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ABSTRACT

RNA-binding proteins (RBPs) play an important role
in RNA post-transcriptional regulation and recognize
target RNAs via sequence-structure motifs. The ex-
tent to which RNA structure influences protein bind-
ing in the presence or absence of a sequence motif
is still poorly understood. Existing RNA motif finders
either take the structure of the RNA only partially into
account, or employ models which are not directly in-
terpretable as sequence-structure motifs. We devel-
oped ssHMM, an RNA motif finder based on a hidden
Markov model (HMM) and Gibbs sampling which fully
captures the relationship between RNA sequence
and secondary structure preference of a given RBP.
Compared to previous methods which output sepa-
rate logos for sequence and structure, it directly pro-
duces a combined sequence-structure motif when
trained on a large set of sequences. ssHMM’s model
is visualized intuitively as a graph and facilitates bi-
ological interpretation. ssHMM can be used to find
novel bona fide sequence-structure motifs of unchar-
acterized RBPs, such as the one presented here for
the YY1 protein. ssHMM reaches a high motif recov-
ery rate on synthetic data, it recovers known RBP
motifs from CLIP-Seq data, and scales linearly on the
input size, being considerably faster than MEMERIS
and RNAcontext on large datasets while being on par
with GraphProt. It is freely available on Github and as
a Docker image.

INTRODUCTION

RNA-binding proteins (RBPs), a class of proteins able to
bind RNA molecules, play a vital role in processes such as
RNA localization, RNA editing, RNA stability and splic-
ing (1). In human cells, hundreds of RBPs have been dis-
covered but the detailed functions of only a few have been
explored so far (1,2). RBPs are known to recognize RNA

molecules by their nucleotide sequence as well as their three-
dimensional structure. Moreover, it has been found that
many RBPs prefer binding to RNAs in specific structural
contexts (Figure 1) (3,4). To characterize the function of an
RBP, it is crucial to first identify its interaction partners, i.e.
the regulated gene transcripts. In most cases, the RNA tar-
gets of an RBP share at least one common local sequence or
structure preference––a so-called motif, which fits into the
binding pocket of the protein and thus facilitates the recog-
nition of the RNA by the protein.

Several approaches for motif finding, i.e. computationally
extracting an unknown sequence motif from a set of tar-
get sequences, have been developed for transcription factor
(TF) binding sites in DNA sequences. They can be catego-
rized into four major classes (5): (i) enumerative algorithms
count the occurrences of exact k-mers in a sequence set to
find over-represented words (6–8); (ii) algorithms based on
expectation maximization (EM) simultaneously optimize a
position weight matrix (PWM) description of a sequence
motif (9) and probabilities of motif starts in the associated
sequences. A popular implementation of the EM algorithm
is the MEME software (10); (iii) Algorithms based on prob-
abilistic optimization, such as Gibbs sampling, iteratively
sample from the conditional distribution of one motif start
at a time (11); (iv) affinity-based (motif) models parametrize
and fit a function representing the binding affinity of a pro-
tein (e.g. a TF) for a set of words (12–14).

Compared to experimental methods for detecting TF
binding sites on DNA, high-throughput protocols for
protein-RNA interactions are relatively new. Among them,
in-vitro evolutionary methods, such as SELEX (15) and
RNAcompete (16), identify high-affinity RNA ligands
within pools of randomly or specifically selected sequences.
Alternatively, various crosslinking and immunoprecipita-
tion (CLIP) methods have been introduced (17–19), which
rely on covalent crosslinking of an RBP to its RNA target
in living cells, followed by isolation of RBP-RNA fragments
and deep sequencing. The RNA sequences (reads) produced
by CLIP-Seq protocols can be mapped back to the genome,
and peak calling tools, such as Piranha (20) or PARalyzer
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Figure 1. Visual representation of an RNA structure. The five structural
contexts are represented by five colors: stems (red), exterior loops (light
green), hairpin loops (purple), internal loops (blue), and multiloops (dark
green). Figure adapted from (3).

(21), can be used to identify high-fidelity RBP binding sites
from the read levels.

Although much work has been done in the area of DNA
motif finding, few approaches have been developed for
RNA motifs (Table 1). One of the reasons is that the bind-
ing of RNA depends not only on the RNA’s nucleotide se-
quence but also on its 3D structure. Consequently, motif
finders that work well for finding sequence motifs in linear
DNA cannot easily be applied to RNA, but have to be ex-
tended to take the RNA secondary structure into account.
This is a difficult task due to the noisy nature of computa-
tional RNA secondary structure prediction, the fuzzy pat-
terns of sequence-structure motifs, the large set of input se-
quences where the motif could possibly be contained, and
the potentially large number of false positives among the
RBP binding sites called from CLIP-Seq experiments (22).

Existing RNA motif finders either address only part of
the problem or employ machine learning models which are
harder to interpret in terms of sequence-structure prefer-
ences (Table 1). The first tool to incorporate RNA sec-
ondary structure into motif prediction was MEMERIS
(31), an extension of the MEME EM algorithm. It uses
single-strandedness information as a prior to guide motif
finding to single-stranded regions based on the assumption
that most RBPs prefer to bind in single-stranded regions.
However, recent studies have shown that several RBPs bind
to stem-like regions, rather than to single-stranded loops
(3). Therefore, the main limitation of MEMERIS is that it
misses binding motifs for proteins with stem-loop prefer-
ence. Moreover, it does not take into account the full spec-
trum of RNA structures.

Another extension to the MEME software is Zagros in-
troduced by Bahrami-Samani et al. (32). It accounts for sec-

ondary structure (paired or unpaired only) and crosslinking
modifications in the EM framework.

Several methods exist to incorporate the full secondary
structure into RNA motif finding. In 2010, Kazan et al. in-
troduced RNAcontext, an affinity-based model which learns
both sequence and structure preferences of an RBP, con-
sidering several structural contexts (4). RNAcontext learns
the RBP binding affinity and optimizes the model’s parame-
ters from both sequence k-mers and predicted structure pro-
files from input sequences. Affinity values are obtained by
experimental assays such as RNAcompete, or can be set to
discrete classes, e.g. bound and unbound from CLIP-Seq ex-
periments. RNAcontext outperformed MEMERIS in clas-
sifying bound versus unbound RNA sequences on a selec-
tion of nine proteins (4). GraphProt by Maticzka et al. uses
graph kernel-based support vector machines (SVM) trained
on a large number of features from a hypergraph to learn se-
quence and structure preferences of RBPs (33) from high-
throughput data. GraphProt produces a motif visualization
in the form of separate sequence and structure logos. A se-
quence logo is a graphical representation of the preferences
of an RBP for the four nucleotides at each binding site po-
sition (e.g. 1 to 6). A structural logo, as introduced by Mat-
iczka et al., is a graphical representation of the preferences
of an RBP for 5 different RNA structure types (e.g. loops,
stems, multiloop, external loops, internal loops) at each base
position in the binding site (33). Feature interpretation from
the hypergraph SVM model is not straightforward and the
two logos are indirectly generated from the top-scoring k-
mer nucleotide sequences and structure profiles. Alterna-
tively, the trained model can be used to predict novel bind-
ing sites in the same organism. Like RNAcontext, Graph-
Prot requires both a positive and a negative input dataset
for training. In a binary classification setting it was shown
to be superior to RNAcontext for a large set of RBPs (33).

While RNAcontext and GraphProt are designed to ac-
curately distinguish bound from unbound sites, a tool for
de novo identification of sequence-structure motifs from
RBP-bound sequences is lacking. In this paper, we pro-
pose ssHMM (sequence-structure hidden Markov model),
a novel tool to identify de novo sequence-structure motifs
in a set of RNA sequences bound by a certain RBP. Our
method, trained on CLIP-Seq experimental data, and based
on hidden Markov models to represent both sequence and
structure preferences has several advantages compared to
previous approaches: (i) It identifies a combined sequence-
structure motif which characterizes the unique features of
the RBP binding site rather than outputting two separate
logos for sequence and secondary structure; (ii) It models a
spectrum of five different structural contexts (stem and four
different single-stranded loop contexts) instead of defining
a general propensity for single-stranded regions; (iii) In con-
trast to discriminative approaches which focus on finding
the optimal separation between positives (RBP sites) and
negatives (background sequences), it is designed with the
purpose of producing an interpretable motif model which
can be intuitively visualized and easily understood.

We demonstrate the ability of our tool to recover RBP
sequence-structure motifs from both synthetic and real
CLIP-Seq data, including novel motifs such as a sequence-
structure preference for the YY1 protein. Our analysis re-
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Table 1. A selection of RNA motif finding algorithms

Motif finder Operating principle Structure incorporated? Reference

Oligo-Analysis Enumeration No van Helden et al. (23)
cERMIT Enumeration No Georgiev et al. (8)
AptaTRACE Enumeration Sequence and structure modeled separately Dao et al. (24)
- Suffix trie No Brāzma et al. (25)
MEME EM No Bailey et al. (26)
MatrixREDUCE Least-squares fit No Foat et al. (27)
MotifSampler Gibbs sampling No Thijs et al. (28)
BioProspector Gibbs sampling No Liu et al. (29)
GibbsST Gibbs sampling No Shida et al. (30)
MEMERIS EM Single-strandedness guides sequence motif finding Hiller et al. (31)
Zagros EM Sequence and pairedness modeled together Bahrami-Samani et al. (32)
RNAcontext Limited-memory BFGS Sequence and structure modeled separately Kazan et al. (4)
GraphProt Graph/SVM Sequence and structure modeled as hypergraph Maticzka et al. (33)

The third column indicates whether the motif finder incorporates RNA secondary structure in any way.

vealed also that the structure preference of an RBP weakens
with increasing strength of the sequence motif.

In addition, ssHMM proved to be considerably faster
than both MEMERIS and RNAcontext on large datasets,
and therefore suitable for NGS data applications. ssHMM
is freely available for download on Github (github.molgen.
mpg.de/heller/ssHMM) and the Docker hub. It is easy to
use and can be applied to characterize novel motifs in any
set of input RNA sequences.

MATERIALS AND METHODS

Here, we present ssHMM, a de novo motif discovery tool
which combines hidden Markov models (HMMs) with
Gibbs sampling to learn the joint sequence and structure
binding preferences of an RBP. The states of the model rep-
resent five different structural contexts of RNAs: stem, hair-
pin loop, multiloop, internal loop, and exterior loop (Figure
1), while its emissions represent the four RNA nucleotides.
The rationale behind this topology is that RBPs might rec-
ognize their RNA targets by both their nucleotide sequence
and their structure. ssHMM is trained on high-throughput
RNA-binding protein data from CLIP-Seq experiments or
any other experimental protocol yielding large numbers of
RNA sequences. After training, the resulting model can be
visualized as an intuitive graph logo (Figure 2). Aside from
describing the model, its training and its visualization, we
also explain how the synthetic and biological datasets were
generated and how they were used to evaluate our tool.

The ssHMM sequence-structure model

The sequence-structure hidden Markov model (ssHMM)
constitutes the core of the motif finder presented here. It
is trained on two types of ‘sequences’: the actual RNA nu-
cleotide sequences corresponding to the RBP binding sites
as detected by means of high-throughput experiments and
their corresponding RNA structures (Figure 2). Abstract-
ing from the predicted base pairing, the latter are encoded as
sequences of symbols representing different structural con-
texts. ssHMM models the RNA-protein binding site as a
set of symbol-emitting states. The symbols are the four nu-
cleotides A, C, G and U. Each combination of binding site
position P ∈ {1..n} and structural context C ∈ {E, I, S,

H, M} is represented by exactly one state (Figure 3). The
states and transition probabilities of the HMM represent
the different RNA structures and the transitions between
them, respectively. The emission probabilities, on the other
hand, represent the RNA nucleotides and the probabilities
of them being observed in a specific structural context. The
motif length n of the binding site needs to be chosen by the
user prior to training. It is recommended to train ssHMM
with different biologically meaningful motif lengths for an
RBP binding site (e.g. from 4 to 12) and to inspect the re-
sulting average information content per position. For best
results, a good compromise between motif length and in-
formation content needs to be found. An empirical rule for
that is described in Section 1.2.1, Additional File 1.

Model training

In order to train the ssHMM, the following two sets of vari-
ables need to be estimated:

Motif start positions. The RBP binding motif is typically
much shorter than the input RNA sequences and it is un-
known where it is located in each of the long RNA se-
quences. This information, however, is needed because the
HMM models only the short motif. For an RNA sequence
k of length l and a motif length n, the zero-based motif start
position is defined as 0 ≤ ik ≤ l − n. During the training, ik
is estimated for every RNA sequence and is sufficient to de-
termine both the motif start sk = ik and end ek = ik + n − 1.

Best structure. RNAs can often fold into multiple ther-
modynamically stable structures. This is why most struc-
ture prediction tools compute several highly probable
secondary structure conformations for each RNA nu-
cleotide sequence. We employed the tools RNAstructure and
RNAshapes (35,36) to predict RNA structure states. RNAs-
tructure predicts the lowest free energy structure as well as
a number of suboptimal structures for a given RNA se-
quence. RNAshapes, in contrast, builds upon the concept
of abstract shapes (i.e. classes of structures with similar
features) to avoid predicting many highly similar and re-
dundant structures. The user can choose which tool to use
for structure prediction in ssHMM. Besides RNAstructure
and RNAshapes, any tool producing a set of highly proba-
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Figure 2. Overview of the motif finder workflow. (1) A CLIP-Seq experiment yields nucleotide sequences of RNAs (in uppercase) bound by a specific RBP.
The genomic region surrounding the binding site was added in lowercase to benefit the next step. (2) The most likely structures of each nucleotide sequence
are computed by a structure prediction tool (RNAshapes and RNAstructure). (3) The ssHMM is trained with the nucleotide and structure sequences. (4)
The final model is visualized as a graph logo.

Figure 3. Topology of the ssHMM. Each combination of binding site
position (columns) and structural context (rows) is represented by one
state. The structural contexts are E(xterior), I(nternal or bulge), S(tem),
H(airpin) and M(ultiloop). Note that every transition in the model pro-
ceeds immediately to the next binding site position and that exactly n nu-
cleotides are emitted by the HMM from Start to End.

ble structures in the required structure format for each se-
quence can be used. Regardless of the tool, ssHMM chooses
one structure from this set for every RNA sequence during

its training. It is selected in an iterative fashion based on its
fit to the ssHMM model (see the following section).

Gibbs sampling procedure

To estimate these two sets of unknowns, we use a Gibbs
sampling approach. Thus, we both train the ssHMM and
estimate the two unknown variables for each sequence at
the same time.

At the outset of the Gibbs sampling procedure, the un-
known variables have to be initialized, for instance by
choosing random values (see Supplementary Figure S1 in
Additional File 1). Then, an iterative optimization process
begins that alternates between re-estimating the ssHMM
and the unknown variables. In each of the following itera-
tions, one RNA nucleotide sequence together with its corre-
sponding RNA structure sequences is left out. An iteration
consists of two estimation steps:

1. The ssHMM is re-estimated using all sequences except
the left-out one. The current best structure and mo-
tif start positions can be used to retrieve both the nu-
cleotide motif occurrence and the structure motif occur-
rence from each sequence. The nucleotide motif occur-
rence denotes a series of HMM emissions (an emission
sequence) while the structure motif occurrence denotes
a series of HMM states (a path). Using all emission se-
quences and state paths, it is possible to calculate a max-
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imum likelihood estimate for the model parameters. To
estimate the transition probabilities �i → j, the number of
transitions ti, j between each pair of states i and j in the
state paths can be counted. The maximum likelihood es-
timate of the transition probability between two states is
then

δi→ j = ti, j
∑

x∈states ti,x
(1)

To estimate the emission probabilities �k: b, the number
of emissions ek(b) of symbol b ∈ A, C, G, U from state
k can be counted in the emission sequences, and the
maximum likelihood estimate of the emission probabil-
ity from a state is then

λk:b = ek(b)
∑

l∈alphabet ek(l)
(2)

The initial probabilities �k can be estimated by counting
how often each state appears as the first state s1 in all
state paths.

2. The motif start position and best structure of the left-out
sequence is re-estimated given the ssHMM (i.e. given �,
�, and � from point 1). For every possible combination
of the two, we can calculate the conditional probability

P(moti f start, structure|ss HMM = (δ, λ, π)) (3)

Motif start and best structure unambiguously define an
emission sequence and a state path. We compute the
joint probability of the emission sequence and the state
path which is equivalent to the conditional probability.
The new motif start position and best structure for the
left-out sequence is drawn randomly according to the
distribution of the conditional probabilities.

The execution is terminated when the increase in joined
sequence-structure likelihood compared to the last three it-
erations drops below a user-defined threshold (see Section
1.2.4 in Additional File 1).

Gibbs sampling initialization

Gibbs samplers run the danger of becoming trapped in lo-
cal optima depending on their initial values. Therefore, it is
advisable to choose these values carefully. In our approach,
two initial values need to be determined at the outset for
every sequence: one structure from the set of highly proba-
ble structures and one motif start position. From the struc-
tures, we initially always choose the one with the highest
probability as determined by the structure prediction tool
(i.e. the highest structure prediction score). For choosing the
initial motif start positions, we implemented two different
approaches:

Random Initial motif start positions are drawn randomly.
Depending on the drawn values, Gibbs sampling may yield
very different results;

Baum-Welch Initial motif start positions are determined
using a sequence-only HMM. With the Baum-Welch al-
gorithm, the sequence-only HMM is trained on the se-
quences to learn the strongest sequence motif. Afterwards,
the Viterbi algorithm is used to locate that sequence motif in

each sequence, and the starting index of the sequence motif
is taken as the initial motif start position.

The Baum-Welch algorithm is subject to the local max-
ima problem as well, i.e. different initializations yield differ-
ent motifs. Therefore, we run the Baum-Welch procedure on
100 randomly initialized sequence-only HMMs and choose
the HMM with the highest likelihood. The Baum-Welch ini-
tialization approach yielded substantially better results than
random initialization (see Supplementary Figures S3 and
S4, Additional File 1). Therefore, ssHMM uses by default
the Baum-Welch initialization.

ssHMM visualization

The trained HMM can be visualized as a graph in which
each HMM state is represented by one node. Similar to a se-
quence logo, the nodes of the graph visualize the emission
preferences of the corresponding HMM state with stacks
of colored nucleotide letters. These stacks indicate which
bases are prevalent at each binding site position in each
structural context. The transition probabilities between the
HMM states are visualized as arrows. The thicker an ar-
row between two states, the more likely is a transition be-
tween the two. Arrows corresponding to transition proba-
bilities lower than 5% are not displayed to increase clarity.
For more information on the output of ssHMM, see Section
1.3 in Additional File 1.

Dataset generation

For the evaluation of our motif finder, we collected two
kinds of sequence datasets: randomly generated synthetic
datasets and biological datasets derived from CLIP-Seq
experiments on >20 different proteins. We evaluated the
performance of ssHMM on both types of datasets and
compared it with three approaches for the detection of
RNA sequence-structure patterns: MEMERIS (version
1.0), RNAcontext, and GraphProt (version 1.1.1) (4,31,33).
All evaluation data can be found on Github at github.
molgen.mpg.de/heller/ssHMM data.

Synthetic datasets. Synthetic sequences are generated
specifically to contain a certain implanted sequence motif.
We followed the protocol devised by Bahrami-Samani et al.
(32) to generate datasets that contain sequence motifs of
length 6, but adapted it to our purposes. We generated 24
such datasets with four different properties (Supplementary
Table S2 in Additional File 1): (i) average information con-
tent per position (1.0 / 0.5), (ii) background sequence type
(uniformly random / 3′UTR) and (iii) whether a certain
fraction of motifs (10%/50%/100%) was implanted into (iv)
a hairpin or stem context.

Each of the 24 datasets is comprised of 100 sequence sets.
A sequence set consists of 2000 RNA sequences with their
corresponding shapes. For each sequence set, one random
position probability matrix (PPM) of length 6 with the given
average per-position information content was created and
stored for later evaluation.

From this PPM, motif occurrences were drawn for each
of the 2000 sequences in the sequence set and implanted into
background sequences of length 50 at random locations.
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Depending on the dataset, the background sequences were
either generated by drawing from a uniform distribution
over the four nucleotides (datasets *.A to *.F) or randomly
sampled from the set of human three prime untranslated re-
gions (3′UTRs, datasets *.G to *.M). Because 3′UTRs are
known to contain many RBP binding sites and confound-
ing signals, the 3′UTR datasets reflect real data particularly
closely.

In order to assess the influence of the structural context
on sequence motif recovery, it was ensured for each dataset
that a minimum fraction of the 2000 motifs, 10%, 50% or
100%, was implanted into a hairpin loop or stem, respec-
tively. In order to deliberately implant a motif in a hair-
pin loop, we reverse complemented a 10 nt sequence from
one side of the motif and copied it to the other side. This
drives the formation of variable size hairpin loops around
the motifs. To confirm that the implanted motif really falls
into an hairpin, we ran the structure prediction tool on the
resulting sequence and retained it only if the entire motif
was predicted to be in a hairpin. To deliberately implant
a motif in a stem, we followed a simpler approach: relying
on chance, the implantation was repeated with new back-
ground sequences until the structure prediction tool pre-
dicted the motif to be in a stem context.

CLIP-Seq datasets. We retrieved 25 different CLIP-Seq
datasets for 27 different RBPs from various sources (Sup-
plementary Table S7 in Additional File 1). Most datasets
were downloaded from the doRiNA (version 2.0), a database
of manually curated RBP binding site data (37). With the
exception of three mouse datasets, all experiments were con-
ducted in human HEK293 and HeLa cells. From the 25
datasets, 17 were generated with PAR-CLIP, 7 with HITS-
CLIP, and 1 with iCLIP. These correspond to already pro-
cessed binding site sequences provided as genomic coordi-
nate files in Browser Extensible Data (BED) file format.
The median lengths of such sequences lay between 22 bp
(FXR2) and 164 bp (YY1). Lengths distributions for five se-
lected proteins are shown in Supplementary Figure S7 (Ad-
ditional File 1).

For testing all tools in discriminative mode positive as
well as negative (i.e. bound and unbound) sequences are
required. For each of the 25 proteins, the positive set con-
sisted of the CLIP-Seq sequences for that protein. The cor-
responding negative set was formed by a subset of the CLIP-
Seq sequences from all other 24 datasets and was of the
same size as the positive set. In addition, each negative set
was created in such a way that the length distribution of the
selected sequences was as similar as possible to the positive
dataset.

For both sets, secondary structures were predicted with
RNAshapes (version 2.1.6), with command line options -o 1
(choosing output type 1) and -r (calculates structure prob-
abilities) and RNAstructure with default parameters. Bind-
ing sites were elongated by 20 bases on each side prior to
structure prediction. The dotbracket output of RNAshapes
was converted to a string of structural context symbols us-
ing the forgi (version 0.2) Python library. The string encodes
the predicted structural context of each nucleotide in the in-
put sequence with the corresponding symbol: E for exterior

loop, I for internal loop, S for stem, H for hairpin loop, and
M for multiloop.

Although elongated binding sites were used for sec-
ondary structure prediction (see Section 3.2 in Additional
File 1), motif finding by ssHMM is restricted to the experi-
mentally determined binding sites. This is to ensure that re-
trieved motifs are correct, as unpaired bases (external con-
text) which are predicted at the sequence ends are a mere
artifact of the cutpoint sensitivity of the structure predic-
tion tool, and should not be part of the retrieved motif.

Evaluation on synthetic datasets

The sequence motif recovery performance of the motif find-
ers on synthetic datasets was evaluated using Tomtom (ver-
sion 4.11.1), the motif comparison tool of the MEME soft-
ware suite. After training on the synthetic sequences, all mo-
tif finders produce a sequence logo that can be expressed
in terms of a PPM. This PPM contains the probability of
every base at every position and we call it the recovered
PPM. The PPM that was used to generate the synthetic
sequences is called the original PPM. We compiled a tar-
get motif database of all 100 original PPMs of a dataset
and compared each of the 100 recovered PPMs individually
against this target motif database. We report the q-value of
the highest ranking match between a recovered motif and
the corresponding original motif. A q-value threshold of
0.05 was used to compute the fraction of recovered motifs
for each dataset and tool.

We also analyzed how accurately ssHMM recovers the
structure preference from the synthetic datasets with hair-
pin motif. In the nine datasets H.A to H.I, either 10%, 50%
or 100% of the motifs were implanted into a hairpin con-
text. Together with the remaining 90%, 50% or 0% of motifs
which can lie in a hairpin by chance, the estimated hairpin
fractions of the datasets are 28%, 60% and 100%, respec-
tively. From the models trained on the different datasets, we
extracted the recovered hairpin preference. This is defined
as the transition probability between the start state and the
H1 state in a trained ssHMM. Finally, we analyzed how well
the recovered hairpin preferences reflect the estimated hair-
pin fractions.

Evaluation on CLIP-Seq datasets

To evaluate the performance of ssHMM on real CLIP-Seq
datasets, we performed several tests: (i) we checked that the
trained motif finder can generally distinguish between real
binding sites (positives) and background sites (negatives);
(2) we compared ssHMM and the other tools in a classifi-
cation setting; (3) we analyzed the information content of
the recovered motifs and (iv) carried out a qualitative anal-
ysis by assessing the resemblance of the recovered motifs to
RBP motifs known from the literature.

Fisher’s exact test. In the first analysis, we used Fisher’s
exact test to confirm that our motif finder is able to distin-
guish real binding sites from background sites. For this, the
protein datasets were split into training and test data. Mo-
tif models for all proteins were trained on the training data
portions and were then used to classify the sequences from
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the test portions. The optimal cutoff between positives and
negatives was determined by optimizing on the P-values ob-
tained by Fisher’s exact test. Finally, the P-values of the op-
timal cutoffs were adjusted using Benjamini & Hochberg
correction (38).

Classification analysis. We compared ssHMM to
MEMERIS, RNAcontext and GraphProt on a classifi-
cation task. We executed MEMERIS in three settings, with
pi=0 (strong prior directs motif finding to single-stranded
regions), pi=100 (effectively finds sequence-only motif),
and the in-between setting of pi=1. Initially, each protein
dataset was split into a training and a test set. Then, both
ssHMM and MEMERIS were trained on the positives of
each training set to retrieve a motif model. A background
model was obtained by training each tool on a random
subsample from the mixture of all CLIP-Seq sequences. For
each dataset, the log likelihood ratios of the motif model
versus the background model were used as final scores to
classify the test sequences. From the scores, the area under
the Precision-Recall curve (AUCPR) was computed.

RNAcontext and GraphProt were trained on positives and
negatives from the training set. Subsequently, separate test
sets were used to produce Precision-Recall curves (see Addi-
tional File 4). We also evaluated whether sampling over all
predicted secondary structures offers a benefit for ssHMM
in comparison to using always the optimal structure.

Information content. We measured the ability of ssHMM
to retrieve informative motifs given a set of binding site
sequences by computing the information content (IC) of
the retrieved motif model. Three variants of the motif ’s IC
on three different alphabets A were computed: IC of the
sequence-only motif with A = {A, C, G, U}, IC of the
structure-only motif with A = {E, I, S, H, M}, and IC of
a combined sequence-structure motif with A = {A, C, G,
U} × {E, I, S, H, M}. We further distinguished two ways
of computing the information content (Section 3.7 in Addi-
tional File 1): Firstly, and similarly to GraphProt, the infor-
mation content can be obtained from the top-scoring 1000
sequences. Alternatively, the information content can be di-
rectly computed from the trained model.

RESULTS

ssHMM learns interpretable sequence-structure motifs

ssHMM produces graph models of RBP binding affinity
that connect the sequence and structure part of an RBP
binding site in a natural and intuitive way. The underlying
hidden Markov model is able to estimate the sequence and
structure binding specificities of a protein simultaneously:
while the nodes of the graph express preferences for individ-
ual nucleotides in different structural contexts, the arrows
represent more or less likely transitions between structural
contexts (Supplementary Figure S2, Additional File 1).

Compared to RNAcontext and GraphProt models, which
only allow extracting separate sequence and structure lo-
gos from the classified sequences, the output of ssHMM
can be directly interpreted as the most likely sequence-
structure motif from the RBP binding data, giving for the
first time detailed insights into the interdependency between

sequence and structure preference. Therefore, unlike exist-
ing methods, ssHMM can model the occurrences of differ-
ent sequence motifs in different structural contexts, as in the
case of DGCR8 and YY1 (discussed in the next paragraph).
This also helps to elucidate whether a specific structural
context is required or not for a certain sequence motif. In
addition, ssHMM incorporates five structural contexts into
the motif model, unlike MEMERIS which distinguishes
only double-stranded and unstructured regions. This gives a
more precise description of the preferred structural contexts
of an RBP, when, for instance, the RBP has a specific pref-
erence for multiloop, rather than single-stranded regions in
general.

ssHMM recovers both new and validated motifs from CLIP-
Seq data

We applied ssHMM to biological datasets derived from 25
CLIP-Seq experiment datasets. Table 2 shows the output of
our motif finder for five selected CLIP-Seq datasets. For
three of the proteins, Nova, QKI and DICER, sequence
and/or structure motifs have been previously characterized
which confirm that ssHMM recovers correct motifs from
biological data.

Nova. Nova is an RBP exclusively expressed in neurons
within the central nervous system and is involved in RNA
alternative splicing and RNA metabolism. ssHMM recov-
ers a clear UCAU sequence motif and U-rich flanking po-
sitions. This agrees with the motifs from MEMERIS and
findings from other studies (3,39) which identified unstruc-
tured and U-rich regions as preferred binding environment
for NOVA. The visualized ssHMM displays a considerable
preference for the single-stranded multiloop and hairpin
loop contexts.

QKI. The Quaking homolog (QKI) is an RBP regulat-
ing pre-mRNA splicing, mRNA export, mRNA stability,
and protein translation (40). The ssHMM visualization for
this protein shows a strong UAA sequence motif across all
structural contexts. This is in accordance with the motifs re-
trieved by MEMERIS, RNAcontext, GraphProt and other
previous studies (18). Our motif finder also found that QKI
prefers to bind hairpin loops.

DICER. The protein DICER is a key player in the mi-
croRNA biogenesis pathway. It is specifically involved in
the processing of microRNA precursors (pre-miRNAs) into
double-stranded RNA fragments which then give rise to the
∼21-nt-long mature microRNAs. It is known that DICER
binds double-stranded RNA structures and that this struc-
tural context determines its specificity, while nucleotide se-
quence does not play a role in determining DICER effi-
ciency (41). ssHMM confirms previous observations about
DICER’s binding preference for the stem context, the lack
of a strong sequence binding motif and the preference for C
nucleotides in the penultimate terminal stem position (41).

For DGCR8 and YY1, no RNA binding preference has
been previously described.
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Table 2. Visualization of trained ssHMMs for five selected CLIP-Seq datasets

To reduce clutter in the visualizations, no arrow between two states is shown if the transition probability is <0.05. In the third column, the sequence logo
recovered by MEMERIS is shown for comparison. On the DICER dataset, MEMERIS’s runtime exceeded 7 days and was terminated. For some proteins,
a literature motif from other studies is shown in the fourth column.
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DGCR8. The RBP DGCR8, together with Drosha, forms
the so-called Microprocessor complex involved in mi-
croRNA biogenesis. It is responsible for recognizing and
releasing pre-miRNA hairpins from large primary mi-
croRNA (pri-miRNA) transcripts. The two proteins in the
complex have distinct and complementary tasks: DGCR8
recognizes and binds primary miRNAs while Drosha cuts
them and thus converts them to pre-miRNAs (42).

The sequence-structure preference of DGCR8 is as yet
not very well known. Previous studies have found that
DGCR8 binds both double-stranded and single-stranded
transcripts with similar affinity (43). ssHMM applied to
DGCR8 PAR-CLIP data recovered a UGGAA sequence
motif, identically retrieved by MEMERIS and, in more
fuzzy form, by GraphProt. When comparing the sequence
motifs from the different structural contexts based on
ssHMM we can observe that, while the hairpin and inter-
nal loop contexts display the full UGGAA sequence motif,
the stem context only exhibits the shortened motif UGG.
ssHMM also reflects a strong preference for the stem con-
text which is in accordance with the fact that DGCR8 con-
tains two double-stranded RNA-binding domains (44). Our
results are also in line with the findings from two previ-
ous studies (45,46) which identified a highly-conserved UG
dinucleotide motif in a stem context at RNA positions –14
and –13 from the Drosha cleavage sites to be involved in
enhanced pri-miRNA processing. Neither study provides,
however, any reason for the molecular mechanisms behind
the function of the UG motif. From our ssHMM analy-
sis, we can suggest that the UG dinucleotide might be con-
tributing to the specificity of DGCR8 binding in a double-
stranded structural context.

YY1 is an interesting example of how ssHMM can be
used to model the multi-motif sequence-structure prefer-
ence of an important binding factor. It is therefore described
in detail in the next paragraph.

For the full list of results from all datasets, including the
literature motifs, motifs recovered by MEMERIS, RNAcon-
text and GraphProt, and their corresponding information
contents, see Additional File 2. For all 25 protein datasets,
the sequence-structure motifs recovered by ssHMM were
robust to the choice of the particular structure prediction
tool (RNAshapes or RNAstructure, see Additional File 3)
and to the elongation span of the sequences subject to struc-
ture prediction (see Section 3.2, Additional File 1).

ssHMM recovers a dual motif for RNA-binding TF YY1

Recently, TFs that bind both DNA and RNA have gained
considerable attention thanks to their prominent role in
RNA-mediated transcriptional regulation of gene expres-
sion (34). YY1 is a multi-function transcription factor in-
volved in many regulatory processes. Recent evidence sug-
gested that YY1 interacts with several RNAs, including,
but not limited to the lncRNA Xist. Xist is involved in X-
chromosome gene inactivation, where YY1 might have a
role in tethering Xist to chromatin (47). While the DNA
binding motif of YY1 is known, its RNA specificity has
been poorly investigated.

We analyzed a YY1 CLIP-Seq dataset and derived, for
the first time, a potential sequence-structure RNA bind-

Figure 4. Recovered YY1 motif is confirmed by classification analysis.
Precision-Recall curve for ssHMM in a classification setting for the YY1
dataset. The three curves represent three independent runs of ssHMM. In
each run, a model was trained on the training set before classification per-
formance was measured on the separate test set. The average Area under
the Precision-Recall curve over all three runs is 0.83.

ing motif for YY1. ssHMM revealed two major preferred
sequence-structure contexts for YY1: a strong CU-rich mo-
tif in a multiloop context and a G-rich stem motif (Table 2).
Although MEMERIS was able to retrieve the CU-rich se-
quence motif, it was not able to reveal the stem motif, even
when run with different sets of parameters and searching
for multiple motifs simultaneously. In addition, MEMERIS
was not able to determine the location of the CU-rich mo-
tif in the multiloop context, simply because it does not dif-
ferentiate between different single-stranded structure types.
Both RNAcontext and GraphProt recovered a motif which
merges both sequence motifs recovered by ssHMM (Addi-
tional File 2). However, GraphProt located the motif in the
stem while RNAcontext located it in a hairpin loop context.

The Fisher exact test analysis for YY1 shows that the mo-
tif learned by ssHMM is not merely an artifact, but repre-
sents the genuine sequence-structure preference of YY1 for
RNA sequences (Section 3.6 in Additional File 1). The mo-
tif is significantly (corrected p-value <1e-16) enriched com-
pared to background sites in a set of YY1 binding site se-
quences that have not been used for training.

The learned YY1 motif model is also able to classify bind-
ing site versus background site sequences on a separate test
set with an Area under the Precision-Recall curve of 0.83
(see Figure 4).

The identification of new RBP motifs like the one for
YY1 can contribute to shedding light on RNA functional
characterization. For example, lncRNAs harbouring a YY1
motif might be involved in gene silencing, similarly to Xist,
and this function might be mediated by YY1. In addition,
this example shows that our approach can retrieve more
than one preferred sequence motif, can determine their re-
spective structural contexts, and can help characterizing
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protein preferences where other approaches return ambigu-
ous results.

ssHMM reliably recovers motifs from synthetic sequences

We evaluated the performance of ssHMM on randomly
generated synthetic data with varying characteristics and
compared the results with MEMERIS and RNAcontext.
Because the different tools use different structure represen-
tations, the produced structure motifs could not be com-
pared directly. RNAcontext, for instance, produces only a
single set of relative structural context affinities over the en-
tire motif and MEMERIS does not output a structure motif
at all. Therefore, we confined our comparison to an evalua-
tion of how well the tools recover implanted sequence mo-
tifs from the synthetic datasets. We are aware that this com-
parison might confer an advantage on models that optimize
a sequence-only model, such as MEMERIS.

To produce the datasets, we implanted fuzzy sequence
motifs into background sequences at random locations.
24 datasets were generated which varied in average per-
position motif information content (1.0 and 0.5), back-
ground sequence type (random and 3′UTR), and type and
prevalence of a specific structural context for the implanted
motifs (hairpin or stem; 10%, 50% and 100%). After run-
ning the tools on the datasets, Tomtom was used to evaluate
the motif recovery performance (see Materials and Meth-
ods).

Figure 5 contains the results of the analysis. The first im-
portant observation is that both ssHMM and MEMERIS
are able to perfectly recover 100% of the motifs with an in-
formation content of 1.0, while RNAcontext reached results
considerably below 100%. The second observation is that,
for an information content of 0.5, ssHMM’s recovery rate
increases when the percentage of motifs located in a spe-
cific structural context grows from 10% to 100%. This shows
that the structural context helps our tool to better identify
a fuzzy sequence motif.

GraphProt displayed a very weak performance over all
synthetic datasets (data not shown). This might be due to
the synthetic nature of the generated sequence-structure
motifs, which do not form biologically valid secondary
structures and cannot be represented in a valid graph struc-
ture. As a comparison of our tool to GraphProt in this test
setting would not be completely fair, we excluded GraphProt
from this analysis.

The recovery of fuzzy motifs with an information con-
tent of 0.5 was influenced by the type of background se-
quences they were implanted in. For random background
sequences, ssHMM reached slightly lower recovery rates
than MEMERIS but higher rates than RNAcontext when at
least 50% of the motifs were implanted in a specific struc-
ture. For 3′UTR background, all tested tools reached recov-
ery rates below those for random background sequences,
especially for hairpin motifs. This is probably due to strong
confounding regulatory signals, other than the implanted
motif, in the 3′UTRs.

In a detailed analysis of dataset H.K, we assessed the
impact of background GC content on the motif recov-
ery performance of ssHMM. We found that motifs im-
planted into low-GC (GC < 40%) and high-GC (GC > 60%)

3′UTRs could be better recovered than motifs implanted
into medium-GC (40% ≤ GC ≤ 60%) 3′UTRs (motif recov-
ery rates of 49%, 17%, and 4%, respectively). This suggests
that differences between the motif GC content and the GC
content of the background sequences actually have a signif-
icant impact on motif retrieval. The synthetic motifs with
a mean GC content of 50% stand out against low-GC or
high-GC background sequences and are consequently eas-
ier to recover.

MEMERIS’s recovery rate was in general strongly influ-
enced by the choice of the pi parameter. It must be chosen
in advance, but is, in most of the cases, unknown to the user.
MEMERIS performed well in retrieving motifs from a hair-
pin loop, with an average recovery rate of 89.5% for pi =
0 (strong prior for hairpin loop) and 79.9% for pi = 100
(no prior) versus 77.4% and 69.2% for ssHMM and RNA-
context, respectively. For stem motifs, MEMERIS’s average
recovery rate is 99% for pi = 100 but drops dramatically to
58.6% for pi = 0 versus 95% and 93% for ssHMM and RNA-
context, respectively.

To evaluate ssHMM’s ability to accurately detect the
structural context of a binding site besides its sequence mo-
tif, we analyzed the synthetic datasets with hairpin motif.
We found a striking Pearson correlation of 0.91 between
the hairpin fraction recovered by ssHMM and the estimated
hairpin fraction of the synthetic dataset (Section 2.4 in Ad-
ditional File 1). This confirms that ssHMM is able to re-
cover both accurate sequence and structure motifs.

ssHMM can distinguish between real binding sites and back-
ground

With our motif finder, we analyzed 25 different PAR-CLIP,
HITS-CLIP and iCLIP datasets for 27 different RBPs from
various sources. With the exception of two mouse datasets,
all datasets stemmed from human HEK293 and HeLa cells.

Fisher’s exact test on the likelihood of positive RBP sites
versus background sites under the trained model yielded
adjusted p-values below the significance threshold of 0.05
for all CLIP-Seq datasets (Supplementary Table S12, Ad-
ditional File 1). This demonstrates that our trained mo-
tif model can significantly distinguish between real binding
sites and background sites.

ssHMM outperforms MEMERIS on the majority of proteins
in a classification setting

As described in Materials and Methods, we compared
ssHMM with the three other tools in a classification set-
ting. Across all datasets, the discriminative classifiers RNA-
context and GraphProt reached a substantially higher Area
under the Precision-Recall curve (AUCPR) than the gen-
erative motif finders ssHMM and MEMERIS (Additional
File 4). Due to the differences between generative and dis-
criminative approaches, this is expected and confirms that
RNAcontext and GraphProt are far more suitable than the
motif finders for a classification task.

When comparing only the motif finders, ssHMM out-
performed MEMERIS on at least 15 out of 23 datasets
across three settings, while MEMERIS slightly outper-
formed ssHMM only on 7 dataset (Supplementary Table S8
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Figure 5. Comparison of recovery rates of ssHMM, MEMERIS, and RNAcontext on synthetic data. Shown is the fraction of successfully recovered
sequence motifs from 24 synthetic datasets (y-axis) for different tools. The upper panel shows results for motifs of information content 1.0 while the lower
panel shows results for motifs of information content 0.5. The left two panels show results for synthetic motifs planted into a hairpin context of random
or 3′UTR background sequences, respectively. The right two panels show results for synthetic motifs planted into a stem context of random or 3′UTR
background sequences, respectively. The x-axis denotes the fraction of motifs (10%, 50% or 100%) that were implanted into a hairpin or stem context.
For MEMERIS, two different values for the pi parameter are plotted (pi=0 and pi=100). The pi parameter determines the importance of the single-
stranded context relative to the sequence. For pi=1, all results lay between the results for these two parameter values and are therefore not plotted. To
avoid overlapping lines, results for MEMERIS (pi=100) and ssHMM were shifted slightly up by 2 and 1 percent, respectively. The fraction of successfully
recovered motifs was computed with a q-value threshold of 0.05 on the highest ranking match between the original and the recovered motif.

in Additional File 1). On average, the increases in AUCPR
of ssHMM over MEMERIS were considerably larger than
the decreases, with several gains higher than 10%. These re-
sults demonstrate that the full sequence-structure model of
ssHMM yields a benefit over the MEMERIS sequence-only
model.

To confirm the usefulness of sampling over several sec-
ondary structures during training, we further analyzed the
differences between sampling over all structures versus only
the optimal one as determined by the structure prediction
tool. Training on all shapes led to models that are better fit
to the training data and perform slightly better in a classifi-
cation setting for some of the analyzed proteins (see Section
3.4, Additional File 1).

Motifs identified by ssHMM possess high information con-
tent

While ssHMM is not as powerful as RNAcontext and
GraphProt in a classification setting, it is well suited for mo-
tif retrieval, the primary applications of a motif finder. We
measured the ability of ssHMM to retrieve informative mo-
tifs given a set of binding site sequences by computing the
information content (IC) of the retrieved motif models. The
higher the information content, the more specific is the mo-
tif and the lower is the chance to find it in a sequence by
chance. Information content values for all 25 RBP retrieved
motif models are reported in Additional File 2 together

with the values computed from the MEMERIS, RNAcon-
text and GraphProt models.

As expected, for almost all proteins ssHMM finds
more expressive motifs than GraphProt and RNAcontext.
For all proteins, the motifs retrieved by ssHMM had a
higher sequence-structure information content than those
by GraphProt (mean IC of 2.55 versus 1.66). This points to
the fact that a large structural context, as the one encoded
in the GraphProt model, might play a role in discriminat-
ing RBP sites versus non-RBP sites. The motifs obtained
directly from ssHMM were also generally more expressive
than those by RNAcontext (see Additional File 2). On aver-
age, ssHMM and RNAcontext motifs had a sequence infor-
mation content of 0.64 and 0.39, respectively. Only for five
proteins did RNAcontext produce a more expressive mo-
tif than ssHMM. For three of those, DGCR8, FXR2 and
PUM2, the motif recovered by RNAcontext was different
from the one retrieved by both MEMERIS and ssHMM.
For PUM2, the RNAcontext motif does not agree with the
literature motif. Another example is PTBP1, where RNA-
context fails to retrieve any motif. For PUM2 and NOVA,
GraphProt also produced motifs which do not entirely agree
with the literature knowledge. MEMERIS-derived motifs
had a higher sequence information content than the motifs
derived from all the three other tools. This is expected given
that MEMERIS optimizes a sequence-only model, rather
than a joint sequence-structure model.
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Figure 6. Sequence and structure information content of motif models
trained on CLIP-Seq datasets are negatively correlated. Shown are the se-
quence information content (x-axis) and structure information content (y-
axis) of ssHMM motifs for all 25 CLIP-Seq datasets (average per position).
Both are negatively correlated with a significant Spearman’s rank correla-
tion coefficient of -0.451 (p-value 0.02). Plotted is also the linear regression
line.

Negative correlation between sequence and structure speci-
ficity in RBP binding sites

We investigated in more detail the relationship between se-
quence and structure in RBP binding sites. Over all CLIP-
Seq datasets, we observe a significant negative correlation
of –0.451 (Spearman’s rank correlation, P-value 0.02) be-
tween sequence and structure information content (Figure
6). This observation is concordant to what Schneider et al.
described in 1986: binding sites tend to contain approx-
imately as much information as is necessary for them to
be recognized (48). In RNA-RBP binding, sequence and
structure specificity seem to complement each other so that
RBPs with a strong sequence preference tend to exhibit only
a weak or no structure preference and vice versa.

ssHMM can efficiently handle large datasets

In order to be suitable for scientific use, modern motif
finders are required to process large datasets in reasonable
time. CLIP-Seq is a high-throughput protocol and produces
datasets that commonly hold tens of thousands of RBP
binding sites. It is therefore vital that motif finding algo-
rithms scale well with input datasets of increasing size.

To assess the runtimes of GraphProt, RNAcontext,
MEMERIS and ssHMM, we took runtime measurements
on datasets of increasing size (see Section 4, Additional File
1). Figure 7 illustrates that the four different motif finders
did not scale equally well on the datasets. While Graph-
Prot and ssHMM showed the best runtime performance,
MEMERIS and RNAcontext do not scale sufficiently well
to be applied to large datasets. Although RNAcontext’s run-

Figure 7. Runtime comparison between GraphProt, MEMERIS, RNAcon-
text, and our motif finder (ssHMM). The CPU time in seconds (y-axis) is
plotted against the number of input sequences (x-axis).

time increases linearly with the size of the dataset, it was the
slowest tool, mainly due to its secondary structure predic-
tion algorithm Sfold, which amounted to more than 90%
of its runtime. For MEMERIS, we observed a quadratic
runtime progression. While it was the fastest of the four
approaches on the smallest dataset, it was quickly over-
taken by ssHMM and GraphProt on larger datasets, where
MEMERIS’s runtime increased by a factor of 243. Conse-
quently, MEMERIS exceeded 7 days of runtime on several
of our CLIP-Seq datasets. Our motif finder and GraphProt
scale best with increasing size of the input dataset. Both
tools showed a linear runtime progression and processed
2000 sequences in less than 3 min on a single CPU.

All in all, GraphProt and ssHMM are the only methods
able to process large datasets in reasonable time.

DISCUSSION

Knowing the sequence-structure specificity of RNA-
binding proteins is essential for understanding RNA post-
transcriptional regulatory processes. While several tools
have been developed to extract de novo sequence motifs
from sets of DNA sequences, the function and activity of
RNA sequences is additionally influenced by the secondary
structure around their binding site (3,49,50).

We developed ssHMM, a de novo motif finder capable
of extracting sequence-structure RNA binding motifs from
large sets of RNA sequences generated from genome-wide
experiments such as CLIP-Seq. ssHMM estimates binding
sequence and structure specificities simultaneously for ev-
ery individual position of an RBP binding site. The model
incorporates five different structural contexts and therefore
gives a specific description of the preferred structural con-

Downloaded from https://academic.oup.com/nar/article-abstract/45/19/11004/4097614
by Freie Universitaet Berlin user
on 16 January 2018



11016 Nucleic Acids Research, 2017, Vol. 45, No. 19

text of an RBP. MEMERIS on the other hand uses single-
strand propensities for guiding the motif search and out-
puts only sequence logos. It can neither associate sequence
motifs to a stem context nor distinguish hairpin loops from
multi-loops. The motif models generated by ssHMM are
visualized by a graph of state nodes with sequence logos
representing sequence preferences and arrows representing
likely transitions between structural contexts. The graphs
are easy to interpret and visualize direct interdependencies
between sequence and structure.

The analysis of CLIP-Seq datasets from RBPs with pre-
viously known binding motifs confirmed that ssHMM re-
covers correct motifs from biological data. We have demon-
strated the ability of ssHMM to derive novel sequence-
structure motifs for RBPs such as DGCR8 and YY1. For
YY1, ssHMM captured a mixture of two sequence motifs,
one in stem and the other one in multiloop. To our knowl-
edge, this motif mixture has not been discovered before and
could not be fully retrieved by the other tools. In addition,
the analysis of CLIP-Seq datasets with ssHMM revealed
an interesting anti-correlation between a protein’s sequence
and structure preference. Although this has been observed
for single proteins, a systematic relationship between the
two information contents has never been shown so far.

The evaluation of our motif finder on synthetic data re-
vealed its ability to retrieve 75–100% of the implanted mo-
tifs in almost all settings, in the absence of other confound-
ing signals (see Figure 5). ssHMM’s motif recovery rate pro-
gressively increased with the fraction of weak sequence mo-
tifs (information content 0.5) located in a specific structural
context. This demonstrates that incorporating the structure
into the model greatly helps the tool to identify weaker
sequence motifs, regardless of their location. In particu-
lar, ssHMM slightly outperformed all tools in recovering
weak sequence motifs located in a strong stem context.
MEMERIS was in some cases superior to ssHMM in recov-
ering weak sequence motifs, but its performance strongly
depends on the choice of the pi parameter, the prior for a
single-stranded context. As the structural context of a mo-
tif is not known in advance, an unfavorable choice of the pi
value might lead to poor motif recovery. Notably, RNAcon-
text performed better than both MEMERIS and ssHMM
in recovering hairpin loop motifs from 3′UTRs.

ssHMM could significantly discriminate real binding
sites from background sites for all 25 analyzed datasets, con-
firming that the produced motif models capture true sig-
nals in the data. In a classification setting, ssHMM out-
performed MEMERIS on the majority of the proteins, in-
dicating that a sequence-structure model is, in many cases,
a win over a sequence-only motif model. RNAcontext and
GraphProt reached considerably higher classification accu-
racy than both ssHMM and MEMERIS in discriminating
real RBP from background sites for all proteins. However,
while having a very high classification accuracy (AUCPR),
they learned more abstract features and produced motifs
with lower sequence-structure information content than
ssHMM. Furthermore, one may argue that their strong
classification performance is to be attributed, at least for
some proteins, to GC content bias between the positive and
negative sets.

Given their lower classification performance, ssHMM
and MEMERIS are not the most suitable tools for classi-
fying RBP binding sites versus non-binding sites. For such
a task, GraphProt and RNAcontext are to be preferred.

However, if the goal of an analysis is motif discovery or
biological interpretation, the fuzzy motifs derived by Graph-
Prot and RNAcontext are unsuitable and harder to inter-
pret. In this case, a motif finder, such as ssHMM, is more
appropriate because it is designed to extract the most infor-
mative sequence-structure pattern from the data.

Finally, ssHMM is faster than other tools. It scales
linearly on the input size and was the fastest tool in
our runtime analysis (on a par with GraphProt). While
MEMERIS exhibited quadratic runtime, and RNAcontext
was impeded by a slow structure prediction tool, our ap-
proach was even able to analyze datasets with more than
20 000 sequences in a reasonable time. In contrast, we had
large difficulties processing these larger CLIP-Seq datasets
with MEMERIS and RNAcontext. Although not shown
in this study, ssHMM can in principle be applied to any
set of RNA sequences generated from experimental tech-
niques other than CLIP-Seq (for example SELEX experi-
ments). As future perspective, the motif models generated
by ssHMM can be stored and used to search for sequence-
structure motif hits in query RNA sequences. For example,
one could look for RBP motifs in long non-coding RNAs, a
class of RNAs whose full spectrum of possible functions is
still poorly understood. ssHMM can also help annotating
long non-coding RNA functions based on their most likely
interaction partners.

CONCLUSIONS

We have developed a new efficient algorithm to determine
the most probable sequence-structure motif, or combina-
tion of motifs, given a large set of RNA sequences. As
RNA secondary structure is required for the specificity of
RBP binding, and large-scale assays are becoming more
and more popular in studying RNA–RBPs interactions, our
method will contribute to the systematic understanding of
such interactions.

DATA AVAILABILITY

The ssHMM software is available for download at github.
molgen.mpg.de/heller/ssHMM. Documentation of the tool
is provided at sshmm.readthedocs.io. Synthetic and CLIP-
Seq datasets used in this study can be found at github.
molgen.mpg.de/heller/ssHMM data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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