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On the estimation of brain signal 
entropy from sparse neuroimaging 
data
Thomas H. Grandy1,2,*, Douglas D. Garrett1,3,*, Florian Schmiedek1,4 & Markus Werkle-
Bergner1

Multi-scale entropy (MSE) has been recently established as a promising tool for the analysis of 
the moment-to-moment variability of neural signals. Appealingly, MSE provides a measure of the 
predictability of neural operations across the multiple time scales on which the brain operates. 
An important limitation in the application of the MSE to some classes of neural signals is MSE’s 
apparent reliance on long time series. However, this sparse-data limitation in MSE computation could 
potentially be overcome via MSE estimation across shorter time series that are not necessarily acquired 
continuously (e.g., in fMRI block-designs). In the present study, using simulated, EEG, and fMRI data, 
we examined the dependence of the accuracy and precision of MSE estimates on the number of data 
points per segment and the total number of data segments. As hypothesized, MSE estimation across 
discontinuous segments was comparably accurate and precise, despite segment length. A key advance 
of our approach is that it allows the calculation of MSE scales not previously accessible from the native 
segment lengths. Consequently, our results may permit a far broader range of applications of MSE when 
gauging moment-to-moment dynamics in sparse and/or discontinuous neurophysiological data typical 
of many modern cognitive neuroscience study designs.

The human brain is remarkably dynamic and variable across moments, no matter how brain signals are measured 
(e.g., ECoG, EEG, MEG, fMRI). The utility of considering signal variability to understand individual differences 
(e.g., in cognition, age, disease) continues to gain traction in the neuroimaging community, to the point that 
signal variability measures often outpredict traditional (e.g., mean signal-based) measures in a host of experi-
mental contexts1. Importantly, signal variability and dynamics may serve as proxies for healthy, efficient, flexible 
neural systems1,2. However, in vivo studies remain relatively sparse, with much future work required to better 
characterize the form and function of signal variability in the human brain. Although various signal variabil-
ity metrics have been utilized, multi-scale entropy3,4 (MSE)—an extension of sample entropy5 (SampEn) that 
estimates SampEn at multiple time scales—is one popular measure recently applied as a tool for quantifying the 
(nonlinear) predictability of neural signals6–12. SampEn indexes the presence of patterns in the data; signals with 
a repetitive structure (like a sine wave) have lower entropy, and less predictable (or random) signals have higher 
entropy. Importantly, the broader utility of the multi-scale extension of SampEn (i.e., MSE) lies in its ability to 
account for entropy within different time scales (fast to slow) on which the brain operates, similar in logic to the 
use of multiple frequencies in the Fourier or Wavelet domains13,14.

However, one of the primary challenges in using MSE to characterize variability in human brain data is the 
apparent need for substantial continuous data for robust estimation4. Heuristically, the recommended number of 
successive data points for estimation at each scale is 100 (minimum) to 900 (preferred) points15 using typical MSE 
parameter settings, although several neuroimaging papers also have used as little as 50 points as the minimum7–10. 
Nevertheless, this data density requirement has so far precluded applicability of the MSE measure to experimental 
designs in which continuous data are too few for stable MSE estimation. For example, in a standard fMRI block 
design with a TR of 2 sec and block lengths of 0.5–1 min, the number of continuous data points (15–30 data 
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points) is purportedly too sparse for MSE estimation from even a single temporal scale. In a similar vein, in an 
epoch-based ECoG/EEG/MEG study, characterization of the lower frequency range may not be achievable. For 
instance, for an epoch length of 1 sec, following the recommendation that MSE be estimated from at least 100 
continuous data points restricts the scales to “sampling frequencies” of at least 100 Hz (i.e. 100 data points/sec). 
Thus, for segments as short as 1 sec, estimating the MSE at scales fully capturing the alpha16–18 (8–12 Hz) and 
theta19,20 (4–7 Hz) frequency range is severely limited. Consequently, MSE data density requirements seemingly 
preclude most standard non-resting-state fMRI studies (event- or block-designs), and have limited applicability in 
epoch-based ECoG/EEG/MEG studies. In short, for MSE to usefully characterize signal dynamics within typical 
cognitive neuroscience study designs, alternative solutions are required to relax high data density requirements.

In the current paper, we investigated whether this potential limitation of MSE can be overcome by estimation 
of MSE across discontinuous segments of a time series (see Fig. 1). From a theoretical point of view, estimation 
of MSE across discontinuous segments of neural signals should not pose a fundamental problem, under the 
assumption of neurophysiological equivalence of data segments (i.e., that data segments are all equivalent samples 
of a signal with specific signal characteristics). MSE—like any classic entropy measure—is intrinsically discrete 
in that it compares the relative occurrence and predictability of patterns of neighboring data points. In principle, 
this pattern counting process should be extensible to discontinuous data segments, so long as data patterns are 
not computed across segment boundaries (doing so would result in artificial “patterns” that are not meaningful 

Figure 1. Schematic representation of the rationale of MSE estimation across discontinuous segments 
of a time series. (A) Sampling of discontinuous segments from a continuous time series and subsequent 
comparison of MSE estimates across discontinuous segments with MSE estimates from continuous time 
series. Here, accuracy denotes the absolute deviation of (a) MSE values from discontinuous segments from (b) 
the ‘benchmark’ MSE values from continuous data. Precision is defined as the standard deviation (SD) of the 
distribution of MSE values around their mean (e.g., across simulation runs, or across subjects). (B) Example for 
an application. Extraction of respective discontinuous data segments from a block design with two conditions 
(A,B) and subsequent MSE estimation across these discontinuous segments.
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to and representative for the signal characteristic under investigation). Thus, we hypothesized that by taking a 
continuous time series and parsing it into various data segments (Fig. 1A), MSE values calculated across the 
discontinuous time segments would mirror MSE values from the continuous time series. Further, by leverag-
ing multiple continuous data segments, it should also be possible to estimate MSE scales that would otherwise 
not be attainable due to a lack of continuous within-segment data (so long as there is enough total data across 
segments to stabilize estimates, and patterns are not counted across boundaries). If so, the applicability of MSE 
would extend to study designs that contain only segments of limited continuous data. We provide support for this 
hypothesis using simulated, EEG, and fMRI data.

Methods
Multiscale entropy (MSE). MSE is a measure of the predictability of a signal at multiple time scales3,4. 
Typically, MSE relies on the estimation of the sample entropy5 (SampEn) at each time scale of interest. In simple 
terms, the estimation of SampEn within a given time series involves counting how often patterns of m successive 
data points reoccur in time (Um), and counting how often patterns of m +  1 data points reoccur in time (Um+1). 
Importantly, given that data points are rarely equal in physiological time series, a criterion is required to define 
when a data pattern has “reoccurred.” A parameter r is set that represents a proportion of the time series standard 
deviation (SD), thus defining a boundary within which data points are considered “equal”; this in effect dis-
cretizes the data, allowing for comparison of “data patterns” rather than exact data values. That is, for any data 
point k, all data points within k ±  r ×  SD are by definition equal to k. SampEn is then given as the natural log of 
Um(r)/Um+1(r). Consequently, high SampEn values indicate low predictability (or higher randomness) of data 
patterns by indicating that patterns of length m + 1reoccur less often than patterns of length m (i.e., the higher 
the ratio Um(r)/Um+1(r), the higher SampEn and vice versa). The inclusion of multiple time scales in MSE3,4 is 
achieved by coarse-graining the original time series prior to SampEn estimation: for any scale s, s successive, 
non-overlapping data points are averaged, and SampEn is calculated across these averaged data points. As MSE 
at scale 1 is identical to SampEn, we will refer to SampEn whenever MSE analyses are focused on scale 1. The 
boundary criterion r ×  SD is typically defined only once for the native time series (i.e., scale 1) and then applied to 
all MSE scales. Accordingly, MSE may be interpreted as the SampEn at each scale relative to the overall variance 
(SD) of the time series. Importantly, each MSE scale must necessarily be interpreted in the context of the sampling 
rate. That is, scale 1 represents the native sampling rate of a given digitized signal (e.g., 250 Hz, or 4 ms sampling 
interval), scale 2 represents the native sampling rate/2 (e.g,. 125 Hz, or 8 ms), and so on for successive scales. Thus, 
scale-specific MSE results can only be compared across studies when accounting for differences in sampling rate.

Typically, in neurophysiological settings, parameter values of m =  2 and r =  0.50 are utilized6,8,9. Although 
m (also referred to as the embedding dimension) is often set to 2, optimal values can also be determined using 
the procedure proposed by Small and Tse21. r value settings of 0.50 are also typically specified according to rec-
ommendations by Richman and Moorman5. In the current paper, we mainly report analyses using these specific 
parameters (analyses with r parameters of 0.15 and 0.30 did not reveal any substantial differences in our analyses; 
see Figures S1 and S2). Calculation of MSE was implemented as described in Costa et al.4. For the calculation 
of the MSE across discontinuous segments, two further constraints were added: (1) coarse-graining was con-
ducted segment-wise (i.e., within segments), and (2) patterns were not allowed to cross segment borders. Thus, 
in addition to the requirements on the number of data points as described above, the maximal scale possible was 
restricted here to be [n/(m +  1)] rounded down to the nearest integer, with n being the number of successive data 
points per segment.

Evaluation of SampEn and MSE estimates from sparse data. In order to investigate the behavior of 
SampEn and MSE when reducing the number of data points and parsing continuous time series into discontinu-
ous data segments of varying lengths (see Fig. 1), we evaluated the accuracy (Δ; i.e., unbiasedness) and precision 
(SD; i.e., dispersion) of SampEn and MSE values. Accuracy here represents the absolute deviation of (a) the 
average SampEn (or MSE) values of a sample of shorter or discontinuous time series from (b) the ‘benchmark’ 
average SampEn (or MSE) values calculated from a sample of ‘ideal’ time series with ‘optimal’ data density [i.e., Δ 
: =  | mean(SampEnshort/discontinuous time series) – mean(SampEnbenchmark) |]. It allows one to approximate the bias of the 
SampEn and MSE values that can be expected given a certain amount of data points (continuous as well as dis-
continuous). Precision here is defined as the standard deviation (SD) of the distribution of the SampEn (or MSE) 
values around their mean and is equivalent to the dispersion of the accuracy at any level of data density and data 
segmentation. Consequently, the precision allows one to estimate the standard error of the SampEn and MSE val-
ues given a certain sample size and thus can be used to approximate the statistical power in a given experimental 
design22, as will be discussed in detail below.

Simulations. All simulations and analyses were conducted within MATLAB R2012a and R2014b (The 
MathWorks Inc., Natick, MA). White noise was generated using the randn function. 1/f noise was generated using 
an implementation of simulating discrete noise23 by Stoyanov et al.24 (http://people.sc.fsu.edu/~jburkardt/m_src/
cnoise/cnoise). As has been previously shown4, SampEn (and thus MSE) is highly accurate and precise for time 
series with more than 10,000 data points. Thus, we used SampEn and MSE estimated from time series with 216 
(65,536) data points as the benchmark for all comparisons. In order to obtain stable SampEn and MSE estimates, 
all reported point measures (i.e., mean (M), and standard deviation (SD)) are calculated from 1,000 randomly 
generated time series. Furthermore, in order to keep the spectral power at the lower end of the frequency spec-
trum constant for different signal lengths, time series were high-pass filtered with a frequency cutoff of sampling 
frequency/210 (1,024) Hz (e.g., 1 Hz cutoff with a sampling frequency of 1,024 Hz) with a 4th order Butterworth 
filter implemented using the filtfilt function in MATLAB.

http://people.sc.fsu.edu/~jburkardt/m_src/cnoise/cnoise
http://people.sc.fsu.edu/~jburkardt/m_src/cnoise/cnoise
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In order to evaluate the robustness of SampEn to reductions in the number of data points, we compared the 
average deviation of SampEn calculated from 25 (32) to 215 (32,768) successive data points from the benchmark 
SampEn calculated from 216 (65,536) successive data points. As introduced above, we refer to the absolute average 
deviation as accuracy and to the SD of the SampEn values as precision, both calculated across SampEn values of 
1,000 randomly generated time series (representing randomly drawn samples of white or 1/f noise). It should be 
noted that smaller numerical values denote higher accuracy and precision. Since the average deviation and the 
SD decrease approximately exponentially with increasing data volume, results are plotted in log-log space. After 
determining the number of data points needed to obtain stable SampEn estimates, we examined the impact of 
discontinuous data segment lengths on SampEn. In a first pass, segments of 128, 32, 16, 8, 4, and 3 data points 
were used to approach the absolute limits of the behavior of SampEn when using as little continuous data as pos-
sible (i.e., as mentioned above, if m =  2, the minimum number of data points to compute SampEn is 2 +  1 =  3). 
However, because of a clear monotony of results across these segment lengths (Figure S3), for simplicity we 
present only segments of 128, 32, and 3 in the current results. Since the critical measure within SampEn is the fre-
quency of reoccurring patterns, the comparison between SampEn estimation from discontinuous and continuous 
data was based on an equivalent number of compared patterns [number of compared patterns =  (n− m) ×  j, in 
which j denotes the number of segments, m is the m parameter of the SampEn (MSE) measure, and n represents 
the number of data points within segments]. Combined, these analyses were intended to establish the critical 
amount of data necessary to obtain relatively stable SampEn and MSE estimates from continuous and discontin-
uous data.

Finally, we extended the above single-scale analyses to multiple scales (up to scale 20). MSE calculated from 
time series with 216 (65,536) successive data points served as the benchmark. We compared estimation across 
10 to 640 discontinuous segments with lengths of 24 (16) to 210 (1,024) data points, and a maximum number of 
20 ×  210 (20 ×  1,024) data points, to the benchmark. Accuracy and precision of the MSE estimation across dis-
continuous segments are again reported as the log10 of the absolute average difference from the benchmark MSE 
values, and log10 of the SD of the MSE values, respectively.

Application to EEG Data. In order to test whether simulated results were applicable to typical neurophys-
iological data, we conducted similar analyses using resting state EEG data from the large-scale COGITO study 
conducted at the Max Planck Institute for Human Development (MPIB), Berlin, Germany (see Schmiedek et al.25 
for a detailed description of the study). The study was approved by the ethics committee of the MPIB, and was 
carried out in accordance with the approved guidelines. All participants provided written informed consent. A 
detailed description of the resting state EEG data is provided in Grandy et al.26. In short, resting state EEG data 
were initially recorded from 45 younger adults (24 women; age range =  20–31 years; M =  25.1; SD =  2.8) with 
BrainAmp amplifiers (Brain Products GmbH, Gilching, Germany) and 64 Ag/AgCl electrodes. Sixty scalp elec-
trodes embedded in an elastic cap (EASYCAP GmbH, Herrsching, Germany) were organized according to the 
10% system. The EEG was recorded with an analog band-pass of 0.1 to 250 Hz and digitized with a sampling rate 
of 1 kHz. EEG resting state data were acquired from two conditions: 2 min eyes closed (EC) and 2 min eyes open 
(EO). Participants were instructed to sit as relaxed and as still as possible in both the EC and EO conditions, and 
to fixate on a cross during the EO condition. During recording, the ground was placed at AFz. Two electrodes 
were placed on the outer canthi and one electrode below the left eye in order to monitor eye movements. During 
recording, all electrodes were referenced to the right mastoid electrode. Electrode impedances were maintained 
below 5 kΩ before recording.

Preprocessing and analysis of EEG data was performed using the EEGLAB27 and FieldTrip28 toolboxes, as 
well as custom MATLAB code. EEG data was re-referenced to mathematically linked mastoids, high-pass filtered 
with a 4th order Butterworth filter with a cutoff frequency of 250/210 (250/1,024) Hz ( =  0.24 Hz), down-sampled 
to 250 Hz and segmented into epochs of 4.096 sec (i.e., 1,024 data points). Epochs were visually inspected for 
each subject, and all segments containing artifacts other than eye blinks and eye movements were excluded from 
further analyses. After manual artifact rejection, a temporal independent component analysis29 (ICA) was con-
ducted. Independent components capturing eye blinks and movements were visually identified and removed 
prior to back-projection of the data. Only participants with at least 20 artifact free segments of 1,024 data points 
(4.096 sec) within each condition were kept for the current analyses, leaving n =  19 individuals. For each of the 
19 participants, the first 20 artifact free segments were chosen for all subsequent analyses, ensuring an iden-
tical amount of data for all included individuals. Importantly, our selected subsample (n =  19) did not differ 
from excluded sample participants in terms of several relevant sample descriptives [age (t(43) =  0.62, p =  0.537), 
perceptual speed (Digit Symbol Substitution scores; t(43) =  0.39, p =  0.700), fluid intelligence (Raven Advanced 
Progressive Matrices scores; t(43) =  1.22, p =  0.231), and individual alpha frequency (t(43) =  − 1.22, p =  0.230; 
cf. Grandy et al.26].

The rationale for these choices was two-fold. First, we aimed at obtaining a sample size within the range of a typ-
ical cognitive neuroscience experiment (N ≈  20). Second, we sought a number of available data points that would 
allow highly accurate MSE estimates, to serve as a valid benchmark for assessing the effects of reducing the number 
of data points in a neurophysiological signal. It was not possible to obtain 10,000 successive data points in our EEG 
data, although in our simulations the bias of MSE estimates from 10,000 successive data points was below 0.001 
up to scale 20 when estimating the MSE across 20 segments of 1,024 data points (see Results). As a result, we used 
20 ×  210 (20 ×  1,024) data points (instead of time series with successive data) as the benchmark for EEG data in the 
current study. The amount of data was then systematically reduced from 1/2 to 1/27 (1/128) by sampling between 
j discrete segments (j =  10 to 640) with lengths of n data points [n =  24 (16) to 210 (1,024)] from the overall pool of 
20 ×  210 (20 ×  1,024) available data points. MSE was calculated for j ×  n data points for every electrode. For accuracy, 
the log10 of the absolute average deviation from the benchmark MSE, averaged across all electrodes and participants 
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(representing a random sample of resting-state EEG signals), is reported. For precision, the average SD calculated 
across participants’ MSE values within electrodes is reported. To provide the lower limits of accuracy and precision, 
the 95th percentiles and maximum values of the respective distributions are also presented.

Furthermore, the robustness of the statistical difference between the two resting conditions (EC vs. EO) when 
reducing the amount of data used for MSE estimation was investigated to demonstrate more practical implica-
tions for typical cognitive neuroscience study designs. Point-wise (scales ×  electrodes) paired-samples Student’s 
t-tests (EC vs. EO) were conducted for all j ×  n data sets. We then calculated the sensitivity and specificity of 
detecting a reliable difference between conditions (with the α-level set at 0.05) as a function of decreasing the 
overall amount of data. In the current context, sensitivity denotes the probability to detect a reliable difference 
between conditions (across electrodes and scales) given that the benchmark comparison of the two conditions 
indicated a reliable difference. Specificity denotes the probability to obtain a non-significant difference between 
conditions given that the benchmark comparison rendered a non-significant difference. Note that the meaning 
of ‘sensitivity’ and ‘specificity’ in our context thus deviates slightly from their use in standard diagnostics; never-
theless, as introduced here, they provide a useful heuristic to describe the effect of reducing the number of data 
points on the statistical comparison of the two conditions.

Application to fMRI Data. Finally, we also applied the above analyses to high-speed, multiband fMRI 
resting state data from 20 randomly selected young adults (age range =  20–30 years) from the NKI-Enhanced 
dataset (publicly available at http://fcon_1000.projects.nitrc.org/indi/enhanced/download.html). All partic-
ipants were right-handed and reported to be psychiatrically and neurologically healthy. As noted in Nooner 
et al.30, Institutional Review Board Approval was obtained for the NKI-Enhanced project at the Nathan Kline 
Institute (Phase I #226781 and Phase II #239708) and at Montclair State University (Phase I #000983A and Phase 
II #000983B), and the study was carried out in accordance with the approved guidelines. Written informed con-
sent was obtained for all study participants.

Whole-brain resting-state fMRI data (10 mins, 900 volumes total) were collected via a 3T Siemens TrioTim 
MRI system (Erlangen, Germany) using a multi-band EPI sequence (TR =  645 ms; TE =  30 ms; flip angle 60°; 
FoV =  222 mm; voxel size 3 × 3 × 3 mm; 40 transverse slices; for full scanning protocol, see http://fcon_1000.
projects.nitrc.org/indi/pro/eNKI_RS_TRT/ Rest_645.pdf). The first 15 volumes (15 ×  645 ms =  9.7 sec) were 
removed to ensure a steady state of tissue magnetization (total remaining volumes =  885). A T1-weighted 
structural scan was also acquired to enable co-registration to functional images (MPRAGE: TR =  1900 ms; 
TE =  2.52 ms; flip angle 9°; FoV =  250 mm; voxel size 1 ×  1 ×  1 mm; 176 sagittal slices; full details at http://
fcon_1000.projects.nitrc.org/indi/enhanced/NKI_MPRAGE.pdf).

fMRI data were preprocessed with FSL 531,32. Pre-processing included motion-correction with spatial smooth-
ing (7 mm full-width at half maximum Gaussian kernel) and high-pass filtering (sigma =  100 sec). We registered 
functional images to participant-specific T1 images, and from T1 to 2mm standard space (MNI 152_T1) using 
FLIRT. We then masked the functional data with the GM tissue prior provided in FSL (thresholded at probability 
> 0.37). We detrended the data (up to a cubic trend) using the “SPM_detrend” function in SPM8. We also uti-
lized extended preprocessing steps to further reduce data artifacts33–36. Specifically, we subsequently examined 
all functional volumes for artifacts via independent component analysis (ICA) within-person, as implemented 
in FSL/MELODIC37. Noise components were targeted according to several key criteria: a) Spiking (components 
dominated by abrupt time series spikes ≥ 6 SDs); b) Motion (prominent edge or “ringing” effects, sometimes [but 
not always] accompanied by large time series spikes); c) Susceptibility and flow artifacts (prominent air-tissue 
boundary or sinus activation; typically represents cardio/respiratory effects); d) White matter (WM) and ventricle 
activation; e) Low-frequency signal drift; f) High power in high-frequency ranges unlikely to represent neural 
activity (≥ 75% of total spectral power present above 0.13 Hz;); and g) Spatial distribution (“spotty” or “speck-
led” spatial pattern that appears scattered randomly across ≥ 25% of the brain, with few if any clusters with ≥ 10 
contiguous voxels [at 4 ×  4 ×  4 mm voxel size]). By default, we utilize a conservative set of rejection criteria; if 
manual classification decisions were difficult due to the co-occurrence of apparent “signal” and “noise” in a single 
component, we typically elected to keep such components. Three independent raters of noise components were 
utilized; > 90% inter-rater reliability was required on separate data before denoising decisions were made on the 
current data. Components identified as artifacts were then regressed from corresponding fMRI runs using the 
FSL regfilt command.

As 885 volumes were available for each voxel, this in principle provided sufficient data for the stable estimation 
of the MSE for approximately scales 1 through 10 (cf. Pincus and Goldberger15). MSE values calculated from 885 
volumes served as the benchmark. We then tested the behavior of the MSE estimate when computing MSE across 
j ( =  10, 20, 40) discontinuous segments of n ( =  16, 32, 64) data points, with a maximum number of 10 ×  64 data 
points. For accuracy (and comparable to our EEG data analyses), the log10 of the absolute average deviation from 
the benchmark MSE, averaged across all voxels and participants (representing a random sample of resting state 
fMRI signals), is reported. For precision, the log10 of the average SD calculated across participants’ MSE values 
within voxels is reported. To provide the lower limits of accuracy and precision the 95th percentiles and maximum 
values of the respective distributions across voxels are also shown.

Furthermore, we investigated if there was any evidence for a systematic difference (or bias) in the accuracy 
and precision across voxels. To do so, we calculated for each j ×  n combination and scale whether the voxel-wise 
accuracy deviated reliably (uncorrected p =  0.001) from the overall accuracy (average across participants and 
voxels). As t values are defined as t(df) : =  (voxel-wise accuracy− overall accuracy)/(voxel-wise precision/N1/2), 
with df =  19 and N =  20, this rationale effectively represents an integration of the accuracy and precision metrics 
across voxels.

http://fcon_1000.projects.nitrc.org/indi/enhanced/download.html
http://fcon_1000.projects.nitrc.org/indi/pro/eNKI_RS_TRT/
http://fcon_1000.projects.nitrc.org/indi/pro/eNKI_RS_TRT/
http://fcon_1000.projects.nitrc.org/indi/enhanced/NKI_MPRAGE.pdf
http://fcon_1000.projects.nitrc.org/indi/enhanced/NKI_MPRAGE.pdf
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Figure 2. SampEn simulations using white and 1/f noise. (A) Accuracy and precision of SampEn (MSE 
at scale 1) estimates for white noise and 1/f noise as a function of signal length (number of successive data 
points). The average SampEn across 1,000 randomly generated time series with 216 (65,536) continuous data 
points served as the benchmark for accuracy estimation. (B) Accuracy and precision of SampEn estimates for 
white noise and 1/f noise as a function of number of pattern comparisons when estimating SampEn across 
discontinuous segments of 128, 32, and 3 data points. For better comparability, SampEn estimates from 
successive data points (with equating the number of pattern comparisons, see Methods) are also provided 
[color coding as in (A)]. Note. Error bars indicate the SD of the SampEn values across 1,000 randomly generated 
time series, hence represent the precision of the SampEn values. Accuracy and precision are given in log10 
scaling (with smaller values plotted upwards) for better readability. SampEn =  sample entropy; SD =  standard 
deviation; Δ =  absolute average difference between benchmark SampEn and SampEn estimated from shorter or 
discontinuous time series; discont. =  discontinuous segments.
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Results
Simulated data. First, we examined the accuracy (Δ; absolute average deviation) and precision (SD) of 
SampEn (i.e., MSE at scale 1) of white and 1/f noise as a function of signal length (Fig. 2A). Accuracy of the 
SampEn was lower—showing a systematic overestimation—for shorter time series. In log-log space, the accuracy 
and precision increased approximately linearly (monotonically) with data volume. Furthermore, accuracy and 
precision were lower for 1/f noise. Thus, importantly, the precision of the SampEn estimate not only depended on 
the signal length but also on signal structure.

Second, because SampEn operates on discrete data, we hypothesized that the critical quantity for an unbiased 
and accurate estimate of SampEn is the number of compared patterns rather than the number of continuous data 

Figure 3. MSE simulations using white and 1/f noise. Accuracy and precision of MSE estimates for white 
and 1/f noise up to scale 20 when estimating the MSE across j ( =  10 to 640) discontinuous segments of n 
( =  16 to 1,024) data points. (A) Accuracy. The average MSE values across 1,000 randomly generated time 
series with 216 (65,536) continuous data points served as the benchmark for accuracy estimation. Benchmark 
MSE values are shown in the upper left plot. Heat maps provide the median accuracy across scales for each 
combination of j segments of n data points; MSE values were estimated only for non-white cells. Color bars 
indicate the (logarithmic) scaling of the median accuracy values. Note that diagonals from the bottom left to 
the top right refer to approximately the same number of pattern comparisons. In the lower row, representative 
examples of j ×  n combinations are provided. (B) Precision. Heat maps provide the median precision across 
scales for each combination of j segments of n data; MSE was estimated for non-white cells. Color bars 
indicate the (logarithmic) scaling of the median precision values. In the lower row, representative examples 
of j ×  n combinations are provided. Note. Error bars indicate the SD of the MSE values across 1,000 randomly 
generated time series. Accuracy and precision are given in log10 scaling with smaller values plotted upwards. 
MSE =  multi-scale entropy; Δ =  absolute average difference between benchmark MSE and MSE estimated 
across discontinuous time series with a reduced overall amount of data points; SD =  standard deviation.
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Figure 4. Resting state EEG data [eyes closed (EC) and eyes open (EO)]. (A) Accuracy and (B) Precision. 
MSE estimates—up to scale 20—across j ( =  10 to 640) discontinuous segments of n ( =  16 to 1,024) data points. 
MSE values estimated across 20 ×  210 (20 ×  1,024) data points, averaged across all electrodes and participants 
(N =  19) served as the benchmark [shown in the upper left plots of (A) and (B)]. Heat maps provide the median 
accuracy (A) and precision (B) across scales for each j ×  n combination. Color bars indicate the (logarithmic) 
scaling of values. Diagonals from the bottom left to the top right refer to approximately the same number 
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points. Convergent with this hypothesis, accuracy and precision of SampEn were comparable for continuous 
and discontinuous time series when holding the number of compared patterns constant (Fig. 2B). Even under a 
minimal segment length of only three successive data points, accuracy of the SampEn estimate was exceptionally 
high when estimating across a sufficient number of segments. Interestingly, the accuracy became consistently 
higher when estimating the SampEn across shorter segments, relative to the SampEn estimated from continuous 
data with an equal amount of pattern comparisons, and this phenomenon was more pronounced for 1/f noise. In 
a similar vein, for 1/f noise, precision of SampEn was higher when estimated across segments (see also Figure S3).

Next, we assessed the accuracy and precision of the MSE (i.e., “SampEn” estimated at multiple scales) when 
estimated across discontinuous segments. The overall observed pattern was well in line with our simulated 
SampEn results above. Accuracy and precision systematically increased with the number of data points and pat-
tern comparisons available for MSE (Fig. 3, S4, and S5). Furthermore, accuracy and precision of MSE values were 
higher for white noise, particularly for higher scales. Thus, MSE estimates across multiple scales are also compa-
rable for discontinuous and continuous data when ensuring a sufficient amount of data. Of note, an important 
consequence of our approach is that it allows the estimation of scales not accessible from the native segment 
length. For example, calculation of scale 20 would not be possible with only 128 data points, but can be estimated 
with exceptional accuracy when estimating across multiple segments of 128 data points for white and 1/f noise 
(Fig. 3 and S4).

Resting-state EEG and fMRI data. Following our simulations, we evaluated whether the above observa-
tions could be extended to EEG data. MSE estimated from 20 ×  210 (20 ×  1,024) data points served as the bench-
mark for the resting state EEG data. Figure 4 provides the accuracy and precision of MSE calculated from less 
than 20 ×  210 (20 ×  1,024) data points, averaged across 60 electrodes. Overall, accuracy and precision were com-
parable to the simulated data (see also Figures S6 and S7) and approached benchmark levels. Again, even when 
estimating across segments with limited numbers of data points, accuracy and precision of the MSE estimates 
were high with a sufficient number of segments. Thus, our simulated results can be extended to realistic neuro-
physiological time-series. In a final step, we tested how well MSE differences between the EC and EO conditions 
could be detected when using increasingly fewer and shorter discontinuous segments (Fig. 4C). Unsurprisingly, 
the statistical difference between the two resting conditions was found to be increasingly robust with more data. 
For the equivalent of 10 ×  210 (10 ×  1,024) data points, the sensitivity to reliably detect an existing difference 
between conditions ranged between 0.77 and 0.94, for 10 ×  29 (10 ×  512) data points between 0.68 and 0.90, for 
10 ×  28 (10 ×  256) data points between 0.57 and 0.65, and for 10 ×  27 (10 ×  128) data points between 0.37 and 
0.65. Thus, the overall pattern of differences between the EC and EO condition was highly robust, but in line with 
the accuracy and precision reported above, robustness of the difference was increasingly limited when estimat-
ing the MSE from fewer data points (see also Figure S8). On the other hand, specificity remained high (> 0.88) 
throughout, that is, the probability of falsely detecting reliable differences between conditions (or groups) did not 
substantially change when reducing the overall amount of data.

Finally, we examined this phenomenon in resting-state fMRI data. Again, MSE accuracy and precision 
increased with greater overall amount of data, independent of the length of the discontinuous segments (Fig. 5). 
Importantly, the conjoint evaluation of a systematic bias of accuracy and precision of MSE values across voxels did 
not reveal any area where the voxel-level accuracy deviated systematically from the overall accuracy. The distri-
bution of t values are symmetric around zero and follow the general trend of more narrow (i.e., more consistent) 
distributions with larger amounts of data (Fig. 6). When the amount of available patterns for comparisons are 
sufficient, the amount of voxels that reliably differ in their accuracy from the overall accuracy is below the number 
expected by chance (Fig. 7A). Furthermore, even when a large amount of voxels show reliable differences (worst 
case scenario at the absolute limits of MSE estimation, i.e. number of compared patterns << 100), the spatial dis-
tribution appears random (Fig. 7B and C).

Discussion
In the current paper, we introduced and evaluated a solution to the data density requirements for SampEn and 
MSE, with the intention of yielding greater applicability of SampEn and MSE to sparse neurophysiological data 
(e.g., EEG data with short trials or fMRI data from block or event-related designs). Given the discrete nature of 

of pattern comparisons. In the lower row, representative examples of j ×  n combinations are provided. Grey 
lines indicate the 95th percentile and black lines the maximum (worst) accuracy and precision values across 
electrodes, respectively. (C) Robustness of statistical differences between conditions. Upper left heat map: t 
values from the MSE comparison between EC and EO. Non-significant scale ×  electrode points are masked out 
(green). Upper middle and right heat map: sensitivity and specificity of detecting significant differences between 
conditions across the scale ×  electrode space when reducing the amount of data used for MSE estimation. 
Sensitivity systematically decreases with decreasing amounts of data without introducing many false positives 
(stable specificity). The lower row provides representative t value maps for four j ×  n combinations; same 
scaling as the benchmark t value map. Note, that for short segments (i.e., 16 data points), scales containing the 
maximum difference between conditions cannot be obtained (e.g., lower row, leftmost plot). Note. Error bars 
indicate the SD of the average MSE values across participants (N =  19). Accuracy and precision are given in 
log10 scaling with smaller values plotted upwards. In heat maps, values were estimated only for non-white cells. 
MSE =  multi-scale entropy; Δ =  absolute average difference between benchmark MSE and MSE estimated 
across discontinuous time series with a reduced overall amount of data points; SD =  standard deviation; 
Sens =  sensitivity; Spec =  specificity.
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these entropy measures, we hypothesized that it would be possible to calculate SampEn and MSE across discon-
tinuous data segments with high accuracy and precision; this hypothesis was supported across simulation-based, 
EEG, and fMRI analyses.

Simulations. We started by describing and evaluating the accuracy (absolute average deviation) and preci-
sion (SD) of the SampEn (MSE at scale 1) as a function of signal length using simulated white and 1/f noise. Both 
accuracy and precision of SampEn were found to improve approximately linearly (monotonically) in log-log 
space as a function of signal length (Fig. 2A), emphasizing the importance of the number of data points for 
the robust estimation of SampEn. For increasingly shorter time series an increased overestimation in the exact 
SampEn value was observed and the level of overestimation was higher for 1/f noise (Fig. 2). The difference in 
overestimation is most likely driven by differences in frequency content between the two noise types. As white 
noise has a flat spectrum (and thus a more consistent time series variance), sampling fewer data points has rela-
tively little impact on the estimation of the SD of the time series. However, for 1/f noise which is characterized by 
slower rather than faster frequency content, reducing the number of continuous data points necessarily reduces 

Figure 5. Resting state fMRI data. Accuracy and precision of the MSE estimates up to scale 10 when 
estimating the MSE across j ( =  10 to 40) discontinuous segments of n ( =  16 to 64) data points of resting state 
fMRI data. (A) Accuracy. MSE values estimated from 885 continuous data points and averaged across all voxels 
and participants (N =  20) served as the benchmark for accuracy estimation. Benchmark MSE values are shown 
in the upper left plot. All possible combinations of j segments of n data points are shown in the right panels. 
(B) Precision. Precision of the benchmark MSE values is shown in the upper left plot. Note. Error bars indicate 
the SD of the average MSE values across participants (N =  20). The grey lines indicate the 95th percentile and 
the black lines the maximum values (worst case) of accuracy and precision values across voxels, respectively. 
Accuracy and precision are given in log10 scaling with smaller values plotted upwards. MSE =  multi-scale 
entropy; Δ =  absolute average difference between benchmark MSE and MSE estimated across discontinuous 
time series with a reduced overall amount of data points; SD =  standard deviation.
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the low frequency content that is captured and hence reduces the SD estimate. Thus, for sparser time series from 
1/f noise, the boundary interval (r ×  SD) over which data points are compared is smaller and, holding all else 
equal, has the effect of increasing the entropy value. In line with this notion, no difference in overestimation is 
observed when estimating SampEn with the SD of the overall time series from which the shorter segment was 
sampled (see Figure S9).

For real data, potential properties and differences in SampEn and MSE values between signals are likely 
unknown but may be rather subtle, ensuring that any given signal(s) will fall somewhere along the log-log con-
tinuums we report for accuracy and precision. Thus, in any given study design, such overestimation is not nec-
essarily problematic per se, but rather underscores the necessity of ensuring equal numbers of data points across 
conditions and subjects in comparative settings so that any overestimation bias remains stable. Hence, we cannot 
recommend a fixed number of data points as a required minimum for accurate and precise estimation of SampEn 
and MSE; similar to how choices of sample size impact statistical power, the number of required data points 
strongly depends on the requirements of a given study’s analyses. We provide a more detailed discussion of vari-
ous practical implications below.

We then assessed the effect of calculating SampEn and MSE across discontinuous segments. As hypothesized, 
when equating the number of pattern comparisons, estimates across discontinuous segments were as accurate 
and precise as those from continuous time series. Importantly, even with a segment length at the absolute mini-
mum (of n =  m +  1 =  3 in the current report), accuracy was exceptionally high when including a sufficient num-
ber of segments. Thus, neither discontinuity nor segment length impeded accurate estimation of SampEn or MSE.

Validation in EEG and fMRI data. Next, we evaluated these issues in relation to real neurophysiological 
data (EEG and fMRI). The overall picture for the EEG data was comparable to our simulation-based results. 
Accuracy and precision of MSE estimates were higher, albeit lower than in the simulations, with increasing num-
ber of data points and pattern comparisons (Fig. 4A,B). Since the accuracy of the MSE estimate per se is not 
necessarily meaningful as an explicit value, we also heuristically assessed the practical consequences of the inac-
curacies when limiting the amount of data points when comparing EO and EC conditions. Robustness of the 

Figure 6. fMRI: t value distributions of comparing voxel-wise accuracy with overall accuracy (for 
exemplary j × n combinations and scales). Regardless of the number of data segments, data points per 
segment, and time scale, deviation of the voxel-wise accuracy from overall accuracy were effectively zero-
centered, with tighter and more symmetric distributions at higher data densities (scale 1 vs. higher scales; lower 
vs. higher number of data points per segment).
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statistical difference was assessed by calculating the sensitivity and specificity (as defined in the Methods section) 
of detecting reliable differences between conditions. Sensitivity was high (between 0.77 and 0.94) when using only 
half the data points [equivalents of 10 ×  210 (10 ×  1,204) data points], but decreased when further reducing the 
amount of data included in the MSE estimation. Notably though, sensitivity was not dependent on the length of 
the discontinuous segments (Fig. 4C). On the other hand, specificity remained high despite reducing the overall 
amount of data. Thus, decreasing the amount of data decreases the probability of detecting reliable differences 
between conditions (decreased sensitivity) without introducing increasingly false positives (stable specificity). 
That is, while the probability of (falsely) detecting reliable differences between conditions (or groups) does not 
change, the probability of detecting existing ‘true’ differences is greatly reduced when reducing the amount of 
data.

Finally, we extended the applicability of our approach to fMRI data, for which acquisition of continuous data 
is typically sparse due to an impoverished sampling rate [albeit here, 885 multiband volumes were collected 
within 10 minutes (TR =  645 ms), serving as an example that approaches current best-case scenarios for temporal 
resolution of the BOLD signal while maintaining adequate spatial resolution]. As expected, high MSE accuracy 
and precision were achieved when including sufficient data in the MSE estimation. Furthermore, no evidence 
was found for a systematic influence of voxel location on accuracy and precision. The larger the number of data 
points available for MSE estimation, the less the number of voxels with reliable deviations from the overall accu-
racy. Importantly, even in the worst-case scenarios, accuracy values appeared to be randomly distributed across 
voxels (Fig. 7). This indicates an ideal scenario in that the reported mean accuracies do provide a representative 
approximation of the accuracy across the whole brain. As our reported accuracy and precision values refer to 
a voxel size of 2 ×  2 ×  2 mm, accuracy and precision values would likely improve even further if anatomical or 
functional parcellation schemes were used (such as AAL). In this sense the voxel-level values may be conceived of 
as an effective lower bound on regional estimates.

Figure 7. fMRI: number and spatial distribution of voxels where accuracy deviated reliably from the 
overall accuracy. (A) Number [and log10(number)] of reliably deviating voxels as a function of time scale and j 
(number of data segments) ×  n (data points per segment) combination. The black horizontal line indicates the 
number of voxels that would be detected by chance at an uncorrected p of 0.001. Note, that the blue, red, and 
green lines correspond to 160, 320, and 640 overall data points (across segments), respectively, thus denoting 
approximately the same amount of pattern comparisons. (B) and (C) The spatial distribution of the reliably 
deviating accuracy values from the overall accuracy (as indexed by the t values) for the two worst cases [(B): 
10 ×  16, scale 5; (C): 10 ×  32, scale 10] indicates that accuracy values are randomly distributed across the brain.
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Benefits of discontinuous MSE estimation. Of note, an interesting and important consequence of our 
general approach is that it allows the estimation of scales not accessible from native data segment lengths. For 
example, calculation of scale 20 is not possible from only 128 data points, but was estimated highly accurately 
in our simulations when estimating the MSE across multiple segments of 128 data points. This is an important 
advance for some classes of neurophysiological data. For example, in many typical EEG (e.g. short trials, or short 
time series due to artifacts) or fMRI settings (TR =  2 sec), the number of successive data points is severely limited. 
However, in contrary to some signal types (e.g., heart rate data), scale 1 (i.e., the sampling frequency) is often not 
the most interesting scale in M/EEG or fMRI data. With a limited number of successive data points, the scales of 
interest that map, for example, to the alpha (8–12 Hz) or theta frequencies (4–7 Hz) may not normally be accessi-
ble. Thus, our approach of MSE estimation across discontinuous segments allows inclusion of higher scales that 
were previously not estimable, permitting one to map out an even broader range of neurophysiological dynamics.

Why does MSE estimation from discontinuous segments work?. It may at first glance seem coun-
terintuitive that sampling shorter data segments (or even reordering them) could yield similar MSE results as in 
continuous data. However, our proposed MSE solution works explicitly because data patterns are not computed 
across data segment boundaries. In this way, data patterns within each segment are “protected” and in their origi-
nal state. When discrete data patterns are counted in MSE, the algorithm does not care for when in the time series 
data patterns occurred, but rather only that the patterns exist; because we ensure that all data patterns are real 
(i.e., from within data segments) rather than artificial (i.e., those crossing data segment boundaries), accurate and 
precise MSE estimation is indeed possible. However, “real” patterns here are necessarily bound by minimal data 
point requirements within segment to enable MSE estimation (m +  1 =  3, with or without coarse-graining); this 
means that only those time scales that meet this data minimum can be estimated, with the provision that enough 
pattern exemplars (and thus, data segments) are available in the data.

Practical recommendations derived from the current study. Importantly, from an application point 
of view, our definitions of accuracy and precision allow one to approximate the sample size and/or number of data 
points required to detect an expected difference in MSE with a given level of statistical power22. We will briefly 
outline the basic rationale here for an example two-group comparison design (e.g., comparing healthy individ-
uals and patients) in order to demonstrate how to make use of reported accuracy and precision values from the 
current study. With respect to accuracy, there are two important considerations. First, as already mentioned 
above, the systematic bias (i.e., the overestimation of MSE values; e.g., Fig. 2A leftmost plot) for shorter time 
series is approximately equal for signals with similar signal characteristics (see also Fig. 4 and S6). Consequently, 
as long as signal characteristics are not fundamentally different (e.g., white versus 1/f noise), the bias in the abso-
lute MSE values should be comparable across groups (i.e., for both groups, the absolute MSE value is shifted by 
approximately the same amount), and should not greatly influence the statistical comparison (as MSE values in 
both groups are shifted in the same direction by approximately the same amount). If, however, signals do differ 
fundamentally in their signal characteristics, it can be expected (or should be ensured by means of including a 
sufficient number of data points) that the difference between the MSE values of the two signals is large compared 
to the difference in accuracy (see Fig. 2A: the difference between white and 1/f noise is larger than 0.3; yet, their 
respective accuracies are smaller (i.e., better) than 0.1). In sum, accuracy should only in rare instances impede 
statistical comparisons between groups. Second, and more importantly, the accuracy does show a strong depend-
ency on the number of data points; shorter time series exhibit systematically larger MSE values. Consequently, 
MSE values should only be compared across groups if they are calculated on the same amount of data points as 
otherwise artificial differences (i.e., a differential bias) between MSE values may be introduced.

Precision of the MSE values as a function of the number of data points can be used to approximate the sample 
sizes required to detect an MSE difference at the electrode or voxel level with a certain probability (i.e., statistical 
power, 1− β). Reported raw MSE group differences so far range approximately between 0.02 and 0.20 in the EEG 
literature9,38 and approximately between 0.02 and 0.15 in the fMRI literature7,10,39. Using our precision values to esti-
mate effect sizes for expected group differences in MSE values (demonstrated here for expected MSE differences—
derived from the literature—of 0.05, 0.10, and 0.15) allows one to approximate the required sample sizes per group 
to detect a group difference with a given statistical power of, for instance, 0.80, 0.90, or 0.95 (Table 1). Most impor-
tantly, apart from the actual estimated sample sizes, it can be seen that when applying MSE at the absolute mini-
mum of the required amount of data points (as is the case here for scale 5), doubling the amount of data can reduce 
the required sample size up to approximately one fifth. Thus an important practical consequence of our results is 
that at the limits of data sparsity the number of data points can be highly efficiently traded against the sample size.

Caveats for MSE application. As a cautionary note for future work, in the present study we closely fol-
lowed the convention regarding the use of the SD as the criterion for the discretization of the data as introduced3,4 
and practiced in the literature6–9. That is, for every set of data points, the defined proportion r of the standard 
deviation of the original time series is used as the criterion. However, the application of the MSE to neurophys-
iological data in this way is not entirely unproblematic and has been subject to criticism40. The power spectra of 
many in vivo neurophysiological signals follows a 1/f-like characteristic13, but large individual differences remain 
in exact slope of the power spectrum, and thus in the balance of low versus high frequency content of the signal41. 
Importantly, signal variance is often strongly determined by lower frequencies (which may vary widely across 
individuals), whereas the initial scales of the MSE reflect higher frequencies (e.g., scale 1 reflecting the sampling 
frequency), and progress toward the lower parts of the frequency spectrum via coarse-graining. This property of 
the MSE can become problematic when the spectral power of low frequencies outside the spectrum covered by 
the MSE systematically differs between subjects (see also above; Figure S9). Under these circumstances, differ-
ences in the MSE may be largely determined by the power of lower frequencies. Consequently, MSE should be 
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used with caution in comparative settings where the sole focus lies on the comparison of absolute differences in 
MSE across conditions or groups. Future research should be conducted to establish more comprehensive solu-
tions to this important and non-trivial caveat.

Conclusion
Using simulated, EEG, and fMRI data, we established a clear relationship between the accuracy and precision 
of MSE estimates and the number of data points (pattern comparisons) utilized in the calculation of the MSE. 
As hypothesized, calculation of the MSE across discontinuous segments was possible with high accuracy and 
precision when ensuring a sufficient amount of pattern comparisons. The use cases employed in the present 
study (e.g., 1/f vs. white noise in simulation; eyes-open vs. eyes-closed in EEG) are meant as simple exem-
plars for signal- and condition-based analyses that could be conducted by scientists; however, the overarching 
principle here is that our approach can indeed recover whatever underlying entropy dynamics may exist in 
time series, despite data segment discontinuity. Given the conceptual similarity across many typical entropy 
measures, it is also reasonable to assume that the current SampEn-based results may apply to related measures 
such as approximate entropy5,42,43 or even rank-order-based entropy measures (e.g., permutation entropy44 or 
rank-vector entropy45). Finally, an important advance of our approach for neurophysiological data is that it 
allows the calculation of scales previously not accessible within the native segment lengths; accordingly, con-
sideration of relevant scales with respect to neurophysiological processes is highly facilitated and may yield a 
broader range of applications of SampEn and MSE when gauging moment-to-moment dynamics in sparse and/
or discontinuous brain imaging data.
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