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Simulations of Coulomb systems confined by polarizable surfaces
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Alexandre P. dos Santos,1,2,a) Matheus Girotto,1,b) and Yan Levin1,c)
1Instituto de Fı́sica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970
Porto Alegre, RS, Brazil
2Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany

(Received 24 July 2017; accepted 25 October 2017; published online 10 November 2017)

We present an efficient approach for simulating Coulomb systems confined by planar polarizable
surfaces. The method is based on the solution of the Poisson equation using periodic Green functions.
It is shown that the electrostatic energy arising from the surface polarization can be decoupled from
the energy due to the direct Coulomb interaction between the ions. This allows us to combine an
efficient Ewald summation method, or any other fast method for summing over the replicas, with the
polarization contribution calculated using Green function techniques. We apply the method to calculate
density profiles of ions confined between the charged dielectric and metal surfaces. Published by AIP
Publishing. https://doi.org/10.1063/1.4997420

I. INTRODUCTION

Efficient simulations of charged systems are of fundamen-
tal importance for physics, chemistry, and biology. Because of
the long range nature of the Coulomb force, one cannot use
simple periodic boundary conditions which are sufficient for
systems with short range interactions. Instead one is forced to
construct an infinite set of replicas of the original system so that
a particle in the main simulation cell interacts with all the other
particles in the cell, as well as with all the periodic replicas. To
efficiently sum over the replicas of the system, Ewald summa-
tion methods have been developed.1–8 Originally, the Ewald
summation was used to calculate the bulk energy of ionic
crystals and, in particular, the Madelung constant. The Ewald
summation is based on the separation of the Coulomb poten-
tial into long- and short-range contributions. The short-range
part can be treated using the usual periodic boundary condi-
tions, while the long-range part can be efficiently summed in
the Fourier space. Unfortunately, the method loses much of its
usefulness when the full 3D symmetry is broken, which is the
case when interfaces are present. This is due to the appearance
of special functions in the two-dimensional Fourier transform,
leading to slow convergence of the lattice sums.9–11 Notwith-
standing this, there are many important systems with a broken
symmetry: ionic liquids at electrified interfaces,12–17 charged
nanopores,18–20 and nanoconfined electrolytes,21–23 just to
cite a handful of examples. These systems can present new
phenomena, such as like-charged attraction24–27 and charge
reversal,28–30 which are hard to describe analytically,31 hence
the importance of fast simulation methods. To overcome the
difficulty of using the 2D Ewald summation, a number of
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approaches have attempted to extend the efficient 3D Ewald
summation method to systems with slab geometry.22,32–34

These approaches rely on the introduction of a sufficiently
large vacuum region between the undesired replicas to dimin-
ish their interaction in the non-periodic direction. To account
for the conditional convergence of the lattice sums, the Ewald
summation must be performed in a “plane-wise” manner, lead-
ing to an additional correction to the usual 3D Ewald energy.
The method was shown to be very efficient for simulating sys-
tems with reduced symmetry. The difficulty, however, arises
when the simulation cell is bounded by the polarizable sur-
faces such as metal electrodes or phospholipid membranes. If
there is only one polarizable surface present, it is straightfor-
ward to extend the techniques described above using the usual
image charge construction.35–41 However, if the simulation cell
is bounded by two polarizable surfaces, the situation becomes
much more difficult since the image construction results in an
infinite set of image charges. Therefore, both metallic13,42 and
dielectric confinements22,43–45 make simulations substantially
more difficult. A common procedure relies on the calculation
of the induced surface charge at the interfaces using mini-
mization of the electrostatic energy or using the discontinuity
of displacement field.46–51 This makes the simulations very
slow, restricting the system size to small number of particles.
Recently, we52 introduced an approach that does not rely on
energy minimization but is restricted to metal plates only. If
the dielectric contrast is not too large, dos Santos and Levin21

showed that it is possible to sum over the infinite set of image
charges. The rate of convergence, however, deteriorates with
the dielectric contrast, restricting the range of applicability of
this method. There are also other approaches in the literature
to deal with polarizable surfaces based on 2d + h layer correc-
tion methods.53–55 Every approach has its own advantages and
disadvantages.

In the present paper, we will introduce a general method
for calculating the electrostatic energy of Coulomb systems
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confined by planar polarizable surfaces, either metallic or
dielectric. The method is based on the exact solution of
the Poisson equation56 using periodic Green functions with
either Dirichlet or Neumann boundary conditions. The advan-
tage of the new method is that it is very fast and easy
to implement. A standard 3D Ewald summation code can,
therefore, be easily adopted to study confined Coulomb sys-
tems in slab geometry. Alternatively one can combine our
new method for calculating the polarization energy with any
other fast algorithm for treating unpolarized slab geometry,
such as the electrostatic layer correction (ELC) method.54

As an application, we will calculate the density profiles
of ions confined between the charged dielectric and metal
surfaces.

II. GREEN FUNCTION

Consider a point particle of charge qi at position ri = (xi,
yi, zi) inside a simulation box with sides of lengths Lx, Ly,
and L; in x, y, and z directions, respectively. This system is
replicated along the x and y axes, generating an infinite peri-
odic charged system of finite width L in the z direction. The
dielectric constant in the region 0 < z < L is εw , while in
the regions z < 0 and z > L, it is εc, see Fig. 1. The electro-
static potential at position r = (x, y, z) satisfies the Poisson
equation

∇2G(r, ri) = −
4πqi

εw

∞∑
mx ,my=−∞

δ(rrr − rrri + mxLxx̂xx + myLyŷyy) . (1)

The periodic delta function can be expressed using the Fourier
transform representation as

FIG. 1. Representation of the system. Only the first two images of the main
simulation box in the x̂ direction are shown.

∞∑
mx ,my=−∞

δ(x − xi + mxLx)δ(y − yi + myLy)

=
1

LxLy

∞∑
mmm=−∞

e
i
[

2πmx
Lx

(x−xi)+
2πmy

Ly
(y−yi)

]

, (2)

where m = (mx, my). We now write the Green function as

G(r, ri) =
1

LxLy

∞∑
mmm=−∞

gmmm(zi, z)e
i
[

2πmx
Lx

(x−xi)+
2πmy

Ly
(y−yi)

]

, (3)

which is periodic in x̂xx and ŷyy directions. Inserting Eq. (3) into
Eq. (1), we obtain

∂2gmmm(zi, z)

∂z2
− k2gmmm(zi, z) = −

4πqi

εw
δ(z − zi) , (4)

where k = 2π
√

m2
x/L2

x + m2
y/L2

y . The general solution of Eq.

(4) has the form Ae�kz + Bekz. The electrostatic potential must
vanish as z → ±∞, restricting its form in the outer regions, z
< 0 and z > L, to a decaying exponential. Using the symmetry
properties of the Green function and the boundary conditions,
we obtain

gmmm(zi, z) =
2πqi

εwk(1 − γ2e−2kL)

×

[
e−k |z−zi | + γe−k(z+zi) + γe−2kLek(z+zi)

+ γ2e−2kLek |z−zi |

]
, (5)

where γ = (εw � εc)/(εw + εc). The periodic Green function
assumes the form

G(r, ri) =
1

LxLy

∑
mmm

gmmm(zi, z)

× cos

[
2πmx

Lx
(x − xi) +

2πmy

Ly
(y − yi)

]
. (6)

In the absence of dielectric contrast, γ→0, Eq. (6) reduces
to

G0(r, ri) =
2πqi

εwLxLy

∞∑
mmm=−∞

e−k |z−zi |

k

× cos

[
2πmx

Lx
(x − xi) +

2πmy

Ly
(y − yi)

]
, (7)

which is a representation of the electrostatic potential pro-
duced by a point charge periodically replicated in the x and
y directions. Equation (7) diverges in the limit k → 0, when
mx,my → 0. Although this divergence can be renormalized,
the remaining sum is still slowly convergent. We note, how-
ever, that the electrostatic potential described by Eq. (7) can
be efficiently calculated using a modified 3D Ewald summa-
tion technique32,57 or other methods.9,54 The details of the 3D
Ewald summation technique are presented in the Appendix.
With the aid of Eq. (7), we can rewrite the total electrostatic
potential as

G(r, ri) = [G(r, ri) − G0(r, ri)] + G0(r, ri) . (8)

We define G̃(r, ri) = G(r, ri) − G0(r, ri) as the polarization
contribution to the total Green function given by
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G̃(r, ri) =
2πqi

εwLxLy

∞∑
mmm=−∞

1

k(1 − γ2e−2kL)

×
[
γe−k(z+zi) + γe−2kLek(z+zi)

+ 2γ2e−2kL cosh (k(z − zi))
]

× cos

[
2πmx

Lx
(x − xi) +

2πmy

Ly
(y − yi)

]
. (9)

The limit k→ 0, mx = my = 0, requires additional care. For �1
< γ < 1, we find that the mx = my = 0 diverges as

−
4πqi

εwLxLy
[

γ

k(γ − 1)
+

γL

(γ − 1)2
+ O(k)] . (10)

Since this is a constant, it will not contribute to the force and
can be renormalized away. For γ = �1, we find that mx = my

= 0 term contains an infinite constant and a finite function
of z,

2πqi

εwLxLy

[
−

1
k

+ (z + zi − 2
ziz
L

) + O(k)

]
. (11)

Once again neglecting the infinite constant, we write

G(−1)(r, ri) =
2πqi

εwLxLy
(z + zi − 2

ziz
L

) . (12)

For γ = 1, we find

2πqi

εwLxLy



2

Lk2
−

1
k

+
2L2 − 3L(z + zi) + 3(z2 + z2

i )

3L
+ O(k)


(13)

so that

G(+1)(r, ri) =
2πqi

εwLxLy


−(z + zi) +

z2 + z2
i

L


. (14)

The final expression for the total electrostatic potential can
now be written as

G(r, ri) = G0(r, ri) + G(γ)(r, ri) +
2πqi

εwLxLy

×

∞∑
mmm′=−∞

1

k(1 − γ2e−2kL)

(
γe−k(z+zi) + γe−2kLek(z+zi)

+ 2γ2e−2kL cosh (k |z − zi |)
)

× cos

[
2π(

mx

Lx
(x − xi) +

my

Ly
(y − yi))

]
, (15)

where the function G(γ)(r, ri) is non-zero only for γ = +1 and
�1, and the prime on m′ excludes mx = my = 0 term in the
summation.

The total energy for a system of N periodically replicated
charged particles is then given by

U =
N∑

i=1

N∑
j=1

qj
G(rj, ri)

2
. (16)

We can split the total energy into the polarization and direct
Coulomb contributions

U = UEw + Up , (17)

where UEw is the direct Coulomb contribution,

UEw =

N∑
i=1

N∑
j=1

qj
G0(rj, ri)

2
, (18)

which can be calculated using the modified 3D Ewald sum-
mation method or any other fast algorithm, see the Appendix.
The energy Up due to surface polarizability can be rewritten
as

Up = Uγ +
π

εwL2
d

∑
mmm′

γ

k(1 − γ2e−2kL)

×
{
f1(mmm)2 + f2(mmm)2 + e−2kL

(
f3(mmm)2 + f4(mmm)2

)
+ 2γe−2kL [

f3(mmm)f1(mmm) + f2(mmm)f4(mmm)
]}

, (19)

where without the loss of generality, we have set Lx = Ly = Ld .
The number of integers, (mx, my), necessary to obtain a con-
verged energy will depend on the lateral size of the simulation
box, Ld . The contribution Uγ arises from the k → 0 limit and
is zero if γ , (±1). For γ = �1, we find

U(−1) = −
2π

L2
d



M2
z

L
− QtMz


, (20)

where Qt =
∑N

i=1 qi and Mz =
∑N

i=1 qizi. For γ = +1, we obtain

U(+1) = −
2πQt

L2
d

[
Mz −

Ωz

L

]
, (21)

where Ωz =
∑N

i=1 qiz2
i . The f i(m) functions are defined as

f1(mmm) =
N∑

i=1

qi cos

[
2π
Ld

(mxxi + myyi)

]
e−kzi , (22)

f2(mmm) =
N∑

i=1

qi sin

[
2π
Ld

(mxxi + myyi)

]
e−kzi , (23)

f3(mmm) =
N∑

i=1

qi cos

[
2π
Ld

(mxxi + myyi)

]
ekzi , (24)

f4(mmm) =
N∑

i=1

qi sin

[
2π
Ld

(mxxi + myyi)

]
ekzi . (25)

Note that k depends on m, and the f functions must be updated
for each particle move. There is, however, no need to recalcu-
late all the functions but only the contribution to each function
that depends on the position of the particle that is being moved.
This makes the energy update very efficient. Furthermore, the
prefactors that depend on the exponential functions of mx and
my can be precalculated at the beginning of the simulation.
Finally, if there is a surface charge present at the interfaces, it
can be included as an external potential, see the Appendix and
Ref. 57,

Usur = −
2π(σ1 − σ2)

εw

N∑
i=1

qizi , (26)

where σ1 and σ2 are the surface charge densities at z = 0 and
z = L, respectively.

III. SIMULATIONS AND RESULTS

To demonstrate the utility of the new simulation method,
we perform Monte Carlo simulations of an electrolyte solution
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FIG. 2. Density profile of trivalent counterions confined between charged
dielectric surfaces, γ = 0.95. The surface charge densities are �0.05 C/m2.
The line is a guide to the eyes.

in the NVT ensemble using the Metropolis algorithm.58 To
efficiently sample the phase space, we use both short- and
long-displacement moves.1,2 The effective ionic radii are set
to rc = 2 Å. The Bjerrum length, defined as λB = q2 β/εw , where
β is the inverse thermal energy and q is the proton charge, is
set to λB = 7.2 Å, typical value for water at room temperature.
The system relaxes to equilibrium in 1 × 106 Monte Carlo
steps. The ionic density profiles are obtained using 1 × 105

uncorrelated samples.
In Fig. 2, we show the density profile of trivalent coun-

terions confined between charged dielectric surfaces of γ
= 0.95. The confining surfaces are separated by a distance L
= 40 Å. The number of counterions is Nc = 100, and the sur-
faces are equally charged with charge density �0.05 C/m2. We
see a strong repulsion of ions from the interface produced by
the induced surface charge. This result is in agreement with an
earlier image charge algorithm.21 However, the present method
is an order of magnitude more efficient.

In Fig. 3, we show the density profiles of cations and
anions of a dissolved 3:1 electrolyte at concentration 0.35
M, confined by grounded metal electrodes, γ = �1, sep-
arated by distance L = 30 Å. Now, instead of the repul-
sion of the previous case, we see the expected attraction of
charges to the metal electrodes. This effect can be understood

FIG. 3. Density profiles of cations and anions confined between grounded
metal surfaces, γ = �1. The 3:1 salt concentration is 0.35M. The lines are a
guide to the eye.

FIG. 4. CPU time to perform 106 energy updates as a function of the number
of particles in the system. The distance between the polarizable plates is L
= 10 Å, with γ = 0.95. The Bjerrum length was set to λB = 14.5 Å, the
superficial charge to σ = �0.12 C/m2, and ionic radius to 2 Å.

considering the image charges of opposite sign induced inside
the electrodes.

Finally, in Fig. 4, we compare the characteristic central
processing unit (CPU) times of our simulation method with
a standard implementation of the Lekner summation which
does not account for polarization.9 We see that for reason-
ably large system sizes, the Lekner summation is at least an
order of magnitude slower than our method. Furthermore, for
large Nc, we see that even for systems with polarization, our
method remains an order of magnitude faster than the Lekner
summation without polarization. One can probably optimize
our method further by combining it with a more efficient algo-
rithm for calculating electrostatic energy of a non-polarized
slab.54

IV. CONCLUSIONS

We have presented an efficient new method for simulat-
ing Coulomb systems confined by polarizable surfaces. The
method relies on the exact solution of the Poisson equation in
terms of periodic Green functions. We were able to separate
the electrostatic energy into polarization and direct Coulomb
contributions. The latter can be efficiently calculated using
a modified Ewald method developed in the previous work57

or any other fast method such as electrostatic layer correc-
tion (ELC).54 The polarization energy is separated into terms
which can be locally updated for each particle move without
the need for recalculating the whole electrostatic energy. The
results of the new simulation method were compared with the
earlier approach21 and found to lead to identical ionic density
profiles, with a significant gain in simulation time. Finally, we
note that the calculations presented in this paper can be easily
extended to study systems with two confining walls of distinct
dielectric constants.
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APPENDIX: EWALD SUMMATION
IN SLAB GEOMETRY

For systems in slab geometry, without dielectric dis-
continuities, there are well-established algorithms.32,33,59–64

Recently, we developed an efficient algorithm57 where the
surface charge at the slab boundaries is treated as an exter-
nal potential, speeding up the traditional simulations in which
the surface charges are modeled by point particles. We briefly
discuss how this modified Ewald method can be used to cal-
culate the electrostatic potential produced by a periodically
replicated point charge. We start by considering an isotropic
system replicated in all three dimensions and then take the slab
geometry limit, in which one of the directions grows much
slower than the other two. Consider N particles of charge
qj confined in a cell of lengths Lx, Ly, and Lz. The infinite
system is constructed with the definition of the replication
vector rrep = (nxLx, nyLy, nzLz), where n’s span the posi-
tive and negative integers. The electrostatic potential produced
by the ions and all the replicas at position r can be written
as

φ(rrr) =
∞∑
nnn

N∑
j=1

∫
ρj(sss)

εw |rrr − sss|
d3sss , (A1)

where ρj(s) = qjδ(s � rj
� rep) is the charge density of qj and

its replicas. Adding and subtracting a Gaussian charge density
distribution on top of each charge qj, we can split the potential
into long- and short-range contributions,

φ(rrr) =
∞∑
nnn

N∑
j=1

∫
ρ

j
G(sss)

εw |rrr − sss|
d3sss

+
∞∑
nnn

N∑
j=1

∫
ρj(sss) − ρj

G(sss)

εw |rrr − sss|
d3sss , (A2)

where ρ
j
G(sss) = qj(κ3

e/
√
π3) exp (−κ2

e |sss − rrrj − rrrrep |
2) and κe is

a damping parameter. The first term on the right-hand side
of Eq. (A2) is long ranged (it has a non-integrable tail) and
can be efficiently summed using the Fourier representation.
The second term can be rewritten using the complemen-
tary error function. The electrostatic potential then takes the
form

φ(rrr) =
∞∑

kkk=000

N∑
j=1

4πqj

εwV |kkk |2
exp [−

|kkk |2

4κ2
e

+ ikkk · (rrr − rrrj)]

+
N∑

j=1

qj erfc(κe |rrr − rrrj |)
εw |rrr − rrrj |

, (A3)

where kkk = ( 2π
Lx

n1, 2π
Ly

n2, 2π
Lz

n3) and V = LxLyLz, the volume of
the main cell. Since the second term is short ranged, it can be
treated using simple periodic boundary conditions, as long as
κe is sufficiently large.

The first term of the Fourier series diverges when k→ 0.
To understand better the significance of this divergence, we
study this term separately by expanding it around the k = 0.
We write

lim
kkk→0

N∑
j=1

qj 1

|kkk |2
−

N∑
j=1

qj 1

4κ2
e

+ lim
kkk→0

N∑
j=1

qj ikkk · (rrr − rrrj)

|kkk |2

− lim
kkk→0

N∑
j=1

qj [kkk · (rrr − rrrj)]2

2|kkk |2
+ O(|kkk |) . (A4)

If the system is non-neutral, it is possible to renormalize the
two diverging constant terms by redefining the zero of the
electrostatic potential. Consequently, we can neglect the infi-
nite constants which do not influence the physics of the system.
However, the third and fourth terms have dependence on par-
ticle positions and hence must be properly accounted for. The
third sum on the right can be written as

S3 =

N∑
j=1

qj
∫ +∞

−∞

δ(kkk)
ikkk · (rrr − rrrj)

|kkk |2
dkkk , (A5)

where we use the delta representation δ(kkk) = (2π)−3
∫

HHH
−HHH eikkk ·ppp

d3p. The limits in delta integration, �H to H, where H
= (H1, H2, H3), must be performed in accordance with the
real space sum. We define H1 = α1Lc, H2 = α2Lc, and H3

= α3Lc, where Lc is some characteristic macroscopic length
scale. For isotropic bulk systems, H’s grow at the same rate.
On the other hand, for systems with slab geometry, H1 and H2

should grow much faster than H3. Explicitly performing the
integrals over p’s we obtain

δ(kkk) =
1

(2π)3

3∏
i=1

∫ αi
Lc
2

−αi
Lc
2

eikipi dpi =
1

π3

3∏
i=1

sin(kiαiLc/2)
ki

(A6)
and Eq. (A5) can now be written as S3 =

∑N
j=1 qjDDD · (rrr − rrrj),

where the components of the vector D are

Dn =
i

π3

∫ +∞

−∞

kn

|kkk |2

3∏
j=1

sin(kjαjLc/2)

kj
d3kkk , (A7)

which by symmetry integrates to zero, Dn = 0, so that S3 = 0.
The last term can be written as

S4 = −

N∑
j=1

qj
∫ +∞

−∞

δ(kkk)
[kkk · (rrr − rrrj)]2

2|kkk |2
d3kkk . (A8)

Applying once again the delta function representation, we
obtain

S4 = −

N∑
j=1

qj

2π3

3∑
n=1

Bn(rn − rj
n)2 , (A9)

where the index n corresponds to the x, y, and z components
of the vector r and

Bn =

∫ +∞

−∞

d3kkk
k2

n

|kkk |2

3∏
j=1

sin(kjαjLc/2)

kj
. (A10)

The coefficients Bn can be simplified to65

B1 =
π

5
2

2

∫ +∞

0

α13e−
α2

13
4t erf( α23

2
√

t
)erf( 1

2
√

t
)

t
3
2

dt , (A11)
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B2 =
π

5
2

2

∫ +∞

0

α23e−
α2

23
4t erf( α13

2
√

t
)erf( 1

2
√

t
)

t
3
2

dt , (A12)

B3 =
π

5
2

2

∫ +∞

0

e−
1
4t erf( α13

2
√

t
)erf( α23

2
√

t
)

t
3
2

dt , (A13)

where αij = αi/αj are the aspect ratios of the macroscopic
system. The coefficients Bn can now be easily calculated using
numerical integration. For a spherically symmetric summation
of replicas, the aspect ratios areα13 = Lx/Lz andα23 = Ly/Lz. On
the other hand, for a plane-wise summation of slab geometry,
α13 → ∞ and α23 → ∞. In this case, the integrals can be
performed explicitly,65 yielding B1 = B2 = 0 and B3 = π3.
Thus, for slab geometry, we have the renormalized electrostatic
potential

∆φ(rrr) =
∞∑

kkk,000

N∑
j=1

4πqj

εwV |kkk |2
exp [−

|kkk |2

4κ2
e

+ ikkk · (rrr − rrrj)]

−

N∑
j=1

2πqj

εwV
(r3 − rj

3)2 +
N∑

j=1

qj erfc(κe |rrr − rrrj |)
εw |rrr − rrrj |

,

(A14)

and the energy, UEw =
1
2

∑N
i=1 qi∆φ(rrri), is

UEw =

∞∑
kkk,000

2π

εwV |kkk |2
exp [−

|kkk |2

4κ2
e

][A(kkk)2 + B(kkk)2]

+
2π
εwV

[M2
z − QtΩz] +

1
2

N∑
i,j

qiqj

×
erfc(κe |rrri − rrrj |)
εw |rrri − rrrj |

−
κe

εw
√
π

N∑
i

q2
i , (A15)

where

A(kkk) =
N∑

i=1

qi cos(kkk · rrri) ,

B(kkk) = −
N∑

i=1

qi sin(kkk · rrri) ,

Mz =

N∑
i=1

qizi ,

Qt =

N∑
i=1

qi ,

Ωz =

N∑
i=1

qiz2
i .

(A16)

If there are surface charge densities present at the interfaces, an
additional term, Eq. (26), must be included. Equation (A15)
provides an efficient way of calculating the slowly converg-
ing sum in Eq. (7) allowing us to rapidly calculate the direct
contribution to the total electrostatic energy, Eq. (18).
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