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Abstract

The recognition complexity of ordered set properties is considered, 1.e. how many
questions have to be asked to decide if an unknown ordered set has a prescribed
property. We prove a lower bound of Q(n?) for properties that are characterized
by forbidden substructures of fixed size. For the properties being connected, and
having exactly k& comparable pairs we show that the recognition complexity is (g),
the complexity of interval orders is exactly (g) — 1. Non-trivial upper bounds are
given for being a lattice, containing a chain of length k& > 3 and having width k.

1 Introduction and Overview

A well studied recognition problem on sets arising in the context of representing sets in
computer storage is defined by the following game. Given a finite set S and a property
P of subsets of S, i.e. P C 2% (the powerset of S), a player A wants to know if an
unknown set X C S is in P by asking questions about elements of S. For his questions
A chooses some z € S and asks “Is ¢ € X7, player B answers “yes” or “no”. The aim
of A is to minimize the number of questions, while B tries to force A to ask as many
questions as possible. In any case, the game ends up with sets X and Z such that either
all Y containing X and not containing an element of Z,i.e X CY C S\ Z, arein P or
all such Y are not in P.

The number of queries necessary to finish the game if both players play optimally is
called the recognition complezity of P. A property is called elusive, if B can force A to
ask all possible |S| questions. If P is considered as a Boolean function, the complexity
of P is a lower bound for the time any algorithm recognizing P must take in the worst
case on any model of sequential machine [10].

A famous and well studied special case of this game is, when 5 is regarded as the
set of possible edges of a graph on n vertices, i.e. P is a property of graphs [2], [6], [7],
[8], [9]. The relation between this concept of recognition complexity of graph properties
and the computer representation of graphs is discussed in [11]. See also [1] for more
information and references on recognition complexity.
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In [5] Faigle and Turdn suggest to play the game on properties of partial orders.
Here player A asks for the comparability status of two elements ¢ and b, and B answers
“a < b7, “a > b or “a and b are incomparable.”

Considering a property P of partial orders with n elements, P is elusive if B can force
A to ask all possible (;) questions. Obviously, the game for properties of partial orders
does not fit into the concept of set properties discussed before, since there are three
possible answers instead of two. Moreover, the transitivity of partial orders may lead
to situations, where player A knows the comparability status of two elements without
asking it — independently from the considered property. While in the case of graph
properties it seems that nearly all properties are elusive or at least of complexity Q(n?),
there exist many “easy” properties of partial orders. E.g. the recognition problem of
being a linear order is just the sorting problem and thus has complexity O(nlogn).

In this paper we study the recognition complexity of several properties of partial
orders. First we describe situations that induce the comparability status of an unasked
pair of elements independently from the considered property. For properties that are
characterized by forbidden substructures of fixed size we prove a lower bound of Q(n?)
for the recognition complexity. In section 3 we prove elusiveness for connectedness and
having exactly k comparable pairs, for fixed k. Non-trivial upper bounds are given in
section 4 for being a lattice, containing a chain of length k, for £ > 3 and having width
k, for k fixed, thus proving that these properties are not elusive. For the class of interval
orders we prove that (;) — 1 is the exact value of its recognition complexity.

2 Some general observations

We first introduce some basic notations. A partial order P = (V, <) consists of a finite
ground set V' and the order relation <, incomparability is denoted by ||. An element b
covers a (denoted a < b) if @ < b and there is no ¢ € V with @ < ¢ < b. Throughout
this paper we illustrate partial orders by their Hasse diagram. The vertices of the Hasse
diagram are the elements of V and b covers a in P iff @ and b are connected by an edge
going from a up to b. A partial order property P is a set of partial orders over the same
ground set closed under isomorphism.

Consider the game introduced in section 1 for a partial order property P over a n-
element ground set V. The state of the game after ¢ < (;) questions can be interpreted
as a triple ((C,<),I,N), where (C,I,N) is a partition of the set of all two-element
subsets of V. The pairs in C' are those which have been given comparable in one of the ¢
steps and < is the corresponding order relation. [ is the set of pairs given incomparable
and N is the set of pairs not yet asked for.

We call a triple ((C, <), I, N) legal if there exists a partial order P = (V,<p) com-
patible with the triple, i.e. satisfying

1. If {a,b} € C and @ < b then a <p b.
2. If {a,b} € I then a || bin P.



An algorithm for player A is a mapping ¢ assigning to each legal triple ((C, <), I, N) a
pair {a,b} € N, i.e. ¢ prescribes the next question “a :b” at state (((C, <), I, N).

A strategy for player B is a mapping 1 which assigns to a given legal triple ((C, <
),I,N)and {a,b} € N a new legal triple which is one of the following two

(C,<),Tu{a,b}, N\ {a,b}) ((CUd{a,b}, <), I, N\ {a,b}).

A game is finished at state ((C, <), I, N) if either all partial orders P compatible with
the triple are in P, or for all of them P ¢ P holds.

The complexity of a property P for a fixed algorithm ¢ and a fixed strategy ¢ is the
minimum number of questions needed to finish a game if player A uses ¢ and player B
uses 1, i.e.

C(P; ¢, ¥) = min{ ¢| game finishes at state ((C, <), I, N,) with |CUI| = ¢}.

The complexity of a property P is the minimum number of questions needed to finish a
game if both A and B play optimally, i.e.

C(P)= mgn mfx C(P; e, ).
For a legal triple ((C, <), I, N) with |C'U I| = ¢, the number of pairs of elements whose
comparability status is known may be more than ¢q. We now give situations, where the
comparability status of a pair {a,b} € N is induced by the comparability status of some
other pairs independent from the partial order property under consideration.
Situation 1 If there exist elements a1, as, a3 with a1 < a9 and ay < a3 then by transi-
tivity a1 < as holds.

Situation 2 If there exist elements a1, as and by, by with a1 < ag, by < by, ay||by and
as||by then both of ay||by and as||by hold.

Proof: With each of the 4 possible comparabilities ay < by, by < a3, a; < by and
by < a; we would introduce as transitive edge either a; < by or by < ay contradicting
the incomparability of this pair. (See figure la).

(We always illustrate partial orders by their Hasse diagram with solid lines, incompara-
bilities are denoted by dashed edges, and dotted edges denote an unknown comparability
status)

Situation 3 Consider a state ((C,<),I,N) of a game where there exists a 5-chain
a) < a < ag < ag < as and an element b ¢ {ay, ..., a5} with {b,a;} € N. Then player
A can deduce the comparability status of all five pairs {b, a;}, 1 <1i <5 by asking only
four questions.

Proof: Player A asks for the comparability status of the pairs b : as and b : ay4. If
one of these pairs is comparable we gain a transitive edge. In case both pairs are given
incomparable A concludes b||as. (See figure 1b).
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Figure 1: Three standard situations.

Situation 4 Consider a state ((C, <), I, N) of a game where there exist two 3-chains
a; < ag < az and by < by < bs and all the pairs {a;,b;} are in N. Then player A can
deduce the comparability status of all six pairs a; : b; by asking only five questions.

Proof: Player A asks for the comparability status of ay : by and by : ay. If both ay||by
and by||ag, then situation 2 applies, i.e. a1]|by and az||by. Otherwise, i.e. if at least one
of these pairs is given comparable, A gains a transitive edge. (See figure 1c).

A partial order Py = (Vp, <o) is a suborder of P = (V, <) if V5 CV and a <q b iff
a < bforall a,b € V. (In this case, we do not distinguish between <g and <.)

Theorem 1 Let P be a partial order property over a n-element set V such that

1. P contains the n-element antichain;

2. there exists a partial order Py = (Vo, <o) of fized size k, i.e. |Vo| = k < n, such
that each partial order P that contains Py as a suborder is not in P.

Then P has complexity Q(n?).

Proof: Player B can make use of the following ‘greedy strategy’. As long as there is a
subset X C V with |X| =k and ()2() C N (where ()2() = {{z,y}|z,y € X}) the answer
to the question a : b is a||b. The n-antichain and the order Py on X together with n — &
independent elements are compatible orders, one in P the other not in P.

Therefore player A has to ask at least one question from each k-element subset
X C V. There exist (Z) different subsets of size k. On the other hand, a given pair of



n—2
k—2

is at least (,(E)Q) = Z;j, which is of Q(n?).
k—2

elements is contained in (7Z3) of these sets. So, the number of questions A has to ask

Remark:

1) Obviously, the complexity of a property P is equal to the complexity of its com-
plement, i.e. the set of all partial orders that are not in P (which is a partial order
property as well).

2) Theorem 1 applies to a lot of partial order properties, e. g. for being an interval
order, being a lattice, having dimension at most 2 or containing a chain of length
at least 3.

3 Elusive Properties

Let us call a partial order connected if its Hasse diagram considered as an undirected
graph is connected.

Theorem 2 The property P of all connected partial orders over set V is elusive.

Proof: We give a strategy ¢ for player B such that C(P; ¢, ) = (5) for all algorithms
o of player A.

Let the first question be a : b, then B answers a < b. For further questions a : b he
answers al|b, except in case {a, b} is the last possible edge between one of the elements,
say a, that is not comparable to another element, and an element b comparable to some
other element. Then the comparability is given according to the comparability status
of b, such that b remains a minimal element or a maximal element. More precisely, for
alegal ((C,<),I,N)let M = U {z,y} then for {a,b} € N the answer of B is:

{z,y}teC

a<b ifag M,be M and for all x € M \ {b} we have {z,a} € I,
and b > ¢ for some ¢ € M;

b<a ifag¢g M,be M and for all x € M \ {b} we have {z,a} € I,
and b < ¢ for some ¢ € M;

allb else.

The strategy v obviously preserves the invariants:

(1) The partial order induced by (C, <) over M is connected, and (]\24) cCCul.



(2) All € M are either minimal or maximal with respect to (C', <).
(3) For each € V \ M there is a y € M such that {z,y} € N.

Applying ¢, the game ends with a legal triple ((C,<),I,N). If [CUI| < (3),
then the partial orders compatible with ((C, <), I, N) would all be connected or all be
disconnected. But invariants 1 and 2 contradict the assumption that all compatible
partial orders are connected, while invariant 3 contradicts the case that they all are not

connected.

Theorem 3 The property P of all partial orders containing exactly k comparable pairs
over V with |V| = n is elusive if k = ny - ny with ny + ne < n.

Proof: A strategy 1 for player B such that C(P;p, ) = (;) for all algorithms ¢ is to
construct a “complete height 1 order” with exactly k edges. Let (XY, 7) be a partition
of V with |X| = ny and |Y| = ny, the order Fy on V is defined by 2 < y iff € X and
y € Y. The number of comparabilities of Fy is k.

Given a question a : b the answer of player B is the comparability status of the pair
{a,b} in Py. The length of the game then is (}) since even the last unasked pair may
change the number of comparabilities of the final order P. Let {a, b} be the last unasked
pair. If @ and b are comparable in F then B may give a||b and the game ends with an
order with k — 1 comparabilities. If a||bin Fy then B may give a < bif e« € X and b < «

otherwise, the resulting order then has k£ + 1 comparabilities.

Remark:

1) The proof shows that the recognition complexity of the order Py is () while in [5]
height 1 orders are presented which have recognition complexity of O(nlogn).

2) Let f(k) be the complexity of having exactly k comparable pairs. By the theorem
f(k) = (5) for many values k < %, on the other hand f(k) € O(nlogn) for
k> % — cn for ¢ constant. It would be interesting to know the value of f(k) for
some k in between.

4 Upper Bounds

In this section we give upper bounds for the complexity of several partial order prop-
erties. Consider a partial order P = (V, <), two elements a,b € V have the minimum
x €V, denoted x = min{a,b} if + < aand 2 < b, and z < @ and z < b implies z < z.



Figure 2: Forbidden suborder for lattices.

The maxzimum is defined analogously. P = (V, <) is a lattice iff min{a, b} and maz{a,b}
exist for all a,b € V.

Theorem 4 Let P be the set of all lattices over V', |V| > 3, then C(P) < (3).

Proof: In the following we use the fact that L = (V, <) is a lattice iff it does not contain
four elements a, b, ¢, d with a < b,a < d,c < b,c < d,al|c and b||d (see figure 2), and it
contains a unique minimum and a unique maximum, i.e. an element x € V such that
z < y respectively y < z for all y € V. (Denote the minimum resp. maximum of L by
min(L) resp. max(L).)

An algorithm ¢ for player A with C(P;,¢) < (3) for all strategies 1 is first to ask
all ("3") questions over V'\ {2} for a fixed # € V. The state of the game after these

("3") questions is a legal triple ((C,<),I,N)and N = {{z,y}|y€ V}.

Case 1 The partial order induced by ((C, <), ) is not a lattice. The ‘defect’ of ((C, <), I)
relative to lattices has to be so small that adding & in the right way leads to a lattice.
The possible situations then are

1.1 The unique minimum or maximum is missing. Then, w.l.0.g. let ((C, <), I)induce
a partial order containing no minimum. It must contain a maximum y and all
lattices compatible with ((C, <), I, N) contain  as its minimum. So A asks a : =
for an arbitrary @ € V \ {z,y}. Player B has to answer z < a, else there is no
compatible partial order that is a lattice, but with 2 < @ and # < y the transitive
edge a < y is given.

1.2 The partial order induced by ((C, <), I) contains a forbidden substructure on ele-
ments a, b, ¢, d. In this case A asks b: 2 and d : z. Then B either gives a transitive
edge between z and the minimum or the maximum, or B answers b||z and d||z,
which implies that there exists no compatible partial order which is a lattice.

Case 2 The partial order induced by ((C', <), I) is a lattice.

2.1 If the lattice contains a 5-chain, then situation 3 from section 2 applies.



2.2 1If the lattice has height 3, i.e. there is a 4 chain min < a1 < by < max, then the
nonextremal elements are partitioned into aq, ..., ax, those covering the minimum,
and the remaining elements by,...,0;.. Note that all the b; are covered by the
maximum. A first asks z : a; for 2 < ¢ < k. If z is comparable with at least one of
the a; then this comparability induces a transitive edge. Hence we assume that B
always answers z||a;. Now, A asks @ : b; for 1 < j <[. Again, the comparability
of z with one of the b; would induce a transitive edge. Assume z||b; for 1 < j <.
The next two questions are z : min and z : maz. To guarantee that there exists a
compatible partial order that is a lattice, B has to answer # < maz and min < x.
But now the comparability status of # and @; may be chosen arbitrarily, since all
partial orders compatible with that state of the game do not contain the forbidden
substructure, i.e. are lattices.

2.3 If the lattice has height 2, A first asks = : min and & : maz. If the answers of B are
min £ x or & £ maz, B either gives a transitive edge or there exist no compatible
partial orders which are lattices.

Otherwise, if min < 2 < maz, then the comparability status of z and all other
elements of V' may be chosen arbitrarily, since there exists no compatible partial
order that contains a forbidden substructure, i.e. all compatible partial orders are
lattices.

Theorem 5 The property P of all partial orders over set V. with |V| = n > 4, that
contain a k-chain, k > 4 has complezity C(P) < (3).
Proof: A asks all possible questions over V' \ {z} for fixed z. To guarantee that
for the state of the game after these (”;1) questions there exists a compatible partial
order containing a chain of length k, B has to construct a chain of length k — 1, say
a) < ag < ... < ag—1. Now A asks z : ay. If B answers z||ay, then the comparability
status of z : @y and z : a;, 2 < < k — 1, is not essential for P. Otherwise, if B answers

x < ag or ay < x there is an induced transitive edge.

This argument does not apply to the case k = 3.

Theorem 6 The property P of all partial orders over set V., |V| = n > 5, that contain
a 3-chain has complexity C(P) < (3).
Proof: We use the following two facts.

Fact 1 If for a strategy 1 there exists a state ((C, <), I, N) with {a,b},{c,d} € C,
a<b,c<dand {a,d} € N,{b,d},{a,c} € NUI then there exists an algorithm ¢ such
that C(P; e, 1) < (5).



Figure 3: Illustrations for the facts.

A may obtain {a,c} € I and {d,b} € I, otherwise there would be a 3-chain. Now A
asks all remaining questions {a, 2}, x # d and all questions {d,z}, z # a. If {a,2} € C
then a@ < x, otherwise we would have a 3-chain, symmetrically {d, 2} € C implies z < d.
From this we conclude that for all # # a,d either {a,2} € I or {d, 2} € I, but now the
comparability status of @ : d is not essential for P, since this pair can not contribute to
a 3-chain in a compatible order. (See figure 3).

Fact 2 If for a strategy v there exists a state ((C, <), I, N) such that

i) {c,z} € CUI for afixed c € V and all z € V' \ {c},
ii) there are a,b € V with {a,c} € I,{b,c} € C,
iii) for all a,b € V with {a,c} € I,{b,c} € C, we have {a,b} € N

then there exists an algorithm ¢ such that C(P; ¢, ¢) < (5).

W.lo.g c<b. Let A={a; € V\{c}:{c,a;} € I} and B={b; e V\{c}:{c,b;} €
C'}, then ¢ < b; for all b; € B since otherwise there is a 3-chain. We next ask for
all the remaining pairs {a;,a;} and {b;,b;}. The pairs {a;,a;} are given incomparable,
otherwise fact 1 applies. Moreover, all pairs {b;,b;} are given incomparable to avoid a
3-chain. But then there exists no compatible partial order in P, i.e. the comparability
status of all a; : b; for a; € A and b; € B is not essential for property P since b; cannot
cause a 3-chain. (See figure 3).

An algorithm ¢ with C(P;p,%) < (5) for all strategies ¢ is the following. Let
V =A{ay,...,2,}. First, A asks zy : x9. If the answer is x1||zy then A asks 2y : z; for
2 < i< n—1. B answers z||z;, otherwise fact 2 applies. But then the comparability
status of x1 : z, is not essential, since neither z; < z, nor z, < x; can contribute to a
3-chain.

So, assume B answers w.l.o.g. x; < z3. Now, A asks 21 : z;, for 2 < ¢ < n— 2.
Because of fact 2, respectively to avoid a chain of length three, B always answers 21 < z;.



With the following questions, A can force a situation where the comparability status
of ©,_1 : x, is not essential for P.

First question A asks x5 : x,,.

To avoid a 3-chain, respectively because of fact 1 with ¢ = 2z,, b = 29, ¢ = 21,
d = z3, B answers 3 || @,,.

Second set of questions A asks all z; : 2z, for 2 <t <n — 2.

To avoid a chain of length 3, B will in no case answer z; < z,. Assume B answers
z; ||z, forall 4,2 < i <n—2. Then A asks z,,_1 : @, and if B answers z,,_1 || 2,
x1 : X, is not essential for . But a comparibility between z, and z,_; induces
fact 1. Thus for at least one z;, 2 < ¢ < n — 2 B will answer z, < ;. W.l.o.g. let
Ty < T3.

Third set of questions A asks 1 : x,_1.
The answer z,,_1 < 21 induces a chain of length three.

If 21 || 51, then A asks all questions x; : z,,—; for 2 < i < n, and either gets a
comparability which induces a chain of length three or fact 1, or @; || ,—1 for all
?, and thus x,,_1 : 2, is not essential for P.

So let B answer 21 < 2,_1.

Fourth set of questions A asks z; : z,, for all remaining z;, 1 < ¢ < n — 1, strating with
Ty Ty

To avoid 3-chains B has to answer 21||2,. For all other z; the answers are z;||z,
or z, < x;. At answers x, < z; let the question z; : x,_1 follow, this has to be
answered with 2;||2,—_1 to avoid a 3-chain.

But now, the comparability status of z,_q : x, is not essential for P, since each z;,
t #n,n — 1 is incomparable to one of z,_; and z,,.

Theorem 6 is a kind of indicator that elusive partial order properties must be of
low height. We now consider the width of partial orders, i.e. the maximal size of an
antichain.

Theorem 7 Let P be the property of all partial orders of width k over V', for a fized k,
then C(P) < 2knlogn.

Proof: The algorithm ¢ with C(P;¢,9) < 2knlogn is based on sorting. Let the
ground set be indexed, i.e V. = {zy,...,2,}, then player A determines one after another
the order on {zq,...,2;} for 1 <i¢ < n. Consider P, = ({1, ...,2;},<), if the width of
FP; is more than k, then all compatible orders have this property and the game is over.

10



Therefore we assume the width of P, to be at most k& and, by the theorem of Dilworth
[3] P; can be partitioned into k chains H}, .. L HE. 4

Let H! be a chain of the chain partition of B, say H! = ¢; < ¢3 < ... < ¢. A
determines the comparability status of {z;41,¢;} for 1 < j < [ using binary search.
First A asks for a;44 : criy- If 2,41 < °ri (resp. @41 > c[%]) then A recursively
determines the comparability status of ;47 with the elements of the remaining ‘half-
chain’ {c; |1 < j < [£]} (resp. [4] < j <1).

If 41 || Criyy then [ < [%] < Iy holds, where [y :=max{j | j =0 or ¢; < 2;41} and
lo :=min{j | j =+ 1or ;41 < ¢;}. Now, A recursively applies bitonic sort to both
half-chains to determine /; and [,. The comparability status of 2,4 with all elements of
H! can thus be determined with 2log/ questions. The comparability status of all pairs
from {xy,...,2;} is known after at most 2k log n queries. Adding the n elements one by
one we obtain the overall complexity of 2kn log n.

Remark: Algorithm ¢ not only decides if an unknown partial order has width at most
k, but also if it is isomorphic to a fixed partial order Fy of width k. Thus theorem 7
improves the upper bound given in [5] (which is 2knlogn + 3kn) for the Py-recognition
problem.

A partial order P = (V, <) is an interval order iff there exists a collection (1;)zev
of intervals on the real line, such that z < y iff I, lies entirely to the left of I,. The
characterization theorem of Fishburn says: P is an interval order iff P does not con-
tain a suborder 242, where 24+2= ({a,b,c,d}, <) with a < b,¢ < d and no further
comparabilities [4].

Theorem 8 The recognition complexity of the class P of interval orders is C(P) =

(3) - L.

Proof: We first prove C(P) < () — 1. This is done by describing an algorithm ¢,
such that C(P; e, ¥) < () — 1 for all strategies ¢b. Let V := {z1,...,2,}, A takes the
elements by increasing index and asks for their comparability status to all elements with
higher index, until B gives the first comparability.

In case z; || 2; for ¢ < n — 3 and all j, every compatible partial order is an interval
order and A gains 3 questions. So, let {xy, 214/} be the first comparable pair, and
zp < k4 (the other case is dual). Now, algorithm ¢ uses the fact that an interval
order can not contain a 242 as suborder, and situation 2 of section 2, i.e. that in
any four elements {a,b,c,d} C V, with a < b and ¢ < d, A only has to know the
comparability status of the diagonals {a,d} and {¢,b} to decide if the four elements
induce the forbidden 242.

A then asks all pairs of elements from V' = {&p, rp1s oy Bpaim1s Thaidtty -« s Tn )
Let @) be the resulting order. If () is an antichain then all compatible partial orders are

11



in P. We thus assume that at least one pair is comparable. ¢ has to be an interval
order, otherwise all compatible orders contain the 242 of ) and are not in P. Let
z € V' be an element with maximal set of predecessors in @ (interval orders always
contain a z such that @ < b implies a < z). If z = z; then there is a z; with z; < x4
and we gain the transitive edge 2; < zj4(, hence z # x. Now, ask the edges {4, 2}
with 2’ € V/'\ {z,21}. We claim: if still there is no 242 then the edge {z4, 2} can
not cause one.

Suppose there exists a set {xy4, 2z, 24,2}, k < ¢ # j < n that can still form a 242.
From the maximality of z’s set of predecessors we deduce that z; < z. Then we can
choose x; such that the 242 is of the form #; < #;4; and z; < z. But then the diagonals
have already been asked and we are able to detect the 242 without asking {xz4;, 2}.

To prove C(P) > (;) — 1 consider the following ‘greedy-strategy’ 1. For all states
of the game and all questions x : y B answers x || y unless there is no compatible partial
order containing a 2+2.

Let ((C',<), I, N) be the first state where C' # 0, let C' = {a,b}. Consider the graph
G induced by N, i.e. with vertex set V(N) := {z;: there is a {z;,2;} € N} and
edge set N. It is easy to see that Gy is either a star or a triangle. That is, either
N C {{y,2;} : 2; € V}for some y € V, or N = {{z;,2;},{z;, 21}, {1, 2;}} for some
v, x5,r € V.

If Gp is a star then B can force A to ask all the remaining questions from N by
using .

If Gy is a triangle and {a, b} N {x;, 2, 2;} = 0, then ¢ forces A to ask all remaining
questions from N as well.

The only case where the game finishes after (;) — 1 questions is if G is a triangle,
{a,b} N {z;,2;,2;} = {2;} and A first asks z; : z;. In this case A can make use of
‘situation 2’ and gain one question.

References

[1] M. Aigner, Combinatorial Search, (Wiley-Teubner 1988).
[2] B. Bollobas, Extremal Graph Theory, (Academic Press 1978).

[3] R. P. Dilworth, A Decomposition Theorem for Partially Ordered Sets, Ann. of
Math. Vol. 51, No. 1, (1950) 161-166.

[4] P. C. Fishburn, Interval Orders and Interval Graphs, (Wiley-Interscience Series
in diskrete Mathematics, John Wiley & Sons 1985).

[5] U. Faigle and Gy. Turan, Sorting and recognition problems for ordered sets,
SIAM J. Comp. 17 (1988) 100-113.

12



[6] D. J. Kleitman and D. J. Kwiatkowski, Further results on the Aanderaa-
Rosenberg conjecture, J. Comb. Theory, Ser. B 28 (1980) 85-95.

[7] J. Kahn, M. Saks and D. Sturtevant, A topological approach to evasiveness,
Combinatorica 4 (1984) 297-306.

[8] E. C. Milner and D. J. A. Welsh, On the computational complexity of graph
theoretical properties, Proc. Fifth British Combinatorial Conference (C. St. J. A.
Nash-Williams and J. Sheehan, eds.) Utilitas Math., Winnipeg (1976) 471-487.

[9] A. L. Rosenberg, On the time required to recognize properties of graphs: a
problem, SIGACT News 5 (1973) 15-16.

[10] R. L. Rivest and J. Vuillemin, On recognizing graph properties from adjacency
matrices, Theor. Comp. Science 3 (1976) 371-384.

[11] J. van Leeuwen, Graph Algorithms, in: Handbook of Theoretical Computer Sci-
ence, Algorithms and Complexity (J. van Leeuwen ed.) (Elsevier 1990) 525-632.

13



