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Topological invariants for the Haldane phase of interacting Su-Schrieffer-Heeger chains:
Functional renormalization-group approach
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We present a functional renormalization-group approach to interacting topological Green’s function invariants
with a focus on the nature of transitions. The method is applied to chiral symmetric fermion chains in the Mott
limit that can be driven into a Haldane phase. We explicitly show that the transition to this phase is accompanied
by a zero of the fermion Green’s function. Our results for the phase boundary are quantitatively benchmarked
against density matrix renormalization-group data.
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I. INTRODUCTION

The complete topological classification of noninteracting
fermionic insulators and superconductors was a milestone
achievement in condensed-matter theory [1–4]. The result is
conveniently summarized in the tenfold way table which lists
the equivalence classes of Hamiltonians depending on spatial
dimension and the presence of time-reversal, particle-hole,
and chiral symmetries. In terms of Bloch Hamiltonians H(k),
this amounts to investigating the topological properties of
the map k → H(k). Two H(k) are equivalent if they can
be deformed into each other without breaking the specified
symmetries or closing the gap.

Soon after, efforts were directed to a generalization for
interacting systems, leading to the concept of symmetry pro-
tected topological states (SPT) [5–9]. The (nondegenerate)
ground states of two many-body Hamiltonians are equivalent
if they can be adiabatically connected without breaking the
defining symmetries (which is possible if and only if the
Hamiltonians can be deformed into each other without closing
of the many-body gap). To date, the topological classification
for a fermionic interacting system is not known completely,
except in one spatial dimension.

Given a certain microscopic model, one would like to know
its ground state’s equivalence class, usually as a function of
the model parameter. This is achieved in terms of topological
invariants, which can be formulated in various equivalent
ways. In the noninteracting case, the invariant can be based on
the eigenstates of Bloch Hamiltonians H(k). Given a control
parameter in H, it can be shown that the (integer valued)
topological invariant ν(H) can only change at gapless points
where H(k) has zero eigenvalues at some momentum k in the
Brillouin zone: If two Bloch Hamiltonians feature different
(the same) invariants, they cannot (can always) be deformed
into each other without closing the gap.

In the interacting case, one can still consider the nonin-
teracting expressions for the invariants if one replaces the
Bloch Hamiltonian with the inverse single-particle retarded
T = 0 Green’s function at vanishing frequency, H(k) →
−G−1(iω = 0, k) [10]. In the mathematical formulation of
ν(G) to be detailed below, G and G−1 are used on equal

footing and correspondingly, ν can change at poles of G,
where G−1 = 0 for some momentum in the Brillouin zone, or
at zeros with G = 0 [11]. A pole is interpreted as a closing of
the single-particle excitation gap, whereas a zero indicates a
breakdown of the single-particle picture and is ruled out in the
noninteracting case (for bounded Hamiltonians). As shown in
Ref. [12], a zero can be both compatible with a many-body
gap closing (e.g., the spin gap closes while the charge gap
stays open) or with a unique, gapped ground state (no gap
closing). It is therefore possible that two different noninter-
acting topological phases can be adiabatically deformed into
each other when interactions are switched on but that the non-
interacting invariant still changes (for a recent experimental
proposal, see Ref. [13]). Thus, a new classification becomes
necessary in interacting systems. This is also reflected in the
recently proposed many-body invariants of Refs. [14,15].

In the following, we focus on the evaluation of the Green’s
function invariant ν(G) with an emphasis on the nature of
the transition points. Considerable effort has been directed
to one-dimensional systems. In many cases of interest, the
Green’s function can be calculated analytically. For example,
You et al. used an unconventional perturbation theory in the
noninteracting part of the Hamiltonian to demonstrate that
when a topological phase transition between two noninter-
acting phases is gapped by interactions, the poles will be re-
placed by Green’s function zeros [16]. Moreover, in Ref. [12],
Green’s functions at transition points were calculated ana-
lytically for several models at special points in parameter
space. In the general case, however, a numerical evaluation
of the Green’s function is required. Previous studies [12,17]
employed the density matrix renormalization group (DMRG)
[18] to compute the Green’s function winding number. Al-
though the DMRG and its underlying matrix-product state
formulation is very well suited to determine one-dimensional
topological phases via entanglement properties [5], it has
severe shortcomings when it comes to calculating Green’s
function winding numbers: In order to compute ν(G), the
Green’s function is required at zero frequency G(iω = 0, k)
in the thermodynamic limit, which is generally difficult for
the DMRG [19,20]. One can, e.g., use a real-time algorithm
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to generate Green’s functions via a Fourier transform; the ac-
cessible timescales, however, are limited by the entanglement
growth, and instead of iω = 0, one can determine G reliably
only at finite frequencies. Since the invariant is quantized, this
should not affect the results, except in the vicinity of points in
parameter space where ν changes. However, as we discussed
above, a precise assessment of the type of singularity occur-
ring at these points (Green’s function zero or pole) is essential.

In this paper, we propose the fermionic functional
renormalization group (fRG) [21,22] as an alternative
method to numerically evaluate Green function invariants.
We show that the fRG, set up in a Matsubara formulation and
momentum space, is capable of evaluating Green’s functions
at iω = 0 and easily tells poles from zeros. We put an
emphasis on transition points and show in detail how the zeros
of G are understood in the framework of the self-energy [23].
Although bulk-boundary correspondence is often discussed
in the context of topological systems, in the following we
limit ourselves to the bulk perspective (though fRG can also
be applied to finite systems). Although the fRG can be set up
in arbitrary dimension, for a concrete example, we focus on
one-dimensional systems with both charge conservation and
many-body chiral symmetry, i.e., interacting variants of the
Su-Schrieffer-Heeger (SSH) chain [24]. In this case, ν(G)
takes the form of a winding number and the classification is
Z for noninteracting and Z4 for interacting systems [6,7,25].
A common criticism of the fRG method is its perturbative
character. Although the Green’s functions calculated within
our fRG truncation scheme below are guaranteed to be correct
to second order in the interaction only, the fRG results contain
partial resummation of diagrams to infinite order. For our
models, we show that we can capture Mott physics both
qualitatively and quantitatively with reasonable accuracy.

The rest of the paper is structured as follows. In Sec. II
we present the model Hamiltonian and discuss its topological
phase diagram qualitatively. In Sec. III we define the
appropriate Green’s function winding number and show
how it is computed from the self-energy found by fRG. In
Sec. IV we explain the fRG approach. The numerical results
are presented in Sec. V along with a comparison to DMRG
and we conclude in Sec. VI.

II. MODEL HAMILTONIAN

We start by defining the Hamiltonian H that we will
employ in the following (see Fig. 1 for a sketch), closely
following Refs. [12,17]:

HSSH = −
∑

j

[(t − δt )c†j,Acj,B

+ (t + δt )c†j,Bcj+1,A + H.c.] (1)

H = HSSH,↑ + HSSH,↓

+U
∑

j ;s=A,B

(
nj,s,↑ − 1

2

)(
nj,s,↓ − 1

2

)

+ J
∑

j

Sj,A · Sj,B . (2)

HSSH:

H:

A B

A B

FIG. 1. Model Hamiltonians used in this paper. The sublattices
are denoted by A and B, straight lines denote single-particle hopping
t ± δt , and curved arrows denote Hubbard interactions U . Spin-spin
interactions J are denoted by straight arrows.

We denote fermion creators/annihilators on site j of an infinite
one-dimensional lattice by c

(†)
j,s , with each unit cell split into

sublattices s = {A,B}. The lattice constant is set to unity and
we work at half-filling throughout. The Hamiltonian HSSH is
the SSH model which features a single spinless fermion per
lattice site and hoppings alternating between t + δt and t − δt .
We then generalize to spinful fermions c

(†)
j,s,σ in H and intro-

duce on-site Hubbard interactions U as well as an intraunit
cell spin-spin exchange interaction J . Here, S = (Sx, Sy, Sz)T

denotes the spin operator where Si = 1
2

∑
σ,σ ′ c†σ σ i

σσ ′cσ ′ for
i = x, y, z (site/sublattice indices suppressed).

The model Hamiltonians HSSH and H are invariant under
time-reversal, particle-hole, and chiral symmetry; the single-
particle version of HSSH falls into the class BDI of the non-
interacting Altland-Zirnbauer classification [26]. The formu-
lation of the topological invariant rests on chiral symmetry; it
takes the form [11]

H = U
†
CH�UC, (3)

where the star denotes complex conjugation not affecting
fermionic operators. The action of UC on fermion creation and
anihilation operators is defined as

U
†
CcαUC =

∑
β

c
†
β[τz]βα, (4)

U
†
Cc†αUC =

∑
β

[τz]αβcβ, (5)

where α, β contain the single-particle indices as appropriate
for the different models discussed above and τz is the third
Pauli matrix in sublattice space. Note that the site and spin
labels (if present) are not modified. Before we investigate the
restrictions on the single-particle ground state Green’s func-
tion arising from chiral symmetry and formulate the winding
number, we qualitatively discuss the physics of HSSH and H ,
following Ref. [12].

The SSH chain HSSH is gapped for δt �= 0. For the special
point δt = t , there is no hopping between A and B sublattice
sites of the same unit cell while there is dimerization between
B and A sublattice sites across the unit cell. If we would
terminate the chain at an A site, we would have a single-
particle edge state, thus δt > 0 corresponds to the topological
and δt < 0 to the trivial phase. At the transition point δt =
0, the Green’s function has a pole. Now consider H with
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J = 0, i.e., a spinful SSH chain featuring a Hubbard interac-
tion U > 0. At δt = 0, the system is a Mott insulator at half-
filling with low energy spin-1/2 degrees of freedom coupled
anti-ferromagnetically with strength ∼ t2/U > 0 [12,27,28].
This half-integer spin chain has a charge gap but gapless
spin excitations. For δt �= 0, these spin couplings alternate
in strength, the spins pair up, form singlets, and we obtain
a spin gap. In conclusion, the addition of the Hubbard term
U > 0 does not modify the topological phase diagram from
the case U = 0; however, the transition in ν(G) at δt = 0 is
now accompanied by a zero of the Green’s function reflective
of the collective nature of the gapless spin excitation when
expressed in terms of fermion operators. Since the noninter-
acting Hamiltonian HSSH vanishes for δt = 0 and k = π , the
appearance of a Green’s function zero can also be derived
using perturbation theory as in Ref. [16].

We now consider δt < 0 (which gaps HSSH) and switch
on a finite spin-spin exchange interaction J in H , which
we choose to be negative (ferromagnetic). For |J | � t2/U ,
it leads to the formation of effective spin-1 objects in each
unit cell which are coupled antiferromagnetically. This state
is known to be in the Haldane phase [12], which is gapped
and topological with spin-1/2 edge excitations, again hinting
toward a closing of a spin gap and corresponding Green’s
function zero at the transition point. In the following, we
keep J < 0 constant but increase U to tune the transition
from a trivial phase at |J | 	 t2/U to the Haldane phase for
|J | � t2/U . It is the central goal of this paper to show that
the fermionic fRG is capable of detecting the Haldane phase
via the Green’s function winding number and unambiguously
identifies the zero at the transition. We note that in Ref. [29] it
was demonstrated that the Haldane phase built from spin-1/2
fermions can be adiabatically connected to a trivial phase
even without gap closing, but this required the breaking of
chiral symmetry.

III. GREEN’S FUNCTION WINDING NUMBER

We start the discussion of topological invariants from the
noninteracting SSH model HSSH, Eq. (1). After a spatial
Fourier transform, cj,s = ∫ π

−π
dk
2π

ck,se
ikj , we obtain

HSSH =
∫ π

−π

dk

2π
c
†
kHSSH(k)ck, (6)

where ck = (ck,A, ck,B )T. The corresponding Bloch Hamilto-
nian reads

HSSH(k) =
(

0 hSSH(k)
h
†
SSH(k) 0

)
, (7)

with hSSH(k) = −(t + δt )e−ik − (t − δt ). Topological invari-
ants for noninteracting insulators with chiral symmetry in odd
dimensions are winding numbers of Z type. In one dimension,
the invariant can be expressed as [10]

νSSH =
∫ π

−π

dk

4πi
tr
[
τzH−1

SSH(k)∂kHSSH(k)
]

=
∫ π

−π

dk

2πi
∂klog h

†
SSH(k), (8)

counting how often hSSH(k) winds around the origin of the
complex plan, νSSH ∈ Z. The winding is trivial (zero) for
δt < 0 and nontrivial for δt > 0. The off-diagonal form of
Eq. (7), and thus the existence of the winding number νSSH, is
a consequence of the chiral symmetry, Eq. (3), which enforces

HSSH(k) = −τzHSSH(k)τz. (9)

We now generalize the definition of the winding number
to arbitrary chiral, translational invariant, and possibly inter-
acting systems featuring a a gap of single-particle excitations.
The central object of the following discussion is the imaginary
frequency Green’s function (at zero temperature). It is defined
as a Fourier transform of the imaginary time Green’s function,

G(iω) =
∫ ∞

0
dτ eiωτG(τ ), Gαβ (τ ) = −〈Tτ cα (τ )c†β〉,

(10)
where cα (τ ) = eHτ cα e−Hτ , Tτ denotes time ordering, and
α, β are single-particle multi-indices α, β. After a spatial
Fourier transform the Green’s function G(iω, k) is diagonal
in the crystal momentum k. It can be shown [11] that under a
general chiral symmetry (which can always be represented by
τz in some basis), G transforms as

G−1(iω, k) = −τzG
−1(−iω, k)τz. (11)

Analogous statements are true for other symmetries [11].
Based on Eq. (11), winding numbers were defined, first using
integration both over ω and k [10,11]. However, it was shown
in Ref. [30] that, given a nonsingular G(iω, k), all topological
information is contained in the Green’s function at iω = 0,
which is a well-defined limit for a gapped system. In this case,
Eq. (11) implies the form

−G−1(iω = 0, k) =
(

0 h(k)
h†(k) 0

)
, (12)

with the depicted matrix structure in sublattice space and h(k)
a matrix in the remaining degrees of freedom. The Green’s
function winding number then reads [12]

ν =
∫ π

−π

dk

4πi
tr[τzG(0, k)∂kG

−1(0, k)]

=
∫ π

−π

dk

2πi
tr[∂klog h†(k)], (13)

counting the complex plane winding of the eigenvalues of
h(k) around the origin. Mathematically, the robustness of
ν can be formulated as follows: Assume that the system
[and h(k)] depends on some external parameter ξ , then the
winding number is invariant under small changes of ξ , as
one can see from ∂ξν = 0 [12]. For noninteracting systems
with Bloch Hamiltonian H(k), from the relation G(iω, k) =
1/[iω − H(k)], we have −G−1(iω = 0, k) = H(k) so that
Eq. (13) specializes to Eq. (8) with h → hSSH,↑ + hSSH,↓.

Based on Eq. (13), it is evident that besides poles [vanish-
ing eigenvalues of G−1(0, k)] also zeros [vanishing eigenval-
ues of G(0, k)] can cause a change of the winding number
ν [11]. Poles are familiar from the noninteracting case and
indicate a zero-energy single-particle excitation. The presence
of zeros indicates a complete loss of single-particle coher-
ence and is an inherent many-body phenomenon. By passing
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through zeros, the winding number can change without a gap
closing. This is the mechanism that causes the collapse of free
classification of topological fermion phases in the presence
of interactions. Alternatively, the zero can occur along with a
many-body gap closing; in this case, it signals a topological
phase transition.

Given a generic interacting fermion system, it is thus
desirable to devise a numerical method to (i) compute the
winding number ν (or Chern number, as appropriate) in the
case that G(0, k) is nonsingular, and (ii) classify the nature of
the points in parameter space where ν changes, i.e., tell poles
from zeros. It is our goal to show how the fRG can be used for
both purposes.

The central object obtained from the fRG is the single-
particle self-energy �(iω, k). The Green’s function is then
given by

G(iω, k) = 1

iω − H0(k) − �(iω, k)
, (14)

where H0(k) is the noninteracting Bloch Hamiltonian. The
presence of a zero is tied to a vanishing quasiparticle weight
for some k in the Brillouin zone [23,31],

Z(k) ≡ (1 − ∂ωIm�(iω, k)|ω=0)−1. (15)

This becomes apparent if one rewrites

G(iω � 0, k) = Z(k)

iω − Htop(k)
, (16)

with

Htop(k) = Z(k)[H0(k) + �(iω = 0, k)]. (17)

If Z(k) is finite, the Green’s function winding number can be
obtained from Htop(k), which is off-diagonal as in Eq. (12).
A vanishing eigenvalue of Htop(k) at finite Z(k) indicates the
presence of a Green’s function pole.

IV. FUNCTIONAL RG

The functional renormalization-group method is
an implementation of the RG idea on the basis of
many-body vertex functions (see Refs. [21,22] for general
introductions). The idea amounts to using an infrared cutoff
� in the bare Matsubara Green’s function G0(iω, k) =
[iω − H0(k)]−1; here we choose a frequency cutoff
G�

0 (iω, k) = �(|ω| − �)G0(iω, k). Then, the � dependence
carries over to all vertex functions, the simplest of which is
the self-energy ��(iω, k) appearing in the full Green’s
function [see Eq. (14)]. In the limit � = ∞, the dynamics
of the system is frozen and the vertex functions are trivial.
The fRG flow equations are an infinite set of coupled
differential equations that describe the change of the vertex
functions with �. The solution of these flow equations
at � = 0 (where the cutoff vanishes) yields exact vertex
functions of the physical problem. In practice, truncation of
the infinite hierarchy of flow equations is required and the
resulting vertex functions approximate the exact ones with
an agreement of at least order O(vn) where v is a proxy
for the interaction strength in the Hamiltonian [i.e., U or J

in Eq. (2)], and n = 1, 2, 3, . . . depending on the level of
the truncation. Note that unlike perturbation theory, the fRG

contains an infinite resummation of Feynman diagrams. We
have recently developed a k-space fRG approach which is
correct to order O(v2) for one-dimensional, translationally
invariant fermion systems in equilibrium (see Ref. [32]).
There, we have applied the fRG to a Luttinger liquid with
good agreement to alternative exact methods. We refer the
reader to Ref. [32] for further discussion of the method.

For the self-energy, the flow equation reads [32]

∂���
α′α (iω, k) =−

∫ π

−π

dk̄

2π

∫ +∞

−∞

dω̄

2π

∑
β,β ′

S�
ββ ′ (iω̄, k̄)

×V �
β ′α′;βα (iω̄, k̄; iω, k; iω̄, k̄), (18)

where S�(iω, k) is the single-scale propagator, S� =
G�(∂�[G�

0 ]−1)G�, and V � the two-particle vertex where
frequency and momentum conservation has been used to
eliminate the fourth argument. Initially, V � is frequency inde-
pendent, V �=∞ ∼ U + J . In a first-order trunctation (n = 1),
the flow of V � (which is itself of order v) would be neglected
by setting V � → V �=∞ in Eq. (18). Evidently, ��(iω, k)
then turns out to be frequency independent, and consequently
Z(k) = 1 as is apparent from Eq. (15). Thus, the truncation
to order n = 2 with a flowing and frequency-dependent two-
particle vertex V � is mandatory for our purpose. The full flow
equations, including a static but fully momentum dependent
feedback for V � are lengthy and are given in Eqs. (34)–(36)
of Ref. [32].

V. RESULTS

We now proceed to present the fRG results for the winding
number and the quasiparticle weight for the chiral fermion
chain H in Eq. (2). Except at the critical point mentioned
at the following, the Green’s function G(iω, k) is found to
be regular for all iω and k and thus the simplified expression
(13) can be applied. As a phase diagram (based on the DMRG
entanglement spectrum) can be found in the Appendix of
Ref. [17], we focus on a single line in parameter space. We let
δt = −t/4, J = −1.5t and increase the Hubbard interaction
U to drive the transition from a trivial to a Haldane insulator
once |J | � t2/U . Note that the noninteracting part of H is
gapped and convergence issues of the fRG as encountered for
δt = 0 in Ref. [32] are absent. Due to Sz conservation and
rotation symmetry, the off-diagonal blocks of −G−1(iω =
0, k) are of the form

h(k) =
(

h↑↑(k) 0
0 h↓↓(k)

)
(19)

with h↑↑ = h↓↓. In Fig. 2, the top panel depicts the complex
value of h↑↑(k) for increasing U in the vicinity of k = π

(identified by Im[h↑↑(k = π )] = 0). The origin of the com-
plex plane is denoted by a black cross. The phase winding
of h↑↑(k) is trivial (leading to ν = 0) for U < Uc,fRG and
nontrivial (winding once around the origin, |ν| = 2 due to
spin) for U > Uc,fRG with Uc,fRG � 2.1t . For all U and k,
the magnitude of |h↑↑| is larger than a constant, signaling
the presence of gapped single-particle excitations (no pole)
throughout the transition.
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Re h↑↑(k)/t
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0.3

Im
h
↑↑

( k
)/

t

J=-1.5t
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U = 2.4t
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U/t

0.0
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0.6

0.8

1.0
Z(k=π)[fRG]

ent. gap [DMRG]
J=-1.5t

J=-1.75t

J=-2.0t

FIG. 2. Top panel: fRG results for the Green’s function winding
of the chiral fermion chain H for fixed δt = −t/4, J = −1.5t with
increasing U , driving the transition from a trivial to the Haldane
phase at Uc,fRG � 2.1t . The finite value of |h↑↑(k)| for all k and U

reveals the presence of a gap of single-particle excitations across
the transition. Bottom panel: The vanishing of the quasiparticle
weight Z(k = π ) (colored points on the black line) confirms the
presence of a Green’s function zero at the transition. The comparison
with the more precise DMRG result Uc,DMRG � 1.6 based on the
entanglement gap indicates a slight overestimation of Uc by the fRG.
Qualitatively similar results hold for J = −1.75 (blue symbols) and
J = −2 (magenta symbols) for which Uc decreases.

The lower panel depicts the behavior of Z(k = π ) (thin
black line) which sharply drops in the vicinity of the tran-
sition and confirms the presence of a Green’s function zero
at the transition. The lowest value found is below 0.2 for
U = 2.12t . To gauge the quantitative reliability of the fRG
results, we have calculated the phase boundary using the
entanglement gap from DMRG (imaginary time evolution
with a bond dimension of χ = 320; see Refs. [20,33]). The
data is shown as black crosses and signals the transition at a
critical value of Uc,DMRG � 1.6, slightly smaller than the fRG
value. Qualitatively similar results hold for different values of
J (see blue and magenta symbols for J = −1.75 and J = −2,
respectively).

VI. CONCLUSION

We presented the fermionic fRG method as a valuable tool
to study SPT phases in terms of Green’s function winding
numbers. Our emphasis was on the nature of the transition be-
tween different phases. We explicitly showed for a topological
Mott insulator chain how zeros of the Green’s function can be
unambiguously identified from the self-energy. Although the
phase diagram itself can be determined using more accurate
methods such as the DMRG, obtaining the Green’s function
in the limit iω → 0 is a difficult task, and the fRG offers com-
plementary, qualitative information. It would be interesting
to apply the fRG to higher dimensional SPTs where accurate
reference methods are sparse and the nature of the transition
is less obvious. We remark that similar applications have been
put forward in the “hierarchy of correlations” approach of
Ref. [34].
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