for to all orders once the described dressing of the interaction
amplitudes is included [12,18]. Therefore, in order to remain
within a given order, it is sufficient to extract the ζX terms
from the established RG diagrams. The procedure is relatively
simple if one deals with potentials ζX(ε,ε′) carrying two fast
frequency arguments, since then it is sufficient for the RG
to approximate ζ̂X(ε,ε′) ≈ ζX(ε − ε′) and at the same time
matrices U or Ū with arguments ε and ε′ may be set equal to 1.
As a result, the extraction of potentials ζz and ζD is essentially
realized by a differentiation of the diffusion propagators as
D∂DD or z∂zD. In a similar way, the extraction of ζ�n

may be
implemented by a differentiation with respect to �n.

Unfortunately, if the frequency arguments of ζX(ε,ε′) are
slow one has to perform a tedious calculation complicated
by the fact that in products of the form ˆ̄UζXÛ the matrices
ˆ̄U and Û remain intact: ˆ̄UζXÛ �= ζX. Still, the above remarks

allow one to understand why the final result of the RG analysis
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acquires a very compact form:

�(Xi0ζi0 ) =
4∑

j=1

ζjXj

∂

∂Xj

(
�Xi0

)
, (12)

where �X symbolizes a logarithmic correction to X. The
result, which holds for all X ∈ {D,z,�1,�2}, bears a certain
resemblance with the multiplicative RG [37].

One can show, using the known RG equations for the
charges Xi , that the initial values for the sources do not change
as a result of renormalization. Indeed, the RG equations in
the absence of sources have a rigid structure dictated by the
NLσM:

dG/dξ = β[G; w2,w1], dYi/dξ = zβi[G; w2,w1], (13)

where Yi ∈ {z,�1,�2}, G = 4πνD, and wi = �i/z. Then,
it follows immediately from Eqs. (12) and (13) that the
parameters ζX do not flow, provided that ζD = 0 holds initially
and all remaining ζY are equal. Note the important fact that
ζD cannot be generated by other sources if they are equal.
Thus, we obtained a fixed point in the multiparametric RG
flow, which is a rather nontrivial result for a multiparametric
flow.

Static part of χkk . In analogy to c, we decompose the static
correlation function χ st

kk into two parts: χ st
kk = χ

st,0
kk + χ

st,dm
kk ,

where χ
st,0
kk is the trivial electronic part, while χ

st,dm
kk (x1,x2) =

δkdm
η1

(x1)/δη1(x2)|η1=0 originates from the diffusion modes.
We may use kdm

η=0 as a starting point for the calculation of

χ
st,dm
kk . The terms originating from the expansion of λ̂ up

to 2η1η2γ̂2, obviously, yield −2kdm
η=0. The remaining terms

can be obtained according to the following reasoning. One
needs to restore the dependence on the field η1 in kdm

and extract η1 from any part of the diffusons contributing
to kdm

η1
. Since the differentiation with respect to η1 can be

written as a differentiation with respect to the charges z

and �i , one can apply the operator O
η

D = −z∂z − �ρ∂�ρ
−

�σ∂�σ
which acts only on the diffusons D,D1,2. Here

we exploit the previously mentioned fact that during the
course of the RG procedure, the parameters Yi follow their
“host” amplitudes and that ζD = 0. The final result can be
written as

χ
st,dm
kk = (

O
η

D − 2
)
kdm
η=0. (14)

Using the fact that in the diffusons z and �i stand together with
frequency ω, one may replace O

η

D − 2 by ω(ω∂ω + 2), where
the differentiation is still restricted to the diffusons. Next,
we make use of the relations ω(ω∂ω + 2)f (ω) = ∂ω[ω2f (ω)]
and ω∂ωf (ω/2T ) = −T ∂T f (ω/2T ) in order to find that

χ
st,d
kk = −T ∂T kd

η=0. It means that together with the contribu-
tion from electrons we indeed have χ st

kk = −T c.
Heat conductivity: After all renormalizations, the dynam-

ical part χ
dyn
kk can be found by averaging the product of the

η1-, η2-frequency terms in the ladder approximation. This last
averaging generates a diffuson D(q,ω),

χ
dyn
kk = − i

8
(πν)2zη2zη1〈δη2 tr[{ε̂,η2γ̂2}δQ̂]δη1 tr[{ε̂,η1}δQ̂]〉

= −cFLT zη2

izω

Dq2 − izω
. (15)

In the last line we used that, as we have shown, the renormal-
ization of the η1 vertex is given by zη1 = z. The calculation of
zη2 is beyond the scope of this Rapid Communication. Instead
we rely on the fact that for a conserved quantity the sum
of the static and dynamical parts of the correlation function
vanishes in the limit q → 0. As we have demonstrated above,
χ st

kk = −T zcFL. Then, we come to the known structure of the
correlation function [19]:

χkk(q,ω) = −T c
Dkq2

Dkq2 − iω
, (16)

where Dk = D/z is the heat diffusion coefficient. It fol-
lows for the thermal conductivity that κ = cDk = cFLD. In
combination with the RG results for the conductivity of the
disordered Fermi liquid, σ = 2e2νD, this yields the WFL:
κ/σ = π2T/3e2.

The use of the ladder approximation in Eq. (15) amounts
to a restriction to collisionless kinetics. While the full NLσM
of Eq. (8), in fact, incorporates collisions, it can been checked
that the inclusion of collisions does not lead to additional
logarithmic corrections in the model of fermions with a short-
range interaction.

Conclusion. By incorporating Luttinger’s gravitational po-
tentials into the NLσM formalism, we developed a consistent
theory of thermal transport for the disordered Fermi liquid
[38]. The obtained results imply that in the studied system the
WFL remains valid despite the multitude of singular quantum
corrections arising at low temperatures. This example clearly
demonstrates that the observation of the WFL by itself does not
guarantee the applicability of the conventional Fermi-liquid
description.
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