Implementation and Evaluation of a
SWARMLINDA System

Technical Report TR-B-08-06

submitted by
Daniel Graff

supervised by
Prof. Dr. Tolksdorf Prof. Dr. Menezes

June 23, 2008

In collaboration with the

Department of Computer Science Department of Computer Science
Networked Information Systems Laboratory for Bio-Inspired Computing
Freie Universitit Berlin Florida Institute of Technology
Berlin, Germany Melbourne, Florida, USA

Abstract. In the middle 80s David Gelernter from the Yale University developed a program-
ming language called LINDA. It is applied in the field of distributed environment development.
Moreover, LINDA also describes a coordination model which is fully distributed in space and time.
Based on its characteristic, although being used in parallel computing, it is restricted to a certain
amount of servers while it cannot cope with adaptiveness and scalability in an open environment.
As a solution SWARMLINDA is proposed based on a decentralized multi-agent system which got
its inspiration by nature in the field of swarm intelligence. The ability of the architecture is char-
acterized by a very scalable behavior. The system can grow to enormous size while still be very
effective since the principle is based on only local interaction with the surrounding neighborhood.
The behavior patterns are observed from natural individuals (aka swarms) like ants, birds, termites
and bees. Each agent is characterized by simplicity, dynamism and locality. The research for the re-
port has been performed in evaluating as well as examining properties, problems, behavior pattern
and advantages of swarm intelligence used in a SWARMLINDA system. In particular, the work
discusses involved mechanisms and describes the development of a SWARMLINDA. Further on,
it defines different metrics being used in the system. A main part is based on the distribution of
information objects in a 2D environment by forming clusters which hold similar objects. The clus-
ter itself is defined by a spatial region containing several associative memories. Finally, the report
closes by presenting plenty of test runs that have been executed on the SWARMLINDA system. In
order to rate the performance an evaluation metric has been developed defining the spatial network
entropy.

Contents

(1. Introductionl

1.1. Historical Background|
1.2. Thematic Demarcationl o o
[1.3. Motivation| e
[14. Objective|
[[.5. Structuring]. e

[2. Algorithms In SWARMLINDA|
2.1. Tuple Distribution|. 0 o0
|2.1 1. Drop Probability] 0 ..

2. TupleRetrieval] 0
R3. TupleMovement]

(3. Development and Implementation|
3.1. Used IDE e e
B.1.1. NetLogo|

B.112. Usagel
B.1.1.3. System Architecture|

B.1.1.4. Extension-Modell.

|3.1.2. EcliEse|
3.1.2.1. Definitionl

B.122. Plug-Ing......................

B.1.2.3. BuildSystemwithAnf]

3.2. Network Generation Simulator]
2.1. neration of works|

2.2. Interaction with rksl. .o

3.2.3. Plotted Graphs|
3.3. SWARMLINDA Simulator e

3.1.1. Controlling the Simulator|{.
B.3.1.2. Output: Monitorsand Plots|
itional Test Environmentl

B8.3.2. Implementation|.
B.3.2.1. Extensionl

[5.3.2.2. Logg1ng|

[4. Improved Metrics in SWARMLINDA|
4.1. Drop Probability|. o oo o
42 Entropy|.

4.3. Pickup Probability| 0 0L 70

4.4. Anti-Overclustering|. Lo Lo oo 75
6. Experiments Showing Optimization Results| 80
p.1. Tuple Distribution|.o oo oo 80
2. TupleRetrieval 85
B.3. TupleMovement] 90
b.4. Comparison of the improved Metrics]. 93
b.5. Anti-Overclustering and Spatial Clustering| 98
6. Conclusion and Future Workl 106
References 110
[List of Figures| 115
[List of Tables| 117
[A. Diagrams| 118

1. Introduction

1. Introduction

This report evaluates and examines properties, problems, behavior patterns and advan-
tages of swarm intelligence used in a SWARMLINDA system. The following gives an in-
troduction to swarm intelligence extending conventional LINDA systems.

1.1. Historical Background

In order to understand the development of the coordination system one has to look at its
origin. In the middle 80s David Gelernter from the Yale University developed a program-
ming language called LINDA introduced in [20]. It is applied in the field of distributed
environment development. Moreover, LINDA also describes a coordination model which
is fully distributed in space and time. Processes can communicate with each other us-
ing an associative memory (tuple space) without knowing any identifying information
about each other. A sender A can leave a message in an associative memory, a retriever
B can withdraw the message independent in terms of time. The system does not postu-
late B being a specific retriever but instead B is just one single process from a universal
set R defining all processes being involved in the system. One can interpret the associa-
tive memory as an abstract space for storing and retrieving arbitrary information objects
(tuples).

In the beginning Gelernter proposed the global tuple space as interface between the
storage area and the acting processes around. Later he extended the system to multiple
tuple space making it more suitable to distributed environments [21]. Therefore LINDA
was not only distributed in terms of parallel computing but also in case of spatial usage.
Tuples can be spread over the network among several nodes. The system gains more
robustness since it avoids having a single point of failure. Partitioning the amount of
information objects across the domain leads also to the idea of clustering similar tuples in
the same region making the system more effective.

Since distributed computing becomes more and more ubiquitous nowadays and LINDA
"is arguably the most important and most successful coordination model ever proposed"
[12] it found its place in several applications ranging from parallel computing [19], [40] to
mobile systems [36]], [39] and finally to peer-to-peer systems [6]. There are also commer-
cial implementations that includes the idea of generative communication used in TSpaces
[62], JavaSpaces [18] and GigaSpaces [27].

Later on the idea that objects can retire over time arises. Assume a scenario in which an
amount of k tuples are spread among a network containing n nodes. At each time ¢ fur-
ther m tuples are added. Considering an aging mechanism that tuples are getting older,
one can assign an index j to each tuple tu indicating the appearance of tu. Therefore the
actual age can be computed by subtracting the appearance time t,,, from the current
time tcyyr. Shortly speaking, the smaller ¢, is the older it gets. It is easy to notice that
if t;pp of tuple X is %tcwr and t,pp of tuple Y is t., then Y is exactly twice as old as X.
Assume further that the probability of picking up a tuple of kind A - in terms of LINDA
tu matches template A - is anti-proportional to its age or, the other way round, correlates

1. Introduction

with its freshness. There is no chance of rejuvenation. Let age; be the age of a tuple match-
ing template A and age; be the average age of a set of tuples also matching template A
with age; > agep. One can associate the age factor with some sort of currentness meaning
that recent tuples contain newer information. Since age; is already very big compared to
similar tuples it is very unlikely that a requester will obtain this tuple. Hence it is appro-
priate to introduce garbage collection for cleaning up the domain and remove apparently
unused objects. An extensive discussion can be found in [32], [29] and [33].

1.2. Thematic Demarcation

It exists several standards for performing communication between two subjects. On a low
level the programming language C allows inter-process communication (IPC) via pipes
[49]. Usually during the runtime of a program a child process will be created using the
fork() command. By establishing a pipe between the parent and the child the runtime en-
vironment allows a unidirectional communication. This is also called an anonymous pipe.
The father process uses the input end of the pipe to write a data stream to it. The child
on the other side reads the incoming data stream. This variant is commonly used in op-
erating systems. It is byte-oriented and the processes have to be closely related to each
other. The anonymous pipe exhibits a simplex and reliable FIFO communication channel.
Writing and reading commands are always blocking. Both processes have to be on the
same local machine.

On the other hand named pipes allow a full duplex reliable communication. The pro-
cesses do not need to be related, they neither have to be on the same machine. The com-
munication can either be byte-oriented or message-oriented. The commands of named
pipes can also be executed in a non-blocking way.

Another inter-process communication model is Shared Memory [49]. The involved pro-
cesses use a common area in the Random Access Memory (RAM) for information deliv-
ery. In detail the initiator has to allocate a certain part of the memory while the retriever
has to gain access rights for reading. This model can be applied both to software (commu-
nication between processes) and hardware (usage of a typically large block of the RAM
that can be accessed by several central processing units (CPUs)) issues. Some graphics
card manufacturers also provide shared memory but this does not relate to IPC since the
cards use an additional part of the RAM for extending their own local memories.

Similar to IPC using named pipes is socket based communication [7]]. Processes can also
address remote as well as local machines. The communication channel is full duplex.
There are different types of socket realizations implementing the reliable, stream based
Transmission Control Protocol (TCP) or the packet oriented, unreliable User Datagram
Protocol (UDP). Socket communication is usually used for client-server architectures.

A more sophisticated standard is the Common Object Request Broker Architecture
(CORBA) [48] developed by the Object Management Group (OMG). CORBA is an object
oriented middleware and provides cross platform, language independent interaction. The
core of the runtime environment is the Object Request Broker (ORB) which is responsible
for locating local and remote objects. CORBA uses Remote Procedure Calls (RPCs) for dis-

1. Introduction

tributed interaction. Objects invoke methods from other objects whereas the location does
not play a role. The instances can be either contained in the same process, distributed on
several processes or spread among different server. Invoking an objects method the ORB
performs the actual RPC. The Internet Inter-ORB Protocol (IIOP) that has been published
by the OMG assures the communication between different ORBs.

Due to its open and independent behavior CORBA is likely used in distributed systems
coping with different languages and operating systems. For it the Interface Definition
Language (IDL) defines modules, method signatures, exception handling as well as map-
pings between language specific data types. Afterwards the IDL-Compiler which comes
along with the applied ORB generates stub and skeleton classes which are proxies for the
objects performing the RPC.

In the scenario that a process A invokes a method of process B it does not know
the physical location of B. Therefore the ORB is responsible for finding B. Each callable
CORBA instance has to be registered with a unique identifier at the naming service. The
use of a Uniform Resource Identifier (URI) is recommended. During a method invoca-
tion the responsible stubs serializes the method name as well as optional parameters and
sends it to the remote instance. At its destination the incoming data stream gets deseri-
alized and does the actual method call. Finally it responds to the invoker with optional
return arguments.

Another middleware technology is Remote Method Invocation (RMI) [24] which is sim-
ilar to CORBA but it is restricted to one programming language; it can only be used
in Java application. Analogous to CORBA RMI needs a specific compiler for generat-
ing stub and skeleton classes. Before invoking remote objects they have to be registered
at the RMI registry, preferable with an URI. The RPC takes place by calling the method
stub of the remote object, serializing parameters, addressing and sending it to the ac-
tual implementation. At its destination the incoming data stream gets deserialized and
invokes the method. Optional return arguments will be sent back. All three participants
- the caller, the registry and the invoked service - are running in different Java Virtual
Machines (JVMs). The Java Remote Method Protocol (JRMP) handles the communication
interaction. In order to run code in a non-JVM context the RMI-IIOP (RMI over IIOP) was
developed for supporting and addressing CORBA applications.

Another well known communication technology are Web Services which were intro-
duced by the W3C [28]]. The basic idea of Web Services is to provide service functions that
can be invoked via the World Wide Web (WWW). Similar to CORBA and RMI Web Ser-
vices also need a Naming Service for registering offered services. The Universal Descrip-
tion Discovery and Integration (UDDI) dictionary contains detailed information encoded
in XML. For publishing a service the Web Service Description Language (WSDL) as ex-
plained in [13] has to be generated. It contains plenty of information of how to interact
with the server, e.g. method signatures with parameters and return values. The service
providing node publishes its WSDL at the UDDI. Afterwards service requesters can look
up the WSDL in order to contact the provider using SOAPH

1Originally SOAP was an acronym for Simple Object Access Protocol but since version 1.2 it is not an
abbreviation anymore since it is neither simple nor it is only used for object access [60]

1. Introduction

However, LINDA does not need a description language for performing inter-process
communication. In contrast to web services where the requester is addressing a specific
server LINDA deals with openness since a process storing an information object in a par-
ticular node does not know neither which other process will potentially pick it up nor
whether it will generally picked up by anyone. If this piece of information is not of inter-
est for the environment than it will stay there. There is no direct communication between
processes in LINDA, they exchange information via tuples that can be stored and retrieved
from tuple spaces. Considering the mechanism of LINDA assigns the system a loose and
uncoupled behavior since storing and retrieving processes are independent in terms of
time and availability. “LINDA differs from previous interprocess communication models
in specifying that messages be added in tuple-structured form to the computation envi-
ronment, where they exist as named, independent entities until some process chooses to
receive them” [20].

1.3. Motivation

In order to construct and maintain huge distributed software systems one has to cope
with many issues. As mentioned earlier LINDA is a successful coordination model. Pro-
cesses communicate using associative memories called tuple spaces. Arbitrary informa-
tion objects (tuples) can be stored and retrieved from tuple spaces. That is the way how
the information is exchanged between the processes - fully distributed in space and time.
There are several issues that should be considered carefully:

Scalability: Distributed systems like LINDA can grow to enormous size in terms of ser-
vers (nodes) and arbitrary information objects (tuples) stored in it. A plethora of
processes are interacting with the system, in detail they store, retrieve and move in-
formation objects around. Scalability is today the sine qua non of efficient distributed
systems [31]. There are several approaches to achieve scalability.

Obreiter and Gréf discussed in [37] a fast way of storing and retrieving tuples by
looking at the structure of the tuple. This approach describes the tuple itself as the
central point of interest. Applying hash functions each tuple is assigned to a spe-
cific server. The return value of the function tells the physical location. Thus tuples
will be distributed and organized in tuple spaces based on its structure. However,
Rowstron [42], [43] did some implementations exhibiting that tuple spaces should
hierarchically organized in order to achieve scalability. Further he proposed local
and global tuple spaces.

But in general if one looks at the techniques that were used in most conventional
LINDA systems it is noticeable that they are data-oriented. Assume a scenario where
a set of servers and an amount of tuples are contained in a network. If one wants
to retrieve a specific tuple the most common approach is to ask the available ser-
vers based on a multicast whether they hold a matching one (based on a template).
Thereupon each requested server will check its tuple space and if it finds one it will
lock the tuple and offers it to the inquiring process. Of course, the requester is sat-
isfied by obtaining one tuple whereas the remaining n — 1 offered tuples are not of

1. Introduction

interest. But in this scenario they are blocked for a certain amount of time until the
proceeding of querying is finished. Meanwhile other processes that are performing
interactions with the same servers would not find the tuple since they are locked
but indeed not used. This behavior is a very severe impact while trying to obtain
and maintain scalability.

Finally, constructing huge, scalable distributed systems should postulate some level
of fault-tolerance since it is very unlikely to assume a failure-free system [22]. They
also should be extreme decentralized and focus on the autonomy of objects since
large-scale systems cannot cope with centralization. In order to achieve a fast stor-
age and retrieval time tuples should be kept organized so that similar types are
staying at the same location. That can be either the same server or the surround-
ing neighborhood. On the other hand tuples should stay in proximity to processes
requiring them. This behavior postulates some level of mobility. Tuples should be
clustered geographically as well as be mobile by staying in proximity to the con-
sumer. Such an organized system would be fault tolerant since its information ob-
jects are spread across servers in some neighborhood as well as fast and effective
since data can be found easily and retrieved in a short time because they are already
close to the querying process.

Adaptiveness: Large scale distributed systems should be adaptive in case of changes in
the environment. The fluctuation of tuples can be very strong and thus the environ-
ment is changing rapidly. Due to node failures, servers can disappear for a certain
amount of time which means that the contained tuples are hidden from the environ-
ment and cannot be retrieved or moved until it gets reconnected. A worse scenario is
that the server gets totally removed from the system. On the other hand new nodes
can be added to the environment without severe effort. Therefore the fluctuation
of servers can also very rapid and unpredictable. Large scale distributed systems
should cope with all changes in the environment in order to guarantee effective-
ness and availability. As mentioned earlier similar information objects should not
be stayed at one particular node, they should be clustered among several nodes be-
ing in the same neighborhood since the system should avoid a single point of failure.
If one or more nodes fail there should not be a bad impact making the system ineffi-
cient and slow. Conversely, the system should react to changes and thus maintain its
performance. The basic primitive is to use all system resources optimally. Therefore
adding new nodes to the system should result in integrating them in order to keep
the system always balanced.

Network Unpredictability: Compared to a system that is running on a local machine,
distributed systems have to cope with network unpredictability since they are ex-
ecuted in a global context. Even software that is multi threaded or separated into
several processes, for instance to take advantage of a cell, multi core or a multi pro-
cessor computer system, is very reliable concerning its execution and runtime since
the inter-process communication exhibits a predictable behavior. In the context of
leaving the local machine there are network properties that should be considered. A

1. Introduction

major issue is that the Internet is heterogeneous and shows an unpredictable behav-
ior. It is not as easy as one may think to estimate the transmission time of data based
on geographically closeness. The Internet is stateless and does not provide quality
of service (QoS) [30]. A main issue for engineering distributed systems is to place
the information objects in the domain in a way that querying processes get the best
possible response times. This should result in a fair load balancing between all the
nodes. Considering a distributed system it may not appropriate to determine node
neighbors geographically, they should be selected based on latency.

Failures: It is very unlikely to assume a failure free system. Especially in a distributed
context one has to face many problems. It is quite important to handle failures ef-
fectively. There are fault tolerant coordination models like PLinda [1] based on a
transaction mechanism. But as one might think it is very cost intensive to support
transaction semantics in a fully distributed system environment since it uses dis-
tributed locking mechanisms for keeping the state consistent. Another approach is
proposed in [54] analyzing fault-tolerance in LINDA systems. The studies have been
taken place in the categories of transactions, mobile coordination, replication and
checkpointing. But since “all these mechanisms are rather static in that they assume
a fixed location of faults and fixed locations of where faults are managed” [30] the
kinds of failures are strict; the system is either consistent or in a state of failure.
There is no intermediate level that it is partially inconsistent. However, considering
the approach proposed in [44] behaves more flexible since it adds mobile code.

Mobility: Nowadays mobility gets more and more ubiquitous, thus postulating that dis-
tributed environments should handle it. However, focusing on LINDA systems one
can separate it in three main parts: nodes (tuple spaces), tuples and querying pro-
cesses. The objective is to find and retrieve tuples in an appropriate time. As men-
tioned earlier the queried data should stay close to the consumer. But how can this
be done? Tuples can be in an active or passive state. Assume a scenario where an
amount of tuples are spread among a network and a set of processes are trying to
find them. It is very likely that some tuples are already placed well for inquiring
processes, however, others do not. As one can think it might be more effective to
store the tuples in tuple spaces that are in proximity to the consumers. Therefore
tuples should be active and move towards the consuming sources. An unrealistic
scenario but easy to understand, is that a network contains two different kinds of
tuples. There are two locations - on both sides of the network - that identify the con-
suming processes which querying one of the two types respectively. It makes sense
to move the tuples towards those locations in order to guarantee fast retrieval times
as well as establishing some level of order by sorting them by type. Further the sys-
tem is more balanced since the information is already stored in a suitable place and
the effort for finding a tuple tends to go down. Thus system resources would be
spared resulting in a high global performance.

There are several miscellaneous models for implementing LINDA. All of them try to
solve conventional problems which occur in distributed systems. Although there are

10

1. Introduction

some more sophisticated approaches tending to avoid bottlenecks and establish some
level of load balancing and fault tolerance, nevertheless they own a threshold at which
the scalability and adaptiveness will suffer from its architecture and system behavior.

Centralization: The first and simplest strategy is the well known client-server model (see
Figure [I). This architecture is very easy to implement since there is just one tuple
space containing all tuples (see TSpaces [62]). There is no need of synchronization
or distributed locking mechanisms. Clients can attach to the server in order to store
as well as retrieve tuples. These are the advantages of a centralized organization
and it is well fitting in a particular context, when the number of clients are small
so that the server can respond to all incoming requests in an appropriate time. But
unfortunately, as one may think the server gets easily a bottleneck that is when
the number of clients strictly increase. Since we are dealing with open distributed
systems it is noticeable that this approach does not fit in the context of adaptiveness
and scalability. Further this organization suffers from a single point of failure.

Tuplespace
server

out

Figure 1: Centralized tuple spaces (according to [30])

Partitioning: According to this strategy (see Figure [2)) the data is separated among the
nodes in a way that each one contains a subset of all tuples. By physically distribut-
ing the amount of tuples will, of course, lead to more productivity but, however,
will also result in an unbalanced system. Sorting the tuples by type so that each
server holds a specific kind, one does not know in advance whether they are queried
equally. It is more likely that one node gets most of the requests while the other ones
remain more restfully. Providing parallel query processing and routing it to one of
the servers will, of course, increase performance since it supports concurrency. Nev-
ertheless there is still centralization involved that inevitably will result in a bottle-
neck and so is a weak point of the system. However, Bjornson showed in [4] that
applying a carefully chosen hash function will distribute the tuples more efficient
among the nodes in order to obtain more balance.

Full replication: This approach replicates all data contained in the tuple space to all
nodes (see Figure [3). Therefore each server offers the same information and thus
there is a fair load balancing involved in the system since the amount of requests
can be redirected to nodes having small workloads. This is an advantage compared
to the previous mentioned strategies. Further the approach offers fault tolerance
since a node failure does not effect the behavior dramatically and will not lead to a
loss of information. Unfortunately, it consumes a lot of system resources to keep the

11

1. Introduction

Tuplespace
server A

out

Tuplespace
server B

Figure 2: Partitioned tuple spaces (according to [30])

replicas always in a consistent state. Each storage as well as removal of data objects
causes the system to react on those changes and perform them on all other nodes.
Therefore the update involves distributed locking mechanisms [14] that result in a
severe impact on the performance. However, dealing with small applications and
a straightforward amount of clients, so that the interactions between the actors in
the environment are predictable, the system will be balanced and stable. As soon as
one may think of adding arbitrary more clients it is easy to notice that the number
of requests will increase inevitably which finally leads to more updates in order to
maintain consistency. Conversely, adding a whole server involves complete repli-
cation of all data. This approach suffers from too much synchronization and hence
cannot cope with scalability and adaptiveness confronted in an open distributed
context. In addition one may notice that the storage space is, however, limited and
thus a spatial distribution is more suitable.

Tuplespace
server A

replicate

update
Tuplespace

out
server B

Figure 3: Full replication (according to [30])

Intermediate replication: Finally, the intermediate replication (see Figure[) is a more so-
phisticated approach since it profits from previous mentioned models and combines
advantages like physical partitioned data while avoiding a single point of failure.

12

1. Introduction

The shape is formed like a grid which consist of in- and outbusses. Data which
should be stored in the network gets replicated among all nodes which are in the
same outbus. Thus the synchronization only takes place on a few nodes in contrast
to the full replication strategy. Analogous, the process of finding and retrieving tu-
ples is only performed on the inbus. Therefore all nodes belonging to this bus needs
to be updated in order to be consistent. However, the replication or removal of data
includes locking mechanisms but they will be only performed on particular nodes
while the remaining ones stay in idle mode waiting for new requests. In fact, this
strategy behaves well compared to the previous mentioned ones since it provides
concurrent data access, fault-tolerance established by obtaining as many physical
data copies as number of inbusses, spatial partitioned data while minimizing the
synchronization effort. It is the most general concept; one obtains centralization by
reducing the number of nodes exactly to 1 (outbus = inbus). On the other hand full
replication can be achieved by restricting the outbus to 1 containing n nodes and
thus n inbusses. An implementation of this model is proposed in [53]. Although,
the architecture is more suitable and seems to be robust, the model gets insufficient
by strongly increasing the number of in- and outbusses since the synchronization
overhead tends to grow rapidly.

Tuplespace
server A1

Tuplespace
server A3

Tuplespace
server B3

update

replicate

Tuplespace
server B2

replicate

Figure 4: Intermediate replication (according to [30])

None of the aforementioned approaches fit in the context of large-scale distributed sys-
tem environments since they cannot cope with scalability, flexibility, mobility and adap-
tiveness. Finally, extensive researches in the field of LINDA systems presented that due to
the weakness of these architecture, one has to try a completely different way in order to
solve problems and obtain real openness (cf. [31, 30| 52]). Thereupon, researchers got in-
spired from biology by observing the natural behavior of bees, termites and ant colonies.
All of them exhibit a pretty decentralized behavior by interacting very egoistic with the

13

1. Introduction

environment. According to basic studies of ants it is noticeable that the colonies are very
scalable. They can grow to enormous size and still behave organized and effective. How-
ever, the characteristic of those colonies are not focused on the individual (a single ant),
but rather on the collective. One ant may fail, but that is not important for the system as
it already involves a specific quota of, somehow, misbehaving ants. The principle of the
individual is based on local and easy decisions. There is neither a centralization involved
in the system nor a coordinator which tells the ants what to do.

Observing the natural behavior of ants, one may notice that they have a central point
- the ant hill - where they meet, where they bring food to and where they stay. From
this location they roam around, exploring the environment, detecting food sources and
collecting nutrition as well as suitable things, e.g. for building and expanding their nest.
Ants are very productive; once in their lifetime they obtain a specific position in their
community in order to serve and maintain the collective. The type of jobs reach from
collecting, hunting, cleaning to caretaking ants to name just a few. While the first two
mentioned take place outside the last two ones occur inside the ant hill.

However, the intelligence of an ant is rather pure and thus its complexity is small.
But exactly this behavior requires only little computation and therefore results in fast
decision-makings. Conversely, studying the organization of a whole ant colony, one may
notice that they act very collective; they are able to solve complex problems. Each ant
has its specific function in the society. That is the reason why they can grow to enor-
mous size and still be very effective. Researchers adapted these behavior and applied
it to the field of computer science. One can find several approaches using the so called
swarm intelligence in [5} 16, 25 41] which belongs to a special part of artificial intelli-
gence. In contrast to conventional LINDA systems exhibiting the typical data-oriented
view SWARMLINDA presents a radically new concept: one can understand the domain as
a two dimensional space which consists of servers (tuple spaces), connections between
them (links) and the individuals (ants). There are two types, the tuple- and template-ants.
The first one carries information that should be stored somewhere in the network. The
other one carries a template and is looking for matching tuples contained in the tuple
spaces. They find their way using pheromones which can be tracked by the ants. Tuple-
ants leave a specific scent on their way based of the type of the carried tuple. Therefore
template-ants can track these trails and follow the tuple-ant. With a high probability it
moves in a direction where it will find matching tuples. On the other hand tuple-ants
can also track these pheromone trail since they are interested in collecting and clustering
same information in the same region. Followers are reinforcing existing routes by increas-
ing the amount of pheromones. In particular, there is a probability involved in the system
with which they decide to follow an already taken path or if they try to explore a new
route. However, this behavior leads to finding several paths from a source to the sink and
thus optimal trails will be found. The ants are tending to use the shortest path and hence
reinforcing this trail. Compared to the nature, if there are obstacles in their way, the ants
are tending to find new routs to their ant hill (sink) by exploring alternative paths. Ap-
plied to computer science the individuals jink to another neighbor if their main route is
unavailable, e.g. due to a broken network cable or a server failure. The system is based
on easy goals (collecting items, drop them in an appropriate environment so that it fits in

14

1. Introduction

the context of existing objects around and find and retrieve them). This simple routines

result in a, surprisingly, very fault tolerant behavior. Swarm-like approaches are based on
(cf. [31, 12, 52]):

Simplicity: Since the main objective of the extension of conventional LINDA systems and
the introduction of swarm intelligence is to cope with scalability and thus allowing,
at each time, to add as many nodes as desired without impacting the system per-
formance, one basic requirement is to keep the system simple. The acting processes
(ants) should be very simple in their behavior; they only have a few simple routines
for collecting as well as retrieving tuples including mechanisms for finding optimal
trails. The combination of a large amount of individuals performing simple tasks
by showing an extreme selfish (decentralized) behavior leads to the emergence of
complex situation solving possibilities while minimizing resource usage.

Dynamism: A required property of large-scale open distributed systems is dynamism
since the environment is changing rapidly. Information objects can move inside the
network, so that one cannot predict in advance the location of a specific tuple tu at
a given time. If tu is at time t; at node Nj, it may be at N; at t,. Therefore the tuple
finding mechanism postulates some level of dynamism to find the tuple, in any case,
independent on the location where it currently stays. If a tuple moves to another
location template-ants should not need more time to perceive the tuple, in average
the search duration should be take less since the movement tends to improve the
system organization and clustering without indicating more computation overhead.

Locality: The basic principle of SWARMLINDA is locality. The individuals - independent
on their task - roaming around in the network due to accomplishing their own objec-
tive. At each current location they interact with the local environment, i.e. the tuple
space and the surrounding neighbors. Their objective is to finish its task quickly
and successfully. However, if the current tuple space does not contain appropriate
information they observe the surrounding neighborhood and continue their search
in the direction in which they assume the highest probability of accomplishing its
task. The decision to take a particular path is chosen probabilistically.

However, based on the mentioned principles pheromone trails disappear over time
since tuples can be shifted inside the network which invalidates its current position. With
the dwindling of the scent the system is able to find new routes and shrinking the impor-
tance of already taken trails. In fact, recent strong used trails are still more preferred by
ants than rare used trails.

The swarming approach satisfies all the requirements for large-scale distributed sys-
tems while conventional LINDA systems fail due to its inflexible behavior. SWARMLINDA
is scalable since the individuals does not care about the amount of nodes; they only inter-
act with their local environment. In case of node failures or changes due to the environ-
ment the system does not need to perform a global update; instead it continues running
and is not affected in its behavior since it adapts local changes immediately.

15

1. Introduction

1.4. Objective

This report is about to evaluate the proposed algorithms and system behavior of SWARM-
LINDA. In order to perform the required tests the report is based on a simulator which
comprises the first part of the work. The implementation is done in NetLogoE| [61] com-
pleted with additional Java-Code which extends the simulator and is integrated in the
NetLogo source code.

The work is based on proposals and research inspired by [12, 31 30, 54, 52, [10, 11}
9, 8]. The report shows evaluations from existing algorithms and presents new adapted
algorithms in order to improve the system performance. In particular, the report focuses
on establishing a fast clustering while minimizing the system entropy (degree of order
in the network). The tuples should be spread among the nodes in the network, so that
homogeneous clusters arise while achieving heterogeneity between the nodes. The tuple
types should be geographically distributed.

However, the report also evaluates the basic idea of SWARMLINDA. It examines the
postulated behavior of adaptiveness and scalability while operating fully decentralized.
Distributing and retrieving of tuples are only done by simple local interactions. Trails
to sources are found using pheromones. The report shows how the tuple finding and
distributing mechanisms proceed under certain circumstances.

The report shows some behavior that was expected in advance due to the characteristics
of swarm intelligence. With it there is one part of the project confirming foreseen issues
while the other one comes along with significant characteristics that appeared during the
execution.

1.5. Structuring

The report starts with the introduction which gives the reader detailed information about
LINDA and SWARMLINDA systems. In particular it provides the historical background
of LINDA systems. It exhibits the basis idea of the coordination model and presents a
plethora of approaches ranging from a single tuple space, to multiple tuple spaces apply-
ing the different distribution mechanisms (see section[I.3). After describing the scalability
problems of conventional LINDA systems a motivation is given introducing and justify-
ing swarm intelligence. Finally, it defines the objective of the report and explains the part
which should be examined.

Section 2] describes in detail the algorithms which take place in a SWARMLINDA system.
In particular, it deals with tuple distribution, retrieval and movement.

Section (3| covers all implementation and development details. It describes the used
IDE in which the simulator is implemented; NetLogo which also provides the runtime
environment for the simulation itself and Eclipse for developing extensions for the simu-
lator in Java. Further it describes the simulator for generating scale-free networks based

2NetLogo is a cross-platform multi-agent programmable modeling environment which is implemented in
Java
3Integrated Development Environment

16

1. Introduction

on the approach of Barabasi [3]. The generated networks can be exported and imported
in the SWARMLINDA simulator and thus defines the environment.

Before evaluating the proposed algorithms of SWARMLINDA section 4| deals with im-
proving metrics and algorithms. At first, the work focuses on modifying the drop prob-
ability for a tuple carried by an ant in order to achieve a better clustering, i.e. increasing
the level of homogeneity of tuple spaces. Further on, this section handles the modifica-
tion of the spatial entropy of the network by introducing a weighting factor. This creates
a more realistic scenario in contrast to applying the unified entropy. Finally, the section
closes with the modification of the pickup probability, applied in the tuple movement
phase, and the anti-overclustering strategy introducing a threshold and therefore setting
an upper limit for the amount of tuples in a tuple space.

Afterwards section[5|analyzes and exploits the collected data from the test runs. It starts
with the development of the network, i.e. the training effect, for tuple storage and re-
trieval in dependence on time. In detail, it shows the improvement of finding routes from
sources to sinks since pheromone trails emerge from ants already taken certain paths. Af-
ter some time the reinforcement of often used routes result in finding an optimal path
between two locations. The individuals are able to track specific type of scents for mov-
ing towards a certain direction and thus the time or amount of hops needed for arriving
at a particular node is minimized. Moreover, the metrics discussed in section |4/ are com-
pared in their original and modified form. The result points out why the changes behave
more appropriate than its original counterpart. Finally, it exhibits the difference between
applying some sort of seeding in the beginning of the training of the network or starting
with an initial empty one. In this scenario there are no pheromones, tuples or ants in the
test environment.

In the end, section [f|summarizes the main aspects of the report and gives a conclusion
of the work. It presents the basic issues of the research. It closes with ideas for future work
that can be done in this specific part of swarm intelligence.

17

2. Algorithms In SWARMLINDA

2. Algorithms In SWARMLINDA

In the previous section the development from conventional LINDA to SWARMLINDA sys-
tems is described. It is given a historical evolution as well as severe problems under which
LINDA is suffering from its architecture. SWARMLINDA is proposed in order to cope with
the mentioned issues and promises solutions for large-scale distributed systems.

This section deals with the applied algorithms in SWARMLINDA. First, the distribution
of tuples (storage) is listed. Further on, it continues with tuple retrieval and finally closes
with tuple movement. Before describing the algorithms it may be necessary to introduce
some abstraction terms for avoiding confusion:

Individuals These are the active entities, mapped to ants, which roam around in the net-
work performing some tasks. The individuals are the executing instances of the
algorithms.

Environment The world in which the individuals live, where they have their ant hill (tu-
ple spaces) and the roads (links) connecting several molds is called the environment.
Ants are getting born in some ant hill as well as die somewhere in the environment.

State The state describes a particular situation (snapshot) of the environment of the
system. This involves locations of the ants (including their moving direction, their
cargo and their age), number of nodes, number of links (including the kind of con-
nectivity) and number of tuples and their storage location. The individuals can
change the state by modifying the environment, e.g. convey some tuples to other
places, consumption by a requester, etc.

2.1. Tuple Distribution

This section deals with the distribution of tuples among the nodes in the network. Look-
ing at the previous mentioned models (see section[I.3) designed in order to improve and
extend conventional LINDA systems it is obvious that there is always a compromise be-
tween performance, scalability and synchronization. Adding more servers to the network
comes along with an increase of locking and synchronization mechanisms. Centralization
is the only approach which is easy to maintain but does not scale well with a rising num-
ber of clients. However, the usage of hash functions tells the respective system where to
physically store the information objects. Although hashing is a fast and well developed
technique it does not cope with an increase of servers; it will suffer from performing re-
hashing in order to integrate new system resources. But large-scale distributed systems
postulate openness. Servers should be added on the fly while on the other hand they
can disappear for some amount of time due to node failures or unavailabilities based on
network problems (bad connectivity).

The environment is dynamic. The state is changing very often. Thus the system should
handle addition and removal of system resources (nodes) easily. On the other hand the
information objects are also dynamic. They are not assigned to a particular location in
advance; they find their place during system execution. If they do not feel comfortable

18

2. Algorithms In SWARMLINDA

in a specific location they are able to get picked up by some ant process and transfered
to another node. This is the world of a SWARMLINDA environment. There is no static
behavior like in LINDA. There is no synchronization or locking mechanisms involved.
There is no central instance that is responsible for taking care that new system resources
should be covered by replicating or partitioning an amount of tuples there. The active
individuals (the collective) assures that integration. There is no particular ant which deals
with the job; instead the community is responsible and therefore there might be one or
several arbitrary individuals which explore the new resource more coincidently rather
than purposely.

Biological ants show a typical behavior in collecting and storing food. They keep their
items sorted by type. For instance they bring different materials for expanding their
nest; they also store food, larvae, eggs, etc. Each similar item stays at the same location
while different types are kept separate, thus forming clusters. This organization refers
to brood sorting [15] used by ants. This process is applicable independent neither on the
amount of individuals around nor on the amount of items already brought and stored in
the ant hill. Therefore it is very scalable and is not bound to a central coordinator.

This based swarm behavior is adapted to SWARMLINDA. The system consists of two
different ant types: tuple- ant template-ants. The first mentioned one are the individuals
that operate here. They carry a specific tuple and trying to store it somewhere in the net-
work where it fits appropriately. The out-primitive is the command for instructing an ant
to store a tuple in the environment and thus initiates tuple distribution. For implementa-
tion issues, the command may have the method signature out(pTuple). Each client which
is connected to the SWARMLINDA network is able to invoke the command. Abstractly,
only a connection object is needed implementing the method. The parameter pTuple is a
local instantiated object holding arbitrary values. This information object is an n-tuple of
the form (v1, vy, ..., v,) with Vo; Ju € U. U is the basic universe containing all data types.
It is important to be aware of the ordering of the tuple since (a,b) # (b,a). They are not
commutative; there is also no symmetry.

As mentioned earlier (see section ants track pheromones in order to find tuples
or to store them at a location where similar ones are around. Based on the characteris-
tics of the tuple, e.g. the number of parameters and their data types, it indicates a spe-
cific kind of tuple. In other words it matches a certain template. For instance the tuples
(1, 2) and (12,43) are similar since both of them match the template (Integer, Integer).
Hence a match is based on the same number of parameters as well as their data types,
showing the same ordering. (Integer, Integer, Integer) is therefore a different template
and does not match. There is no commutative behavior; (3.4, “This is a string”) and
(“This is another one”,10.75) is thus matching template (Double, String) and (String,
Double). In fact, all four mentioned templates are dissimilar. The pheromones for track-
ing tuples are based on the composition of the templates. Thus a scent trail indicates an
occurrence of similar tuples.

Let us assume a client is connected to a server s and executes an out command in order
to store a tuple tu in the SWARMLINDA network. Generally speaking, each out involves
the following steps:

19

2. Algorithms In SWARMLINDA

. Technically the ant gets born on the server s at which the client performs its request.
At its birth the tuple is already assigned to the ant. Based on the matching template
the ant has a specific scent. In order to mark its trail the ant drops some pheromones
on its current location. Thus surrounding ants will be attracted and are able to per-
secute the out performing ant. The idea is not only to cluster the information objects,
on a lower level the ants should be already clustered in advance in the same spatial
region and hence the probability of emerging tuple-clusters is more likely.

. The ant looks at its current tuple space whether to store the carried tuple. Since the
individuals follow the principles of locality and simplicity the decision is made of
the concentration that means the constitution of templates at the local node (see
Equation 4 page[22). Swarm based systems deal with probabilities. Thus the behav-
ior is predictable but in a specific situation, one cannot say for sure how it ends up.
However, the probability rises if the concentration of tuples matching the same tem-
plate as the one carried is high. With it, the ant forces the environment to stay sorted
and ordered in terms of clustering. This leads to a balanced system and reduces the
effort of retrieving and storing tuples.

. If the ant successfully drops a tuple at the current tuple space it spreads phero-
mones on the node and all surrounding neighbors in order to reinforce the location.
The directly connected servers also notice the storage and update their scent ta-
bles. This circumstance reflects the biological situation since natural ants are able to
track pheromones over a certain distance. It is not necessary that the ants should
stay exactly side by side. In contrast to the born or movement situation where they
drop pheromones only locally, the "'mission accomplished” case should be higher
weighted. In fact, the tuple seems to fit in the context and therefore the locality
might be also of interest for surrounding ants. After finishing its task there is no
further need for this ant and thus it dies.

. In case that the ant decides against storing the tuple it starts moving and heads for
the next tuple space. Before setting itself in motion it has to choose one of the adja-
cent links connecting the surrounding neighbors. The principle is to follow already
formed trails that has been taken by other individuals. Therefore the ant scans its
neighborhood and decides stochastically which link it should take. The probability
to move to a particular node is proportional to the amount of accumulated phero-
mones. Of course, only the scent which is similar to the tuple carried by the ant is of
interest for the path selection. (see Equation[5, page[25).

. Once the ant chose a particular link and went to the connecting node it gets older. In
detail, there is an aging mechanism involved in the system. At the time the ant gets
born a time-to-live (tt/) parameter is assigned to its properties. It limits the lifetime
of the individual. Like biological ants they get born, start a career’ in obtaining a
specific position in the collective and performing their job until they die. Analogous
the individuals behave the same way. Its age is an assurance mechanism that they
get ‘replaced” sometime by new ones. In particular, with a restriction in their lifetime

20

2. Algorithms In SWARMLINDA

the ants are forced to drop their carried tuple at last when they die. Each time when
an ant moves to another node it looses one of its life-points and thus gets older.
Afterwards it continues the iteration with item 2.

Following the aforementioned steps it is likely to obtain a state of distribution of tuples
among the nodes as shown in Figure 5| Since all actions which have been taken place in
the scenario of a SWARMLINDA system are probabilistic and there is a stochastical influ-
ence, one cannot predict in advance a deterministic ending. But Figure |5/ indicates one
possible state of the environment. There is no guarantee that a new launch of the scenario
will somehow generate exactly the same result. But it is very likely that it will look very
similar. The small quadratic shapes represent nodes containing tuple spaces connected
by links. Same colors indicate tuples matching the same template. Thus a region of same
colors represent clusters. Similar tuples stay in proximity (surrounding neighborhood).

Figure 5: Idealistic distribution of tuples forming homogeneous clusters in a P2P SWARM-
LINDA network (adapted from [12])

However, the amount of pheromones on each node disappears over time in order to
maintain adaptiveness. Tuples can be moved around in the network (see section 2.3} page
due to form new clusters as well as achieve more homogeneity inside the cluster
by transferring misplaced tuples to other locations. If the scent trails are static the sys-
tem will get lost in chaos since misleading trails would confuse the individuals. Thus it
is necessary to introduce a disappearing of pheromones like in real nature given by an
evaporation-rate (1 — p), with 0 < p < 1 (see Equation I)):

Phi(t+1) = Phi(t)(1 - p) 1)

At each time (t 4 1) each node i has a percental decrease of pheromones given by the
evaporation-rate.

21

2. Algorithms In SWARMLINDA

2.1.1. Drop Probability

As already mentioned the decision of storing a tuple in a tuple space depends on the
concentration. That is the amount of tuples similar to the one carried by the ant. In order
to classify an information object as similar one needs a similarity function. In this case the
function is defined as follows:

1 if template(t.) = template(t;)
0 otherwise

sim(tc, ts) = {)

The similarity is determined by comparing the template of the carried tuple t. and the
stored tuple t; which is located inside the tuple space TS. If the templates are not equiva-
lent then the tuples are different. Applying the function for computing the concentration
C (cf. [10]) involves Equation [2}

C= Z sim(tc, ts) 3)
Vts€TS

The probability of dropping a tuple Py, at a tuple space is then defined as:

2
Pdrop = <?CK) 4)

K represents the tt/ value. It is obvious that the probability of dropping the tuple rises
if the age of the ant increases and with it the t¢I value shrinks. One can associate this
behavior with the property that the older an individual gets the more it wants to finish
its task and get retired. In biology muscles get weak and thus load seems to be heavier.
Finally, the ant is able to dispose the tuple when its age tends to get maximized and
thus the tt] value reaches 0. In this case Equation [4] returns 1 and the tuple gets stored
automatically. Focusing on the concentration C it is easy to notice that Py, increases
while C grows by holding K fixed. The likelihood of a tuple to get stored, thus, correlates
with C. Tuples get attracted by those tuple space since they already form a big cluster.

2.1.2. Path Selection

If the ant decides against storing the tuple it continues moving to the next node. In order
to establish clustering of tuples one may notice that it makes sense to let the ant head in
the direction where it is very likely that similar individuals are around. That is achieved
by selecting the node containing the largest amount of pheromones which is similar to
its own. Figure [f| shows the natural behavior of ants which are looking for food or trying
to store some items in ant hills. The circle shapes indicate nodes containing tuple spaces
which are connected by links. The crossing ants represent the individuals which are head-
ing towards a node. On the left side of the network one may notice a huge amount of
several ant types. The colors indicate different kinds of tuples or templates. This can be
either tuple- or template-ants. It does not matter to which one they belong to because both
of them trying to find locations with similar tuples around. Tuple-ants try to store their
carried tuple; however, template-ants trying to retrieve. As already mentioned colored

22

2. Algorithms In SWARMLINDA

individuals are interested in the same kind of tuple. The black nodes are neutral. They do
not contain any types of tuples, but they may contain pheromones. The node color is an
indicator for emerging clusters only. The ants on the left side are coming from miscella-
neous servers. They are not grouped yet, which may infer to the following assumptions:

e They have just been born in the network on one of the previous servers, respectively.

e The places they visited before were not attractive; since attractiveness depends on
their task, they could not track suited pheromone trails.

e A small fraction of them may scout-ants; they explore the environment. By doing
this they may find new suitable spots.

e There was some level of pheromones but they were born geographically isolated
from each other (e.g. in border regions). Further on, the emerging cluster are located
in the center of the network. Therefore the ants have to move towards this spot by
following scent trails. They come from different directions and finally meet in the
center.

But to abstract away from the circumstances of their arrangement, one should pay more
attention to the right side that are the links connecting the central node with the colored
ones. Due to pheromone trails the individuals get separated from each other and form
new groups. They get attracted from arising clusters which are represented by the colored
nodes. However, a SWARMLINDA system deals with probabilities; all actions which have
been taken place are based on certain random factors. In fact, it is possible that an ant
heads towards a node which is not appropriate for its purposes. But that does not impact
the system. Contrariwise, it enables a new route to the sink which may lead to take a few
hops more. It provides an alternative path. This involves some level of load balancing as
well as establishing fault tolerance. If the main route becomes a bottleneck or disappears
due to a failure, the ants tending to use the alternative path as shown in Figure[7]

The graph in Figure shows active individuals carrying objects from node B (food
source) to node G (ant hill). As one may see, most of the ants moving over node D that
is the shortest path to the sink based on hop counts. It is also noticeable that some ants
do not follow the emerging ant trail, they taking alternative routes and thus exploring
the surrounding neighborhood. In fact, these individuals may take longer in terms of
time for arriving at the ant hill. Conversely, if the amount of ants on one link exceeds a
certain threshold they can cause a congestion since the network traffic rises rapidly. In
this case, although it is the shortest path, they require more time for arriving at the sink.
The scenario is equal to a road which is used by too many cars. At a certain level it will
result into a traffic jam. In order to find a remedy, it is necessary to build beltways for
redirecting a partition of the traffic. Thus it makes sense to balance the amount of ants by
spatial separation.

By doing so the individuals are aware of alternative routes. Therefore they will take
the additional paths for heading towards their destination. Anyway;, if the main ant trail
becomes blocked due to a broken network cable the ants are able to use the alternative

23

2. Algorithms In SWARMLINDA

Figure 6: Self-organization of roaming ants in a SWARMLINDA network achieved by
tracking pheromones

route. Even worse, when a complete server failure appears like in Figure then all
connecting links are also lost. Node D disappears but it is obvious that the individuals
tracking pheromones on node C as well as F since these servers have already been vis-
ited by former ants as in Figure Now, most of the individuals taking this route and
forming a new ant trail which is under the given circumstances the shortest path from
B to G. In fact, a few ants exploring again the neighborhood as they did before the node
disappeared. If the connection from B to C breaks down then the ants are forced to take
the route via node A. That is the last link that can disappear otherwise the graph is not
coherent anymore and thus some nodes may not be reached by ants. However, since this
example is only a scenario for demonstrating the path finding, a real SWARMLINDA envi-
ronment usually contains much more nodes and connectivity.

24

2. Algorithms In SWARMLINDA

Oe

(a) Roaming ants carrying tuples from node B (b) Alternative routing over node C and F due to a
(source) to node G (sink). Shortest path (number failure of D.
of hops) is chosen via node D.

Figure 7: Path finding using pheromones. Node failures and resulting disappearance of
connections does not affect the routing reliability and robustness of a SWARM-
LINDA system.

The selection of the next node is determined by applying Equation 5| As mentioned
earlier the path selection is based on a probabilistic function. The probability of taking
the link from node i to j is given as follows: the numerator is the summation of the con-
centration C and the amount of pheromones Ph of j divided by the sum of C and Ph of
all nodes 7 in the neighborhood NH of i. Ph represents the kind of pheromone which
matches the tuple carried by the respective ant. Usually, nodes containing a huge amount
of tuples also hold significant pheromone trails since it is very likely that these nodes are
involved in many interactions with tuple- or template-ants. However, it is also possible
that a specific node I is not visited for some time. If there is neither a consumer nor a
producer of a specific tuple type which is located at /, there would not be any much ants
traveling to [. In the scenario that after a certain time a consumer wants to retrieve a tuple
located at I it may be hard to find it since the pheromone trail already disappeared. In
this case the ants, nevertheless, get attracted from [/ since it contains a huge amount of
matching tuples. On the other hand one can assume that a node contains a big amount
of pheromones but it does not contain tuples of interest. In this case it is likely that a sur-
rounding node contains tuples of interest, so that ants get attracted as well by being in
the proximity. However, if the neighbors neither contain any tuples of interest nor any
pheromones the node selection for the next step is performed randomly. There is also a
mechanism which prohibits the ants to move backward that is the direction where they
came from. An exception occurs when this is the only possibility.

- Cj + Ph;
7 Lvnenn(i) (Cn + Phy)

(5)

25

2. Algorithms In SWARMLINDA

2.2. Tuple Retrieval

This section deals with the retrieval of tuples in the SWARMLINDA network. In contrast
to conventional LINDA systems tuples cannot be found using hash functions. Remember,
LINDA advocates to sense tuples by hashing: node_id = H(tuple). As shown in Figure
a tuple is found by applying a hash function. The resulting value tells the physical
storage location (node_id). Analogous to tuple distribution this mechanism suffers under
performing rehashing while servers are added on the fly as well as get removed. On the
other hand the function delivers a unique ID and thus it is hard to form clusters so that
similar tuples can stay in proximity to each other.

node_id hash value

/\/ Hituple_y)
1 Htuple_x)

2 Htuple_y)
3 H(tuple_z) .

e

9

_ | e
o S Il Tsme
. =, L = =
o« |/ .
sl o<
®

Figure 8: Retrieval of tuples via hashing in LINDA

SWARMLINDA instead does not use look-up tables in order to find and retrieve tuples.
Clients are able to connect somewhere with the SWARMLINDA network. They submit a
request and query a specific kind of tuple. The server to which the client is connected to
instantiates a mobile agent (ant) analogous as described in section [2.1] (page [I8). In par-
ticular, the request to the server invokes the SWARMLINDA in- or rd-primitive. Although
they are doing almost the same, the semantic is slightly different. While in retrieves the
actual information object by removing this item from the respective tuple space and thus
changes the SWARMLINDA environment, rd only takes a copy and returns it to the re-
quester. For implementation issues the method signature may look like in(pTemplate) or
rd(pTemplate). Similar to the out-primitive only a connection object is required for per-
forming the command. The parameter pTemplate is a local instantiated object containing
the search criteria. The structure of the template is similar to the one of the tuple since
both of them appear in the form (vy, vy, ..., v,) with Vo; Ju € U. But tuples are forced to
have concrete values from U.

26

2. Algorithms In SWARMLINDA

Templates, however, can use some abstraction level, they can use data types as values.
This allows the requester for searching a specific tuple like (1, “This is a string’') as well as
(Integer, String). Also mixed forms are possible like (7.5, String). Analogous to tuple dis-
tribution the template objects are not commutative as well as symmetric, (a,b) # (b, a).
By submitting a request with template parameters like (19.5, Double, Integer) the follow-
ing tuples would match although they are different: (19.5, 7.8, 10), (19.5, 34.1, 3). The
tuple which appears first to the searching ant is chosen for retrieval. During looking
for tuples the individuals orientate themselves by tracking pheromones from previous
crossed ants. While tuple distribution uses tuple-ants as active instances, tuple retrieval
focuses on template-ants as the operating actors. They carry a template and trying to find
a matching tuple. The server to which the client is connected to represents the ant hill. On
implementation level the ant hill is a factory object which is able to instantiate the ants.

The routing mechanism in order to sense tuples is similar to the one mentioned in
section [2.1| (page [18). However, additionally to tuple distribution which is a one way ap-
proach - tuple-ants heading from the source to the sink - tuple retrieval, in contrast, deals
with finding a return path back to the ant hill (start and instantiation location) where they
came from. Since the client wants to obtain the tuple the ant is responsible for delivery.
In order to guarantee that the individual is able to find the way back it has a memory. So
it keeps the visited nodes in mind while it performs its task. In [30] is shown that ants
own a small memory and only remember their last few hops and continue finding their
ant hills (start locations) by tracking the significant scent of the ant hill. In contrast, this
study is based on keeping each visited node in mind. Once an ant is on their return path
it remembers all hops back to its birth place. It avoids tracking scents of the respective ant
hill. As mentioned in section (1.5 (page(16)) the simulation is based on networks which has
been generated according to the approach of Barabasi [3]. Those networks often referred
to as social networks lead to a small-world phenomenon [34]. The characteristic of the
arrangement of edges and vertices shows the six degrees of separation [23]. That means
that each node can be reached by any other node in the network by using six hops in
average. According to this principle the template-ants remember each visited node.

Let us assume a client is connected to a server s and executes an in command in order
to retrieve a tuple tu from the SWARMLINDA network (see Figure 9 page 29). Generally
speaking, each in as well as rd involves the following steps:

1. Technically the ant gets born on the server s at which the client performs its request.
The submitted query parameters are transformed to a template which is assigned to
the ant at its birth. Based on the template the ant has a specific scent. At its instanti-
ation the ant obtains an initial empty memory.

2. In order to remember the visited nodes it adds its current location to its memory.
The ant looks at its current location whether the tuple space contains a tuple which
matches the template it is carrying. The best case appears when the ant finds an ap-
propriate tuple at the first server it visits. It would not need to roam around in the
network and has immediately done its task. This optimizes the request by minimiz-
ing the query time. On the other hand it saves bandwidth of the network.

27

2. Algorithms In SWARMLINDA

3. If the ant successfully found a tuple it depends on the executed command how to
proceed. While in removes the chosen tuple from the tuple space, rd only takes a
copy and leaves the actual tuple at its place. However, after obtaining a suitable
tuple the ant finds its way back to the ant hill by using its memory. Once it starts
its return path it drops pheromones on each node. Therefore a successful trail is
marked for finding similar tuples like tu.

4. If the ant cannot find an appropriate tuple it moves on and heads towards the next
tuple space. The movement phase is similar to the one in tuple distribution. Before
the ant sets itself in motion it has to choose one of the adjacent links connecting
the surrounding neighbors. The principle is to follow already formed trails that has
been taken by other individuals. Therefore the ant scans its neighborhood and de-
cides stochastically which link it should take. The probability to move to a particular
node is proportional to the amount of accumulated pheromones. Of course, only the
scent which is similar to the template carried by the ant is of interest for the path
selection. (see Equation 5, page [25).

5. Once the ant chose a particular link and went to the connecting node it gets older.
Similar to tuple distribution its tt/ value decreases by one. If the ant cannot find a
matching tuple within its given time it dies in the network and the request fails.
In this case one can assume that there is no suitable information. The limitation of
its search avoids to much traffic in the system. Otherwise they would consume to
much system resources. Additionally, it makes no sense after some time to continue
the search. The probability that there is an appropriate tuple somewhere tends to
get very small. However, if the ant is still alive it continues the iteration with item 2.

Focusing again on the diverse implications of the two retrieval mechanisms leads to the
following: the semantic varies since after performing an in related ant processes searching
for the same tuple may not find it here. Instead they have to move to another location
and thus influencing the system slightly different. They remove a tuple elsewhere and
drop scent on other nodes. There might be an assumption that rd behave better since the
information is still in the network and thus can be found by other processes as well. But,
conversely, if one thinks about freshness of information objects in balances the system that
in average the tuples cannot get old since they already have been removed. Therefore
fresh information objects can be spread in the network. By searching tuples it is very
likely that these objects get retrieved. The SWARMLINDA environment is affected and
changed to a diverse state. One cannot say in general, if the modification behave better or
worse. There is no abstract evaluation for the commands. However, it would make sense
to review in and rd dependent on the context concerning a specific postulated system
behavior.

As mentioned before the ant drops some pheromones on the visited nodes after it suc-
cessfully found a tuple. In order to express the direction which has been taken by the
ant the amount of pheromones differ for each involved node. The memory of the ants is
a list: memory(ny, ny, ..., ng). The visited nodes are added at the end. Therefore 1y is the
node where the tuple has been found while 7, is the ant hill. The amount of pheromones

28

2. Algorithms In SWARMLINDA

-

e
' L]

CLIENT PROCESS

Figure 9: Retrieval of tuples by tracking pheromones in SWARMLINDA (adapted from
[301)

which should be dropped on the nodes depends on the compression coefficient (1 — p),
with 0 < p < 1 (see Equation [)). It defines the level of decrease of pheromones for the
respective nodes.

Phdrop(nk) =1
Phdrop(ni—l) = Phdrop(”i)(l —p)

The intention for introducing the compression coefficient is to emphasize the proximity
to the source of successful matched tuples. Figure [shows the marked ant trail from the
ant hill S1, to which the client is connected, to the destination node Si¢. By reaching Si¢
the ants memory comprises the following nodes: memory = (S1,S2,S7,Ss, S, S15, S16)-
Afterwards it picks up the tuple and returns to its ant hill and leaves some amount of
pheromones according to Equation [6| at the nodes it remembers. Assume that the scent
tables of the involved nodes are empty. Finally, they get updated as shown in Table

(6)

node 51 Sz 57 58 59 515 516
scent value || 53 | 59 | 66 | .73 | .81 | 9 | 1

Table 1: Pheromone distribution among the visited nodes, with p = .1

This mechanism of distributing the amount of pheromones among the nodes increases
the probability that ongoing and prospective ants will find the new discovered tuple
space more easily. Assume a new client process which is connected to S3, performs an
in and looks for similar tuples as the one in the aforementioned scenario. According to

29

2. Algorithms In SWARMLINDA

the principles of SWARMLINDA’s in primitive the ant gets born on Ss. It cannot find a
matching tuple, thus it scans its neighborhood. Looking at the scent table for node S1, S»
and Sg (see Table 1) the ant has to decide where to go since all neighbors contain phero-
mones. Although the individual may go to S; or S; it is more likely that it will continue
its search by heading towards Sg since the amount of pheromones is even larger. Apply-
ing Equation [5] (page [25) the probabilities for moving towards to one of the three nodes is
shown in Table

node Sl 52 59
% 27 | 31 | 42

Table 2: Probability distribution between Sq, S and Sg applying Equation 5| (page

Anyway, assume that the ant decides against moving to Sg and instead follows the trail
to S1 or Sp. In fact, first the ant dissociates itself from its destination. But this does not
lead to a bad impact since it is very likely that the ant will move from S; to S in the next
step since there is no other scent in the neighborhood of S;. Arriving at S, the ant has the
possibility to head for Sy or Sg. Again, it is more likely to choose Sg. Although it took a
detour over S; and S, the ant may go on to Sg and thus balances it since it does not move
over Sy and Sg.

However, the worst case for the ant is the trail [S3, S1, S», Sy, Sg, S9, S15, S16]- In fact, that
would even take longer than the previous ant needed. But after the ant finds its tuple
it reinforces again the trail. Thus the scent tables get updated as shown in Table 3| The
evaporation of pheromones are left out for simplifying the scenario. However, after some
ants appeared in the network and were looking for similar tuples the trail will get more
significant and thus the probability of taking the shortest path gets more likely.

node 53 Sl Sz 57 58 59 515 516
scentvalue || 048 | 1.06 | 1.18 | 1.32 | 146 | 1.62 | 1.8 | 2

Table 3: Update of the pheromone distribution among the visited nodes, with p = .1

2.3. Tuple Movement

This section deals with the movement of tuples in the SWARMLINDA network. The afore-
mentioned mechanisms shows SWARMLINDA’s way of distribution as well as retrieval
of tuples. The algorithms for performing out-, in- and rd-commands are represented in
detail. Both mechanisms behave in a non-deterministic way and thus one cannot predict
in advance the exact distribution of tuples among the nodes as well as the spatial for-
mation of clusters. Analogous to that it is not clear from which node a template-ant will
bring a tuple. Several executions, although containing the same request, may lead the ant
to different nodes. One can also not foresee in which geographical region clusters will
arise. However, based on the system behavior of a SWARMLINDA certain characteristics
are predictable, e.g. formation of clusters generally, emergence of pheromone trails, etc.

30

2. Algorithms In SWARMLINDA

Assume the following scenario: a SWARMLINDA system is initially empty. The envi-
ronment comprises nodes and links connecting it. The formed graph is coherent. Now,
several out- and in-commands are executed. After some time we take a snapshot of the
system at runtime (see Figure [10).

. 54

I

[11]

Template a(X) M‘

Template ¢(X)
Template d(X)

Figure 10: Snapshot of a SWARMLINDA system at runtime

Like in earlier scenarios the color expresses the kind of tuple (template) which is stored
at the respective tuple space. The number which is assigned to the tuple spaces is the
node ID. Its color represents the majority of tuples matching the same template. Close to
it the amount of tuples is represented by the vertical bars (1) and dots (.). Each bar counts
for ten tuples while the dots represent a single tuple. Most of the nodes are single colored.
In that case the tuple space contains only tuples matching the same template. Thus the
tuple space is totally homogeneous. Conversely, some of the nodes are heterogeneous
since they contain tuples matching different templates, e.g. 0, 6, 9, 24, 30, 42, 45. The
circumstances for the current distribution involves the following;:

o In the beginning (t = 0) the system was initially empty. Without performing seeding
- putting some tuples directly on nodes for setting up the system - there is nei-
ther scent nor tuples in the network. Thus the first ants are not able to orientate
themselves. Therefore they roam around in the environment, their routing is based
on random walks and the probability of dropping a tuple tends to be infinitesimal
(lim(Pdmp — 0)). It is very likely that they finally drop their tuple because they are
running out of time, so they die. As time passes by pheromone trails emerge and

31

2. Algorithms In SWARMLINDA

some tuple spaces get more attractive to some ants since they contain more similar
tuples. This is the result of the scout ants. Ongoing and prospective ants are more
able to scan the environment and transport their tuple to a suitable location. Also
template-ants perform better since they can track pheromones now. In fact, this be-
havior results in a state where some tuple may be misplaced since they do not fit in
the context.

e The nodes in the middle of the network (0 and 6) are the so called hubsﬁ They
form the backbone. The characteristic of hubs is the connectivity since they own the
largest amount of links. If they break down the system receives a severe impact. On
the other hand, if one of the spokeﬂ gets shut down it would only slightly affect the
system, if any. In this case if node 0 and 6 are shut down the network gets separated
into two isolated parts. Thus the graph is not coherent anymore.

However, based on the fact that hubs owns many links the probability that they get
visited by ants is, in fact, larger in contrast to spokes. The probability of visiting
a certain node is proportional to its amount of links. This theory is valid as long
as no pheromones are in the network. If the ants start to spread their scent among
the nodes the probability of visiting a node gets more influenced by the respective
amount of pheromones. Thus the importance of multiple connectivity shrinks. But,
nevertheless, they maintain more relevance than light connected nodes. In Figure
(page one can see that node 0 and 6 indicates more heterogeneity than the
remaining ones. Therefore, one can assume that, especially in the beginning, the
probability of visiting those nodes by ants was even higher than the others.

e One may notice that the distribution of tuples, that is the amount of tuples stored in
the respective tuple spaces, is almost equal. This phenomenon appears because of
the appliance of the overclustering-avoidance strategy which is described in section

(page[75).

The situation that there are somehow heterogeneous clusters does not show an ad-
vantage. It is very likely that tuple- as well as template-ants get attracted by nodes that
contain many tuples matching the same template. Conversely, the tuples which are in the
minority and occur some kind of misplaced are not of interest for most ants. Thereby the
pheromone trails leading to those tuples evaporates fast over time since it does not get
reinforced much. It is, in fact, possible that they rest there for a long time. Since unused
system resources does not result in an improvement it may be better to move them to a
location where they fit in the context. The transportation of the tuples, so that they feel
more comfortable in their new neighborhood, increases the probability that they can be
found by ants. Thereby more clusters achieve homogeneity. Pheromone trails get marked
more significantly. In total, the system performance gets increased by adequately using
the available resources.

4Hubs are located in the center of a network and connecting almost spokes, thus they own many links.
5In most common cases spokes are located in border regions containing less links and are connected to
each other via hubs.

32

2. Algorithms In SWARMLINDA

The tuple movement mechanism is based on a specific kind of ant that performs the
transportation. One can interpret this individual as a combination of tuple- and template-
ants. This new kind is called cleaning-ant since it tries to establish a higher level of order.
Thus its task is to reorganize the environment. That means it collects tuples from nodes
and conveys them to a different location. It tries to find a more suitable place for tuples.
The tuple movement process involves the following steps:

1. The cleaning-ant which is the active individual during tuple movement gets born on
a server s. At its instantiation time the ant is neutral. In contrast to tuple distribution
and retrieval the ant does neither carry a tuple nor a template. Thus it does not emit
pheromones since it is scentless. It only gets an ¢t/ parameter assigned in order to
limit the activity of the ant.

2. Since the objective of tuple movement is to establish a higher level of order the
individual looks at its current node in order to find a tuple which may not feel
comfortable at this location. The decision for picking up a tuple is based on two
factors: the local node entropy and a fitness value. The system entropy defines the
level of order in the network. High entropy values show a chaotic organization of
tuple while low entropies indicate order. However, the node entropy is part of the
system entropy and defines the level of order on the layer of tuple spaces. Section
(page|66) deals with the system entropy in detail. On the other hand the fitness
value indicates how suited is a tuple at its current location. This involves the ratio
between groups of tuples at the local tuple space and its neighbors. For instance,
looking at Figure (10| (page node 0 contains all four kinds of tuples indicated
by the respective colors. The tuple space is comprised of the following groups: 2
tuples of template a(X), 3 of template b(X), 30 of template ¢(X) and 3 of template
d(X). Therefore ¢(X) claims the majority and is directly attached to three further
nodes also owning the majority of ¢(X) (node 33, 36 and 45). The group of a(X),
b(X) and d(X), respectively, seems to be misplaced and thus should be moved to
another tuple space. It is obvious that there are two nodes claiming the majority of
a(X) (node 1 and 3) which are directly connected to 0. The minority of a(X) tuples
should be transferred to those nodes. Analogous b(X) tuples should be moved to
node 15 while d(X) tuples can be moved to node 6, 12 or 24.

3. If the ant does not find a misplaced tuple it heads for the next node by randomly
choosing one from its neighborhood. Since it carries neither a tuple nor template it
is scentless and thereby unable to track pheromones. After arriving at its selected
node it continues the iteration with item 2.

4. Finally, if the ant finds a misplaced tuple it picks it up by removing it from the
tuple space. This involves the same semantic as the in-primitive. By doing so, the
ant adopts the scent of the tuple and mutates to a tuple-ant by following the out-
primitive. During the metamorphosis its ¢t/ value gets refreshed by assigning it the
same value as usual for tuple-ants. One can see the metamorphosis as a rejuvenation
of its physical strength.

33

2. Algorithms In SWARMLINDA

However, the following steps are the same as in tuple distribution (section[2.T} page
by starting at item 2 since the ant is already born. According to the out-primitive
the ant dies after successfully finishing its task or by reaching its maximum age.

After describing tuple movement one can raise the question what mechanism triggers
the process of initiating tuple movement. Observing the natural behavior of ant colonies
there are some types staying always in proximity to the ant hill. Some of them only work
inside the mold while others protect it from enemies. They are moving outside but stay
close. Back to the issue of tuple movement one can think of an ant which observes the
items brought to the ant hill. Thus it is aware of the fractions of different tuple types.
Since they know their neighborhood very well and so the distribution of tuples there,
they are able to decide whether it makes sense or is necessary to move tuples towards
another mold.

This observing ant can be interpret as a time controlled instance which gets activated
after a specific time. If the observer decides that a transport is useful it causes a cer-
tain amount of cleaning-ants to get instantiated for reorganization issues. However, the
amount of cleaning-ants can be determined by applying a function dependent on the
level of order. Afterwards the observer can sleep for a certain amount of time st.,. The
duration depends on the action the ant took. If the ant decides against triggering cleaning-
ants the timespan gets increased by some Ar while activating the cleaning-ants decreases
Stsleep Dy some Ar. Equation [7] shows the computation for the ongoing sleep time, with
0<p<1:

b (£) = Ststeep(t —1)(1 —p) if cleaning — ants triggered 7)
Ststeep\t) = Ststeep(t —1)(1+p) otherwise (

34

3. Development and Implementation

3. Development and Implementation

This section deals with the development of a SWARMLINDA system and handles imple-
mentation details. At first, the used IDEﬂ are presented. This involves the issues for
choosing these development environments. Further on, the simulator for network gen-
eration as well as the SWARMLINDA simulator are described in detail. This includes class
diagrams and the structure of the system architecture.

3.1. Used IDE

In the following the NetLogo [61] and Eclipse IDE are presented. Both were used for
developing the SWARMLINDA system.

3.1.1. NetLogo

3.1.1.1. Definition

NetLogo is a cross-platform multi-agent programmable modeling environment which is
entirely written in]avaﬂ The development of the simulators are based on the NetLogo
version 3.1.4 which was the current version at development time. This version is imple-
mented in the Java version 1.4.1. Thus it does not provide the feature of Java generics
which has been introduced with the 5.0 (1.5.0) version. For the implementation of the
simulators the]DKﬂ version 1.5.0_11 was used. Due to updates, the final executions of
the simulator were done in the]REﬂ 1.6.0_03.

One may ask of the derivation of the name: The part ‘Logo’ is chosen because Net-
Logo is a dialect of the Logo programming language [57] which is used for functional
programming. The first part "Net’ is chosen to “evoke the decentralized, interconnected
nature of the phenomena you can model with NetLogo, including network phenomena”
[35]. It also refers to HubNet, the “multiuser participatory simulation environment in-
cluded in NetLogo” [35]. NetLogo is a project developed at the Northwestern University
in Evanston (Illinois) under the supervision of U. Wilensky in 1999.

NetLogo is a programmable modeling environment for simulating natural and social
phenomena. It can comprise thousands of agents which operate fully independently in
the environment. Agents are threads performing some tasks. The developer can assign
different instructions to the agents. During the runtime of a simulation the user is able to
send additional commands to a single agent, a group of agents as well as to the whole
population. The intention is to observe complex phenomena in collective behavior al-
though each agent operates fully autonomous. This also refers to swarm behavior. Since

®Integrated Development Environments

7Java is an object-oriented programming language originally developed by Sun Microsystems and re-
leased in 1995 as a core component of Sun’s Java platform

8Java Development Kit is a product of Sun Microsystems and has been released under the GNU General
Public License (GPL) as Open]DK

9The Java Runtime Environment is the software used to run any applications and is part of the JDK

35

3. Development and Implementation

NetLogo is entirely written in Java it is platform independent. Therefore it can be installed
on Windows, Linux and Mac OS X operating systems.

NetLogo is also a programming language which comes along with the development
environment. It defines a set of built-in primitives which can be used for creating, de-
stroying as well as interacting with agents.

3.1.1.2. Usage

NetLogo is a clearly arranged and profitable system simulation tool. It provides a spatial
separation between the controlling and the visualization area. Therefore the parameter
configuration and adjustment is isolated from the actual simulation. Figure [11|shows the
typical NetLogo view. The window on the left represents the actual development envi-
ronment. The small size of the window is arranged in order to fit in the figure. However,
the IDE provides a usual menu which can be used for navigation issues, configuration as
well as support for the implementation. It is the first panel arranged in top of the appli-
cation. Below, one can find the selection tabs for switching between the interface (current
selection), the information guide and the implementation section. The navigation tabs are
followed by the design panel. It provides several different components for the creation,
adjustment and arrangement of control elements such as buttons, sliders, switches, etc.
Additionally the widgets can be attached to global system variables that can be accessed
by the application. That is feasible for sliders as well as drop down menus. On the other
hand implemented procedures can be assigned to buttons. A complete listing of control
elements supported by NetLogo can be found in Table

The center location provides much space for placing the widgets. The control area is
the main part for setting up and adjusting the configuration parameters for the actual
simulation. The simulation can be interrupted, stopped as well as reconfigured. In Fig-
ure [11| one can see the go and setup button. NetLogo is based on the convention that
each simulation shall have these control elements. While setup postulates a call of the
identical procedure setting up some sort of system variables, go starts the simulation.
On the bottom right of the ‘go” button one can see two contrary arrows indicating a re-
cursive sign. This is NetLogo’s emblem for a forever button. The concept behaves like
while (true){ }. Forever buttons can be interrupted by disabling the
widget or the usage of the halt control sequence which comes along with NetLogo.

The command center is connected to the bottom of the control area. It is divided into
the output area and the input line. NetLogo’s term for agents is turtles. They can be fur-
ther grouped by assigning them to a specific breed, e.g. ants, termites, bees, etc. Looking
at the command center one may notice that the interaction engine is in observer mode.
This forces NetLogo to accept any instruction statement for the total environment. Beside
turtles it is possible to address patches. They form the terrain which is 2D and was later
extended to 3D. The command center can also be set into turtles as well as patches mode.
This enables direct and exclusive communication with those parts of NetLogo. Every ex-
ecuted command and response from the system will be written in the output area.

The right window of Figure [11| (page [37) represents the visualization area. The image
shows a 3D terrain consisting of nodes connected by edges. The degree of each node,

36

3. Development and Implementation

8 5
, & 3D View = | B S
A Cirvis =
) Hill Climbing Example 3D - Netlogo "=
_ [@]vi dat:

File Edit Tools Zoom Tabs Help Menu ticks: O D I:‘{,VIEW i I Settings...

- = normal speed o kicks

Interface | Irfarmation | procedures| Selection Tabs R — E

/i 8 + | Design Visualization

Edit Delete add Panel Area

Control Area
i

Bounding Box

C d Center (o) [Clear

Output Area

observer> i - -
| Input Line | Zoom Mave Interaction Commands Reset Perspective Full Screen

Figure 11: NetLogo controlling area (left) and visualization window (right)

which counts the number of connected links, is equal as well as the arrangement of the
links. This pattern forms a grid which shows the topology of mountains. The marked
spots are trails left from ants climbing uphill. All meet at the top of the mountain. The
environment is captured in the bounding box. Panels for interaction are arranged at the
top as well as at the bottom of the visualization area. Therefore the model can be scaled,
rotated and moved.

By changing the selection tab to information one will find plenty of information which
explain and describe the current model. Commonly issues for the development and de-
tailed instructions of how to setup as well as configuring the model are exhibit. It also

Control element | Description

Slider Allows to select a numerical value within a given range.
Button Allows to execute procedures.

Chooser Allows to choose a discrete value from a list.

Switch Enables\ disables a global boolean value.

Monitor Monitors a system variable.

Plot Creates a plot which can be used for drawing graphs.
Output Creates an additional output area (max. 1).

Table 4: Control elements in NetLogo

37

3. Development and Implementation

gives advices of the kind of phenomenon which can be observed. Sometimes some hints
are provided in order to exploit a specific system configuration which emphasizes the
system behavior the most. It is also possible to add proposal for extending the simula-
tion.

Finally, the implementation selection tab provides a development environment for im-
plementing source code in NetLogo. In fact, the IDE is not comparable to Eclipse, Intelli]
IDEA or NetBeans but, nevertheless, provides syntax highlighting as well as fast pro-
cedure access. Similar to VBA@ NetLogo does not support explicit assignments of data
types. A variable gets a type assigned automatically by initializing it. The IDE also in-
cludes a verification tool which validates the current source code according to the Net-
Logo syntax. In case of violation the developer gets an error message.

3.1.1.3. System Architecture

This section deals with the system architecture of NetLogo. Unfortunately, the source
code is not published yet. From the current point of view it is not predictable whether the
supervisors of NetLogo from the Northwestern University will release the implementa-
tion details someday as an open source project or, at least, provide the source code. But,
based on the FAQs'!| of the NetLogo homepage, they are looking forward to “eventually
releasing the source under an open source license” [35]. Even for private issues, like this
report, the source code would be advantageous. Nevertheless, they support the NetLogo
API?

In fact, they allow the access of NetLogo code on Java level. By using the extension
mechanism as described in section[3.1.1.4]it is feasible to interact with the NetLogo system
core. Due to this openness one can take advantage of it by implementing the own Java
classes. Thus it is possible to introduce new semantics and primitives in NetLogo. It is
also possible to share the generated models of NetLogo with the user community. Models
from other contributors can be downloaded from the NetLogo website and be integrated
without severe effort.

Figure |12/ shows the hierarchy and inheritance of some NetLogo classes in the UM
diagram. As one may see the Agent class is the super class (from the org.nlogo.agent pack-
age) for the drawn NetLogo instances. It is subclassed from the Observable class which
comes along with the java.util package and is part of the JDK. Observable classes rep-
resent data objects in the model-view paradigm. They are used in an application to al-
low other components of the system to monitor them. In detail, all instances which have
been registered for observing an Observable object obs gets notified by calling their update
method if obs has been changed.

One may associate the Agent class with a mobile agent performing some tasks. To avoid
confusions, the Agent class is an abstract base class which provides common parameters
as well as methods. The Turtle class implements mobile agents like the roaming ants used

10Visual Basic for Applications
UFrequently Asked Questions
12 Application Programming Interface
13Unified Modeling Language

38

3. Development and Implementation

in SWARMLINDA. The Link class is used for indicating a connection between two objects
of class Turtle. The most common usage for links is to connect nodes. They are modeled
using the Turtle class. The Patch class determines the space, i.e. the terrain in which the
simulation takes place. Finally, the Observer class is the monitoring instance.

(9 Object
java lang
zirterfaces interfaces
€ Comparahle <T> © the:;ahle @ lAgent
javalang [L org.nlogo agert
L———— —————]
| | zintertaces zinterfaces zintertaces
* Agent & IPatch @ [Turtle @ ILink
org nlogo.agent org.nlogo agert org.nlogo agert org.nlogo agert
sirterface: | | sirterfaces | zinterfaces
@ IRenderableTurtle | || © IRenderableAgent | | | € IRenderableLink
org.nlogo agent | | org nlogo.agent | org nlogo.agent

| i I | | A
{5 Observer (& Patch & Turtle & Link
org.nlogo.agent org.nlogo.agent org nlogo.agent org.nlogo agert

Figure 12: Part of the NetLogo system architecture modeled in UML

3.1.1.4. Extension-Model
As mentioned earlier NetLogo provides an extension API for integrating Java source
code. For the inclusion it is required to compile the source files and compress the re-
sulting class files into a jar archive. NetLogo postulates the archive containing a manifest
file which consists of the parameters as listed in Table

Figure (13| shows the architecture of the NetLogo extension API. NetLogo comes along
with some built-in primitives. That are specific functions aggregating some Java code, e.g.
creating and destroying agents. They can be distinguished in two categories: reporters
and commands. Commands define a specific sequence of instructions that need to be exe-
cuted. Reporters, additionally, return a value after processing. This structure is displayed
in Figure (13 by looking at the arrangement of the interfaces: the Reporter and Command
extends the Primitive interface. They are implemented in the identical abstract default

39

3. Development and Implementation

Parameter name | Description

Manifest-Version | Represents the manifest version.

Class-Path Defines the classpath containing the compiled class files.
Extension-Name | Defines a character name identifying the extension package.
Class-Manager | Refers to the manager class which is responsible for providing
the extension in NetLogo.

NetLogo-Version | Defines the version of NetLogo in which the extension is used.

Table 5: Manifest parameters for NetLogo extensions

wirterfaces
& Primitive
org.nlogo.api
zinterfaces
€ ClassManager
org nlogo. g | |
Z?_\ ginterfaces zirterfaces
© Reporter €& Command
| org nlogo.spi org.nlogo.spi
(% DefaultClassManager
org nlogo.spi
&' DefaultReporter (& DefaultCommand
org.nlaga.api org.nlaga.api

Figure 13: Architecture of the NetLogo extension APl in UML

class, respectively. If one wants to create a new primitive for NetLogo it is necessary to
sublcass either the DefaultReporter class or the DefaultCommand class and implement the
method report or perform.

public class SampleClassManager extends DefaultClassManager {

public void load(PrimitiveManager pPrimitiveManager) {
pPrimitiveManager.addPrimitive (" first-primitive”,
new FirstInstructionSet());
pPrimitiveManager.addPrimitive ("second-primitive”,
new SecondInstructionSet ());

Listing 1: Source code of the SampleClassManager

After finishing the implementation of the new derived class one has to tell NetLogo
how to associate a new primitive with its implementation. The DefaultClassManager im-

40

3. Development and Implementation

plementing the ClassManager interface is responsible for assuring the correct code execu-
tion by invoking a primitive. The interconnection is performed like in Listing

3.1.2. Eclipse

3.1.2.1. Definition

“Eclipse is an open-source software framework written primarily in Java” [58]. Eclipse is
mostly used as IDE for software development in Java. However, it supports several other
languages as C and C++. Eclipse is a cross-platform software environment released under
the Eclipse Public License developed by the Eclipse Foundation. Its latest release is the
version 3.3.1.1 (October 23, 2007). Eclipse provides a mechanism for installing a plethora
of plug-ins (see section[3.1.2.2). It comes along with features like in-time compilation, code
completion and supports template usage. However, the version used for the development
of NetLogo extensions was 3.2.

3.1.2.2. Plug-Ins
There are plenty of different plug-ins for Eclipse. For the development it was useful to
integrate the eUML2 as well as the Checkstyle plug-in.

The eUML2 plug-in is a modeling tool for Eclipse for package, class as well as sequence
diagrams. It has been developed by Soyatec, an open solution company, and has been
released in 2006. The eUML2 tool “is built on top of the UML2 framework of Eclipse as
the UML metamodel, which is in fact the best open source implementation of the latest
UML2.1 specification” [47]. The version supports the OMG XM]E storage format, which
allows the model exchange with other UML metamodels. The eUML2 studio edition is
comprised of the following four parts:

eUML2 Modeler: Supports the modeling of class and sequence diagrams in order to fa-
cilitate developers to design their code.

eDepend: This tool is an advanced dependency viewer. Developers get a quick overview
of dependencies of their code.

eEMF Modeler: Allows the developer to design EM models in an easy way.

eDatabase: Also known as eclipseDatabase, eDatabase is a general database Eclipse tool-
set. It supports graphically design of the database, i.e. creation, modification and
access.

The eUML2 designer is a powerful tool for generating UML diagrams on a high level.
The diagrams can be exported in different graphic formats. The plug-in supports vector-
based as well as raster-based graphic formats:

e Vector graphics

XML Metadata Interchange
5Eclipse Modeling Framework

41

3. Development and Implementation

— Scalable Vector Graphics (SVG)
— Windows Metafile (WMF)

e Raster graphics
— Portable Network Graphics (PNG)
— Joint Photographic Experts Group (JPEG)

The diagrams in this report have been generated and exported using the eUML2 plug-
in installed in Eclipse.

The second plug-in, Checkstyle, is a tool that keeps developers aware to adhere specific
code standards. The plug-in has been written by Oliver Burn. Checkstyle is very effective
by integrating it into the build process of the source code. It comes along with a command
line tool and an ant task. As described in section Ant is used for performing the
build process and thus Checkstyle is invoked by calling an ant target. Invoking Check-
style it inspects the written source code and points out items that deviate from a defined
set of coding rules [45]. It starts examining the code by executing the check target.

3.1.2.3. Build System with Ant

The build process for the source code is performed with the Apache Ant software [2]. Ant
is an in Java developed tool for generating applications based on source files. The plug-
in is an open source software project and has been released under the Apache Software
License. It is comparable to the well known program 'make’ that also builds applications
based on source files. The first version of Ant was developed by James Duncan Davidson
in 1999 and was part of the Jakarta-Project. Ant is an acronym and stands for “Another
Neat Tool” [59].

The main difference between Ant and make is that Ant uses an XML file to describe the
build process whereas make uses its proprietary makefile format. Commonly, the input
file for Ant is named build.xml. This file contains all the instructions for Ant of how to
build the application or a part of it. Ant is also very suitable to integrate JUnit tests into
the build process and thus enabling test-driven development.

However, as mentioned in section (page [39) and presented in detail in section
B.3.2.1] (page [56) the SWARMLINDA simulator uses the extension model for integrating
Java code. Ant is responsible in order to compile and build the source files and plug it
into NetLogo system. As shown in Listing [2|it is sufficient to run the createJar target for
executing the whole build process.

The createJar target depends on the incrementVersionNumber target. Therefore it has to
be executed first. The build process includes a versioning system that assigns each gener-
ated output a unique version combined with a timestamp. After integrating the generated
output into NetLogo it is able to show the version and the timestamp of the build pro-
cess. The class FileManager is responsible for the file management. It administrates the
already built versions and knows the prospective one for the ongoing project. Afterwards
the FileManager writes the version information inside the current project.

42

3. Development and Implementation

<project name="NetlogoEzxtensions'" basedir=".">
<! >

<target name="createar" depends="incrementlVersionlumber”
description="Createsyayjarfile, foryletlogo ">
<java fork="true"” classname="tools.JarBuilder'>
<classpath path="\§{build}"/>
</java>
</target>

<! >
</project>

Listing 2: Ant target invoking the build process

Finally, the createJar target is invoked by Ant and instantiates the JarBuilder. This
is a helper class for creating a jaﬁ file. Conform to the JZE@ structuring conventions
all source files contained in the src package are compiled to the build package without
loosing the internal package structuring. Once, the compilation is done the JarBuilder
helps to create the jar file. In order to compress the required files into the archive the
JarBuilder executes a batch file by starting the command line using Java’s Runtime class.

The batch file assures the integration of the required files contained in the packages:
etc, tools, primitives, interfaces, logging and 1ib. It also includes the manifest which is
required by NetLogo for loading the extension. After the jar file is created the JarBuilder
is responsible for moving it to NetLogo’s extension directory. Finally, NetLogo can be
started and scans its extension directory. By executing NetLogo code it starts loading
extension files dynamically.

Figure [14/shows the architecture of the tools package which is used by Ant. However,
this package is also included in the jar file since there is a mechanism involved in a pri-

mitive that also needs file management 3.3.2.1] (page[56).

3.2. Network Generation Simulator

This section deals with the generation of scale-free networks based on the approach of
Barabasi [3]]. The generated networks can be exported and imported in the SWARMLINDA
simulator. During the generation one has to cope with two issues: first, the arrangement
of connectivity between the nodes and second the spatial arrangement of nodes. There
shall be only a few nodes exhibiting a high degree of connectivity while the majority
remains less connected. Spatial arrangement postulates that the nodes are spread among
the 2D terrain that they cover most of the space. They shall be equally distributed.

16Java Archive
7Java 2 Enterprise Edition

43

3. Development and Implementation

(" AbstractFileManager
tools

& AhstractFileManager)

interfaces
& Constants
interfaces

A

¥ CRLM: String

W ECLIPSE_MODE: byte

W EXTENSION_FILEMAME: String
W FAILURE: irt

¥ FILE_SUFFIX_CSV: Strin
(9 FileCompressManager (9 FileManager - -) J
tools tools W FILE_SUFFIX_JAR: String
W JAR_FILENAME: String
a mode: byte C
u:F FileZompressianager) i PN _VERZION: int
@ extractlarFie) & Filehanager() gMODE'——F"-ENAMEi String
@ getJarversion() @ createDir) MODEL_YERZION: String
© gethodelversion) ¥ MODEL_WERSION_FILEMAME: String
| enstartiates | instantistes ® uetProjectversion() B NETLOGO_EXTEMSION_PATH: String
| G ExtractionE fi @ incrementYersionMumber) %FNETLOGO—MODE: bryte
| ®ira tlﬂlﬂ Rception @ incrementversionNumber) ¥ METLOGO MODELS_PATH: String
| . & main) Y NETLOGO_PATH: String
W METLOGO_PLOTS_STORAGE_BASE_PATH: Strin
| : : @ =sethiode() - - - - : g
| i Emadf””Excemf””O 8 MOT_awaILABLE: int
| ExtractionException() & JarBuilder ¥ PLOTS_BASE_DIR_MAME: String
L tools W PROJECT_WERZION: String
& InvalidSuffixException Y START_NUMBER: String
toals @ ahort) _[::} W TEST_FILEMAME: String
m buildJar) W WERSION_DIR: String
d: InvalidSuffixException) | executelosCammand() W WERSION_FILEMAME: String
& InvalidSutfixException() & main(] B WORKING _DIR_PATH: String

Figure 14: Architecture of the tools package

3.2.1. Generation of Networks

Figure [15[shows a network containing 178 nodes that has been generated using the sim-
ulator. On the top left one can see the five basic control elements for generating the net-
works. First, the setup button has to be pressed in order to initiate some system parame-
ters and also reset the plots. Further it kills all kinds of breeds, that are the acting turtles,
in the simulation area. Afterwards, it sets up two nodes and connects them with an edge.
After the nodes got connected the position of the second node gets modified so that both
nodes stay in proximity to each other. This is done by randomly choosing an angle be-
tween 0 and 360 degrees and then let the second node move 8 steps off the first node’s
position in the direction of the chosen angle.

In order to put more nodes in the network one can press the go or go-once button. The
go-once control element forces the simulator to create one additional node, connect it to
two different nodes and finally arranges the new node so that it stays in proximity to both
nodes. This mechanism forces the amount of nodes to “explore” the terrain. Increasing the
number of nodes they tend to stay in proximity but also try to keep an equal distance to

44

3. Development and Implementation

each other. Therefore the resulting network is concentrated but grows in all directions.
However, while go-once adds exactly one node and two links to the environment, the go
control element is a forever-button. That means that it continues adding nodes and edges.
It is realized by a while(true){..} control sequence. In order to force NetLogo to stop the
sequence it is necessary to press the go button again.

Looking at Figure [15] one may notice that the generated network is comprised of a
few well connected nodes while the majority remains less connected. The shape of the
nodes determines the connectivity. The larger the diameter of the circles the more it is
linked to others. The topology follows a scale-free power-law distribution [3]]. That means
that complex networks exhibit the behavior that already well connected nodes are more
attractive for new connectivities. The higher the degree of links of a node the higher is the
probability of getting connected to a new node that has been added to the environment.
Thus the probability P(n) of connecting a new node to one which is already contained in
the network follows P(n) ~ D(n), with D(n) determining the degree of node n.

By activating the redo layout button one can try to stretch the nodes. Sometimes it is
even possible to rearrange a nodes position when it was not well placed in the previous
steps. By pressing resize nodes one can choose between the connectivity and normal mode. In
normal mode all nodes own the same diameter while connectivity mode indicates different
sizes as shown in Figure

The network-diffusion slider controls the diffusion of nodes. Low values result in best
performance since the addition of nodes is very fast. High values indicates low perfor-
mance since the arrangement of nodes is computational intensive. It is advisable not to
turn the value under a certain threshold (~30) since the ratio of computation time and
distribution tends to get insufficient. The two switches show-node-information and show-
ant-information enables or disables labels of turtles in the view showing their identification
number and some additional information, e.g. nodes appends the degree.

With export world it is possible to export the whole world that is the environment com-
posed of all variables in the system. They are stored as csv@ tile. On the other hand import
world imports a world from a csv file. Additionally, export plots supports the export of the
drawn graphs. The format is csv, too. Afterwards they can be used as input for an external
visualization tool like Excel.

3.2.2. Interaction with Networks

The network generation simulator can be used in two modes: automatic or manual gener-
ation. Also a hybrid approach is possible. In order to generate the network fully manually
it is recommended to activate the clear all button. This removes all entities in the environ-
ment. Afterwards one can determine the location of a new node by adjusting the two
sliders for the x- and y-coordinate. By pressing the create node button a new node is placed
at the given location. Meanwhile the ID of the new node is written to the output area.
The visualization area is constructed as a symmetric coordination system ranging from
[—¢, ¢] in y-axis and [—, 7] in x-axis.

18Comma Separated Values

45

3. Development and Implementation

i Degree Distribution Pens

%
setup clear all

=]
(3]

@ @
go-orice ao

of nodes

@ @
redo layout 2| resize nodes

network-diffusion 65

=

—

c'I;'g?ee 23

—

]!Dn = e Degree Distribution {log-log) Pens
00, show-art-information?

U
(&

=
export world export plots

=
import world

= logi# of nodes)

x-coordinats = T
log{degree) 1.66

Sorted Degree Distribution Pens

=]

y-coordinate 14

@ @
create node kill node

— |
start-mode-link. 60
]
_end-node-link. 50

» »
create link kel firike

a nodes 187

||set-artsize | & | # of ants # of nodes
i, vl apply | o 178

Figure 15: Network Generation Simulator

=
get values watch turtle

turtle-id]
a5 i ‘

e !
stop watch I

In order to create a link one has to select a start as well as an end node by adjusting
the respective sliders. Pressing the create link control element the link will be drawn in
the visualization area and its ID is printed to the output area. For removing nodes as
well as links one has to pick a turtle ID from the chooser. Pressing the respective kill node
or kill link button the turtle dies and disappears from the visualization area. However if
one selects an ID from the chooser and activates the get values control element the sliders
above are set to the values of the respective turtle values.

Looking at the visualization area of Figure [15|it is obvious that it may be hard to find a
specific turtle within an amount of 178 nodes and 353 links. By pressing the watch turtle
control element the turtle which owns the selected turtle ID gets highlighted. This facil-
itates finding a turtle. Pressing the stop watch button the highlighted turtle gets released.
It is also possible to combine both approaches. The network can be generated hybrid by
adding nodes and links automatically and manually.

With the choosers background-color, set-node-size and set-ant-size one can modify these
properties. Finally, the apply button has to be pressed in order to tell NetLogo to adapt to
the changes. The two monitors on the right bottom exhibit the amount of ants and nodes
in the environment.

46

3. Development and Implementation

3.2.3. Plotted Graphs

The right side of the simulator shows three graphs arranged vertically. All of them have
in common that they show a specific view of the degree of nodes in the network. The
purpose is to observe and evaluate the approach of Barabasi [3] that networks contain
less hubs but a plethora of nodes that are less connected. There are other studies which
also emphasize this phenomenon of complex networks like in biology where a large net-
work is formed by the nervous system. The vertices represent the nerve cells which are
connected by axons [26]. On a social level vertices can be seen as human beings while the
links represent the social interactions between them [55]. In computer science the most
arguably representation for complex networks is the world wide web. Vertices can be
interpret as HTML documents pointing to other documents and on the other hand are
referenced by documents [38].

In the visualization area of Figure (15| (page one can interpret the well connected
nodes (big vertices) as backbone of the network. In any case, if they break down the
nodes tend to get less connected. The top right plot shows the dependency between the
degree of a node and the amount of nodes owning this degree. It is obvious that there
are only a few vertices holding a high degree of connectivity. They form the backbone. In
contrasts there are plenty of nodes owning a very small degree. They exhibit only two or
three links. Finally, there are the “intermediate” nodes holding around four to 20 links.
The curvature follows an exponential decrease.

The second plot shows a logarithmic scaled graph while the third plot exhibits the de-
pendency between a specific node and its degree. The x-axis indicates sorted node IDs.
Each time a vertex is added to the environment it gets an ID assigned. The IDs starting
from 0 are chosen in ascending order. Therefore the plot shows a time dependent graph.
Following the curvature from left to right the nodes are added more recently. In fact, the
probability that an older vertex owns more edges than a newer is higher. Basically, the
probability has to be higher since former nodes obtain more chances to receive a new
connection than recently added ones. Conform to the approach of Barabasi the first cre-
ated vertices are designated to obtain the most links since they already own the highest
degree from the beginning.

3.3. SWARMLINDA Simulator

This section deals with the development and implementation of the SWARMLINDA sim-
ulator. The implementation is comprised of an extension written in Java and the actual
NetLogo model.

3.3.1. Visualization

3.3.1.1. Controlling the Simulator
On the left side of Figure[16|one can see the basic operations. That is:

Import world imports an existing network generated with the network simulator from

47

3. Development and Implementation

section[3.2)(page[43). The file format must be a csv file. The import includes initiation
of the required parameters contained in the model.

Setup clears the whole environment. It requires importing a network; if this is not done,
yet, the import cannot be started. This is assured due to an internal state mechanism
that guarantees the correct order of executions. Further it initiates several parame-
ters (e.g. pheromones-lists, tuple spaces).

Import snapshot behaves similar to import world except that the state mechanism works
different. While import world forces the user to start with an initial empty network
import snapshot allows loading a specific state of a simulation. Thus it is possible to
compare different test runs based on the same snapshot of the system. Additionally,
import snapshot sets up the plots and draws some curves representing the current
system state.

List primitives prints all added primitives to the NetLogo system formatted in the output
area. The primitives itself and the related description is loaded dynamically from
the Java classes via the Java reflection mechanism as described in [3.3.2.1| (page[56).

Export plots exports all drawn plots to a csv file specified by the user. The data contained
in the output file can be used for external tools for further processing.

Apply layout applies the layout changes due to modifications of the graphical properties.
The control elements for the configuration are located on the opposite site of the
visualization area.

Save state saves the current state of the model environment. This includes all param-
eters contained in the model. The data is automatically saved in a temporary csv

file.

Restore state contrariwise analogous, restores the saved state by loading the temporary
tile and overwrite the existing parameter values.

Below the basic operation buttons one can find some configuration control elements.
The settings are exclusively for the primitives executions. The primitives trigger the sys-
tem to perform some tasks. However, the configuration of the primitives only effects the
start sequence but not the system behavior. In detail, the system behavior remains, in fact,
the same but different configurations may lead to different system states after executing
the primitive. The configuration parameters are:

Num-ants sets the amount of ants that shall be created during one of the primitive execu-
tions. They get born inside the network on a node that is specified with chosen-node.

Set-age sets the age or to be more specific the tt/ value for the ants that shall be instanti-
ated. As one may see in Figure|16|the tt/ value is set to 20. This is a suitable value for
this specific network since the size is relatively small. Therefore it is recommended

48

3. Development and Implementation

Primitives settings

num-ants 60

set-age 20

temi:u_iei.te;tirpé:'

chasen-nade.

Al v|

al v|

Primitives ackion

@ @

seeding ok

.

Primitives execution

A]
MOYE ONce

MOVE -y
L]

nodes || # tuples A || # tuples B | used world
20 155 155 Ci\Program Files\NetLogo 3.1, #imodelsimyModelsiexportsiwarld-snapshotsimovement_3,csy
ants # tuples C || # tuples D | used extension version used madel version
i] 155 155 project-wersion: 0023, Fri Oct 26 02:17:51 EDT 2007 model-version: 0019, Fri Mow 30 19:35:50 CET 2007
{" ﬁ])’ 30 spatial entropy For netwaork,
Basic operations l:] - D E o
£ b
i t world ly
impork wor sSelUp |“ Layout settings
% % T T
import snapshok lisk primitives gﬁ: show-node-information?
expork plots apply layout E’Off shaw-ant-information?
) = —
save state restore skate Iigf"{._ -show-distribution?

O v mciom et
OFF resize-nodes?

background-color :
white v|
graph—sut_ﬁng

v|

Anti-overclustering settings

R
i off anti-overclusterings?

ma-clusker-size 50

Figure 16: Control elements and visualization area of the SWARMLINDA Simulator

to adapt the tt/ value dependent on the network size. That gives the ants the possi-
bility to explore the whole network. Limiting the value to a very small one the ants
tend to stay in proximity to their birth location. Adjusting the tt/ value very small in
a big network it is very likely that the network gets partitioned into several regions
whereas each region contains its local clusters.

Template-type sets the template which is involved in the next primitive execution. This

version of the simulator supports four different template types:

L 2/)
o b

e C

e d(X) =

(X)
(X) =
(X) =

= X(v1,v2) with vy € String A vy € String
X(v1,vp) with v € String A vy € Integer
X(v1,v2) with vy € Integer ANvy € String
X(v1,v2) with vy € Integer A vy € Integer

Each template has a distinctive scent and thus can be tracked by ants. However,
the simulator can be extended by adding new template types without severe effort.
To avoid confusions the templates are neither symmetric nor commutative. As one
may see in Figure [16| the current template selection shows “all”. That means that

49

3. Development and Implementation

all from the simulator supported template types are involved in the next primitive
execution.

Chosen-node specifies the node at which ants shall be born while triggering a primitive.
The current selections is set to “all” which means that the ants get instantiated ran-
domly in the network. However, adjusting this parameter to specific nodes one can
force to form clusters in a specific region or observe how ants behave when placing
them at the farest node from their cluster. Therefore one can evaluate the path selec-
tion done by ants in order to examine whether they take the shortest path or taking
a detour.

Below the primitive settings one can see the primitive actions. That are the different
commands which trigger the algorithms explained in section 2| (page [I8) except the seed-
ing.

Out places the amount of ants specified with num-ants on the node determined with
chosen-node. If chosen-node is set to “all” each ant is put by random on a node. Thus
the set of ants are separated among the nodes. Each ant carries the tuple which
has been specified with ‘template-type. In fact, the tuple parameters are filled with
concrete values. If template-type is set to “all” then each ant gets a tuple assigned
matching one of the available templates. The selection of a template is deterministic.
The implementation tries to assign the templates equally to the amount of ants. If
(num-ants mod 4) = 0 then the size of the formed groups of different ants are
equal. Otherwise some groups contain one individual less.

Seeding Seeding does the same as out except that the ants get killed after they have been
placed. The idea of seeding is to augment the environment with some tuples and
therefore with pheromones. This mechanism supports prospective ants to poten-
tially find pheromones and also help emerging of clusters. It is not necessary to
perform seeding for the simulation. One can start immediately with out primitives.
However, seeding can also be applied later. This function enables the observation of
how much ants get attracted if seeds have been placed belatedly somewhere in the
environment.

In behaves similar to out. Ants get placed in the network, too, but instead of assigning
them a tuple they carry the chosen template. Additionally, in contrast to out-, in-
ants obtain a memory which they use in order to keep the trail they took in mind.

Finally, after performing the out- or in-primitive the actual algorithm has to be triggered
by using the primitives execution control elements.

Move once forces all ants in the environment to successively perform the respective al-
gorithms for tuple distribution or retrieval in dependency on the previous chosen
action. Move once indicates that the algorithm is performed only once. By iteratively
pressing the move once button one can observe each step the ants took.

50

3. Development and Implementation

Move aggregates the process of pressing move once until the ants finish their task. The
forever-button stops immediately if the last ant is done.

On the right side of the simulator in Figure [16] (page 9) one can see control elements
for setting the layout as well as anti-overclustering parameters. Anti-overclustering is
a mechanism used in SWARMLINDA for assuring a more balanced distribution of tu-
ples among the nodes. Imagine a scenario where, although tuples get grouped in spe-
cific regions and form clusters, the size of the tuple spaces may vary extremely. Anti-
overclustering avoids high concentrations on particular nodes by introducing a threshold
value. There are two methods for determining the maximum limit:

o The threshold is static and hard encoded for a specific simulation

e The threshold is dynamic and depends on parameters of the environment

The anti-overclustering strategy is described in detail in section[4.4|(page[75). However,
the control elements work as follows:

Anti-overclustering switches the strategy on or off. If the mechanism is turned off the
SWARMLINDA algorithms are performed as describes in section 2] (page [18). Mostly,
this results in clusters exhibiting one big cluster while the remaining ones stay al-
most empty. Turning the strategy on effects the out-primitive. The probability of
dropping a tuple gets influenced by the anti-overclustering value in dependence on
the concentration.

Max-cluster-size regulates the maximum amount of tuples that can be stored at a tuple
space. This is a static mechanism that is suitable for specific test cases.

In the middle of the right side one can see the control elements configuring the layout.
All made changes are applied to the system by pressing the apply layout button on the left.
However, the parameters influence the layout as follows:

Show-node-information enables the visualization of node specific information like its ID
and degree. The information is printed close to the respective node.

Show-ant-information enables the visualization of ant specific information like its ID.
The information is printed in proximity to the ants current location.

Show-distribution enables the visualization of the majority of tuples matching the same
template for each node. The color indicates the template type. In order to maintain
a clear view only one type is shown at each tuple space. It also would be no out-
standing advantage to indicate all types since a characteristic of the system is to
stay apart from dissimilar tuple spaces. The amount of tuples is represented analo-
gous to the network generation simulator: the vertical bars (1) indicate ten, the dots
(.) one tuple, respectively.

51

3. Development and Implementation

Resize-nodes enables the visualization of stretching or compressing the diameter of the
vertices. The size indicates the connectivity. The higher the degree of a node the
bigger is its diameter.

Background-color sets the color of the terrain and also adapts the front color, i.e. nodes
and links.

Graph-sorting allows the drawings of the graphs shown in Figure (17| (page in two
modes. Currently the plots are sorted in ascending order based on the node ID. This
mode enables a good comparison between the four graphs for tuple distribution.
One can observe the emergence of clusters while the template types separate their
positions apart from the others. However, the second mode arranges the graphs in
descending order based on the amount of tuples contained in the respective tuple
spaces.

3.3.1.2. Output: Monitors and Plots
All monitors are arranged in the top of Figure[16](page 49). The fields show the following
values:

nodes shows the total amount of nodes currently in the network.
ants shows the total amount of ants currently in the network.

tuples A counts exclusively the number of tuples in tuple spaces that match template
a(X).

tuples B counts exclusively the number of tuples in tuple spaces that match template

b(X).

tuples C counts exclusively the number of tuples in tuple spaces that match template
c(X).

tuples D counts exclusively the number of tuples in tuple spaces that match template
d(X).

Used world indicates the absolute path of the imported world.
Used extension version shows the current loaded NetLogo extension version.
Used model version shows the current loaded NetLogo model version.

Spatial entropy for network exhibits the current level of order in the network. The en-
tropy is defined in [0,1], whereas 0 indicates absolute order while 1 stands for total
chaos.

Figure|17|(page[53)) shows the observation area containing plots and some monitors for
following the system behavior. The purpose for the elements is listed below:

52

3. Development and Implementation

Tuple Storage (All Templates) Pens Tuple Di;l;iE;l;inn (TempI;te A) Pens
30 ~ 3
- \\ £
= \ B
a5 Y e
** \ =

0 \‘\"“"'?:-_2__— -] | N —
0 Step 10 0 tuples spaces 69

Tuple Retrieval (All Templates) Pens Tuple Distribution (Template B) Fens

181 34

= #tuples
o #tuples

y

Step 20

1] a tl]ple spaces 69
Spatial Metwork Entropy Pens Tuple Distribution {Template C) Pens
1 33
= £
(=] [=%
L i
5 #
0] u] o || e | i s e
0 Step 370 0 tuples spaces 69
sLccess ants [node 36): O o Tuple Distribution (Template D) Pers
617 [node 39): 0 3
|(node 42): 0 o
(node 45): 0 =
|inode 48): O =
Failed ants inode 5lj: 0 £
2]
3 : = bl -~
(node 54): O tuple spaces 59

Figure 17: Plotting area of the SWARMLINDA Simulator

Tuple Storage shows the amount of steps it took for storing all tuples that were car-

ried by ants in the network. This plot is generated due to an execution of the out-
primitive. In the beginning (step = 0) the graph exhibits around 30 ants that have
been instantiated in the environment. Each step comprises one iteration of the out-
algorithm. The more steep the slope of the curve is the faster is the storage of tuples
since ants disappear after accomplishing their tasks. In fact, it is desired that the
curvature follows an exponential decrease. The plot shows four curves in different
colors representing the template types.

Tuple Retrieval shows the amount of steps it took for retrieving a specific number of

tuples from the environment. In contrast to tuple storage this graph is generated by
an execution of the in-primitive. In the beginning (step = 0) the graph shows around
180 template-ants of each kind. Each step indicates an iteration of the in-algorithm.
Analogous to tuple storage it is desired to achieve an exponential decrease of the
curve. Likewise, the four colors indicate the different template types.

Spatial Network Entropy is an indicator for the level of order in the network. The plot

shows the development of the entropy. It is desirable to keep the entropic value al-
ways as low as possible. Looking at the curvature one can see different phases of
the system. The around 350 steps involve setting up the environment and activities

53

3. Development and Implementation

of first ants (very high entropy). The system is unorganized. Afterwards, the curve
secedes due to a self-organization of tuples. They get separated in the environment
and form cluster. The last phase shows tuple movement in order to achieve an im-
proved distribution of tuples among the nodes.

Tuple Distribution (Template A) shows the amount of tuples at the respective nodes of
template type a(X). The value on the horizontal axis indicates the node ID.

Tuple Distribution (Template B) shows the amount of tuples at the respective nodes of
template type b(X). The value on the horizontal axis indicates the node ID.

Tuple Distribution (Template C) shows the amount of tuples at the respective nodes of
template type c(X). The value on the horizontal axis indicates the node ID.

Tuple Distribution (Template D) shows the amount of tuples at the respective nodes
of template type d(X). The value on the horizontal axis indicates the node ID.

Success ants monitors ants that successfully accomplished their tasks. This allows the
observation of the system performance and is useful for the test runs.

Failed ants monitors ants that failed finishing their tasks. This allows the observation of
the system performance and is useful for the test runs.

Output area is a second general output area and is used for printing the node entropy
values.

3.3.1.3. Additional Test Environment
Figure |18/ shows the additional test environment which is comprised of the simulation
of node failures and tuple movement. Node failures can be forced intentionally either
by using the manual mode or by applying the automatic execution. Either way it makes
sense to save the current state of the environment before performing the tests. Afterwards,
one can execute a test without failure and save the results of the test run. After restoring
the state one can perform some node failures and then run the same tests again. Both
results can be compared in order to see the impact of node disappearances. However,
pressing the kill node button selects randomly one of the nodes for shut down. The vertex
itself and all connecting edges get removed. The node ID is listed below in the killed nodes
monitor. It is possible to kill as much nodes as placed in the network.

Below the manual execution mode one can find the automatic configuration environ-
ment. The workflow is described in detail in section (page [p7). The test environ-
ment comprises the following elements:

Num-tests sets the number of tests that shall be performed sequently. Before each test
run the environment is saved and gets restored after the test run. This assures al-
ways working on the same world.

Num-nodes-to-kill sets the number of nodes that shall be shut down for the test run.

54

3. Development and Implementation

Mode Failure simulation

Manual execution Tuple movement simulation

|
| —
| @
kill node | | entropy-threshold 0.00 clean up

| i @

kiled nodes | clean-up-mods kill cleaners

| probabiliskic "l
] I

Autarmatic execution

o

num-kests

num-nodes-to-kil 3 run resek

on — _ -
EOFF enable-msg-boxes?

list of killed nodes (test runs)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| | [[51541][24 51 15] [27 0 24] [51 42 1] [36 51 12]]
I

Figure 18: Node failure simulation and tuple movement configuration section of the
SWARMLINDA Simulator

Enable-msg-boxes enables resp. disables message boxes during the test runs. In order to
perform a fast run it is recommended to disable the message boxes.

List-of-killed-nodes shows a list of sublists containing all nodes that have been shut
down during the respective test runs. Each sublist is semantically a set indicating
that each element is unique in it. In fact, it makes no sense to shut down the same
server twice in one test run. However, the list containing the sublists is also a set.
That postulates that each element has to be unique, too. Thus permutations of the
elements in the sublists are forbidden. Only real combinations are allowed.

Run starts the test runs by applying the chosen configuration. The progress of each test
run is printed to the primary output area.

Reset resets the monitor list-of-killed-nodes in order to allow new test runs.

Beside the test environment one can see the configuration for tuple movement. The
control elements are defined as follows:

Entropy-threshold sets the maximal entropy threshold. This only takes effect if the clean-
up-mode is set to deterministic. In this case the cleaning ants are trying to achieve
this entropy level. In detail, they try to push the entropy below this level. Once they
accomplish their objective they stop immediately but remain in the network.

Clean-up-mode sets the mode for cleaning up the environment. There is a deterministic
as well as a probabilistic approach.

Clean up instantiates as much cleanup-ants in the environment as specified with num-
ants. By pushing the move once or move button the tuple movement algorithm which
is described in section 2| (page[18) is performed.

55

3. Development and Implementation

Kill cleaners removes all cleaning ants from the environment.

3.3.2. Implementation

3.3.2.1. Extension

This section deals with the implementation of the NetLogo extension written in Java and
used in the simulator. During the development it was necessary to add some primitives
in order to facilitate the programming part by aggregating a set of instructions. This also
produces smaller and more structured NetLogo source code. On the other hand some
functions are simply not available in the NetLogo primitive dictionary. Java as a powerful
programming language provides solutions for all requirements. The added primitives are

listed below:

Primitive

Description

Implemented class

Real-random-int
Real-random-long
Real-random-float
Real-random-double
Get-extension-version
Get-model-version
Get-next-filename
Get-primitives
Contains-set?
Create-dir

Min-int

Max-int

Min-long

Max-long

Min-float

Max-float
Min-double

Max-double
First-n-integers

Generates a random integer value
between 0 and the input parameter
Generates a random long value
between 0 and the input parameter
Generates a random float value
between 0 and the input parameter
Generates a random double value
between 0 and the input parameter
Returns the currently loaded Net-
Logo extension version

Returns the currently used Net-
Logo model version

Returns a unique filename for
automatic plot export

Lists all implemented primitives

in the output area

Tests if the given set is contained
in a given super set

Creates the given abstract path
Returns min-int, —231

Returns max-int, 231 — 1

Returns min-long, —263

Returns max-long, 263 — 1

Returns min-float, 2~ 14°

Returns max-float, (2 —2723) . 2127
Returns min-double, 21074
Returns max-double, (2 —27°2) . 21023
Lists the first n — 1 integers

RandomInt

RandomLong
RandomFloat
RandomDouble

Version
Model-Version
FilenameGeneration
PrimitivelLister
ContainsSetValidator

DirCreator
IntegerMinValue
IntegerMaxValue
LongMinValue
LongMaxValue
FloatMinValue
FloatMaxValue
DoubleMinValue
DoubleMaxValue
IntegerList

Table 6: Added primitives in NetLogo

56

3. Development and Implementation

The NetLogo extension version is directly loaded from the jar file. In contrast the model
version which has been used for the simulator development is contained in the model
directory. Each time the NetLogo model gets modified the versioning mechanism gets
notified and increases the version number. The primitive get-next-filename has been
implemented in order to obtain a unique file name and storage location for exporting
specific plots. The primitive is used in the automatic test environment (page 57).
Get-primitives lists all developed primitives in NetLogo’s output area. As a coding stan-
dard if one wants to add a new primitive the SwarmLindaExtension class postulates an
identifier (primitive name), a textual description and a resource (functionality containing
class). All three attributes are mandatory. Invoking get-primitives accesses the stored in-
formation via Java reﬂectiorﬁ A class diagram is appended in section Figure 45|(page
shows the arrangement as well as inheritance of classes.

3.3.2.2. Logging

Based on inheritance all classes implementing the primitives own a logging instance. In
order to enable logging during the runtime of the simulator the Apache log4j [17] utility
was used. It is a Java-based tool originally written by Ceki Giilcii and is now a project
of the Apache Software Foundation [56]. The tool is platform independent and allows
different logging levels. All log messages are written to a specific port (here: 4445) on
localhost. The visualization of logging entries is performed by the software tool lumber-
mill. “Lumbermill is a visual log processing and distribution center for Log4j and (in 2.0)
java.util.logging (JSR47). It is a Swing/GUI standalone application that supports viewing
and archiving of log events.” [46].

3.3.2.3. Test Environemt

The test environment is a suitable part of the simulator for observing characteristics of
node failures. Section (page [p4) introduces the graphical aspects of the test envi-
ronment. However, technically it works as follows:

1. The current state of the world is stored in a temporary file.

2. It continues looping over the actual test implementation as much as specified by the
amount of tests determined with the num-tests slider. According to the configura-
tion of num-nodes-to-kill the system selects randomly the adjusted amount of nodes
and removes them from the terrain. In detail, it chooses the nodes and puts them
into a set. Afterwards it checks whether the given combination or a permutation is
already contained in the list-of-list-of-killed-servers that comprises all sets of removed
nodes that has been shut down in previous test iterations. In the scenario that the
set is contained in the list the algorithm has to drop the current selection and looks
for a new one. The new added primitive contains-set? is responsible for the check.
However, in the beginning the list-of-list-of-killed-servers is empty. Hence, the new
set is accepted anyway. Finally, it adds the set to the list list-of-list-of-killed-servers.
Meanwhile the system shuts down the selected nodes.

PReflection is a relatively advanced feature [51] that enables access of class information during runtime

57

3. Development and Implementation

3. The current implementation uses the test simulator for observing the behavior of
template-ants. Therefore only the in-algorithm is applied. The next step performs
the in-command that is the same as pressing the in button for ant instantiation in the
network which is followed by the execution of the move-forever button. This applies
the whole in-algorithm.

4. After the execution the world and all plots are stored for further evaluation. For the
storage the system uses the relative to the simulation file related folder export\plots\.
Depending on the configuration the system looks for a folder that indicates the kind
of test, e.g. setting num-nodes-to-kill to three the folder is named “three node fail-
ures”. If the folder does not exist the system creates it. The actual export files follow
the format test_<serial-number>.csv. Each of the files can be post-processed with ex-
ternal software tools.

5. In order to guarantee that the next test run takes place under same conditions the
environment is restored from the temporary storage file. Already performed test
runs are listed in the monitor below the configuration parameters (see Figure

page55).

58

4. Improved Metrics in SWARMLINDA

4. Improved Metrics in SWARMLINDA

This section deals with the improvements as well as new definitions of formulas that are
involved in the implemented SWARMLINDA system. Section [2| (page [I8) discusses in de-
tail basic formulas as well as algorithms. Section |5 (page [80) evaluates basic algorithms
and applied formulas and points out the improvements that are explained in this sec-
tion. However, the development of improvements of the system has been performed by
adjusting formula parameters and exploit results shown by the simulator.

4.1. Drop Probability

SWARMLINDA’s way to distribute tuples among the nodes is performed by executing the
out-primitive. This invokes the algorithm for tuple distribution that has been discussed
in section [2.1] (page [L8).

Remember, tuple distribution deals with the ability of storing information objects in a
domain that is the network. The network comprises an arbitrary amount of nodes con-
nected by links. SWARMLINDA is characterized by a self-organization mechanism that is
responsible for arranging its content. The basic principles of such a system postulate the
following properties:

Semi-uniform distribution: all system resources shall be used equally. That requires that
the amount of information objects are distributed so that each node obtains a certain
number of tuples of the original set. Let I' be the base set of information objects that
shall be distributed. Each node shall obtain a set -y that is a real subset of I', v C T.
Ideally, the set <y is defined as follows: Yoyt = ﬁ, with N containing all nodes in

the network. According to a scenario under real conditions it is unlikely that the
partitions are of equal size. Thus 7y varies around some AT: 7, = Yopt = AT.

Homogeneous cluster: the emerging cluster shall be as homogeneous as possible. Ac-
cording to the brood sorting done by biological ants the system shall organize their
objects by type. Let x be a homogeneity indicator of a node n resp. tuple space, with
X € [0,1]. 0 indicates heterogeneity while 1 represents homogeneity. It is desirable
to measure x tending to approximate 1.

Heterogeneous environment: the environment that is the network is separated into mul-
tiple regions. Each region is comprised of an amount of nodes. While the regions
shall also be as homogeneous as possible SWARMLINDA postulates the network to
be heterogeneous. Let 3 denote a set of nodes that form a specific region and let ¥,
be its homogeneity value defined as

1
Ry = 6] Z Xn ®)
| |Vn€§R

59

4. Improved Metrics in SWARMLINDA

then the homogeneity value for the network denoted by R, shall be minimized,
N, — 0. N, is defined as follows:

1

Ny =
*NT

Y, (1—Ry) R)

Ryer

The formula treats each member R of X based on its cardinal number. Hence, big
regions have a strong influence of the homogeneity value of the whole network.

Proximity: SWARMLINDA postulates that similar information stay in proximity. That is
the basic for forming regions. One can create a region by grouping nodes that con-
tain similar information with the restriction that all nodes have at least one connect-
ing link to one of the group members. Thus the evolved network graph of the region
needs to be coherent.

Load balancing: the aforementioned characteristics result in load balancing. If all re-
sources are used and the amount of tuples is distributed by spatial separation based
on the template type, it assures load balancing since ants roam to different locations.

However, the out-algorithm consists essentially of three parts: the movement-, the de-
cision- and the aging-phase. They are executed successively. Once a tuple-ant is in the
decision-phase it decides probabilistically whether to drop its tuple at the current location
or not. According to the approach of Casadei et al. defined in [10] Equation |11 computes
the probability of dropping a tuple at a node.

Corig =), sim(tc,ts) (10)
Vts€TS
2
poris _ orig 11
drop Corig+K (11)

The concentration C,,;, is defined as the amount of tuples contained in a tuple space
that matches a common template that also matches the tuple the ant carries. Although

the formula for the drop probability PZZ‘? achieves clustering it tends more to gain a bad

homogeneity value. This occurs because C,;; counts only similar objects in the local tuple
space. It does not take into consideration the amount of different tuple types that are
stored at the respective node. It would be more meaningful to set the amount of similar
tuples in contrast to the differing ones and let this ratio influence the drop probability.
Figure[19shows the comparison between the original computation of the concentration
Corig and the, in order to improve the system performance, called modified concentration
Cinod- However, Figure [19(a)] [19(b) and [19(c)| exhibit different concentration levels based
on different system environments. The environment is defined by the amount of tuples
and their template type in a specific node. All plots have been generated using the same
tuple space TS but at different time intervals. Each graph exhibits the concentration as

60

4. Improved Metrics in SWARMLINDA

=
o

0

=
o

0 -

=
1S)

o -

Concentration
Concentration
Concentration

0 Step 100 0 Step 100 0 Step 100

(a) (b) (©)

0

=
o

0

=
o
=
o
S}

—

Concentration
Concentration
Concentration

0 étep 100
a(X) b(X) —c(X) —d(X)

(d) (e) (f)

0 Step 100 Step 100

Figure 19: Comparison between C,;, represented by the upper three graphs and C;yy
represented by the lower three graphs. It is shown the dependency between
homogeneous and heterogeneous cluster structures. The graphs are arranged
in three columns and are based on the scenarios shown in Table @

a function of time. The horizontal axis is labeled with Step that is a unit of time intro-
duced in the SWARMLINDA simulator. In order to avoid confusions Step is a quasi-time
dimension. It is more related to a time interval in which one iteration of the mentioned
algorithms from section 2| (page[18)) is performed. Hence, it is very likely that each ongo-
ing step modifies the state of the environment. In fact, this simply appears by letting ants
roam in the environment and dropping pheromones. One may notice that each graph
starts with Step = 0. This suggests that Step is not a global time. Indeed, there is another
variable holding the global time but for the test scenarios it is more suitable to define a
local time introduced by Step.

Al | IBI | ICI | IDI | K
Scenario_1 - - Var - 10
Scenario_2 30 - Var 20 |10
Scenario_3 20 90 Var 10 | 10

Table 7: Configuration of the system environment for the test runs

The shown graphs are based on the same principle: they show the concentration of the
respective tuple types at a specific node. Again, the color indicates the template. Further
on, in all examples the amount of tuples matching template a(X), b(X) and d(X) respec-
tively are static. While time passes by there is no removal or addition of those tuples. Let
A be the set of tuples matching template a(X); B, C and D respectively for b(X), ¢(X) and
d(X), with A, B, C, D C T. Their size is restricted within the following range: |A|, |B|,

61

4. Improved Metrics in SWARMLINDA

IC|, |D| € [0,100]. Thereby T is the set of all tuples at TS and is defined as the set union:
T = AUBUCUD. Each set is a disjoint subset of T.

However, |C| is increasing at each step by one. In the beginning C is empty. Setting up
the tests |A|, |B| and |D| obtain different values but they do not change while a test is
running. In particular, the tests show the development of the concentration under certain
circumstances.

Figure shows a scenario with initially no tuples in TS at time Step = 0. The test
run exhibits the progress of the concentration while tuples are added to TS. The tuple
space obtains a maximum homogeneity value (x = 1) since there are no other tuple types
around. One can observe a linear increase of the concentration value. The scenario in
Figure follows also the rule that tuples matching ¢(X) are added while holding A
and D constant during the run. The test is set up by augmenting TS with a(X) and d(X)
tuples so that |A| = 30 and |D| = 20. C,; is constant for a(X) and d(X) tuples thus other
tuple types do not influence the concentration. On the other hand C,;; for c¢(X) tuples
is also not influenced by the presence of dissimilar information objects. Finally, Figure
extends the previous scenario by including all four templates. The test is set up by
augmenting TS with a(X), b(X) and d(X) tuples with |A| = 20, |B| = 90 and |D| = 10.
Analogous to the previous runs C,, for c(X) tuples is not influenced by the appearance
of other types while the concentration remains static for a(X), b(X) and d(X) tuples. Since
the concentration plays a basic role in order to compute the probability of dropping tuples
at nodes it shall be defined in a way that it reflects the homogeneity of tuple spaces. The
scenario in Figure is even worse since in the end (Step & 90) C,yiq for b(X) and c(X)
is very high. Therefore the probability of dropping a tuple matching either templates is
also high. This results in a very heterogeneous structure (y — 0).

In order to claim homogeneous structures it is required to let the constitution influence
the concentration value. Therefore Equation [13| postulates C depending on yx. This is the
basic for the global aim: N, — 0. Remember, that X, shall be heterogeneous in contrast to
I, that shall be homogeneous.

1

Fsig(x) = 1 +€_(20x_10) (12)
()/..
Cinod = Fsig (71]) Vij (13)
i
C 2
mod __ mod
Farop = (Cmod +K) (14)

Equation (13| incorporates the presence of dissimilar tuples by including the ratio be-
tween 7;; that is the number of tuples on node i matching template j and 7; defining the
total amount of tuples at i. The ratio itself is not sufficient in order to obtain the postulated
homogeneity. Therefore a sigmoid function is adapted to fit in the context by stretching
resp. compressing the ratio value (Equation [I2). This reinforcement function is required
to achieve a high attractiveness for tuples that own the majority and shall maintain it.
In contrast tuples being in the minority shall avoid this tuple space so they gain a small

62

4. Improved Metrics in SWARMLINDA

value. Looking at Figure 20| it shows the adapted sigmoid function in order to translate
the actual ratio. The multiplication with +y;; in Equationis a weighting factor that scales
the concentration. It shall emphasize the importance of that template.

1 r

Feig(X)

o L J
0 X 1

Figure 20: Sigmoid curve defined by Equation

The structure of the formula for computing the drop probability remains unchanged. Of

course, P77 drop

is based on C,,;;. However, applying the new computation of the concentration leads to
more homogeneous clusters. Figure [I9(d)] [19(e)| and [19(f)| (page [61) show three scenarios
applying C,,04- The scenarios are set up equal to the ones shown in Figure
and respectively. The comparison of two graphs arranged in a column exhibits the
different development of the concentration. The graph in Figure[I9(d)|behaves analogous
to the one in Figure If there are no dissimilar tuples around C,,,; approximates Coyjg-
The graph of Figure behaves totally different to its above located counterpart: In the
beginning (until Step ~ 30) template a(X) holds the majority of tuples on that node.
Hence its concentration value is the highest but as one may see it is decreasing due to a
constant increase of tuple type ¢(X). At Step = 30 the amount of a(X) and ¢(X) tuples is
equal and consequently its concentration value, too. In fact, both are very low since it is
vague whom of them shall obtain the tuple space by accumulating tuples of its type. In
the following (Step > 30) one can see a steep increase of Cy,,4 for ¢(X) tuples while the
curve for a(X) tuples declines to 0 making it very unlikely to drop further tuples. At the
bottom of the graph one can see the curve for d(X) tuples. Since there are only 20 tuples
of that type the concentration is very low in the beginning and declines over time to 0,
too.

Figure is based on the same scenario as its above suited counterpart. Similar to
Figure e concentration for b(X) tuples starts with the value (Step = 0, C = 90).
While the curve computed with C,¢ is a constant horizontal line Cy,, forces the value
to decrease. The slope decreases with the number of steps and reaches its minimum at
around Step = 60. It continues by increasing the slope and declining C,,,;. The shown
curvature is based again on a static increase of c(X) tuples. Hence, one can see an increase
of the curve for c(X). Both curves intersect at Step = 90 since they show an equal amount
of tuples. Since there are only 20 a(X) and 10 d(X) tuples in the scenario one can hardly

prod (Equation stays in dependency on C,,,; while P8 (Equation page

63

4. Improved Metrics in SWARMLINDA

- —

Step 100

o

Drop Probability .
Drop Probability .
Drop Probability .

o
=)
o

o

0 Step 100 0 Step 100

(@) (b) ()

—

Drop Probability ..
Drop Probability .
Drop Probability .

o

o
o
o

0 Step 100 0 Step 100

a(X) b(X) —c(X) —d(X)
(d) (e) (f)

Step 100

Figure 21: Comparison between P;:éi represented by the upper three graphs and Pg:gi

represented by the lower three graphs. The charts show the dependency on the
different concentration formulas. The graphs are arranged in three columns
and are based on the scenarios shown in Table [7|(page

see their curves. Their concentration value is infinitesimal and thus approximates the
horizontal axis. In the end (Step > 90) it is more likely that ¢(X) tuples get stored at the
node.

Figure [19|shows the adaptive behavior of C,,,; while the constitution of the tuple space
is changing. This results in more homogeneous cluster structures. The concentration is
always dependent on similar and dissimilar tuples and regulates itself.

According to both concentration formulas the drop probability is affected. Although it
is influenced by K the concentration has a strong effect of Py;,,. However, Figureshows

the comparison between the two drop probabilities P;:;i and ngg‘; which are based on the

two aforementioned concentration formulas. The scenarios for the graphs are exactly the
same as in Figure 19| (page [pI). In particular, the drop probabilities have been computed
using the presented concentration values and with K = 10.

Figure21(a)land 21(d)|are equal. In fact, they have to be since their concentration value
is identical. The graphs exhibit an increase of the drop probabilities while ¢(X) tuples get
incremented with each step. The curve approximates the highest probability but since K
is set to 10 the curvature flattens in the upper section.

Figure 21(b)| and 21(e)| show the behavior of the development of the drop probability
while other tuple types are stored at the tuple space. According to their concentration
value the curves in Figure suffer from ignoring other types. Around Step = 30
a(X) as well as d(X) tuples form the minority but still hold a relatively high probability
value. In average there is a 50 % chance that further tuples of these types get stored at

64

4. Improved Metrics in SWARMLINDA

1 1
K=2
z 2
g K=10 3
ST :
o o
g K=18 s
[a) a)
0 0
0 Step 100 0 Step 100
(a) (b)
Figure 22: Comparison between Ps:;‘; represented by the graph on the left and Pﬂ’l’:gz rep-

resented by the graph on the right. The charts indicate drop probabilities based
on different K values. The two graphs are based on the second scenario shown

in Table @ (page .

the tuple space. Additionally tuples of type c(X) which claim the majority reach higher
values. In particular, the given constellation allows three types of tuples to be stored at
that node. Therefore the main objective (N, — 0) cannot be achieved since it is unlikely
that homogeneous regions emerge under the given conditions.

Figure indicates the adaptive behavior of the drop probability. The tuple space
holds only a sparse set of d(X) tuples but a few more a(X) objects. This forces Pgﬁgi to

approximate 0 while the probability value for a(X) tuples claims around 50 %. Due to
an increase of ¢(X) tuples the curve representing the majority type declines rapidly and
intersets the c(X) curve at Step = 30. At this time the amounts of both types are equal:
|A| = |C|. In the following one can see a steep increase of the slope of the c(X) curve.
This behavior results in homogeneous structures.

Analogous Figure shows an even worse scenario since it includes all four tem-
plates. For all types the drop probability is relatively high. Although d(X) tuples own
the absolute minority (|D| = 10) they obtain a probability value of around 25 % con-
stantly. The values of P;:;i for the other types are even higher, except for ¢(X) tuples
while Step < 10. In contrast Figure shows a clear separation of drop probabilities for
the respective templates. At Step = 90 one can see the intersection of the curve indicating
the substitution of the major type.

The shown graphs in Figure 21| (page [64)) are based on a fixed K value (K = 10). How-
ever, the explained behavior as well as the mentioned problems are independent on K.
One can interpret K as a stretch value that allows the modification of the drop probability
within a certain At. Figure compares two graphs taken from Figure 21| by apply-
ing different K values. In particular, the plots from Figure 21(b)|and 21(e)] are reduced to
template a(X) and ¢(X) while d(X) has been removed from the scenario.

While Figure has been generated using C,,;, Figure is based on C,,,;. Each
chart exhibits two template types and three curves respectively with K set to 2, 10 and 18.

65

4. Improved Metrics in SWARMLINDA

It is noticeable that the curvatures remain almost the same. Again the approach shown
in Figure suffers from its ignorant behavior independent on K. It is even worse if K
reaches small values. The curve computed with K = 2 indicates a situation that it is very
likely that almost every tuple gets stored. That circumstance will inevitably result in a
mixture of different templates. In contrast the graphs generated with Pdn;gi (Figure 22(b)
express again a very adaptive behavior. In case that other tuple types are accumulated at
the tuple space the probability value tends to go down if a certain threshold is reached.
Independently on K there is always a suitable ratio between the drop probabilities for the

respective tuple types.

4.2. Entropy

The previous subsection discusses in detail how to achieve a good clustering. The pre-
sented formulas exhibit the adaptive behavior of the drop probability. This results in more
homogeneous cluster structures by reducing mixed tuple constitutions at tuple spaces.
However, this section deals with an evaluation metric represented by the spatial entropy
reviewing the drop probability. Moreover, the entropy value is not only a rate for Py,,p, it
is more an indicator for the level of order in the network.

In general, it is necessary to evaluate a system in order to classify its performance. The
used algorithms and system behavior itself is rated applying the metric of spatial entropy
introduced by Casadei et al. [10]. It determines the level of organization in the network.

Equation [15|exhibits according to Casadei et al. [10] the entropic value for template j at
node i. Moreover, % defines the fraction of similar tuples in contrast to the total amount
of stored tuples. Figure23|shows the development of the entropy by constantly increasing
7ij while 7y; is kept fix. The semantic indicates that due to an increase of 7y;; other tuple
types i, with j # k disappear on the tuple space. Hence, 1, tends to approximate 1
meaning that the constitution gets more homogeneous and results in a good entropic
value (H;; — 0). In fact, the entropy gets worse if y;; and 7y;; are almost equal. In that case
the constitution is very heterogeneous, n, — 0. However, one can estimate the codomain
of H;j given by 0 < H;; < ‘17| log, |T|, with |T| indicating the number of templates.

_ T Vi
H;; ”; log, - (15)

In order to compute the entropy of a node the sum over all template entropies H;;
has to be calculated. Equation (16| exhibits the calculation of H; that is the entropic node
value. The division by log, | T| normalizes the node entropy within the range: 0 < H; <
1. However, the spatial network entropy is calculated by summing the local entropies
of each node (tuple space) and dividing it by the amount of nodes in the network (see
Equation (17))). The entropy level ranges from 0 (for complete order) to 1 (for total chaos).
The amount of information objects of the same kind in a node determines the entropy. A
large amount of tuples of the same kind means low entropy values.

66

4. Improved Metrics in SWARMLINDA

0 Vi 100

Figure 23: Entropy curve defined by Equation [15 with ; = 100 (page

o Yvjer Hij 16)
: log, [T
Y vien Hi
Horig = % (17)

In a system with complete order the information objects are distributed among the
nodes in a way that clusters of similar objects are formed. However, when we look at the
entropy described in [10] at a specific point in time it provides us with the information
about the current level of order in the network but it does not take into consideration the
actual distribution of tuples among the nodes.

Let us consider a scenario to analyze the entropy calculation as proposed by Casadei et
al. Given a network of 20 nodes with 200 tuples in it. We have four groups of templates
each of them containing 50 tuples. If we put all 200 tuples on one specific node while
keeping the remaining 19 ones empty, we will get an entropy value of 0.05. Although
this entropy appears to be good, it is not very representative of the actual state because
the idea of a good entropy should be that the network is ordered meaning that we find
clusters among the nodes containing similar information. But in this case we will find
one node containing all objects while the other ones are empty. One can say that we got
four local clusters but they are not distributed in the network. To make matters worse,
the computation of the local entropy of the node that contains all the tuples results in the
worst value for the entropy since the amount of tuples matching the different templates
are equal, but the remaining nodes get an entropy value of 0 meaning that they are con-
sidered to have a complete order only because there are no tuples in them. The conclusion
here is that the entropy calculation of Casadei ef al. can degenerate to something that is
not representative of the network.

Considering the aforementioned problem leads to the idea of calculating a weighted
entropy by assigning a weighting factor to each local node entropy. Equation shows
the original formula for calculating the entropy as proposed in [10]. The idea is to sum
the local entropies of the respective nodes (H;) and divide it by the number of nodes in

67

4. Improved Metrics in SWARMLINDA

the network (|N|). The approach is based on the theory that each node gets the same
importance independent on the distribution of tuples.

In contrast Equation postulates that each node gets a weighting value <y; attached
that indicates the importance of that node in the network. The weighting factor is propor-
tional to the local amount of stored tuples.

H, . = ZVieNr('Ysz) (18)

Going back to the scenario described earlier in this section we will get an entropy value
of 1 by applying Equation compared to 0.05 using Equation (17). The new value
signifies that the system is totally chaotic in terms of spreading tuples across the network
and clustering similar tuples on a node and surrounding neighborhood while separating
different objects in other regions in the network (¥, — 1; X, — 0).

As a (quasi-) minor issue we can also say that the original entropy calculation may
accidently identify a situation of a single point of failure (since all tuples are stored in the
same tuple space) as good. In the described scenario, if the node containing all the tuples
is shutdown or disappears, all of the tuples are unavailable for a specific amount of time.

1 -

Scenario_3

Scenario_2

Scenario_4

Node Entropy

Scenario_6

Scenario_5

Scenario_1

0 Step 100

Figure 24: Node entropy curves for the respective scenarios according to Table[7](page
and Table page defined by Equation [16|(page .

Figure 24| shows according to the aforementioned scenarios (see Table [7| page the
development of the respective node entropies. Additionally, scenario 4 - 6 is included in
the graph given by Table |8 However, since Scenario_1 contains only ¢(X) tuples the en-
tropy remains constantly by 0. Thus indicating complete order. Scenario_2 and Scenario_3
exhibit an average value of H; in the beginning followed by a rapid increase since the
tuple space is augmented by c(X) tuples. Both scenarios are set up with a basic amount

68

4. Improved Metrics in SWARMLINDA

of tuples from different types. Therefore the situation tends to get chaotic. Finally the en-
tropy decreases because c(X) tuples claim the majority. The more steep slope of Scenario_2
compared to Scenario_3 is based on the more high-contrasted constitution of tuple types.
The fraction of c(X) tuples compared to dissimilar ones in Scenario_3 is less significant
than in Scenario_2. Hence, the entropy declines more slowly.

Al | IBI | ICI | IDI | K
Scenario_4 - 100 | Var - 10
Scenario_5 - 5 Var - 10
Scenario_6 5 5 Var - 10

Table 8: Configuration of the system environment for the test runs

However, scenario 4 - 6 shows different behaviors of the entropy. While Scenario_4 ex-
hibits a constantly increase of H; due to a high amount of dissimilar tuples and finally
reaches its maximum at Step = 100, Scenario_5 and Scenario_6 indicate a fast rush of the
entropy followed by a light slower decrease. This phenomenon appears since the amounts
of other tuples within the tuple space are significantly small.

H <node>
: (X) b(X)
<scenario>

(X) d(X)
Node_1 | Node_2 | Node_3 | Node_4 | Node_5 | Node_6
Scenario 7 25 25130 701100 - |5 15 5 5120 30
=25 25 - - - - 180 - 10 80| 40 10
Scenario_8 1150 -}20 - |5 - |1000 - |400 -
- 1 1 1 1 - =13 2 10 - | = _
Scenario 9 1 - 130 - 100 - |10 - 13 - | = 200
- - - |250 50| 50 80| - - - — 1150 250

Table 9: Scenarios of tuple distribution in a six node comprising network

Table [9] shows three additional scenarios comprising six nodes that are contained in a
network. Each tuple space has a specific constitution of tuple types given by the table.
Further on, Table [10] exhibits the corresponding entropic node values and finally com-
putes the spatial network entropy according to Equation [I7jand Equation [18 denoted by
H_orig and H_mod respectively. One may notice that Scenario_7 is comprised of equal
sized nodes. Therefore the spatial node entropy is equal applying both formulas. How-
ever, Table [10] shows the entropic node values as a function of the constitution of tuple
types.

It is noticeable that in Scenario_8 H_mod is smaller than H_orig due to a very homoge-
neous cluster structure within huge tuple spaces. Only Node_1 and Node_4 indicate bad
entropic values. Since these tuple spaces contain a very small amount compared to I" the

69

4. Improved Metrics in SWARMLINDA

H1| H2 H3 H4 | HS5|HS6| H orig| H mod
Scenario_7 1 1044 | 0 |044 051|092 | 0.553 0.553
Scenario_8 1 1002| 0 [074004| O 0.301 0.029
Scenario_9 0 066|077 | O 0 |078 | 0.368 0.715

Table 10: Entropy calculation based on the tuple distribution given by Table[J]

influence is thereby also very small. This results in very small entropic values applying
Equation 18 while Equation [17|exhibits approximately a ten times higher value. Contrari-
wise, Scenario_9 shows a situation where H_orig obtains a lower value than H_mod due to
different cluster constitutions. Node_2, Node_3 and Node_6 own bad entropic node values
while the remaining ones indicate total order. Since Equation [17|computes the arithmetic
mean value of all node entropies the worst value which H_orig may adopt would be 0.5
since half of the network seems to be sorted. In contrast H_mod exhibits a higher value
because Node_2, Node_3 and Node_6 contain the majority of tuples according to I'. Based
on this behavior Equation [18{computes a more realistic value of the entropy compared to

Equation[I7]

4.3. Pickup Probability

Section [4.1| (page [59) discusses equations for achieving a good distribution level of tuples
among the nodes. The tuples shall be organized so that homogeneous regions appear; dif-
ferent object types shall be kept separated. Consecutively, section |4.2] (page |66)) explains
evaluation metrics in order to rate a given distribution of tuples. However, independently
on the current state it is very unlikely that under real—worl conditions the distribution
is perfect (H = 0). Therefore, there are always tuples that do not fit in the context where
they stay since the SWARMLINDA system is developed on a probabilistic approach. Ac-
cording to this scenario the best case takes place if a template-ant passes by and picks it
up due to a request that is based on tuple retrieval (see section 2.2} page[26).
Unfortunately, tuples are hardly found by template-ants if they are some sort of mis-
placed in a region since the pheromone trails may already evaporated. Thus there may
be not much ants that transport or look for such a tuple: neither template- nor tuple-ants.
It is more likely that they get locally lost in a region if the homogeneity value reaches a
certain threshold. As one may think isolated tuples are not an advantage of the system
since they represent resources that tend to get useless. This phenomenon may appear in
several regions over time. In order to avoid locally lost objects and assure the most pos-
sible availability of resources this section deals with the movement of tuples. The idea
is simple: tuples that do not fit in a certain environment shall be transferred to a - in
most cases surrounding - region characterized by a suitable context. This mechanism shall
guarantee more homogeneity in regions resulting in a lower entropy and finally achieves
an improved performance level. Tuple storage as well as retrieval increase its efficiency

20 A real-world scenario may contain a huge amount of nodes, tuples and different templates. In contrast
one can set up an artificial-world scenario characterized by less nodes, tuples and templates.

70

4. Improved Metrics in SWARMLINDA

since they get applied on a (quasi-)ordered network. Tuple movement has to cope with
the following tasks:

Tuple space selection describes the process of exploring a tuple space that seems less
organized. Its structure is characterized by a heterogeneous constitution of tuples.

Template selection defines the mechanism of selecting a tuple type that seems mis-
placed at its location. Hence it is advisable to migrate the tuple since it has a severe
impact of the node entropy.

Pickup and movement deals with the removal of the selected tuple and transports it to
a more appropriate region. This combines two advantages. On the one hand the
entropy of the selected tuple space will increase since one misplaced tuple got re-
moved. On the other hand the tuple space to which the ant brought the tuple may
also increase its entropy since the idea is to store the tuple in an appropriate envi-
ronment. This results in an improved constitution on both nodes.

Equation 22|defines the normalized probability for template j within tuple space i. It is
necessary to compute P (i, j) for each template j € T to select a tuple type. The for-
mula also involves a certain probability that no tuple is selected for pickup. The exponent
k serves as a controlling parameter which adjusts the range of not picking up a tuple.

However, Equation 21| calculates a probability value for a template j within tuple space
i that indicates the likelihood of picking up this specific template. The codomain ranges
from O (for the tuple shall stay there) to 1 (for pick it up). The formula is comprised of the
node entropy H; and a fitness value of the respective template. The node entropy is the
first part that flows into the formula. It expresses the level of organization of the node. If
H; is very high the tuple space is in a very chaotic state and thus shall be cleaned up. On
the other hand if H; approximates a low value the organization seems quite appropriate
so that it is unlikely that a tuple gets selected for movement.

The second part is the fitness value of a particular template. RFyeppiate (1,7) as defined in
Equation [19|expresses the relative frequency of template j within node 7 and its neighbor-
hood NH. RPtemplate(i, j) is an indicator of the fraction of tuples matching template j on i
represented by 7;; in contrast to the surrounding nodes denoted by NH(i). Therefore, if
the value approximates 0 the local amount of tuples matching j is relatively very small in
contrast to its neighborhood. In this case it may be appropriate to move those tuples to
one of the neighbors indicating an even higher value. On the other hand if RPtemplate(i/ 7)
tends to reach 1 the neighbors own less tuples of type j and thus it may not be useful to
migrate a tuple.

Yij
Yij + LvneNH(i) Tnj
Vi
Vi + LvneNH(i) Tn

(19)

RFtemplate (i/]) =

RFEota1 (l) = (20)

71

4. Improved Metrics in SWARMLINDA

. Hi+F; (1*RFtem late(i/j))> .
.. RF 1 8 P 1 > 0
Ppickup(lz]) — total() (7 f Vij 1)
0 otherwise
P, i i)k
pickup (ir1) = pik 1) ik > 0 (22)

B ZVtGTi Ppickup(i/ t)

In order to arrange H; and RFiepiate (i,7) equally it is necessary to compute the comple-
ment of RFtemplate(i/ j). The result is applied to a sigmoid function defined in Equation
(page [62) that has also been used for the computation of the drop probability described
in section [4.1] (page 59). Again the function stretches or compresses the input value in or-
der to reinforce the tendency and thus the exigence of tuple movement. Since both sum-
mands, H; and RF,.ppiat (i, j) own the same codomain mapped to [0,1] they obtain equal
influence. Finally, a weighting factor represented by RF;y, (i) is introduced in order to
express the importance of that node in contrast to its neighborhood.

| <node>
a(X) b(X
<step> CEXg dEXg

Node 1 | Node_2 | Node_3 | Node_4 | Node_5

Steo—p |0 50 2 2 [15 - [10 60| - -
p= 20 - |2 2 |- 20 - - |10 4

66 23 |2 8§ — |1 8 | = =

Step=400 | ,, |, ~ 25 - - 103 -
75 - |2 - |- — |- 112| = <=

Step=800 | ., _ |7 _ | _ 2% |- _ |19 -

Table 11: Constitutions of tuple spaces according to Figure

In contrast to RFtemplate(i, j) Equation 20| computes the relative frequency of the total
amount of tuples within tuple space i in contrast to its neighborhood NH. The ratio indi-
cates an importance value that is normalized in [0,1]. While small values express unim-
portance high values indicate that this tuple space is huge compared to the surrounding
ones. Hence, it shall be treated more meaningful. In general, the more tuples a tuple space
contains the more it influences the entropy. Therefore, there shall be a higher probability
that huge tuple spaces are cleaned up with more priority than those who hold only a few
tuples.

In the scenario exhibited in Figure [25/one can see a network comprised of five nodes.
Each node owns a pie chart that tells the current fractions of templates. The constitution
of the tuple distribution is shown in Table [11] for each node that is contained in the net-
work. The three rows indicate the state of the environment at Step = 0 resp. 400 and
800. According to Equation [22| the probability of withdrawing a tuple depends on the
node entropy and the relative frequencies for the specific template as well as for the size

72

4. Improved Metrics in SWARMLINDA

o WV o WV o UV
lo ..2 05 1. ‘.Z 05 10 "2 05
& & @® [
@ @& -
(a) Step = 0; Hy,;py = 0.437 (b) Step = 400; Hy,pq = 0.27 (c) Step = 800; H,pq = 0.078

Figure 25: Emergence of homogeneous cluster structures due to tuple movement

of the tuple space. This balances the pickup probability so that the constitution of a tu-
ple space does not change rapidly. Although Node_2 contains less tuples in contrast to
the surrounding ones its constitution changes approximately with the same speed as the
other nodes in the network. In order to decline the system entropy it is necessary that the
cleaning ants prefer huge tuple spaces for tuple movement.

The mentioned scenario involves only tuple movement, i.e. there is no removal or addi-
tion of tuples included. Figure Figure and Figure show different organi-
zation levels based on the specific amount of time that has been passed by represented by
step. The computation of the system entropy follows the modified approach presented in
Equation [18|(page[68). One can see that the level of organization increases over time. The
tuple movement process effectuates the emergence of homogeneous cluster structures as
postulated in Equation 8| (page [59) resulting in a heterogeneous network situation postu-
lated in Equation 9] (page [59).

However, it is required to compute Py;c,, (i, j) for all templates j € T that are located at
the current tuple space. The separate pickup probabilities indicate the necessity of with-
drawing the respective tuple types in order to achieve higher homogeneity. However, in
order to select a tuple the values have to be normalized. In its original form they can be
hardly compared. The exponent parameter k controlls the behavior of P”j’lfc?{";p(i, j) since
it scales the individual pickup probabilities. Setting k = 1 results in separate normal-
ized probabilities with the characteristic that the sum is 1: } \yicr, P;%{”Jp(i, j) = 1. Each
tuple type obtains a normalized probability fraction that is proportional to Ppjcxy, (i, j)-
For k > 1 indicates that there is a certain probability dependent on k so that no tuple gets
picked up. In order to stay conform to SWARMLINDA's characteristic of non-determinism
it is advisable to choose k > 1. The current implementation adjusts k = 2. According to
Figure[26/one can see that the gap between picking up and leaving the tuple at its current
location increases while k adopts higher values. One can understand k as a factor restrict-
ing the average amount of tuples that shall be moved. In a real-world scenario with a
huge amount of servers and tuples a low value of k will result in high dynamism but also

73

4. Improved Metrics in SWARMLINDA

=
1

=
1

—k=1 —k=2 —k=3 —k=4 —k=1 —k=2 —k=3 —k=4
2 >
g g
< o |
o =
o o
2 E
a °
= m
0 — 0 =
0 Step 100 0 Step 500
] 3 norm ;g 3 1 norm ;1
(a) Interior influence on Py p(z, 7) (b) Exterior influence on P p(z, 7)

Figure 26: Development of the pickup probability in dependence on k

in large network traffics. Therefore the load will inevitably increase and may impact the
system performance since a request executed by a client may take longer than with lower
network load. So it is a compromise between dynamism on the one side and avoiding
high system overhead on the other side.

Node_1 | Node_2

. 20 30| - -
Scenario_10 X 10100 -
. 20 30| - -
Scenario 11 100 10! x -

Table 12: Constitutions of tuple spaces according to Figure

Figure 26| compares the influence of internal and external tuple space structures. Both
plots are of the point of view of ¢(X) tuples. Table [12| shows the scenario in which the
graph is plotted. In Scenario_10 the X indicates that at each step one tuple of type ¢(X) is
added to Node_1. In the beginning X is set to 0. Based on Node_2 the probability tends to
be higher (k = 1) in the beginning according Figure That is because locally (Node_1)
the amount of ¢(X) tuples in contrast to Node_2 is low. They tend to move to the bigger
tuple space represented by Node_2. With a further increase of ¢(X) tuples the probability
declines. In case that k > 1 one can see that the curve reaches its maximum at around
Step = 50 and declines afterwards. From Step = 0 the probability is increasing since due
to an increae of ¢(X) tuples the entropy tends to get worse. On the other hand the tuple
space gets more importance since it is growing. As a third factor Node_2 attracts c(X)
tuples because of its relatively huge amount. At Step = 50 the entropy tends to get better
since the constitution gets more homogeneous because ¢(X) tuples on Node_1 claim the
majority. Second, the difference between the amounts of ¢(X) tuples get smaller. Thus
Node_2 looses attractiveness.

Figure shows the exterior influence on Pg%";p(i, j). In the beginning (Step < 60)
the probability is decreasing. Node_2 is not an attractor since it has no tuples. After a few

74

4. Improved Metrics in SWARMLINDA

steps it gains a little bit attractiveness but on the other side the weighting factor RF;,, (i)
for Node_1 declines since there are tuples in the neighborhood. At Step >= 60 Node_2
reaches a threshold so that its attractiveness value increases in a way that the pickup
probability for c(X) tuples adopts a higher value. This is the result of the relatively strong
increase of the slope. But at around Step = 160 the curve reaches its maximum and starts
declining again. The size of tuples of Node_2 - due to an increment of ¢(X) tuples per step
- is equal to the size of Node_1. Hence the weighting factor RF;y; (i) for Node_1 compared
to Node_2 is smaller now. Therefore according to Figure 26|the probability is always based
on internal and external cluster structures.

4.4. Anti-Overclustering

In section (page the modified mechanism of dropping tuples at a node is pre-
sented. It is explained in detail how the improvement produces higher homogeneous
cluster structures. In section 4.2 (page an evaluation metric is introduced that rates
the performance of the system, i.e. the distribution of tuples among the nodes and there-
fore the homogeneity of tuple spaces. The entropy defines the level of organization of
the network. Afterwards, section 4.3| (page suggests a mechanism for selecting and
withdrawing tuples within tuple spaces that seem to be misplaced. The process is part of
the tuple movement algorithm. The idea is to migrate tuples between nodes so that the
system entropy tends to adopt smaller values and thus indicates a higher level of organi-
zation. Finally, this section deals with the idea of avoiding overclustering of tuple spaces
and achieve a more equal distribution. However, the idea of overclustering avoidance was
tirst introduced by Casadei et al. in [10], but this approach is developed independently.

The concept of anti-overlcustering is based on avoiding too dense cluster. One can in-
terpret this mechanism as a spatial separation of data, but the divided partitions shall
stay in geographical proximity to each other. This enables the formation of regions hold-
ing similar information objects. In case of an unavailability of one of the nodes there are
still the neighbors that can be requested. This approach is a support to fault tolerance of
the system. On the other side a more equal distributed system leads to an improved load
balancing between the nodes. This guarantees a higher performance of the entire system.

In order to force tuple-ants to drop tuples in the direct neighborhood of huge tuple
spaces (avoid too dense clusters) it is necessary to calculate a fitness value. However,
again there is no determinism for that behavior and of course, the drop locations depend
on the context. The ant shall only drop the tuple if it fits in the environment. Equation
postulates spatial clustering. At this level there is no overclustering avoidance. Instead it
supports spreading the tuples over a region with the restriction of not violating the rule
of maintaining homogeneity. P35’ p which introduces spatial clustering is an alternative
formula of computing the drop probability to Equation [13|(page [62). The main difference
is that P35’ . additionally computes a density factor that indicates the level of fitness of a
tuple in a particular region. The concentration Cs, is given by Equation [24] that involves
the density value denoted by D;;.

Equation 23| defines the density for template j for tuple space i as the ratio of the sum

75

4. Improved Metrics in SWARMLINDA

of tuples matching template j within i and its neighborhood divided by the sum of all
tuples within i and its neighborhood. The ratio is mapped to a codomain in [0,1]. If this
values tend to get big (approximates 1) the density of tuple matching j seems very high.
Therefore, the likelihood shall increase due to obtain homogeneous regions. In contrast,
if D;; declines and approximates 0 the set of tuples matching j seems very sparse in this
region. Hence, it may appropriate not to store the tuple in this location.

’)/l] + ZVHENH (i) Tnj

Dji (23)
T it YyneNH(i) Y
’)’1] +D
Csc = sig (Yij (24)
Pirop = (CSC - K) (25)

Figure27)shows the effect of spatial clustering applying Equation 25 The scenario com-
prises a 25 node containing network. The environment consists only of ¢(X) tuples. Figure
exhibits an initial state (Step = 0) with an amount of 120 tuples stored in the net-
work. In the terrain one can see five nodes that stay in proximity and hold all the tuples.
The distribution of tuples among the nodes is indicated by the pie charts that are beneath
the respective nodes. While the blue fraction represents the proportion of ¢(X) tuples in
contrast to the biggest tuple space the gray part exhibits the set difference. For instance,
the tuple space C3 presents with 40 tuples the biggest node. In contrast, tuple space B3,
C2, C4 and D3 own 20 tuples respectively. Hence, their pie chart holds proportionally a
50 % blue resp. gray fraction.

After 150 steps the amount of ¢(X) tuples has increased to I'c = 275. In Figure
one can see the effect of spatial clustering. Compared to Figure the tuples are more
spread among the nodes. The region has extended by occupying tuple spaces in the direct
neighborhood. In general, as a characteristic it is noticeable that the higher the distance
to the core node (C3) is the less tuples indicated by the pie charts can be found. Since
this strategy is based on achieving a higher spread of tuples and not avoid overclustering
the core node also gains tuples. As one may notice the relation between yp3 and 3 has
changed between Step = 0 and Step = 150. This is due to a higher increase of tuples on
C3 while B3 obtains less tuples.

In order to avoid overclustering it is necessary to constrain the amount of tuples within
a tuple space by introducing a maximal threshold value represented by max-size. Never-
theless, max-size is not a hard threshold, it is more an indicator that influences the drop
probability. Equation 27] defines the drop probability in consideration of avoiding over-
clustering. It is optional to use Pj; rop’ ; alternatively one can replace it with Pl’fgd In this case

the spatial clustering is disabled. The formulas can be combined mdependently However,

ng;p depends on an external control parameter max-size that has to be set manually. It con-

trols the decrease of the drop probability. Equation 26 defines ¥; that is a scaling factor

that adjusts ij(fp

76

4. Improved Metrics in SWARMLINDA

LY ™ ™ ® ™ e ™ ™ ™ ™
A —_— —_—

- A »

qe ™ ™ ™ ® ge — ™ .o — ™ g .

- = _» _ -

3e ™ ™ ™ 3e ™ ™ ™ .
- » > - ,

2 . .]] 2 = .o L] L] L]
_ - -

le ® ® . ® le . . ® .

A B C D E A B C D E

(a) Step = 0;T¢c =120 (b) Step = 150;T'c = 275

Figure 27: A 25 nodes comprising scenario with Spatial Clustering

Yi
¥ = Fug (1- 51— 26
! S18 2 - max-size (26)
ngocp =Y ;Y‘r:op (27)

The decline of the drop probability according to Equation 26|is shown in Figure 28, The
curvature exhibits the smooth decrease of the stretch factor ¥; depending on the amount
of local tuples (y;) and the configured threshold given by max-size. If y; reaches max-size

the drop probability declines to half of its original value (¥; = 0.5). However, if P53’ p

approximates 1 nggp obtains a value around 0.5. Therefore the probability is not very low.
But since P57 , 18 very high, the tuple seems to fit in the environment. Thus there shall be

at least a certain probability that allows that the tuple gets stored. Finally, if ; continues
increasing ¥; declines exponentially and adopts 0 very fast. Hence ngocp also declines
strongly and finally adopts 0.

Figure[29 presents the effect of overclustering avoidance. In particular, the development
is shown that approaching tuples are stored in the direct neighborhood of huge tuple
spaces. Figure[29(a)] exhibits a scenario of five nodes and an amount of 100 tuples (Step =
0). The node n; owns the most tuples. In contrast, n3 and n4 obtain half while n; and n5
get a quarter of the amount of tuples stored in n5.

21 steps later one can see in Figure that the amount of tuples has increased by 30
(I'c = 130). It is noticeable that 13 and 4 receives most of the tuples so that its amount
raises around 50 %. Node 7 and 15 obtains a lighter increase. At Step = 67 more tuples
have been added to the scenario so that it ends with I'c = 190. Figure shows that

77

4. Improved Metrics in SWARMLINDA

0 max-size Y 2 max-size
i

Figure 28: Development of ¥; in dependence on y; and max-size based on Equation

all tuple spaces indicates a high filling. The difference of the amount of tuples among the
nodes tends to get very small. Compared to Figure the tuples are almost equally
distributed. Therefore the systems results in a higher balance.

However, a better spatial clustering can be achieved by modifying the concentration

Csc defined in Equation 24| (page [76) as wells as P3¢ defined in Equation 25| (page|76).
q pag drop q pag

Vij
— T Dj
Csc* - Fsig <%T> (28)
2
* C *
P = —= (29)
drop Cser + %
Bise, = ¥iPiio, (30)

In contrast to Cs the modified formula Cs.+ defined in Equation 28|is not based on the
weighting factor <y;;. This normalizes Csc+ in a codomain of [0,1]. While low values of Cs
characterize an inappropriate location high values indicate a fitness of the tuple in the
environment. By avoiding the multiplication with <;; the concentration value is simple
independent on the amount of similar stored tuples. In fact, there is a certain indepen-
dence on the amount of tuples but only in relation to dissimilar tuples stored at node n;
and its neighborhood NH (7). Thus the density plays an important role.

In contrast to P’ p the modified formula Pjﬁ; . defined in Equation 29| is not simply

dependent on the age factor K. It is a function based on the ratio of K divided by its

78

4. Improved Metrics in SWARMLINDA

-.k -».* D
@D,

-
1 D e T e P
.) oz 05
< * 5 = 1 5 @
;D N 32D
(a) Step = 0;I'c =100 (b) Step =21;T¢ =130 (c) Step = 67;Tc =190

Figure 29: A five nodes comprising scenario with Overclustering Avoidance

initial value Ky;, which is set to the first value that K adopts. Shortly speaking, it is the
maximum age an ant get reach in a given system configuration. Thus the division by Ky;,

normalizes the ratio in [0,1]. Therefore, all parameters used in Psli;p are normalized in

the same codomain. This combination achieves a much better clustering than using P3¢

drop
which is shown in section [5.5] (page [98).

Finally, the drop probability which avoids over-clustering ngocp defined in Equation

(page b may also be improved since it depends on P57/ P Equation 30| introduces ng;p

as the extended formula. In fact, the over-clustering itself is not affected no matter which

drop probability is used (P;:éi, Pg;gz, P, b Pgﬁ; p) since ¥; defined in Equation (page

independently regulates the probability level. But in order to guarantee a better spatial
clustering in combination with the over-clustering avoidance it is necessary to compute

aoc* sc*
Pdmp based on Pdmp.

79

5. Experiments Showing Optimization Results

5. Experiments Showing Optimization Results

This section deals with the evaluation of the implemented SWARMLINDA system. Several
experiments have been performed on the simulator, introduced in section B.3] (page [47),
in order to examine the system behavior and the characteristics of a fully decentralized
application. Section [(page [59) describes existing formulas taken from literature and in-
troduces modified as well as new equations making the system more effective. While the
comparisons between the different approaches have already been pointed out, this sec-
tion is based on the results of several test executions of scenarios that comprise a whole
system environment. The simulator runs by including all presented formulas and shows
the quality of collaboration of the individual approaches. However, all test runs have been
performed on the topology which is given by Figure 32 (page [84).

5.1. Tuple Distribution

This subsection presents results for tuple distribution. The following shows the behavior
of the applied algorithm in different system environments. The idea of tuple distribu-
tion is to spread the tuples among the nodes in the network so that similar tuples stay
either at the same location or in the direct neighborhood. This process results in forming
homogeneous cluster structures. The grouping of tuples is based on its type represented
by a template. The characteristics of tuple distribution - invoking SWARMLINDA’s out-
primitive - including the algorithm has been described in detail in section [2.1] (page [18).
While this explanation is oriented more theoretically, section[3.3|(page #7) shows technical
details and exhibits how to perform a simulation with tuple distribution. Finally, section
(page[p9) presents the concrete formulas which has been used in order to distribute the
tuples. While section |5.4{ (page discusses the difference between the two mentioned
approaches, this section deals with simulations based on P?**¢ (Equation [14} page .
e

dro

Figure 30| (page|82) shows the training of the system enviropnment at ditterent points in
time. Table [13|summarizes the configuration of the system parameters for the respective
test runs. As aforementioned Figure 32| (page [84) shows the used topology exhibiting the
environment. However, the configuration table defines the following parameters: #nodes
and #ants indicate the number of nodes and ants that are in the network before the test
run is started. Since topology already defines the arrangement of nodes and links #nodes
is given implicitly. The parameters #tuples a(X) resp. #tuples b(X), #tuples c(X) and #tu-
ples d(X) exhibit the amount of tuples of the given types that have already been stored
in the network. As a result of the arrangement of these system parameters the value en-
tropy indicates the level of order in the scenario. Afterwards seeding indicates the type of
placed seeds before the test runs. The parameters ao@ and s@ set the clustering mode.
With num-ants the amount of ants which get a tt/-value of age assigned is given that will
be instantiated for the test-run. While template-type sets the type of tuple that the ants
shall carry, chosen-node indicates the node at which the ants shall be born. In the scenarios

21 Anti-Overclustering
22Gpatial Clustering

80

5. Experiments Showing Optimization Results

template-type is determined as all. This means that 30 ants respectively for each template
get instantiated. The node is also set to all exhibiting that the location of birth is chosen
randomly. The parameter time is given implicitly based on the actions that have been
executed before. Since the following scenarios are performed sequentially the time is in-
creasing consequentially.

Scenario_1 | Scenario_2 | Scenario_3 | Scenario_4
#nodes 20 20 20 20
#ants - - - -
#tuples a(X) 30 60 90 750
#tuples b(X) 30 60 90 750
#tuples c(X) 30 60 90 750
#tuples d(X) 30 60 90 750
entropy 0.7323 0.5171 0.3995 0.0778
seeding - - - -
aoc - - - -
sC - - - -
num-ants 120 120 120 120
age 30 30 30 30
template-type all all all all
chosen-node all all all all
time 31 61 91 751

Table 13: Configuration of the system environment for the test runs

Figure shows an out with 120 ants at time ¢ = 31. The graph exhibits the depen-
dence on the amount of steps that are required to distribute the tuples among the nodes.
The vertical axis (# out-ants) indicates the amount of ants carrying tuples matching the re-
spective templates. Each time an ant drops a tuple at a tuple space it dies afterwards and
hence the curve declines. However, until Step ~ 10 the curves behave almost the same.
They are approximately parallel to the Step-axis. Afterwards one may notice a relatively
steep decrease of the curves except the green one. This indicates that ants carrying tu-
ples matching templates of type b(X), ¢(X) and d(X) successfully found tuple spaces for
storing. Conversely, ants carrying a(X) tuples seem to have orientation problems. It takes
around 22 steps until the first few ants found appropriate tuple spaces. It is noticeable
that most of the a(X) ants finally drop their tuple since their tt-value have been expired
and thus they are forced to store it anyway. But in general, it takes a relatively long time
to distribute all tuples among the nodes. One may notice that the scenario starts at time
t = 31. Therefore, there were 30 previous steps that have already been passed. It is not rec-
ommended to show the graph of the actual “first” scenario that appeared before Scenario_1
since all curves are parallel to the Step-axis until Step ~ 29 and finally decline strongly
in one step to 0. This phenomenon is normal because since there are no tuples stored in
the environment as well as scents there is no attraction for the out-ants. This results com-
monly in a worse entropy. As one may notice Scenario_1 starts with an entropic value that

81

5. Experiments Showing Optimization Results

30 30
5 5
5 5
o]
1 3
0 1 1 1 L 1 0 J
0 15 Step 30 0 15 Step 30
a(x) b(X) =—c(X) =—d(X) a(x) b(X) =—c(X) =—d(X)
(a) Scenario_1: out with 120 ants, t = 31 (b) Scenario_2: out with 120 ants, t = 61

w

o
w
o

out-ants
out-ants

0 15 Step 30 0 15 Step 30
a(x) b(X) —c(X) —d(X) a(x) b(X) —c(X) —d(X)

(c) Scenario_3: out with 120 ants, t = 91 (d) Scenario_4: out with 120 ants, t = 751

Figure 30: Training effect of the system by executing out-primitives at different points in
time

indicates a chaotic state. With that Scenario_1 starts where the actual “first” scenario ends.

Figure 31|shows, parallel to Figure 30, the development of the spatial network entropy
as steps passed by. Therefore the respective graphs from both figures are correlated. In
particular, the graph of Figure shows the entropy according to the development of
the graph in Figure Analogous the entropy is approximately constant until Step ~
10 since no tuples get stored during this time. Afterwards the curve declines due to a
distribution of tuples that form cluster structure.

The scenario shown in Figure starts at time t = 61 which is the end of Scenario_1.
Looking at the different curves it is noticeable that they behave totally different due to
an improvement of scents and emerging clusters. Based on the training effect the ongo-
ing ants are able to track pheromone trails more significantly that have been formed in
Scenario_1. Therefore, they find suitable tuple spaces in shorter time. By comparing the
graphs of Figure [30(a)] and [30(b)| at Step = 15 it is obvious that according to Scenario_1
not half of the tuples have been stored while Scenario_2 is almost done with storing all

82

5. Experiments Showing Optimization Results

[N
1
=
1

> >
Q Q
2 2
wo| w \
0 1 J 0 I J
0 15 Step 30 0 15 Step 30
(a) Scenario_1: entropy curve, t = 31 (b) Scenario_2: entropy curve, t = 61

[y
1
[y
1

Entropy
Entropy

0 15 Step 30 0 125 Step 250

(c) Scenario_3: entropy curve, t = 91 (d) Scenario_4: entropy curve, t = 751

Figure 31: Development of the entropy during the test runs of the out-primitives

tuples. Also the curvatures exhibit an even stronger decrease of the slope. Although a(X)
tuples had a bad start according to Scenario_1 the progress in Scenario_2 is very significant
since they behave even better than the other ones. Finally, at Step ~ 23 the last ant drops
its tuple. According to the mentioned behavior the entropy curve shown in Figure
declines constantly until Step ~ 15 due to the strong distribution of tuples. Afterwards
the curve is more a parallel to the Step-axis.

Figure which shows the results of Scenario_3 takes place directly after Scenario_2.
It is noticeable that based on a further improved training effect the decrease of the curves
get stronger. The curves exhibit an exponential decline. While at Step ~ 5 not half of
the amount of tuples in Scenario_2 have been stored Scenario_3 indicates a success rate of
around 66 %. This means that there is approximately % tuples left that have to be dropped.
At Step ~ 12 almost all tuples have been stored. This is on average three steps earlier
than in Scenario_2. Finally, at Step = 16 the last tuple gets stored. According to the given
storage distribution the entropy, shown in Figure31(c)| decreases strongly up to Step ~ 5.
Afterwards, it keeps on declining slowly until Step ~ 10.

83

5. Experiments Showing Optimization Results

Figure 32: Network topology with two marked paths: AE (blue) and AG (green)

While Scenario_1 to Scenario_3 are directly linked to each other Scenario_4 has been ex-
ecuted later. Between Scenario_3 and Scenario_4 there have been several other out-primi-
tives performed. Therefore, the system reaches a higher training level. In the graph of
Figure one can see that the exponential decline is stronger compared to the graph
shown in Figure At Step ~ 5 almost all tuples have been stored. Compared to
the graph of Scenario_3 it took around 12 steps. However, the last tuple gets stored at
Step = 7. In contrast to the other entropy graphs Figure shows the development
of the system entropy starting from the end of Scenario_3 (Figure and ranges to the
end of the current scenario. Following the curvature one may see a very compressed form
of the curve from Figure or that repeats itself several times. During each exe-
cution of the out-primitive the At - indicating the range of the entropy between Step = 0
and Step = 30 - declines. Finally, AT approximates a very small value so that it seems that
the different curvatures merge into one line that decreases constantly.

However, recapitulated Figure 30|shows a constant improvement of the system. Due to
the training effect the ants are able to track pheromones, follow emerging trails and find
suitable tuple spaces in shorter time. The scenarios exhibit that the more the system gets

84

5. Experiments Showing Optimization Results

trained - i.e. putting a lot of tuples in it - it gets more effective due to an emergence of
more significant trails and more homogeneous cluster structures. Analogous, Figure
shows a very improved development of the system entropy. In the beginning it indicates
an almost chaotic state and ends with a very organized system. Thus the tuples get in fact
clustered among the nodes.

Even though the network contains only 20 nodes it is not as trivial as one may think of
to let an ant route from its current location to a specific one. For instance, Figure 32{shows
as aforementioned the arrangement of nodes and links in which the different scenarios
have been executed. Based on the given topology according to Barabasi’s approach the
nodes are linked following a scale-free power-law distribution (cf. [3]).

Node A|/B|C D|E|F |G
Connectivity || 2 |4 |10 5|3 |9]| 2
Probability % 411 11—0 % % % %

Table 14: Node connectivity and path probability for network topology type_a according

to Figure

Assume a scenario without scents. An ant stays currently at node A and wants to move
to E (see Figure32) since there are similar tuples around. Assume further that the shortest
route is given by R = ABCDE. Table|14{shows the degree of each node and the probabil-
ity value that an ant takes a specific outgoing link. Then the probability for taking path
ABCDE is calculated as follows: [Iy,cr\ (g} PR = 4(1)—0 = 0.0025. Thus, the probability for
taking the path R is only 0.25 %.

Assume, alternatively that the ant which stays currently at node A wants to go to node
G by taking the shortest route given by Q = AFG. According to Table [14| the probability
is calculated as follows: [Iv,c0\ (6} Po = & = 0.05. The probability for taking path Q is
with 5 % significantly higher, but the route given by Q is only via one hop indicated by
F. Thus the nodes stay in proximity. Considering the fact that the system needs only a
few steps (see Figure page 82) in order to assign all tuples to suitable tuple spaces
it would take much longer if there are no scents involved in the system.

5.2. Tuple Retrieval

While the previous subsection deals with the evaluation of tuple distribution represented
by SWARMLINDA'’s out-primitive this subsection focuses on tuple retrieval. This invokes
SWARMLINDA's in-primitive as described extensively in section 2.2 (page 26). While this
explanation is oriented more theoretically section (page 47) shows technical details
and exhibits how to perform a simulation executing tuple retrieval.

Figure 33| (page [87) shows different scenarios performing tuple retrieval. Table (15 sum-
marizes the configuration of the system parameters for the respective test runs. Scenario_5,
Scenario_6 and Scenario_7 are comprised of the same system parameters as Scenario_1, Sce-
nario_2 and Scenario_3. Thus the respective simulation takes place under the same condi-
tions. Therefore it is possible to compare Scenario_1 with Scenario_5, Scenario_2 with Sce-

85

5. Experiments Showing Optimization Results

nario_6 and Scenario_3 with Scenario_7. The test run for Scenario_8 has been performed
directly after Scenario_4.

Scenario 5 | Scenario_6 | Scenario_7 | Scenario_8
#nodes 20 20 20 20
#ants - - - -
#tuples a(X) 30 60 90 780
#tuples b(X) 30 60 90 780
#tuples c(X) 30 60 90 780
#tuples d(X) 30 60 90 780
entropy 0.7323 0.5171 0.3995 0.0753
seeding - - - -
aoc - - - -
sc - - - -
num-ants 120 120 120 3120
age 30 30 30 30
template-type all all all all
chosen-node all all all all
time 31 61 91 781

Table 15: Configuration of the system environment for the test runs

However, Figure shows an in with 120 ants at time + = 31. Analogous to tu-
ple distribution a decrease of the curve in the plots exhibits success. In particular, the
template-ant found a matching tuple and brought it back to the requesting node. It is
noticeable that at Step ~ 4 almost all ants already found a matching tuple. There are in
average around 5 ants of each type left that are still looking for one. Compared to Figure
(page[82)) the out takes much longer in order to store the amount of tuples carried by
ants than retrieving tuples that match the templates the in-ants carry. Since both scenar-
ios have been executed under the same conditions the training of the network remains
the same. In fact, a high influence of the drop probability Py, - independently which
modification is used - discussed in section 4.1| (page [59) is the concentration C. C itself -
again, independently on the used modification - is oriented based on the amount of sim-
ilar tuples within a tuple space. Since, Scenario_1 contains less tuples it will take long to
tfind appropriate tuple spaces unless K tends to adopt smaller values. In contrast, tuple
retrieval does not postulate a huge amount of tuples in order to accelerate the actual re-
trieval process. Once a tuple is found that matches a given template it will be withdrawn
immediately from the tuple spaces. Since the network is already augmented with phero-
mones the ants find tuples very fast. Nevertheless, a few ants require much more time to
detect suitable tuples indicated by the red and yellow curves. Especially, the tracking of
d(X) tuples seems to be very exhausting.

Figure [34] shows, analogously to Figure 31] (page [83), the development of the entropy
for the respective test runs given by Figure|33| However, Figure exhibits the entropy
of Scenario_5. In the beginning until Step ~ 5 the entropy is declining strongly. This is due

86

5. Experiments Showing Optimization Results

30 30
© ©
£ £
e £
0 0 - : : : : :
0 15 Step 30 0 15 Step 30
a(Xx) b(X) =——c(X) —d(X) a(X) b(X) =—c(X) —d(X)
(a) Scenario_5: in with 120 ants, t = 31 (b) Scenario_6: in with 120 ants, t = 61
30 800
® ¢
< £
* *
0 0
0 15 Step 30 0 15 Step 30
a(X) b(X) =—c(X) =—d(X) a(X) b(X) =—c(X) =—d(X)
(c) Scenario_7: in with 120 ants, t = 91 (d) Scenario_8: in with 3120 ants, t = 781

Figure 33: Training effect of the system by executing in-primitives at different points in
time

to an increase of homogeneity within tuple spaces. The withdrawing of tuples leads also
to the phenomenon of supporting the process of achieving a higher level of organization
in the network. The, in the beginning, some sort of misplaced tuples get retrieved. On the
other hand the already formed clusters avoid an increase of heterogeneity since the drop
probability for dissimilar tuples tends to decline strongly as shown in section 4.1 (page
B9). Therefore the combination of in- and out-primitives achieves an even higher level of
organization.

However, the entropy in Figure indicates an increase for 7 < Step < 9. This
occurs for instance if an ant withdraws a tuple from a tuple space so that the amount of
tuples of different types approximate each other. Assume there is one a(X) tuple and two
b(X) tuples. If the ant withdraws one b(X) tuple the entropy gets worse since |A| = |B].
At Step > 10 the entropy reaches 0. That means that the scenario does not contain any
heterogeneous tuple spaces.

Figure 33(b)| and B3(c)| show test runs executing the in-primitive with 120 tuples each

87

5. Experiments Showing Optimization Results

JEny
1
[En
1

Entropy
Entropy

_

0 15 Step 30 0 15 Step 30

(a) Scenario_5: entropy curve, t = 31 (b) Scenario_6: entropy curve, t = 61

[y
1
[y
1

Entropy
Entropy

\.

0 15 Step 30 0 15 Step 30

(c) Scenario_7: entropy curve, t = 91 (d) Scenario_8: entropy curve, t = 781

Figure 34: Development of the entropy during the test runs of the in-primitives

at time t = 61, t = 91 respectively. The plots vary slightly. Both graphs exhibit an expo-
nential decline and thus ants find matching tuples very fast. The average success time -
indicating at which most of the ants successfully found a tuple - is around Step = 4 for
Scenario_6 and around Step = 3 for Scenario_7. Comparing Figure and
one can see a continuous improvement of the training of the network since the retrieval
time decreases.

Figure [34(b)| and [34(c)| show the respective network entropies for Scenario_6 as well as
Scenario_7. Following the curvatures one may notice that they behave almost the same.
They indicate a strong decline in the beginning (Step ~ 3) and continue as a parallel to
the Step axis (Step > 10).

In contrast to Figure 33(a)| 33(b) and 33(c)| Figure shows an execution of the in-
primitive at t = 781 performing an all-in that is characterized by retrieving all tuples
stored in the network. According to Table |15/ (page [86) the environment contains 780 tu-
ples of each type (I' = 3120). Based on the well trained network the in takes again around
four steps for retrieving most of the tuples. At Step ~ 8 all tuples have been retrieved.

88

5. Experiments Showing Optimization Results

tuples
tuples

59«8

0 0
Tuple Spaces Tuple Spaces
ma(X) b(X) mc(X) md(X) m a(X) b(X) mc(X) md(X)
(a) Constitution of TSs before Scenario_1, t = 30 (b) Constitution of TSs after Scenario_1, t = 60
80 80
3 3
= °
2 2
3= 3
0 0
Tuple Spaces Tuple Spaces
maX) b(X) mc(X) md(X) maX) b(X) mcX) md(X)
(c) Constitution of TSs after Scenario_2, t = 90 (d) Constitution of TSs after Scenario_7, t = 120

Figure 35: Development of the constitutions of tuple spaces during the test runs of out-
and in-primitives

Therefore the network is empty. Although there is a huge amount of template-ants the
performance of the system does not suffer under an impact. Instead it shows the same
robust performance as in Figure Since the system is already in a very organized
state and all tuples get retrieved Figure shows the entropy for Scenario_8. The value
declines immediately to 0.

Figure[35shows the constitutions for a set of tuple spaces contained in the network. Fig-
ure [35(a)| indicates an almost chaotic state that has already been explained in Scenario_1.
As expected the different constitutions within the tuple spaces are very heterogeneous.
This appears because the network was empty so the ants had no orientation where to drop
the tuples. Looking at Figure [35(b)|and 5(c) one may notice the development of the con-
stitutions of the respective tuple spaces while tuples have been added to the environment
by executing out-primitives. Therefore the distribution of tuples result in an improved
entropy due to a higher level of organization. Finally, Figure shows an execution of
the in-primitive according to Scenario_7. This erases almost all heterogeneous tuple space
structures. Therefore the combination of out- and in-primitives result in an improvement
of the system by forcing homogeneity and avoiding heterogeneity.

89

5. Experiments Showing Optimization Results

5.3. Tuple Movement

The previous subsections present evaluations of the algorithms for tuple distribution and
retrieval. It is shown that both mechanisms are able to balance the system in order to
achieve good entropic values. Nevertheless, it is, in fact, possible that specific constel-
lations of tuples in the environment confuse the system in a way that it might be hard
to achieve a high level of clustering. Besides, there may be some tuples that are less re-
quested - or even less found - but seem to be misplaced. In order to improve the proba-
bility of retrieving them anyway it may be helpful to migrate them to a different location.

Scenario 9 | Scenario_10 | Scenario_11
#tuples a(X) 100 100 100
#tuples b(X) 100 100 100
#tuples c(X) 100 100 100
#tuples d(X) 100 100 100
entropy 0.9466 0.9466 0.9466
seeding 400 seeds randomly
aoc - - -
sc - - -
num-ants 10 30 60
age out-phase = 20
chosen-node all | all | all

Table 16: Configuration of the system environment for the test runs

However, this section presents evaluations for tuple movement. Figure 36/ shows the
results of tuple movement according to the scenarios given in Table The scenarios
are based on an initial empty environment. At Step = 0 a seeding with 400 seeds has
been performed randomly. As shown in Table [16| there are 100 tuples each placed on
random nodes in the network. The distribution follows approximately an equipartition
that results in a very bad entropy since the environment is characterized by heterogeneity.
The scenarios starting at Step = 1, thus the environment is untrained. As explained in
section 2.3| (page 30) cleaning-ants do not participate in the aging mechanism. Once they
pick up a tuple they metamorphose to conventional out-ants and get an age assigned
which is set to 20. The test runs are based on the convention that the out-ant does not die
after it completes its task. Instead, it metamorphoses back to a cleaning-ant. Therefore,
the individuals are active all the time. The scenarios indicate how fast the system can be
organized in dependence on the amount of used cleaning-ants.

Figure exhibits the amount of steps needed in order to achieve a fully organized
system given the respective amount of ants given by Scenario_9, Scenario_10 and Sce-
nario_11. All three curves have in common that they can be divided into three parts:
the first part is characterized by an increasing negative slope and finally converges to
a static section. In this period the system state is almost chaotic. There are neither cluster
of tuples nor pheromones that indicate a successful path. Hence, the cleaning-ants roam-
ing approximately blind through the network trying to collect tuples and sense scents.

90

5. Experiments Showing Optimization Results

1 r 1 r
——10 cleaning-ants ——10 cleaning-ants
> . >
§. 30 cleaning-ants él 30 cleaning-ants
£ ——60 cleaning-ants 3 —60 cleaning-ants
w w
0 L J 0)
0 450 900 0 450 900

Step Step

(a) Cleaning in an untrained network (b) Cleaning in a trained network

Figure 36: Development of the entropy in dependence on the amount of cleaning ants
during tuple movement

Slowly they find pheromone trails that have been emerged more by coincidence. How-
ever, by tracking those paths ants carrying similar tuples tend to head towards the same
direction. The end of phase 1 is determined by some basic trails that have been establish
including small clusters.

Scenario_12 | Scenario_13 | Scenario_14
#tuples a(X) 200 200 200
#tuples b(X) 200 200 200
#tuples c(X) 200 200 200
#tuples d(X) 200 200 200
entropy 0.66 0.66 0.66
seeding 400 seeds randomly
aoc - - -
sc - - -
num-ants 10 30 60
age out-phase = 20
chosen-node all | all | all

Table 17: Configuration of the system environment for the test runs

The second part is characterized by an almost static slope. In this period the ants mov-
ing tuples around and distribute them to appropriate tuple spaces. This phase is defined
by a strong decrease of the entropy and exhibits the most effective execution of tuple
movement. In the following the negative slope declines again indicating the beginning of
part three. The environment is approximately sorted. There are only a few tuples left that
need to be migrated. With it the performance of tuple movement slows down. In general,
phase two is the main period in which most of the entropy declines. As mentioned the
mechanism of tuple performance reaches its maximal load. Nevertheless, all three phases
require approximately the same amount of time to be executed. The number of cleaning-

91

5. Experiments Showing Optimization Results

200 200
a(x) b(X) mc(X) md(X) a(Xx) b(X) m®mc(X) md(X)

tuples
tuples

e e

L'F' -"L'_-l' -l-l-'

0 e 0 =
Tuple Spaces Tuple Spaces
(a) Untrained network with seeding (b) Clustering by tuple movement
200 200
a(Xx) b(X) mc(X) md(X) _ a(Xx) b(X) mc(X) md(X)
(7] (%]
2 2
Q Q
2 2
**] * _
a
I -
| I L l
0 ul-| ;l,'nln-;lltlt-;l,'l.q'; 0 s N TR — .l—'_-

Tuple Spaces Tuple Spaces

(c) Trained network with seeding (d) Reinforcement of clustering

Figure 37: Self-organization of tuples in an untrained and trained network during tuple
movement

ants can be interpret as a scaling factor that regulates the rate of self-organization. In fact,
more ants achieve a specific level of organization in less time. But there is a threshold at
which the ants cannot increase a given performance. As shown in Figure and
the amount of required steps is not proportional to the amount of deployed ants.

Figure is based on the scenarios given in Table These scenarios have been
performed in the state of the end of the scenarios given by Table |16/ Additionally, a new
seeding has been executed so that the ordered network gets confused again. Analogous
to the first seeding the second one follows approximately an equipartition. Hence, the
system entropy claims a value of 0.66.

Since the environment is already trained one may notice that the redistribution of the
new seeds performs much faster than indicated in Figure Additionally, the first
phase does not take place since the ants are not required to orientate themselves. They
start determined migrating the tuples to already formed clusters. Since Scenario_12, Sce-
nario_13 and Scenario_14 exhibit that it is sufficient to perform phase two and three by
avoiding phase one the redistribution of tuples is accomplished around 33 % faster.

According to the mentioned scenarios Figure[37]shows the distribution of tuples among
the nodes in the network at specific points in time. Figure exhibits the state of the en-
vironment given by Scenario_9, Scenario_10 and Scenario_11 before the cleaning-ants have

92

5. Experiments Showing Optimization Results

been created. The columns indicate the respective constitutions of tuple spaces given by
the colors that represent the templates. The state exhibits an approximately equipartition
that results in a chaotic entropic level.

Figure shows the state after the first cleaning process. The state is totally ordered
indicated by fully homogeneous cluster structures. Thereupon, Figure exhibits the
state given by Scenario_12, Scenario_13 and Scenario_14 before the cleaning-ants have been
created. By applying an uniformly distributed seeding with 400 tuples on the environ-
ment given by Figure leads to the environment shown in Figure

Finally, Figure represents the state of the distribution of tuples after the second
cleaning process. With approximately 66% of the required time of the previous cleaning
process the second one achieves again a situation characterized by homogeneous cluster
structures. This execution reinforces the first clustering procedure.

5.4. Comparison of the improved Metrics

Section (page presents evaluations for distributing tuples among the nodes. In
the following (secion page the results of tuple retrieval has been discussed in
order to find specific tuples in the environment. Finally, the evaluation of tuple movement
(section page [90) has shown characteristics of achieving a high level of organization
by separating dissimilar tuple types while concentrating similar ones. All tests for these
mechanisms have been performed based on the formulas given by:

o pg;gi for computing the drop probability (Equation (14} page

e H,,; for computing the spatial network entropy (Equation [I8} page

* Pikuy for computing the pickup probability (Equation 22} page

e D;j for computing the path selection (Equation 5} page

However, this section deals with the comparison of the original drop probability P;:;i

(Equation (11} page 60) and entropy calculation H,;; (Equation (17, page|67) proposed by
Casadei et al. in [10] in contrast to the in this report developed modified drop probability

Pd"iﬁi as well as the modified entropy computation H,,,.

Based on the studies presented in [22] Figure 38| (page shows the comparison of
the four different scenarios defined in Table [18] All scenarios start with an initial empty
network that is comprised of 20 nodes. Each listed scenario is composed of a different
combination of the presented equations. The parameter num-ants is set to 1000. But this
amount is not instantiated at once in the environment. The goal was to be a little closer
to a real system. The creation of 1000 tuples at the same time, although not impossible, is
unlikely. Hence, the instantiations of the tuples follow the given intervals:

e 40 tuple-ants (10 per type) were instantiated at 5 times.

e 200 tuple-ants (50 per type) were instantiated at 4 times.

93

5. Experiments Showing Optimization Results

The commands were executed iteratively meaning that the next one waits until all of the
previous ants have been finished with their tasks. Therefore in total there are 9 iterations
that have been executed. Figure 38[shows the average spatial entropy of the system while
performing the listed commands. The curves exhibit the average of 20 test runs on the
simulator. The whisker chart shows the minimum and maximum and with it the range of
the measured data points. The box plots - the drawn gray areas in proximity to the curve
- show the lower and upper quartile containing 50 % of the data.

All graphs have a common characteristic: in the first 19 steps the entropy value is 0 and
thus the curve lays on the x-axis followed by a sudden jump to a relatively high value. For
19 < Step < 20 the curve is approximately perpendicular to the x-axis. The phenomenon
occurs since the environment is initially empty (H = 0). The ants roaming around without
dropping tuples. Finally, at Step = 20 they die and hence leave their carried tuple at the
current location. Usually this results in bad entropic values since their orientation cannot
be suitable. Nevertheless, based on their initial random walks they drop pheromones on
their way. So surrounding ants are able to follow similar tuple-ants by tracking scents. At
least, this behavior enables a coarse formation of similar ants.

Scenario_15 | Scenario_16 | Scenario_17 | Scenario_18
primitive out out out out
#tuples a(X) - - - -
#tuples b(X) - - - -
#tuples c(X) - — - -
#tuples d(X) - - - -
entropy 0 0 0 0
seeding - - - -
aoc - - - -
sc - - - -
num-ants 1000 1000 1000 1000
age 20 20 20 20
chosen-node all all all all
formula Py P;:;i Pg”rg‘;} P;:;‘;gg Pg;gz
formula H Hoyig Hoyig H,0d H,04

Table 18: Configuration of the system environment for the test runs

However, Figure 38(a)|and 38(b){show the comparison of P;:éi and P{Trgi by measuring

the entropy according to Hy,e. At Step &~ 20 both curves indicate a similar entropy value.

It is noticeable that the curvature in Figure 38(b)|applying P7%? follows a steeper decline

dro

compared to Figure Finally, the last data point of the graph in Figure exhibits
around half the value of the data point of the plot indicated in Figure By applying

Pdnjg‘; the curve is decreasing constantly stronger than using Pg:;i. This behavior exhibits

an improved self-organization that is based on a more sophisticated clustering. Tuples get
more attracted to tuple spaces that offer most homogeneous cluster structures as well as a

94

5. Experiments Showing Optimization Results

1L 8]
T B) ”“llml
) 1
i 0 80 St;ep 160 i 0 90 St;ep 180
(a) Scenario_15 (b) Scenario_16

Average Spatial Entropy
Average Spatial Entropy

o
o

0 80 Step 160 0 90 Step 180
(c) Scenario_17 (d) Scenario_18

Figure 38: Development of the average entropy values during the execution of 20 test

runs based on the scenarios shown in Table 18| (Figure 38(a) and 38(d)|adapted
from [22])

certain amount of tuples that have already been stored. On the other hand Pg;g?) generally

avoids the emergence of heterogeneity within tuple spaces while Pg:;i does not consider
the actual constitution of tuple spaces causing in possible heterogeneous clusters.

Figure(38(c){and 38(d)show the comparison of P;:éi and Pgﬁgi by measuring the entropy

according to Hy,,y. At Step ~ 20 both curves indicate a similar entropy value. A direct
comparison between the four curves plotted in the respective graphs of Figure 38| are
also available in Figure 39| since the curves have been scaled equally. In order to avoid
confusions one may notice that the graphs in Figure 38| indicate individual scaled axes.
This is due to an improved visualization of the deviation of the different data points from
the mean value. By applying whisker charts and box plots they show the entropic range
as well as the deviated proportions of the entropy for the test runs.

95

5. Experiments Showing Optimization Results

However, it is noticeable that the curvature in Figure 38(d)| applying Pg;g‘; exhibits a

totally different shape which shows a very steep decline of the entropy. In contrast Figure
indicates a slight decrease of the entropy followed by an increase again. Finally, the
curve ends with an even higher entropic value as shows in the beginning (Step = 20).

Figure [38(a)] and 38(c)| as well as Figure [38(b)| and 38(d)| can be compared since they
show the different developments of the entropy applying H,,, indicated by the upper
graphs and H,,,; indicated by the lower ones. As described in section 4.2 (page H04
has been introduced since it reflects the actual spatial system entropy by weighting the
different node entropies by accounting for their total amount of tuples. In contrast H,;¢
computes the uniform system entropy by treating each node equal. In fact, that causes in
an even lower system entropy established by a certain amount of nodes that do not con-
tain tuples. Since empty tuple spaces contribute an entropic node value of 0 to the system
entropy it tends to adopt lower values in general. But this value is not a representative
one for the global system as already mentioned and extensively explained in section
(page[66).

However, Figure indicates a relatively bigger range between the minimum and
maximum values of the whisker in the beginning because the initial distribution of tuples
in the first iteration is almost randomly. But during the simulation one can see a steep
decrease of the entropy, the quartiles and the range of the whisker which demonstrates a
clear (self-)organization. The entropy tends to go down very fast and finally converges.

Scenario_19 | Scenario_20 | Scenario_21 | Scenario_22
primitive tuple movement
#tuples a(X) 250 250 250 250
#tuples b(X) 250 250 250 250
#tuples c(X) 250 250 250 250
#tuples d(X) 250 250 250 250
entropy 0.0988 0.0575 0.4967 0.0649
seeding - - - -
aoc - - - -
sc - - - -
num-ants 10 10 10 10
age 20 20 20 20
chosen-node all all all all
formula Py, Py P Piroy Py
formula H Hoyig Hoyig Hinod Hinod

Table 19: Configuration of the system environment for the test runs

Figure 39| compares the development of the spatial system entropies during the execu-
tion of the 20 test runs. Observing the lower two curves indicating the original and mod-
ified drop probability evaluated by the original entropy one can see the approximately
same behavior of the curve in the beginning. At Step ~ 90 both curves intersect due to an
equal entropic value. In the following the curve exhibiting the modified drop probability

96

5. Experiments Showing Optimization Results

0,6 0,6
Modified Entropy
- Original Drop Probability -
Qo Q. Modified Entropy
2 E Original Drop Probability
= -
(= (=
w w
s _ ®
=] Modified Entropy - .
g Modified Drop Probability a Original Entropy B
) Original Entropy A Original Drop Probability
gJo Modified Drop Probability ()]
© X/ &" Original Entropy o
5 — b Modified Drop Probability ~ Modified Entropy
S N — S Modified Drop Probability
< Original Entropy <
Original Drop Probability
0 ! 0 -
(a) Scenarios according to Table[T§] (b) Scenarios according to Table[19]

Figure 39: Comparison of the average entropy values during the execution of 20 test runs
based on the scenarios shown in Table[18|and Table (19| (adapted from [22])

remains continuously beneath the original drop probability curve. The entropy of the last
data point shows around half the value.

Comparing the curves representing the original and modified drop probability by ap-
plying the modified entropy it is easy to notice that the curves behave totally different.
While the graph based on the original drop probability rises a little in total the curve
following the modified drop probability declines strongly, intersects the curve based on

P;:éi and H,; and finally approaches the curve calculated by Pg;g‘; and Hpyjg.

It is noticeable that the system takes a little longer while distributing the tuples among
the nodes by applying the modified drop probability. But if one draws a line perpendicu-
lar to the x-axis at the last common data point (Step ~ 160) it is obvious that this does not
affect the entropy. The level of organization remains unchanged.

Figure shows the development of the average entropy based on 20 test runs ac-
cording to Table |19, The graph shows the effect of redistributing the amount of tuples
in the environment while performing tuple movement. Each curve type is directly con-
nected to the curve of the graph from Figure since the test runs according to Table
[19 have been executed directly after the test runs according to Table

The curve representing the modified drop probability and entropy requires around 150
steps in order to achieve an entropic value that approximates 0. Thus the system claims
full organization. As described in section 5.3| (page the tuple movement takes place
in phase three that is characterized by an almost organized system. The absolute value of
the negative slope decreases and finally converges.

The curves applying P;’;gg and H,; as well as Pg:;i and H,i; show an almost similar

behavior. They are declining slowly but constantly towards 0. But as one may notice in

the beginning Step < 150 the curve representing Pg}gi and Hyj; shows a similar behavior

as the curve exhibiting Pg;g‘; and H,,,;. The curve also shows the end of phase three of

97

5. Experiments Showing Optimization Results

tuple movement except that the slope is not as steep as applying Pg;gz and H,,,4.

Based on achieving an organized state by applying PL’;;Z‘; and H,,,; at Step ~ 100 the

system stays calm for the further 800 steps. In contrast to the other approaches the system
saves resources. This minimizes communication overhead in networks and bandwidth.
In real systems out- and in-commands as well as tuple movement run concurrently so that
the system is well organized after a short time and can handle new commands easily re-
P
evaluation metric and indicates the actual level of organization) it will take a long time
forcing the entropy to go down. Even the 900 steps are not sufficient enough since the
entropy ends with a value around 0.23. One the other hand, one can see the effectiveness
of tuple movement resulting in a new distribution of tuples among the nodes no matter
how the entropy is calculated.

sulting in an improved robustness. Applying and H,,,4 (since H,,,,; is a more realistic

5.5. Anti-Overclustering and Spatial Clustering

The previous section discusses and compares the original and modified drop probability

as well as the entropy calculation. It shows and gives reasons why Pﬂgz results in an

improved homogeneity of cluster structures while H,,,; rates a given scenario in a more
realistic way than its counterpart Hyjq.

However, this section deals with avoidance of overclustering and distribution of tuples
in order to form spatial cluster in networks. The idea is to effectively use the given system
resources by causing the system to fairly balance the amount of tuples among the nodes.
Although Pg;gz achieves good qualities by aiming homogeneous cluster structures it does
not distribute the tuples equally across the nodes resulting in spatial clusters. As postu-
lated in section 4. 1| (page[59) the given amount of tuples shall be distributed equally in the
system. This includes that there shall be neither peaks indicating a huge amount of tuples
within single tuple spaces nor many unused nodes that provide free system resources but
are not involved since they obtain no tuples. The following scenarios show test runs that
are exclusively based on the formulas given by:

o ngg; for computing the drop probability with aoc and sc (Equation page

e H,,4 for computing the spatial network entropy (Equation[I8 page

o Py, for computing the pickup probability (Equation 22, page

e D;j for computing the path selection (Equation 5} page
Table 20|shows the configuration of scenarios that indicate the manual interaction with
the system while it is running. Thus the scenarios are linked. Figure 40| (page [100) exhibits

the distribution of tuples among the nodes and hence the constitution of tuple spaces as
a result of test runs applying the given scenario configuration. Since the objective is to

98

5. Experiments Showing Optimization Results

Scenario_23 | Scenario_24 | Scenario 25 | Scenario_26
primitive seeding out out tuple movement
#tuples a(X) 0 40 190 240
#tuples b(X) 0 40 190 240
#tuples c(X) 0 40 190 240
#tuples d(X) 0 40 190 240
entropy 0 0 0.0539 0.0709
aoc according to Psf(f;
sc according to ng; p
max-size 50 50 50 50
num-ants 160 600 200 10
age 20 20 20 20
chosen-node E,I,P,R all all all

Table 20: Configuration of the system environment for the test runs

avoid over-clustering the parameter max—sizﬁ is required in order to adjust the threshold
as an orientation for tuple-ants.

Scenario_23 describes the seeding of 160 tuples in an empty network on the nodes given
by chosen-node. As an orientation one can see the result of seeding in Figure based
on the node identifier. The geographical arrangement of nodes and links and the final
system state after the test runs given by Table[20is shown in Figure (page[105). The
different colored nodes indicate the respective type of cluster.

The idea of Scenario_23 is to observe the system behavior by setting those seeds on
particular nodes in the network. The seeds are supposed to attract similar tuples and
force them to move towards their locations. Therefore, it shall facilitate the system to
form spatial clusters surrounding the seeded nodes.

Scenario_24 performs an out command with 150 tuples of each type, in total 600 tuples.
The result is shown in Figure #0(b)} By looking at the development of the distribution of
a(X) tuples indicated by the green columns one may notice that TS C, E and K are the
main nodes containing a(X) tuples. They are almost of equal size. Since E was the seeded
node with 40 tuples it is noticeable that most of the tuple-ants dropped their tuple at C
resp. K. Since max-size is set to 50 the ants avoid overclustering E. On the other hand if one
looks at Figure it is obvious that the mentioned three tuple spaces form a geometric

triangle. Therefore the drop probabilities get reinforced among themselves since Pjﬁ; p 18

based on spatial clustering and claims higher values if the connected neighborhood con-
tains many similar tuples while indicating less dissimilar ones causing in a high relative
frequency.

Since K does not have any neighbor holding dissimilar tuples the drop probability
claims the maximal value but is, of course, still dependent on the age factor given by
the ratio % C also reaches a relatively high value since it has E and K as neighbors

Zdefines the preferable cluster size that has been discussed in section (page

99

5. Experiments Showing Optimization Results

100 100
ks 8
o -y
2 2
* *
50 50 I
ABCDEFGHI JKLMNOPQRST ABCDEFGHI JKLMNOPQRST
ma(X) b(X) mc(X) md(X) Tuple Spaces ma(X) b(X) mc(X) md(X) Tuple Spaces
(a) Scenario_23 (b) Scenario_24
100 100
3 8
S -y
2 2
* =tl:
50 50
0 0
ABCDEFGHI JKLMNOPQRST ABCDEFGHI JKLMNOPQRST
ma(X) b(X) mc(X) md(X) Tuple Spaces ma(X) b(X) mc(X) md(X) Tuple Spaces
(c) Scenario_25 (d) Scenario_26

Figure 40: Distribution of tuples among the nodes as a result of the scenarios defined in

Table

while A contains less dissimilar tuples and B is empty. Thus B does not affect the drop
probability. Only D exhibits a high amount of dissimilar tuples. Finally, T also owns a few
a(X) tuples since it is the neighbor of E while S is empty.

The second seeded node is I holding d(X) tuples. It is noticeable that the respective
tuple-ants seems to have problems during the distribution. In fact, L was occupied in an
early state and therefore tuples got spread over L and I forming a spatial cluster. Since
D would complete a geometric triangle tuple-ants tend to adopt the tuple space. But by
looking at its constitution tuple-ants carrying tuples of type b(X) and c(X) also try to
conquer the node. Therefore tuple-ants of type d(X) may not successful at D. Since the
drop probability for L and I keeps on decreasing the ants tend to explore its neighborhood
in order to look for suitable tuple spaces. Finally A was chosen - maybe more by accident
- but, in fact, was empty. Thus the ants tend to adopt the node.

P is the third seeded tuple space holding tuples of type b(X) and grows approximately
to the chosen value represented by max-size. Although M and Q do not form a triangle
they, nevertheless, stay in proximity to P and hence indicate a spatial cluster. H and G
form an additional spatial cluster that is isolated from M, P and Q. However, since D
would be required to complete a geometric triangle the tuple-ants try to obtain it. The

100

5. Experiments Showing Optimization Results

Scenario 27 | Scenario_28 | Scenario_29 | Scenario_30
primitive seeding out out out
#tuples a(X) 0 60 100 180
#tuples b(X) 0 60 100 144
#tuples c(X) 0 60 100 141
#tuples d(X) 0 60 100 180
entropy 0 0 0 0.0052
aoc according to Psf(f;
sc according to ng; p
max-size 30 30 30 30
num-ants 240 160 320 200
age 20 20 20 20
chosen-node VneV all all all

Table 21: Configuration of the system environment for the test runs

result is analogous to the attempt of ants carrying d(X) tuples.

Finally, R is the fourth seeded tuple space owning tuples of type ¢(X). It is surrounded
by D and O indicating a geometric triangle. Additionally F is also occupied by ¢(X) tuples
and thus the four tuple spaces form a spatial cluster. However, the entropy was 0 before
the execution of the scenario and finally increases to 0.0539 which is quite low and hence
indicates a good clustering.

Scenario_25 shows again an out command but the amount of tuples is reduced to 200.
The results of the distribution of the tuples are represented in Figure It is noticeable
that C, E and K holding a(X) tuples grow to a limited size and finally the ants looking for
additional tuple spaces in order to store the tuples. Since T is appropriate because it stays
in the neighborhood of E it gains tuples. One may notice a small amount of tuples at N.
This occurs more by accident based on ants that have been instantiated in that area and
could not find suitable path to the upper location of the network graph.

The situation for b(X) tuples is almost the same except that the occupied tuple spaces
grow according to the size of the similar out-ants. Compared to the distribution indicated
by Figure 40(b)| the current one tends to be more equal based on the size of tuple spaces.
The situation for ¢(X) tuples is also very similar to the one indicated by Figure
Finally, d(X) tuples got more attracted by A and D since I and L already contain plenty
of tuples and thus may get overclustered. The entropy raises to a value of 0.0709 which
is, in fact, higher than in Scenario_24 but still exhibits a well organized state.

Scenario_26 performs tuple movement with 10 ants to the given environment. Figure
shows the result of tuple movement. The entropy falls back to 0 and thus indicates
complete organization. The final distribution is also shown in Figure (page
which also tells the spatial locations of the tuples spaces. It is noticeable that the average
size of the tuple space approximates each other so that no tuple space is overclustered. In
particular all tuple spaces indicate complete homogeneous constitutions.

Table21|describes the configuration of further scenarios. In contrast to the previous test

101

5. Experiments Showing Optimization Results

50 50

" w
9 9

Qo Q.
2 2
* e

25 25

LA L[l[lll 111 { 1 A | {

ABCDEFGHI JKLMNOPQRST ABCDEFGHI JKLMNOPQRST
ma(X) b(X) mc(X) md(X) Tuple Spaces ma(X) b(X) mc(X) md(X) Tuple Spaces
(a) Scenario_27 (b) Scenario_28

50 50
3 g =

Q. Q.

2 2

= e

25 25 B I N

O O = = == & s SNe = S5SN8
ABCDEFGHI JKLMNOPQRST ABCDEFGHIJKLMNOPQRSTUWXY
ma(X) = b(X) mc(X) md(X) Tuple Spaces ma(X) b(X) mc(X) md(X) Tuple Spaces
(c) Scenario_29 (d) Scenario_30

Figure 41: Distribution of tuples among the nodes as a result of the scenarios defined in

Table

runs max-size is reduced to 30 while the seeding is increased to 240 seeds that get placed
on every node in the network (V denotes the set of vertices, Scenario_27). The distribution
is shown in Figure The geographic arrangement is exhibited in Figure (page
[105). The seeding already involves the equal formation of spatial cluster. There is one
centroid of each cluster indicating twice the amount of tuples as the surrounding tuple
spaces.

Scenario_28 is characterized by an out with 160 ants. The distribution of tuples shown
in Figure exhibits an almost equal distribution of the tuples to the respective tuple
spaces. The result is an entropy value of 0 which indicates a perfect organization. Further
on, no tuple space is overclustered and the average size is approximately equal.

In the following Scenario_29 doubles the amount of out-ants. The result is shown in
Figure as well as in Figure (page[109). The clustering is again characterized by
an approximately uniform distribution, there is no violation of the cluster size. Only the
entropy increases a little to 0.0047 due to a rising drop probability at D for b(X) tuples
since this tuple space is surrounded by four nodes containing b(X) tuples. Therefore one
can recapitulate the situation that based on a perfect distribution in the beginning given
by the small seeding which already forms equal sized spatial clusters the result is also

102

5. Experiments Showing Optimization Results

Scenario_31 | Scenario_32 | Scenario_33
primitive out out out
#tuples a(X) 0 200 260
#tuples b(X) 0 200 260
#tuples c(X) 0 200 260
#tuples d(X) 0 200 260
entropy 0 0.1272 0.1501
aoc according to Psf(f;
sc according to ngz p
max-size 40 40 40
num-ants 800 240 10
age 20 20 20
chosen-node all all all

Table 22: Configuration of the system environment for the test runs

defined by a perfect organization.

In order to simulate the removal as well as addition of nodes on the fly M and R have
been shut down while there have four additional nodes been created. The modification
of the topology is presented in Figure (page[105). U has been placed near to the old
position of R. W stays in the proximity of L and I. X is located between B and K and
finally Y has been placed between N and Q. The removal of tuple spaces occur in a loss
of some tuples of type b(X) and c(X) that had been stored at M resp. R. As a result the
entropy is also affected and increases marginally to 0.0052. The disappearance of tuples
is also listed in Scenario_30. Given the new topology an out is performed with 200 ants.
The idea of this test run is to observe how the system react due to a loss of two tuple
spaces and its connections as well as the addition of the four nodes. The result is listed in
Figure showing the new distribution of tuples. M and R are shown as transparent
columns bordered by the respective color. This indicates that these tuple spaces do not
exist anymore but they express the relation of how much tuple have been lost in contrast
to the surrounding nodes. However, the scenario shows that the new added nodes get
occupied by different tuple-ants and thus are integrated in the respective spatial cluster.
In fact, most of the tuples got clustered among the new tuple spaces in order not to violate
the overclustering rule. As one may see in the column diagram some tuples, nevertheless,
got stored on tuple spaces that result in an increase of the entropy which adopts a value
of 0.06 in the end. The final distribution is given in Figure (page [105).

Table 22|describes the configuration of further scenarios. In contrast to the previous test
runs max-size is set to 40 and the seeding is turned off in order to observe the behavior of
clustering without giving the system any external support.

Scenario_31 shows an amount of out-ants which is set to 800. Since the scenario should
be a little more closer to real-world scenario the amount is not instantiated at once. At
eight different points in time there have been 100 ants instantiated each. The result of the
clustering is shown in Figure Although there has been no seeding performed the

103

5. Experiments Showing Optimization Results

120 120
3 3
: T
i e
| L 60 Ll -
o .I-I_ﬁ;;-l o U¢Ll
ABCDEFGHI JKLMNOPQRST ABCDEFGHI JKLMNOPQRST
a(X) b(X) mc(X) md(X) Tuple Spaces a(X) b(X) mc(X) md(X) Tuple Spaces
(a) Scenario_31 (b) Scenario_32
120
9
Q.
2
2

D
o

{111 X TR

ABCDEFGHI JKLMNOPQRST
a(X) b(X) mc(X) md(X) Tuple Spaces

(c) Scenario_33

Figure 42: Distribution of tuples among the nodes as a result of the scenarios defined in

Table

formation as well as the homogeneity of spatial clusters have been developed well. First,
a(X) tuples have formed a spatial cluster based on A, F,] and M. There is one single
node cluster that have been emerged at T and is thus isolated. Further on, b(X) tuples
have occupied the tuple spaces O, P, Q and R and hence forming one spatial cluster. It
divides the network graph into two separate parts. In the following, ¢(X) tuples claim D,
H as well as G while d(X) tuples capture B, C, E as well as K and form spatial clusters
respectively. The entropy is with 0.1272 higher than in the previous scenarios but based
on an initial empty network the clustering is quite good. In general the entropic value
exhibits a well organized state.

Scenario_32 results in a more balanced situation which is shown in Figure Espe-
cially, b(X), ¢(X) and d(X) tuples exhibit an approximately equal distribution. Thus they
avoid overclustering. Further on, it is interesting that ¢(X) tuples adopt I as well as L
in order to extend the spatial cluster. The respective ants get forced to behave like that
since three tuple space are insufficient by not violating the overclustering rule. Therefore
they expand the cluster to five nodes that are coherent. The remaining tuple types do
not capture any more tuple spaces since they already obtain at least four tuple spaces
and thus it is sufficient in order to distribute the tuple without violating the restriction of

104

5. Experiments Showing Optimization Results

T
E .K
S. .
Y C
R ® °
D G P
He > .
N
° Aem
L e} @
1 F
o]

(a) No seeding

Figure 43: Network graphs that exhibit the distribution of tuples among the nodes and
thus indicate the spatial clusters. Additionally they show the topology in which

T
° K
E
S. -
o C B
R. ™ ® °
D G P
H . Q
. ~
o Alm
L °® F’
1 o
o] N
(b) 4 node seeding
T K
g X
E
S - ®
v 0 8
®
c .
D G L3
[® Q
H ®
« ;
- A
o
L s ® ¥
F
™]
w o] N

(d) Topology modification

the scenarios have been executed.

overclustering.

Scenario_33 shows the behavior of tuple movement applied to the environment that
has been generated after Scenario_32. The final distribution is shown in Figure as
well as in Figure (page [105). The tuple movement is performed with ten cleaning-
ants at an entropic level of 0.1501. Finally, the tuple movement pushes the entropy down
to 0 and thus the environment is totally organized. The distribution of tuples is again
approximately equal and hence avoids overclustering. The average spatial cluster size -

eT
.K
E
§ [
0 .c B
D P
] < -
‘.‘
® @
F ®
ol

(c) 20 node seeding

that defines the number of nodes contained in a spatial cluster - is 4.5.

105

6. Conclusion and Future Work

6. Conclusion and Future Work

As a recapitulation the report introduces SWARMLINDA as an extension for conventional
LINDA systems since they suffer from their architecture and cannot cope with openness
and scalability as well as adaptiveness, flexibility and mobility. Section [1| (page |5) intro-
duces the field of interest and reflects common properties of LINDA systems exhibiting
the inability of growing to enormous size. In the following SWARMLINDA based on de-
centralized, autonomous agents involving swarm intelligence which is a particular part
of artificial intelligence represents a solution applied to scale-free networks.

Thereupon, section [2| (page describes the basic idea and mechanisms of SWARM-
LINDA as well as the respective algorithms of which the system consists of. In particu-
lar, it presents tuple distribution, tuple retrieval as well as tuple movement as the main
mechanisms that perform the processes of storing and finding information objects in the
environment. Finally, tuple movement supports the system to maintain a balanced state
causing in effectively using its resources.

The development and implementation details are given in section [3| (page 35). It ex-
plains the simulator for network generation as well as the SWARMLINDA simulator. Fur-
ther on, the system architecture is presented as well as the used technologies, applied
plug-ins and OT@ software.

Section [(page defines metrics that are included in the respective algorithms for
distributing, retrieving and migrating tuples as well as evaluating the performance of the
state of the system environment. It postulates specific behaviors like homogeneous spatial
clusters. The section also discusses and proposes improved metrics making the system
more effective. It also gives evidence for the improved behavior. The final contribution is
to avoid big tuple spaces by tending to balance the size of tuple spaces in the network.
On the other hand the network shall be partitioned into different spatial regions that form
a cluster and thus holding similar tuples. This results in a more fault tolerant as well as
improved load balanced system since the resources are used equally.

Finally, section |5 (page [80) performs several test runs on the simulator using the pro-
posed metrics and evaluates as well as interprets the results. All introduced mechanisms
are evaluated and presented.

The report shows that the idea of SWARMLINDA based on decentralized autonomous
agents that operate in the environment performing different tasks, in fact, behaves as pro-
posed. Although each agent is completely independent on others and is only processing
a simple set of routines the total amount exhibits an impressive collective behavior. The
test runs clarify the effectiveness of the system in dependence on its degree of training.

The system is totally independent on external influences and does not postulate any
manual instructions of getting started. Beside the initiation of the system there is also no
interaction required in the prospective executions. Based on its self-organization which
has been presented in the test runs the amount of information objects get automatically
assigned to tuple spaces. The result of the distribution is characterized by a division of
the domain in separate parts forming spatial regions that contain similar tuple types. The

24 off-the-shelf

106

6. Conclusion and Future Work

constitution of a region indicates high homogeneity while the partitions among them-
selves exhibit heterogeneous structures.

Therefore the system is able based on an initial empty state to distribute and organize
a base set of information objects in the network analogous to brood sorting used by ants.
The emergence of spatial clusters and reinforcement of pheromone trails result in an im-
proved routing of ants from their current start locations to their individual destinations.
In addition, the retrieval process gets improved as well since the ants also track the scent
marking trails. Although, based on SWARMLINDA’s non-determinism, one cannot pre-
dict in advance the exact distribution of tuples among the nodes. But one can notice the
phenomenon of formation of spatial clusters.

In order to support the system to maintain its organization the requirement of tuple
movement has been pointed out. By redistributing some misplaced tuples assure the de-
gree of order. Further it forces the environment that similar types stay at the same location.
This results in an easier way of continuing the clustering as well as retrieving the tuples.

The system is also able to cope with the postulated issues:

Scalability The system is scalable since the addition of new tuple spaces does not im-
pact the system in order to reorganize itself like as required in LINDA which is
based on hashing and thus requires a rehashing of its content. The decentralized
and autonomous behavior of SWARMLINDA agents result in an exploration of the
new added terrain followed by the emergence of new spatial clusters in that envi-
ronment. Of course, if a huge amount of new tuple space is added to the system it
will not redistribute its content in order to form bigger spatial clusters. It is more
likely depending on the concrete topology that more than one spatial cluster of a
type will be created. The tests in this report comprises a small number of nodes
been added to the environment. As a reaction the system integrates the new nodes
and expands the current spatial clusters involving the new nodes.

Adaptiveness A SWARMLINDA system is also characterized by an adaptive behavior
since it reacts of removal or addition of nodes and modifications of the environment
quickly and without suffering under disorientation. The tests have shown that a re-
moval as well as an addition causes in integration of the new tuple spaces without
noticing any severe impact. Of course, each system has its limitations: if one shuts
down as much hub nodes resulting in an incoherent network graph, some nodes get
isolated. This inevitably leads to an unavailability of the information stored there.
But this is no big phenomenon if one thinks for instance of the arguably most well
known scenario: the World Wide Web. Since the topology also follows a scale-free
power-law distribution - which is the base of the executed test scenarios in this re-
port - it is, however, fault tolerant but also vulnerable. If backbone server disappear
from the network - caused by (Distributed) Denial of Service ((D)DoS) attacks - it
will cause in an impact and may isolate several subordinated nodes.

Fault tolerance A SWARMLINDA system also copes with fault tolerance. As mentioned
the removal or unavailability of tuple spaces do not cause the system of suffering
under a severe impact. The basic mechanisms are not affected by node failures. In

107

6. Conclusion and Future Work

fact, if a spatial region holding a specific tuple type gets isolated from the network
and in a scenario that a requester wants to obtain such a tuple the template-ants
may not find any.

This report contributes a sufficient amount of different tests evaluating the proposed
behavior of SWARMLINDA. Further on, it presents improved metrics resulting in a more
effective system. It shows the development of different metrics in order to cluster tuples
on nodes and in spatial regions with respect to keeping homogeneity. It also introduces
an evaluation metric defined by the spatial entropy that has been extended from Casadei
et al. Further on, it shows mechanisms to equally distribute the amount of tuples among
the nodes and hence avoid overclustering and establish a well balanced system. Finally,
it presents a metric for the routing of ants.

Nevertheless, there are still plenty of issues that are worth to be researched. An inspi-
ration for future works is given as follows:

Dynamic node failures In order to be a little closer to a real-world scenario it is suitable
to integrate a dynamic node failure system. As a configuration one can adjust the
percentage of failures (1 %, 5 %, ...) in the network. During the runtime of the sys-
tem some nodes according to the configuration disappear for a certain amount of
time and then reappear. Therefore, the affected amount of tuples is not lost. They
are only not available at the specific point in time. Thereupon, it may of interest to
perform different test scenarios based on different configurations of dynamic node
failures. Further on, it may appropriate to find out at which degree of node failure
the system suffers under an over proportional - meaning very high - impact. This
may an interesting contribution to the limitation of fault tolerance.

Connection latency Again, in order to be a little closer to a real-world scenario it is
appropriate to assign links a cost value that reflects the network latency between
nodes. Therefore, the spatial clustering may not result in an emergence of regions
comprising servers that stay in geographical proximity but rather tend to form re-
gions based on shortest latency.

Physical extension Since the presented simulator is based on threads that although per-
form code concurrently they are not distributed among several machines. There-
fore it may interesting to extend the simulation based on local running threads to
real distributed processes that run on several machines. It is possible to integrate
this mechanism in the current simulator. The simulator itself - in particular, the vi-
sualization area - runs on one machine in order to observe the system behavior.
Each node which is shown in the simulator represents a real machine connected in
a real network. Thus on each machine there is a specific application running that
accepts communication on a specific port. Thereupon, ants are really roaming be-
tween the separate machines by traversing the physical network. This would show
a little more realistic results. The aforementioned extension ideas can be included in
this approach and thus are very close to a real-world scenario. In order to measure

108

6. Conclusion and Future Work

system performance of the separate machines it is suitable to use]Consol which
comes along with JDK 1.5. “It uses the extensive]MX@ instrumentation of the Java
virtual machine to provide information on performance and resource consumption
of applications running on the Java platform” [50].

ZJConsole is a JMX-compliant monitoring tool
26Java Management Extensions

109

References

References

[1] B. Anderson and D. Shasha. Persistent linda: Linda + transactions + query pro-
cessing. In J.P. Banatre and D. Le Metayer, editors, Research Directions in High-Level
Parallel Programming Languages, number 57 in LNCS, pages 93-109. Springer, 1991.
http://citeseer.ist.psu.edu/anderson9lpersistent.html.

[2] Apache. The Apache Ant Project, visited: January 28, 2008. http://ant.apache.
org/index.html.

[3] A.-L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
286:509-512, October 1999.

[4] Robert Bjornson. Linda on Distributed Memory Multiprocessors. PhD thesis, Yale Uni-
versity Department of Computer Science, 1992. Technical Report 931.

[5] E. Bonabeau and G. Theraulaz. Swarm intelligence: From natural to artificial sys-
tems. Oxford Press, 1999.

[6] Nadia Busi, Alberto Montresor, and Gianluigi Zavattaro. Data-driven coordination
in peer-to-peer information systems. International Journal of Cooperative Information
Systems, 13(1):63-89, March 2004.

[7] Kenneth L. Calvert and Michael J. Donahoo. TCP/IP Sockets in Java. Practical Guide
for Programmers. Morgan Kaufmann, 2001. ISBN:1558606858.

[8] Scott Camazine, Nigel Franks, James Sneyd, Eric Bonabeau, Jean-Louis Deneubourg,
and Guy Theraula. Self-Organization in Biological Systems. Princeton University Press,
Princeton, NJ, USA, 2001. ISBN:0691012113.

[9] Matteo Casadei, Luca Gardelli, and Mirko Viroli. Simulating emergent properties of
coordination in maude: the collective sort case. Electron. Notes Theor. Computer Sci-
ence, 175(2):59-80, 2007. Elsevier Science Publishers B. V., Amsterdam, The Nether-
lands. ISSN:1571-0661. http://dx.doi.org/10.1016/j.entcs.2007.05.022.

[10] Matteo Casadei, Ronaldo Menezes, Mirko Viroli, and Robert Tolksdorf. Self-
organized over-clustering avoidance in tuple-space systems. 2007.

[11] Matteo Casadei, Ronaldo Menezes, Mirko Viroli, and Robert Tolksdorf. A self-
organizing approach to tuple distribution in large-scale tuple-space systems. 2007.

[12] Ahmed Charles, Ronaldo Menezes, and Robert Tolksdorf. On the implementa-
tion of swarmlinda. In ACM-SE 42: Proceedings of the 42nd annual Southeast re-
gional conference, pages 297-298, New York, NY, USA, 2004. ACM Press. http:
//portal.acm.org/citation.cfm?id=986607.

110

http://citeseer.ist.psu.edu/anderson91persistent.html
http://ant.apache.org/index.html
http://ant.apache.org/index.html
 http://dx.doi.org/10.1016/j.entcs.2007.05.022
http://portal.acm.org/citation.cfm?id=986607
http://portal.acm.org/citation.cfm?id=986607

References

[13] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weerawarana.
Web services description language (wsdl) version 2.0 part 1: Core language, 2007.
http://www.w3.org/TR/wsd120/.

[14] Antonio Corradi, Letizia Leonardi, and Franco Zambonelli. Strategies and protocols
for highly parallel linda servers. Softw. Pract. Exper., 28(14):1493-1517, 1998. John
Wiley & Sons, Inc., New York, NY, USA. ISSN:0038-0644.

[15] J.-L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, and L. Chre-
tien. The dynamic of collective sorting robot-like ants and ant-like robots. In Pro-

ceedings of the First International Conference on Simulation of Adaptive Behavior: From
Animals to Animats 3, pages 356-365, Cambridge, MA, 1991. MIT Press.

[16] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics Part B:
Cybernatics, 26(1):29-41, 1996.

[17] Apache Software Foundation. Logging services, visited: February 3, 2008. http:
//logging.apache.org/logdj/.

[18] Eric Freeman, Ken Arnold, and Susanne Hupfer. JavaSpaces Principles, Patterns, and
Practice. Addison-Wesley Longman Ltd., Essex, UK, 1999. ISBN:0201309556.

[19] O. Galibert. YLC, A C++ Linda system on top of PVM. Lecture Notes in Computer
Science, 1332, 1997.

[20] David Gelernter. Generative communication in Linda. ACM transactions in Program-
ming Languages and Systems, 7(1):80-112, 1985. http://doi.acm.org/10.1145/2363.
2433l

[21] David Gelernter. Multiple tuple spaces in linda. In Proceedings of the Parallel Archi-
tectures and Languages Europe, volume II: Parallel Languages, pages 20-27, London,
UK, 1989. Springer-Verlag. ISBN:3-540-51285-3.

[22] Daniel Graff, Ronaldo Menezes, and Robert Tolksdorf. On the performance of
swarm-based tuple organization in linda systems. 2007.

[23] J. Guare. Six Degrees of Separation: A play. Vintage Books, New York, 1990.

[24] Oliver Haase. Kommunikation in verteilten Anwendungen. Einfiihrung in Sockets, Java
RMI, CORBA und Jini. Oldenbourg, 2001. ISBN:3486257382.

[25] J. Kennedy and R. C. Eberhart. Swarm intelligence. Morgan Kaufmann, 2001.

[26] C. Koch and G. Laurent. Complexity and the nervous system. Science, 284(5411):96—
98, April 1999.

[27] G.T. Ltd. Gigaspaces platform, 2002. http://www.gigaspaces.com.

111

http://www.w3.org/TR/wsdl20/
http://logging.apache.org/log4j/
http://logging.apache.org/log4j/
http://doi.acm.org/10.1145/2363.2433
http://doi.acm.org/10.1145/2363.2433
http://www.gigaspaces.com

References

[28] Ingo Melzer. Service-orientierte Architekturen mit Web Services. Konzepte - Standards -
Praxis. Spektrum Akademischer Verlag, 2007. ISBN:3827418852.

[29] Ronaldo Menezes. Ligia: Incorporating garbage collection in a Java based Linda-like
run-time system. In Raimundo J. Macedo, Alcides Calsavara, and Robert C. Burnett,
editors, Proc. of the 2nd Workshop on Distributed Systems (WOSID’98), pages 81-88, Cu-
ritiba, Parand, Brazil, 1998. http://citeseer.ist.psu.edu/menezes98ligia.html.

[30] Ronaldo Menezes and Robert Tolksdorf. Adaptiveness in linda-based coordination
models. In Proc. of the 1st International Workshop on Engineering Self-Organising Appli-
cations, Melbourne, Australia, 2003.

[31] Ronaldo Menezes and Robert Tolksdorf. A new approach to scalable linda-systems
based on swarms. Technical report, Florida Institute of Technology, Melbourne,
Florida, 2003.

[32] Ronaldo Menezes and Alan Wood. Garbage collection in Linda using tuple monitor-
ing and process registration. In Proc. of the 10th International Conference on Parallel and
Distributed Computing and Systems, pages 490-495, Las Vegas, Nevada, USA, 1998.
Acta Press. http://citeseer.ist.psu.edu/menezes98garbage.html.

[33] Ronaldo Menezes and Alan Wood. Distributed Garbage Collection of Tuple Space
in Open Linda Coordination Systems. In Proc. of the 14th International Symposium
on Computer and Information Sciences, pages 957-965, Kusadasi, Turkey, 1999. http:
//citeseer.ist.psu.edu/menezes99distributed.html.

[34] S. Milgram. The small world. Psychol. Today 2, 60, 1967. Ablex, Norwood, NJ.

[35] NetLogo. User manual, Decemer 5, 2007. http://ccl.northwestern.edu/netlogo/
faq.html.

[36] Rocco De Nicola, Gian Luigi Ferrari, and Rosario Pugliese. KLAIM: A kernel lan-
guage for agents interaction and mobility. IEEE Transactions on Software Engineering,
24(5):315-330, May 1998. ISSN:0098-5589.

[37] P. Obreiter and G. Gréf. Towards scalability in tuple spaces. In Proceedings of the 2002
Symposium on Applied Computing, pages 344-350, 2002.

[38] Members of the Clever project. Hypersearching the web. Scientific American, 280(6),
June 1999.

[39] Gian Pietro Picco, Amy L. Murphy, and Gruia-Catalin Roman. Lime: Linda meets
mobility. In D. Garlan, editor, Proceedings of the 21 International Conference on Software
Engineering (ICSE’99), pages 368-377, Los Angeles, CA, USA, May 1999. ACM Press.

[40] J. Pinakis and C. McDonald. The Inclusion of Linda Tuple Space Operations in a
Pascal-based Concurrent Language. In J. Gupta and J. Lions, editors, Proceedings
14th Australian Comp. Science Conf., Kensington, Australia, 1991.

112

http://citeseer.ist.psu.edu/menezes98ligia.html
http://citeseer.ist.psu.edu/menezes98garbage.html
http://citeseer.ist.psu.edu/menezes99distributed.html
http://citeseer.ist.psu.edu/menezes99distributed.html
http://ccl.northwestern.edu/netlogo/faq.html
http://ccl.northwestern.edu/netlogo/faq.html

References

[41] Mitchel Resnick. Turtles, termites, and traffic jams. MIT Press, 1994.

[42] A.Rowstron. WCL: A co-ordination language for geographically distributed agents.
World Wide Web, 1(3):167-179, 1998.

[43] A.Rowstron and A. Wood. Bonita: a set of tuple spaces primitives for distributed co-
ordination. In Proc. HICSS30, Sw Track, pages 379-388, Hawaii, 1997. IEEE Computer
Society Press.

[44] Antony Rowstron. Mobile co-ordination: Providing fault tolerance in tuple space
based coordination languages. In P. Ciancarini and P. Wolf, editors, Coordiantion
Languages and Models (Coordination '99), pages 196-210. Springer Verlag, 1999.

[45] Sourceforge. Eclipse Checkstyle Plug-in, visited: January 27, 2008. http://
eclipse-cs.sourceforge.net/.

[46] Sourceforge.net. Lumbermill - log4j/jsr47 gui, visited: February 3, 2008. http://
sourceforge.net/projects/lumbermill/\

[47] Soyatec. eUML2, visited: January 27, 2008. http://www.soyatec.com/euml2/
history/.

[48] Josef Stepisnik. Distributed Object-Oriented Architectures. Sockets, Java RMI and
CORBA. Diplomica, 2007. ISBN:3836650339.

[49] W. Richard Stevens. Advanced Programming in the UNIX® Environment. Addison
Wesley Professional, 1992. ISBN:0-201-56317-7.

[50] Sun. Jconsole, visited: February 24, 2008. http://java.sun.com/j2se/1.5.0/docs/
guide/management/jconsole.htmll

[561] Sun. The reflection api, visited: February 3, 2008. http://java.sun.com/docs/
books/tutorial/reflect/index.html.

[52] R. Tolksdorf and R. Menezes. Using swarm intelligence in linda systems. In Andrea
Omicini, Paolo Petta, and Jeremy Pitt, editors, Proc. of the 4th International Workshop
Engineering Societies in the Agents World, London, UK, 2003. http://citeseer.ist.
psu.edu/tolksdorf03using.html.

[53] Robert Tolksdorf. Laura — A service-based coordination language. Science
of Computer Programming, 31(2-3):359-381, 1998. http://citeseer.ist.psu.edu/
tolksdorf98laura.html.

[54] Robert Tolksdorf and Antony I. T. Rowstron. Evaluating fault tolerance methods for
large-scale linda-like systems. In Hamid R. Arabnia, editor, PDPTA. CSREA Press,
2000. http://dblp.uni-trier.de/db/conf/pdpta/pdpta2000.html.

[55] S. Wasserman and K. Faust. Social network analysis. Cambridge University Press,
1994.

113

http://eclipse-cs.sourceforge.net/
http://eclipse-cs.sourceforge.net/
http://sourceforge.net/projects/lumbermill/
http://sourceforge.net/projects/lumbermill/
http://www.soyatec.com/euml2/history/
http://www.soyatec.com/euml2/history/
http://java.sun.com/j2se/1.5.0/docs/guide/management/jconsole.html
http://java.sun.com/j2se/1.5.0/docs/guide/management/jconsole.html
http://java.sun.com/docs/books/tutorial/reflect/index.html
http://java.sun.com/docs/books/tutorial/reflect/index.html
http://citeseer.ist.psu.edu/tolksdorf03using.html
http://citeseer.ist.psu.edu/tolksdorf03using.html
http://citeseer.ist.psu.edu/tolksdorf98laura.html
http://citeseer.ist.psu.edu/tolksdorf98laura.html
http://dblp.uni-trier.de/db/conf/pdpta/pdpta2000.html

References

[56] Wikipedia. Log4j, visited: February 3, 2008. http://en.wikipedia.org/wiki/Log4].

[57] Wikipedia. Logo (programming language), visited: January 23, 2008. http://en.
wikipedia.org/wiki/Logo_(programming_language).

[58] Wikipedia. Eclipse (software), visited: January 27, 2008. http://en.wikipedia.org/
wiki/Java_eclipse.

[59] Wikipedia. Apache Ant, visited: January 28, 2008. http://en.wikipedia.org/wiki/
Apache_Ant.

[60] Wikipedia. SOAP, visited: January 30, 2008. http://de.wikipedia.org/wiki/SOAP.

[61] Uri Wilensky. NetLogo. Center for Connected Learning and Computer-Based Model-
ing, Northwestern University, Evanston, Illinois, 1999. http://ccl.northwestern.
edu/netlogo/.

[62] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford. T spaces. IBM Systems
Journal, 37(3):454—-474, 1998.

114

http://en.wikipedia.org/wiki/Log4j
http://en.wikipedia.org/wiki/Logo_(programming_language)
http://en.wikipedia.org/wiki/Logo_(programming_language)
http://en.wikipedia.org/wiki/Java_eclipse
http://en.wikipedia.org/wiki/Java_eclipse
http://en.wikipedia.org/wiki/Apache_Ant
http://en.wikipedia.org/wiki/Apache_Ant
http://de.wikipedia.org/wiki/SOAP
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/

List of Figures

List of Figures

[I. Centralized tuplespaces| 11
2. Partitioned tuplespaces| oL 12
B. Fullreplication| 12
. Intermediate replication| o 000 13
b. Idealistic distribution of tuples in SWARMLINDA| 21
6. Self-organization of ants by tracking pheromones| 24
[7. " Routing based on pheromones| 25
8. Retrieval of tuples via hashing in LINDA|. 26
9. Retrieval of tuples by tracking pheromones in SWARMLINDA|. 29
10. Snapshot of a SWARMLINDA system at runtime|. 31
11. NetLogo controlling interface| 37
12. Part of the NetLogo system architecture modeled in UML|. 39
13. Architecture of the NetLogo extension APIinUML| 40
14. Architecture of the tools package|, 44
15. Network Generation Simulator] 46

6 and visualization area imula .. 49
17. Plotting area of the SWARMLINDA Simulator] 53
18. T ion of the SWARMLINDA Simulator] 55
19. Comparison between Cyrig and Cpog| - - -+« v o oo oo oo 61
20. Sigmoid curve defined by Equation(12) 63
21. Comparison between Pg:;i and Pg}gi in dependenceonc(X)| 64
22. Comparison between P;:;i and nggi in dependenceon K| 65
23. Entropy curve defined by Equation|[15with ; =100[. 67
24. Comparison of node entropies|., 68
5. Emergence of homogeneous cluster structures due to tuple movement| . . . 73
6. Development of the pickup probability in dependence on k. 74
7. A 25 nodes comprising scenario with Spatial Clustering|. 77

8. Development of ¥; in dependence on y; and max-sizel 78

9. A five nodes comprising scenario with Overclustering Avoidance| 79

0. 'Training effect of the system by executing out-primitives| 82

1. Development of the entropy during the test runs of the out-primitives|. . . . 83

2. Network topology with two marked paths| 84
B3. Training effect of the system by executing in-primitives| 87
B4. Development of the entropy during the test runs of the in-primitives] 88
B5. Development of the constitutions of tuplespaces| 89
B6. Entropy development depending on the amount of cleaning ants] 91
7. Self-organization of tuples during tuple movement| 92
B8. Average entropy development of scenarios defined in Table[1§] 95
B9. Comparison of the average entropies based on Table[I8and[19. 97
40. Distribution of tuples with aoc and sc based on a four node seeding| 100
41. Distribution of tuples with goc and sc based on a 20 node seeding| 102

115

List of Figures

42. Distribution of tuples with aoc and sc without seeding| 104
43. Network graphs showing the distribution of tuples based on aoc and sc|. . . 105
44. Package diagram of the extension classes for the SWARMLINDA Simulator| . 118
45. UML diagram of the extension classes for the SWARMLINDA Simulator| . . . 119

116

List of Tables

List of Tables

I8

Pheromone distribution among the visited nodes|.

R.

Probability distribution between Si, Spand So| L

B.

Update of the pheromone distribution among the visited nodes|

(4.

Control elementsin NetLogo|

E.

Manitest parameters for NetLogo extensions|

6.

Added primitivesin NetLogo|

7.

Metrics: Definition of Scenario 1 — Scenario 3| v v v v v v v v v v ..

8.

Metrics: Definition of Scenario 4 — Scenario 6|

9.

Scenarios of tuple distribution in a six node comprising network|.

10.

Entropy calculation based on the tuple distribution given by Table|9|

11.

Constitutions of tuple spaces according to Figure25]

12.

Constitutions of tuple spaces according to Figure26|

13.

Evaluation: Definition of Scenario 1 — Scenario 4.

14.

Example: Node connectivity and path probability|

15.

Evaluation: Definition of Scenario 5 — Scenario 8.

[16.

Evaluation: Definition of Scenario 9 — Scenario 11|

[17.

Evaluation: Definition of Scenario 12 — Scenario 14

(18.

Evaluation: Definition of Scenario 15 — Scenario 18/

(19.

Evaluation: Definition of Scenario 19 — Scenario 22|

20.

Evaluation: Definition of Scenario 23 — Scenario 26|

21.

Evaluation: Definition of Scenario 27 — Scenario 30|

22.

Evaluation: Definition of Scenario 31 — Scenario 33|

117

A. Diagrams

A. Diagrams

£ interfaces I
primitives.randomnumbers

o
e
|) T
| Detives
| smplements - - -
o
| P ~einstartistes
| gf -
| sk __puuy 7
zlmport, Instantiste, Call: .
tools |< ——————— f# primitives
ok
| Sy _
| e e aDerives
sinstantistes™ -
| i
.
. T e
glmport, Instantiste, Calls | R‘:_',L -~
| 4 primitives.datatypes
Mg

4 logging |

Figure 44: Package diagram of the extension classes for the SWARMLINDA Simulator

118

A. Diagrams

SSCLURLORUE ; S2apd

Buojuopuey &)

SISCLURILORUE L S0 AU

Jujwopuey &)

jen|{Wopuey &)

SISCURIUORUE ;S0 AU

ajgnoguiopuey &)

TSRO S0 AL

V

sadAlepen saapud
anjepxepfiuo] &)

saddlepep saapund
anjepuiybuoy &)

sadileep saspud
anjepuipiabiau) &)

sadAdlepep saapund
anjepxepiabia] &)

sadAlelep saaud
anjepulppen]d &y

sadAleEp sasuad
anjepXEpIE0]q @

sadAlelep s
anjepulpa)

aad

qnoq &

sadAlEep Saspd
anjeAREa|gho] mn.

saaluL sasuLd
uois1an &y uoisiapjapop &)
sasuad sasuad

wipabau| &) <

10)e8I1I(&)

10)EpIEAIBSSUIRIUOT &)

sasud

SIaUNUILOPUE L S8
S18(UINYWOPUBHIIRNSIY /7Y

sadAlelep saapuid
sadA| ejeqoensqy &)

saaqud
uolsiapIBNSHY 5

sasqua
1a)s11saaniwLd &)

sas
uopelauanaweually &)

_,Q Z3EUE)EL| _toQE_¥_

| |
vV

RN r—
saApuLd sadfieleq 6 | | saapud sE0ELEM
UOISUAXJBPUITULIBME &) HEIELELRE _ 1apodaywoisnyPensgy D) SueISU0]) §
R #a0k e
=00}
1ahieuepally &) — mEe
<
il oo Bio il ofiojr B1o FLEEo)
1alieuepsse|yynejaq &) lapodayynejag & 1ablioT)

Figure 45: UML diagram of the extension classes for the SWARMLINDA Simulator

119

	Introduction
	Historical Background
	Thematic Demarcation
	Motivation
	Objective
	Structuring

	Algorithms In SwarmLinda
	Tuple Distribution
	Drop Probability
	Path Selection

	Tuple Retrieval
	Tuple Movement

	Development and Implementation
	Used IDE
	NetLogo
	Definition
	Usage
	System Architecture
	Extension-Model

	Eclipse
	Definition
	Plug-Ins
	Build System with Ant

	Network Generation Simulator
	Generation of Networks
	Interaction with Networks
	Plotted Graphs

	SwarmLinda Simulator
	Visualization
	Controlling the Simulator
	Output: Monitors and Plots
	Additional Test Environment

	Implementation
	Extension
	Logging
	Test Environemt

	Improved Metrics in SwarmLinda
	Drop Probability
	Entropy
	Pickup Probability
	Anti-Overclustering

	Experiments Showing Optimization Results
	Tuple Distribution
	Tuple Retrieval
	Tuple Movement
	Comparison of the improved Metrics
	Anti-Overclustering and Spatial Clustering

	Conclusion and Future Work
	References
	List of Figures
	List of Tables
	Diagrams

