

The Safety of Higher Order Demand Propagation 1

The Safety of Higher Order Demand Propagation

Dirk Pape

Department of Computer Science
Freie Universität Berlin

e-mail: pape@inf.fu-berlin.de

Abstract.

Higher Order Demand Propagation as proposed in [Pa98] provides a

non-standard denotational semantics for a realistic functional language. This

semantics can be used to deduce generalised strictness information for higher

order polymorphic functions. This report provides the formal proof for the cor-

rectness of this strictness information with respect to the non-strict standard

semantics.

1 Introduction

A functional core language together with its standard semantics has been intro-

duced in [Pa98]. The language provides higher order functions, a polymorphic

type system and user definable recursive data types. A brief summary of the lan-

guage’s syntax and semantics is given in section 2 of this report.

The non-standard semantics of higher order demand propagation has also been

declared in [Pa98] and its main definitions are collected in section 3 of this report.

The definitions given here are slightly more explicit than those given in [Pa98] –

lacking of syntactic sugar – to avoid suggesting implications in the proof just by a

sugared notation.

Section 4 contains the formal definition of safety together with the safety theo-

rem. The main implication of the safety theorem is, that generalised strictness

information can be obtained from a syntactical function definition by applying its

associated demand propagator to a context demand and some special argument

demand propagators. This will be the task of the demand propagation analysis, a

higher order polymorphic backward strictness analysis, which also has been

briefly introduced in [Pa98]. A prototype for this analysis is in implementation

and will be released soon.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/199417555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 The Safety of Higher Order Demand Propagation

2 Syntax and Semantics of the Core Language.

A simple but realistic functional language is introduced in this section, which

bases on the polymorphically typed lambda calculus. The language is higher

order and provides user definable algebraic data types. It is a module language

and the standard semantics of a module is not its main expression value, but a

transformation of environments. The module’s semantics transforms a given

import

 environment into an

export

 environment by adding to it the denotations of

the functions, which are defined in the module.

2.1 Syntax of the Core Language

The syntax of the core language and its associated type language is summarised in

figure 1. It consists of user type declarations and function declarations. Expres-

sions can be built of variables, function applications, lambda abstractions, case-

and let-expressions. All expressions are assumed to be typed, but for simplicity all

type annotations are omitted in this paper. In a real implementation the principle

types can be inferred by Hindley-Milner type inference. Nevertheless we define a

type language, which is used to index the semantic domains assigned to the syn-

tactic types. Polymorphic types are defined by universal quantification of all free

type variables at the outermost level of the type. This is a usual approach, e.g. fol-

lowed in the definition of the functional language Haskell ([PH97]). Such a poly-

morphic type can be applied to a number of types yielding a specialised type,

which yet may or may not be polymorphic.

The usual constants 0, 1, -1, …, +, *, … appear in the language as variables with

their semantics assigned to them in a prelude environment. Integer numbers also

represent constructors, which identify the components of the infinite sum

Z

⊥

≅

 ({0}

⊕

{1}

⊕

{-1}

⊕

…)

⊥

 and which can be used in a pattern of a case-alternative.

The case-expression in the core language always contains a default alternative,

to eliminate the necessity to handle pattern match errors in the semantics. An ordi-

nary case-expression without a default alternative can easily be transformed by

adding a default alternative with the expression

bot

, where

bot

 is defined in the

prelude environment for all types with the associated semantics

⊥

.

The Safety of Higher Order Demand Propagation 3

2.2 Standard Semantics of Core Language Modules

The definition of the standard semantics is given in figure 2 and consists of four

parts:

1.

The type semantics

D

:

 the semantic domains are indexed by the types of the

type language. They are constructed out of the flat domain for

INT

 by function

space construction for functional types and sum-of-products construction for

user defined algebraic data types. Function domains are generally lifted to con-

tain a least element

⊥

, denoting functional expressions, which have no weak

head normal form. A domain for a polymorphic type is defined as a type

indexed family of domains. User type declarations can be polymorphic and

mutual recursive. The domains for user defined types are represented by poly-

morphic type constructors, which can be applied to the appropriate number of

types and yield the domains for recursive data types, which themselves are

defined as fixpoints of domain equations in the usual way ([Fe89]). Because we

focus on the expression semantics here, we only refer to that it is possible to

construct the appropriate domains for recursive data types and handle the

typeconstructors as if they are predefined in the type environment for the type

semantics.

Type language

type

 :== [

∀

 {

typevar

 }

.

]

monotype
monotype

 :==

typevar

|

INT

|

monotype

→

monotype

|

typeconstructor

 {

monotype

 }

User type declaration language

usertype

 :== [

∀

 {

typevar

 }

.

]

algebraic
algebraic

 :== [

algebraic

+

]

constructor

 {

monotype

 }

Expression language

expression

 :==

var

|

constructor

 |

expression

expression

 |

λ

var

.

expression

|

case

expression

of

 {

constructor

 {

var

 }

⇒

expression

 }

var

⇒

expression

|

let

module

in

expresssion

Module language

module

 :== {

typeconstructor

=

usertype

 } {

var

=

expression

 }

Figure 1.

Core Language Syntax

4 The Safety of Higher Order Demand Propagation

2.

The expression semantics

E

:

 Syntactic expressions of type

τ

 are mapped to

functions from an environment – describing the bindings of free variables to

semantic values – into the domain belonging to

τ

. The semantics of polymor-

phic (functional) expressions are families of functions for all possible instances

of the polymorphic type.

3.

The user type declaration semantics

U

:

 The sum-of-products domains for user

defined data types come together with unique continuous injection functions

in

C

 into the sum and with the continuous projection functions

proj

C

,i

 to the i-th

factor of the summand tagged with

C

. It is

proj

C

,i

(

v

) =

⊥

, for all

v

 in other sum-

mands than that corresponding to

C

.

The injection functions appear as semantics of implicitly defined constructor

functions used to construct values in a user defined data type. The projection

functions are only used implicitly in the pattern matching semantics of the

case-expression. We also define a function

tag

, which maps any non-bottom

value of a sum to the constructor name (the tag) of the summand it belongs to

and which maps

⊥

 to

⊥, and we define a function rest•. The tag function is only

for convenience (though it seems strange to have a function from semantics

into syntax). Instead of saying “v is element of the summand corresponding to

the constructor C in the domain for the user defined data type Τ” we can simply

write “tag(v)=C”. The functions rest•, parameterised by a set of constructor

names CS, are defined by restCS(v)=⊥, if v∈CS and =v, otherwise. They are used

in the semantics of the case-expression if the default alternative is matching.

They are not really necessary to specify the semantics, but their use simplify the

proof of the safety theorem.

4. The module semantics M: The semantics of a core language module is a trans-

formation of environments. Each variable, which is free in a definition in the

module must be defined somewhere in the module itself or must have a seman-

tics assigned to it by the import environment. The semantics of the set of

mutual recursive declarations in a module is the (always existing) minimal fix-

point of a transformation of environment transformations.

The Safety of Higher Order Demand Propagation 5

a. In this case is always rest{C1,…,Cn}(e)=e, but we write this longer definition for convenient use in the proof of the
safety theorem.

Domains associated to types

D : Types → Typeenvironment → Domains

where Typeenvironment = (Typevars ⊕ Typeconstructors) → Domains

D[[∀α1…αn. τ]] σ = (D1,…,Dn) |→ D[[τ]] σ[D1/α1, …, Dn/αn]

D[[α]] σ = σ α and D[[INT]] σ = Z⊥

D[[τ1 → τ2]] σ = [D[[τ1]] σ → D[[τ2]] σ]⊥ and D[[Τ τ1…τn]] σ = σ Τ (D[[τ1]] σ,…,D[[τn]] σ)

D[[C1 τ11…τ1a1
 + … + Cn τn1…τnan

]] σ = (D1 ⊕ … ⊕ Dn)⊥

where Di = D[[τi1]] σ × … × D[[τiai
]] σ

Expression semantics

E : Expressions → Environment → Values

where Environment = (Vars ⊕ Constructors) → Values

E[[x]] ρ = ρ x and E[[C]] ρ = ρ C

E[[e1 e2]] ρ = E[[e1]] ρ (E[[e2]] ρ), where ⊥ v = ⊥ for all v

E[[λx. e]] ρ = λv. E[[e]] ρ[v/x]

E[[case e of C1 v11…v1a1
 ⇒ e1; …; Cn vn1…vnan

 ⇒ en; v ⇒ edef]] ρ

= ⊥, if e = ⊥

= E[[ei]] ρ[projCi,1(e)/vi1, …, projCi,ai
(e)/viai

], if tag(e)=Ci

= E[[edef]] ρ[rest{C1,…,Cn}(e)/v], otherwisea

where e = E[[e]] ρ

E[[let m in e]] ρ = E[[e]] (M[[m]] ρ)

User type definition semantics (implicit constructor functions)

U : Usertypes → Environment

U[[∀α1…αm. C1 τ11…τ1a1
 + … + Cn τn1…τnan

]] = [c1/C1, …, cn/Cn]

where ci = λv1…vai
. inCi

 (v1,…,vai
)

Standard module semantics

M : Modules → Environment → Environment

M[[T1 = υ1; …; Tm = υm; fdefs]] ρ = F[[fdefs]] (ρ++U[[υ1]]++…++U[[υn]])

where F[[v1 = e1; …; vn = en]] ρ = μΡ. ρ[E[[e1]] Ρ/v1, …, E[[en]] Ρ/vn]

Semantics f of a variable f in a module m with import environment ρi

f = M[[m]] ρi f

Prelude semantics are provided for integer numbers, + and bot

Figure 2. Standard Semantics of the Core Language

6 The Safety of Higher Order Demand Propagation

3 Demand Propagation Semantics

To understand the demand propagation semantics, it is necessary to provide a

notion of demands and demand propagators. The following definitions are taken

from [Pa98] and are used throughout the proof of the safety theorem.

Definition 3.1 (Demand)

A demand of type τ is a continuous function from the standard semantic domain

D[[τ]] to the two-point-domain 2={1}⊥. The continuity of the characteristic function

Δ implies the closedness of the set Δ-1({⊥}) with respect to the induced Scott-topol-

ogy. And the characteristic function ΔC on a closed set C with ΔC(C) = ⊥ and

ΔC(C) = 1 is continuous, which shows that the functional notion is equivalent to

the usual notion of demands as Scott-closed subsets of the value domain. We pre-

fer the functional notation because it provides an easy way to define demands on

polymorphic domains namely by polymorphic characteristic functions. Opera-

tionally demands represent evaluation strategies like evaluators do in [Bu91].

They map a semantic value to ⊥, if and only if the related evaluation strategy fails

for that value.

There are three basic demands, which are fully polymorphic and thus can be

applied to all values. Those are NO (no evaluation), WHNF (evaluation to weak

head normal form) and FAIL (non terminating evaluation). Algebraic demands

(e.g. for lists) can be constructed out of component demands. Their definitions are

given in figure 3. Note that the evaluation strategy for a constructor demand e.g.

CONS WHNF NO forces evaluation to a Cons-node and the evaluation of the head of

that node to weak head normal form. If applied to an empty list Nil, it does not

terminate or semantically equivalent yields an error. Such constructor demands

arise from the analysis of a case-alternative.

Definition 3.2 (Operators on demands)

Demands can be combined by the operators | and &, which are defined as point-

wise supremum respectively infimum.

In addition to this, algebraic demands can be projected to a component or

restricted to some summands of the sum. The projected demand is the demand,

The Safety of Higher Order Demand Propagation 7

which is induced on the specified factor of the sum-of-products. Projection is used

when analysing constructor applications. The restriction operation restricts the

demand to be not in a specified set of summands of a sum. The restricted demand

yields ⊥ on the elements of those summands. Restriction is used to describe the

propagation in a default alternative of a case-expression. The definitions of the

demand operators can be studied in figure 3.

Definition 3.3 (More-effective relation, effective)

The complete partial order of the domain of demands, which is induced by stand-

ard function domain construction, has FAIL as its bottom element and NO as a uni-

versal greatest element. Since it is somehow counter-intuitive to say that the

demand NO is the greatest demand, a new partial order is defined on demands:

The domain of demands

Demandτ = D[[τ]] → 2

Basic, fully polymorphic demands:

NO v = 1, for all v

WHNF v = ⊥, if and only if v = ⊥

FAIL v = ⊥, for all v

Algebraic demand for sum components:

(C Δ1…Δn) v = inf {Δ1 v1, …, Δn vn}, if tag(v)=C and hence v=inC(v1,…,vn); = ⊥, otherwise

Compound demands with & and |:

(Δ1 & Δ2) v = inf {Δ1 v, Δ2 v}

(Δ1 | Δ2) v = sup {Δ1 v, Δ2 v}

Projection to demand components by ↓:

Δ↓C,i v = ⊥, iff for all v1…vn: Δ (inC(v1,…,v,…,vn)) = ⊥ (v at i-th position)

Exclusion of demand components by \:

Δ\CS v = ⊥, if tag(v)∈CS; = Δ v, otherwise

Recursive demands can be defined as fixpoints (examples):

SPINE = μΔ. NIL | CONS NO Δ

(EVEN,ODD) = μ(Δ1,Δ2). (NIL | CONS NO Δ2 , NIL | CONS WHNF Δ1)

Figure 3. Demands and Demand Operators

8 The Safety of Higher Order Demand Propagation

A demand Δ is called more effective than Δ’, noted Δ»Δ’, if and only if Δ<Δ’ with

respect to the natural c.p.o. Δ is called effective at all, if and only if Δ»NO.

With respect to », WHNF is the least effective demand. All other demands are

comparable with and strictly greater than NO and WHNF. And they are comparable

with FAIL the most effective demand.

Definition 3.4 (demand propagator, context demand, parameterised demand,

propagated demand)

A demand propagator for an expression of type τ=τ1→…→τn→τ' (τ' non-functional,

as is τ=τ', if n=0) is a continuous function, which maps a demand of type τ' (the

context demand) to a parameterised demand of the same type. The parameterised

demand for a non-functional type is just a demand, the so called propagated

demand. If an expression of a non-functional type has no free variables there will

be no target for propagation.1 Therefore the propagated demand will in general

depend on demand propagators assigned to free variables in an expression, which

may be bound by a surrounding lambda or defined in the same or another mod-

ule. The parameterised demand of a function type makes the dependence of the

propagated demand from an argument demand propagator explicit, by including

a function in its second argument. The first argument is a simple propagated

demand, which specifies the propagation if the function is only partially applied.

The domains are defined by the following mutual recursive domain equations:

The definition expresses the constraint, that in order to yield a propagated

demand of type α all argument propagators of the parameterised demand must

propagate to a demand of type α. Note also, that the definition of a parameterised

demand of a non-functional type does not depend on the type τ'. The types only

apply to the context demand of a propagator and recursively to the context

demands of all argument propagators of a parameterised demand. The domains

1. In this case the demand propagator can be used for termination analysis, but this will not be explicated
here.

PDemandτ' = ∀α. Demandα

PDemandτ = ∀α. Demandα × [Propagatorτ1 α → PDemandτ2→…→τn→τ' α]

Propagatorτ = ∀α. [Demandτ' → PDemandτ α] .

The Safety of Higher Order Demand Propagation 9

are fully polymorphic in the type for the propagated demand, which reflects, that

a demand can be propagated to any subexpression merely by feeding the correct

argument demand propagators. How this is done will be described later, when the

connection between demand propagators and general strictness is explicated.

The discussion of the types of parameterised demands helps realising, that

higher order demand propagation is indeed a polymorphic analysis. Demand

propagators of polymorphic functions are also polymorphic. And the proof of

safety of a polymorphic demand propagator for a polymorphic function is like a

schema of proofs for all instances.

Remark 3.5 (Generalisation of demand constructions)

The operations on demands, which were introduced in definition 3.2, general-

ise in a natural way to parameterised demands by applying them to the first com-

ponent and recursively to the second (see figure 4). The both parameterised

demands to be combined must have the same type.

Definition 3.6 (Lifting of demand propagators to a functional type)

The case-expression has a special role in our core language, since it triggers evalu-

ation on the expression to be scrutinised. Take the function f defined as:

The type of f is Bool → Int → Int. The demand propagator F of f should reflect,

that even if f is partially applied to only one argument, this argument can safely

be demanded with WHNF. In the demand propagation semantics of f an applica-

tion of b’s demand propagator to WHNF will be combined with some other propa-

op∈{&,|} is recursively defined on parameterised demands by:

(Δ1,φ1) op (Δ2,φ2) = (Δ1 op Δ2,λP. (φ1 P) op (φ2 P))

projection and restriction on parameterised demands are defined by:

(Δ,φ)↓C,i := (Δ↓C,i,λP. (φ P)↓C,i)

(Δ,φ)\CS := (Δ\CS,λP. (φ P)\CS)

Figure 4. Generalisation of Demand Constructions to Parameterised Demands

> f = λb. case b of True ⇒ λa. a; False ⇒ λa. 1

10 The Safety of Higher Order Demand Propagation

gators for the alternatives by the &-operator. Now these demand propagators have

different types and thus may not be combined. This dilemma only occurs in the

case-expression and fortunately is not a real dilemma. Because the expression to

be scrutinised in a case-expression is always of an algebraic (or flat) type its

demand propagator maps WHNF to a parameterised demand, which is non-func-

tional, hence does not depend on this type (see definition 3.4). The parameterised

demand b WHNF can easily be lifted to the functional type of the case-expression

by the following definition, which describes general lifting of a parameterised

demand from an algebraic type to an arbitrary type. Let π be a parameterised

demand of algebraic type, then liftτ is defined for each type τ, by:

This definition expresses the intuition, that propagation by a non-functional

parameterised demand does not depend on further argument propagators any

more, as it is obvious in the above example: The propagation induced by scrutini-

sation on b does not depend on the propagator provided for a.

The functions lift will be used in the demand propagation semantics of the case-

expression.

Remark 3.7 (Two ways to apply parameterised demands)

There are two views we want to have on a parameterised demand and therefore

two ways to apply it. The first looks at the parameterised demand as a demand.

Thus it can be applied to semantic value yielding 1 or ⊥. The second view gives it

its name – parameterised demand – and looks at it as a function, which maps an

argument demand propagator to a new parameterised demand, describing the

dependence of the propagation by an argument propagator. Thus a parameterised

demand can also be applied to a demand propagator.

Though it is always determined by the context, whether a parameterised

demand is applied to a semantic value or to an argument propagator, we will dis-

tinguish both applications in this paper by different notations to be more explicit

in the proof of the safety theorem. We will note the application of a parameterised

demand to a demand propagator (second view) by an infix @ or by normal appli-

liftτ'(π) = π, if τ' is non-functional

liftτ→τ'(π) = (π,λX. liftτ'(π))

The Safety of Higher Order Demand Propagation 11

cation notation, hence by juxtaposition of function and argument. The application

of a parameterised demand to a semantic value will be noted by an infix ♦. To be

just a little more flexible we will interpret the ♦ as a postfix operator, projecting

the parameterised demand to its propagated demand component. Hence the infix

♦ can be alternatively interpreted as a postfix ♦ followed by a normal application

of a demand to a semantic value. The formal definitions of @ and ♦ are given in

figure 5.

Definition 3.8 (λ-abstraction for parameterised demands)

Let π=π(P) be a parameterised demand, which can depend on a demand propaga-

tor P. Then λP. π denotes the parameterised demand (NO,λP. π). Figure 5 also lists

the definitions of the demand propagators NO, ID and STRICT, which are essential

for general strictness analysis.

Definition 3.9 (Demand Propagation Semantics)

We are now able to define the denotational demand propagation semantics as an

abstract interpretation of the core language, taking the domains of demand propa-

gators as the non-standard semantic domains. The formal definition is listed in

The duality of parameterised demands

@ : ParamDemandτ→τ’ α → DemandPropagatorτ α → ParamDemandτ’ α

(Δ,φ) P = (Δ,φ)@P = φ P

♦ : ParamDemandτ α → Demandα

Δ♦ = Δ

(Δ,φ)♦ = Δ

λ-abstraction for parameterised demands

λP. π(P) = (NO,λP. π(P))

Basic demand propagators NO, ID and STRICT

NOτ Δ = NO, if τ is non-functional and NOτ→τ' Δ = λP. NOτ' Δ

IDτ Δ = Δ, if τ is non-functional and IDτ→τ' Δ = STRICTτ→τ' Δ

STRICTτ Δ = WHNF, if τ is non-functional and STRICTτ→τ' Δ = (WHNF,λP. STRICTτ' Δ)

Figure 5. Parameterised Demands

12 The Safety of Higher Order Demand Propagation

figure 6. Most defining rules of the expression semantics are straightforward par-

allel to the definitions in the standard semantics. A user type definition introduces

implicitly a demand propagator for each constructor function, similar as it implic-

itly defined a semantics for the constructor function in the standard semantics.

The propagator of a constructor function propagates the accordant projections of

the context demand to the components of the value.

Domains associated to types

D[[τ]] = Propagatorτ

Expression semantics

E : Expressions → DPEnvironment → Propagators

where DPEnvironment := (Vars ⊕ Constructors) → Propagators

E[[x]] ρ Δ = ρ x Δ and E[[C]] ρ Δ = ρ C Δ

E[[e1 e2]] ρ Δ = E[[e1]] ρ Δ (E[[e2]] ρ) and E[[λx. e]] ρ Δ = λX. E[[e]] ρ[X/x] Δ

E[[case e of C1 v11…v1a1
 ⇒ e1; …; Cn vn1…vnan

 ⇒ en; v ⇒ edef]] ρ Δ

= liftτ(E[[e]] ρ WHNF) & (π1 | … | πn | πdef)

where πi = liftτ(E[[e]] ρ (Ci NO…NO)) & E[[ei]] ρ[Vi1/vi1, …, Viai
/viai

] Δ

Vij = λΔ. E[[e]] ρ (Ci NO…Δ…NO), with Δ at j-th position

πdef = liftτ(E[[e]] ρ WHNF\CS) & E[[edef]] ρ[(λΔ. E[[e]] ρ Δ\CS)/v] Δ

CS = {C1, …, Cn}

τ = type(case e of C1 v11…v1a1
 ⇒ e1; …; Cn vn1…vnan

 ⇒ en; v ⇒ edef)

E[[let m in e]] ρ Δ =E[[e]] (M[[m]] ρ) Δ

User type definition semantics

U : Usertypes → DPEnvironment

U[[∀α1…αm. C1 τ11…τ1a1
 + … + Cn τn1…τnan

]] = [C1/C1, …, Cn/Cn]

where Ci Δ = lift(FAIL), if Δ v = ⊥ for all v with tag(v)=Ci

Ci Δ = λV1. … λVai
. (V1 Δ↓Ci,1 & … & Vai

 Δ↓Ci,ai
), otherwise

Standard module semantics

M : Modules → DPEnvironment → DPEnvironment

M[[Τ1 = υ1; …; Τm = υm; fdefs]]= F[[fdefs]] (ρ++U[[υ1]]++…++U[[υn]])

where F[[v1 = e1; …; vn = en]] ρ = μΡ. ρ[E[[e1]] Ρ/v1, …, E[[en]] Ρ/vn]

Semantics F of a variable f in a module m with import environment ρi

F = M[[m]] ρi f

Figure 6. Demand Propagation Semantics

The Safety of Higher Order Demand Propagation 13

The main property required for the demand propagation semantics is its safety

with respect to the standard semantics. The safety of the demand propagation

semantics shall reflect the promise, that if using the information deduced from the

demand propagators for changing the evaluation order, this will not alter the

semantics of the program.

The next section points out the connection between the demand propagators

and generalised strictness information and therefore the opportunities for chang-

ing the evaluation order. A safety condition is formulated and proven, which

claims the connection between demand propagation semantics and standard

semantics of the core language.

4 A Proof for the Safety of Higher Order Demand Propagation

We first define the notion of safety and then show, that it implies the correctness of

generalised strictness information deduced from a safe demand propagator. First

we proof some lemmata and finally the safety theorem, which states, that each

demand propagation semantics of a syntactic function is safe for its standard

semantics, assuming a safe pair of prelude environments. The minimal initial prel-

ude consisting of the integer numbers n, and the functions + and bot builds such a

safe pair together with the demand propagators NUMn, + and BOT, as proved in

lemma 4.3. The safety of the demand propagators, which are implicitly defined for

the constructor functions, is also proven in lemma 4.3.

Definition 4.1 (Safety of demand propagators)

We call a function from some domain D to another semantic domain a dependence

expressing the dependence of a value from exactly one argument.

Prelude demand propagators

NUMn Δ = FAIL, if Δ n = ⊥; = NO, otherwise

+ Δ = λX. λY. X WHNF & Y WHNF

BOTτ Δ = FAIL

Figure 6. Demand Propagation Semantics (cont.)

14 The Safety of Higher Order Demand Propagation

Let F : D → D[[τ1→…→τn→τ]] (τ a non-functional type) be a dependence. And let

further be F∈Propagatorτ1→…→τn→τ a demand propagator of the corresponding

type. Then F is called safe for F, if for all m with 0≤m≤n holds:

. (1)

This recursive definition of safety is well-founded by the same definition read-

ing for non-functional types, where m may only be zero and hence the definition

does not depend on the safety of argument propagators.

In addition, F is defined to be safe for a semantic value f∈D[[τ1→…→τn→τ]], if it

is safe for any dependence F = const f, which yields f ignoring the dependence-

argument.

Definition 4.2 (Safety for environment dependences)

If Ρ : D → (Vars⊕Constructors) → Values is a dependence of an environment of

semantic values and ρ : (Vars⊕Constructors) → Propagators an environment of

demand propagators. Then ρ is defined to be safe for Ρ, if

 . (2)

Again ρ is defined to be safe for an environment of semantic values ρ, if ρ is safe

for any dependence Ρ = const ρ.

Lemma 4.3 (Some safe demand propagators)

The following propagator safety properties hold:

1. NO is safe for all dependences

2. ID is safe for id = λv. v

3. for all n∈Z: NUMn is safe for n

4. + is safe for +

5. BOT is safe for ⊥

6. λV1. … λVa. (V1 Δ↓C,1 & … & Va Δ↓C,a) is safe for a constructor function

λv1. … λva. inC(v1,…,va)

Proof. Let in the following proofs be Vi safe for Vi for all i and Δ an effective con-

text demand. For the propagators P in each proof define Δm to be (P Δ V1 … Vm)♦.

If i 1 i m≤ ≤,∀ Ai is safe for Ai D D τi[[]]→:.

then v D∈∀ F Δ A1 … Am() ♦v ⊥= Δ F v() A1 v() … Am v()() ⊥=⇒.

x Vars Constructors⊕∈∀ ρ x() is safe for λt Ρ t x.().

The Safety of Higher Order Demand Propagation 15

1. From the definition of NO it follows that (NO Δ V1 … Vm)♦ = NO regardless of the

Vi, hence Δm t ≠ ⊥, thus (1) is always true.

2. Assume Δm t = ⊥ with Δm = (ID Δ V1 … Vm)♦. Since the definition of ID implies

Δm = Δ » WHNF or Δm = WHNF, it follows ⊥ = t = id t, hence also Δ (id t) = ⊥.

3. Assume (NUMn Δ)♦t = ⊥. From the definition of NUMn follows Δ n = ⊥.

4. Since Δ0 = Δ1 = NO, nothing is to show for m=0 or m=1.

If ⊥ = (+ Δ V1 V2)♦t = (V1 WHNF & V2 WHNF)♦t, it follows (V1 WHNF)♦t = ⊥ or

(V2 WHNF)♦t = ⊥. Without loss of generality assume (V1 WHNF)♦t = ⊥. Since V1 is

safe for V1, it follows WHNF (V1 t) = ⊥, and thus V1 t = ⊥. We then have

Δ (+ (V1 t) (V2 t)) = Δ (+ ⊥ (V2 t)) = Δ ⊥ = ⊥, since Δ is effective.

5. It is Δ (⊥ (V1 t) … (Vm t)) = Δ ⊥ = ⊥, for all m and effective Δ, hence each demand

propagator especially BOT is safe for ⊥.

6. If Δ v = ⊥ for all v with tag(v)=C, then Δ (inC(V1 t,…,Va t)) = ⊥ follows immedi-

ately for arbitrary t. In the other case assume (V1 Δ↓C,1 & … & Vm Δ↓C,a)♦t = ⊥.

It is nothing to show for m<a, since Δm = NO then. For m=a, (Vi Δ↓C,i)♦t = ⊥

must hold for at most one i. Without loss of generality assume (V1 Δ↓C,1)♦t = ⊥.

Since V1 is safe for V1, it is Δ↓C,1 (V1 t) = ⊥, hence with the definition of ↓ finally

follows Δ (inC(V1 t,…,Va t)) = ⊥.

q.e.d.

Corollary 4.4 (Generalised strictness with demand propagators)

If F ∈ Propagatorτ1→…→τn→τ is safe for f ∈ D[[τ1→…→τn→τ]], Δ a context demand,

and Δi = (F Δ NO … NO ID NO … NO)♦ (ID at the i-th position of n arguments). Then f

is Δi-strict in its i-th argument in a Δ-strict context, meaning:

 . (3)

Proof. Define F = const f, Vj = const vj for j≠i and Vi = λt. t. From lemma 4.3 we

know, that NO is safe for each Vj with j≠i and ID is safe for Vi, hence from (1) we get:

.

q.e.d.

v1…vn∀ Δi vi ⊥= Δ f v1 … vn() ⊥=⇒.

Δi vi ⊥= ⊥ Δ F vi() V1 vi() … Vn vi()() Δ f v1 … vn()= =⇒

16 The Safety of Higher Order Demand Propagation

Lemma 4.5 (Safety in case alternatives)

If Τ = ∀α1…αm. C1 τ11…τ1a1
 + … + Cn τn1…τnan

is a user defined data type and V is

a demand propagator, which is safe for V : D → D[[Τ τ1 … τn]], then

1. λΔ. V (C NO…Δ(j)…NO) is safe for (projC,j •V)

2. λΔ. V (Δ\CS) is safe for (restCS •V)

Proof.

1. Assume (V (C NO…Δ(j)…NO))♦t = ⊥. Since V is safe for V, it follows from (1):

(C NO…Δ(j)…NO) (V t) = ⊥, hence from the definition of C NO…Δ(j)…NO, that

tag(V t) ≠ C or Δ (projC,j(V t)) = ⊥. Both cases imply Δ (projC,j(V t)) = ⊥.

2. Assume (V (Δ\CS))♦t = ⊥. Since V is safe for V, it follows from (1): (Δ\CS) (V t) =

⊥, hence from the definition of \, that tag(V t) ∈ CS or Δ (V t) = ⊥. Both cases

imply Δ (restCS (V t)) = ⊥.

q.e.d.

Lemma 4.6 (Enhancing safe environments)

If ρ is safe for Ρ, then the following propositions hold:

1. If F is safe for F, then ρ[F/f] is safe for λt. (Ρ t)[F t/f]

2. If Fi is safe for Fi for all i, 1≤i≤n, then ρ[F1/f1,…,Fn/fn] is safe for

λt. (Ρ t)[F1 t/f1,…,Fn t/fn]

Proof. Let ρ be safe for Ρ.

1. For all variables v≠f is ρ[F/f] v = ρ v safe for λt. Ρ t v = λt. (λt. (Ρ t)[F t/f]) t v.

And for f is ρ[F/f] f = F safe for F = λt. F t = λt. (λt. (Ρ t)[F t/f]) t f.

2. Follows directly from 1 by induction.

q.e.d.

Lemma 4.7 (Continuity of the safety relation)

If environment dependences Ρi are given, such that for each t, (Ρi t) is a chain. And

if (ρi) is a chain of propagator environments, such that for all i holds: ρi is safe for

Ρi, then is safe for .ρ
ii

∪ λt Ρit()
i

∪.

The Safety of Higher Order Demand Propagation 17

Proof. Assume being not safe for . Then it exists an f∈Vars with

 not safe for . Hence there exist m∈N, V1, …, Vm, V1, …,

Vm with Vi safe for Vi, an effective demand Δ, and t with

(Δ V1 … Vm) t = ⊥ and Δ ((V1 t) … (Vm t)) ≠ ⊥ (4)

Since Δ as well as function application are continuous functions and (Ρi t) is a

chain, there must be a k∈N with Δ (Ρk t f (V1 t) … (Vm t)) ≠ ⊥. Because ρk f is safe

for λt. Ρk t f by assumption, it follows, that (ρk f Δ V1 … Vm) t ≠ ⊥ and finally

(f Δ V1 … Vm) t ≠ ⊥, since (ρi) is a chain The latter is a contradiction to (4),

hence is safe for .

q.e.d.

Corollary 4.8 (Safety of the module semantics)

If m=[[tds; f1 = e1; …; fn = en]] is a core language module, ρ an import environment

and ρ an environment of demand propagators, which is safe for ρ. If further for all

i, 1≤i≤n, it is confessed, that safety of ρ for ρ implies the safety of E[[ei]] ρ for

E[[ei]] ρ, then M[[m]] ρ is safe for M[[m]] ρ.

Proof. It is well-known, that the minimal fixpoint of a continuous function

between c.p.o. can be constructed by an iterative chain.

(ρi) and (ρi) are chains and for all i, ρi is safe for ρi by lemma 4.6 and induction

on i. Hence from lemma 4.7, it follows that M[[m]] ρ is safe for M[[m]] ρ.

q.e.d.

We are now able to formulate the safety theorem for higher order demand propa-

gation, which states, that for each core language function definition the demand

propagation semantics of that function is safe for its standard semantics, assuming

an initial safe pair of prelude environments.

M[[m]] ρ = , with ρ0=⊥ and ρi+1=ρ[E[[e1]] ρi/f1,…,E[[en]] ρi/fn]

and M[[m]] ρ = , with ρ0=⊥ and ρi+1=ρ[E[[e1]] ρi/f1,…,E[[en]] ρi/fn].

ρ
ii

∪ λt Ρit()
i

∪.

ρ
ii

∪() f λt Ρi t()
i

∪(). f

ρ
ii

∪() f Ρi t()
i

∪() f

ρ
ii

∪()

ρ
ii

∪ λt Ρit()
i

∪.

ρ
ii

∪
ρi

i
∪

18 The Safety of Higher Order Demand Propagation

Theorem 4.9 (Safety Theorem for the Demand Propagation Semantics)

If m is a core language module, ρ an import environment and ρ an environment of

demand propagators, which is safe for ρ. Then M[[m]] ρ is safe for M[[m]] ρ.

Proof. We prove by induction on the structure of e, that if ρ is safe for Ρ and e is an

arbitrary expression then E[[e]] ρ is safe for λt. E[[e]] (Ρ t). The proposition of the

theorem then follows immediately by setting Ρ=const ρ and applying corollary

4.8. We now start the induction on the structure of e:

Let ρ be safe for Ρ. In each case let Δ be an effective context demand,

0≤m≤arity(e), Vi safe for Vi for all 1≤i≤m, and Δm = (E[[e]] ρ Δ V1 … Vm)♦.

case e=x or e=C

It is E[[x]] ρ = ρ x safe for λt. Ρ t x = λt. E[[x]] (Ρ t) by assumption. The same holds for

constructor functions.

case e=e1 e2

It is E[[e1 e2]] ρ Δ = E[[e1]] ρ Δ (E[[e2]] ρ) and E[[e1 e2]] (Ρ t) = E[[e1]] (Ρ t) (E[[e2]] (Ρ t)),

hence Δm = (E[[e1]] ρ Δ (E[[e2]] ρ) V1 … Vm)♦. By induction hypothesis is E[[e1]] ρ safe

for λt. E[[e1]] (Ρ t) as well as E[[e2]] ρ for λt. E[[e2]] (Ρ t). Thus

Hence E[[e1 e2]] ρ is safe for λt. E[[e1 e2]] (Ρ t) .

case e=λx. e1

It is E[[λx.e1]] ρ Δ = λX. E[[e1]] ρ[X/x] Δ and E[[λx.e1]] (Ρ t) = λv. E[[e1]] (Ρ t)[v/x], hence

Δm = ((λX. E[[e1]] ρ[X/x] Δ) V1 … Vm)♦ = (E[[e1]] ρ[V1/x] Δ V2 … Vm)♦. It is V1 safe

for V1, hence ρ[V1/x] safe for (Ρ t)[V1 t/x] by lemma 4.6 (1). By induction hypothe-

sis E[[e1]] ρ[V1/x] is safe for λt. E[[e]] (Ρ t)[V1 t/x]. Thus

Hence E[[λx.e]] ρ is safe for λt. E[[λx.e]] (Ρ t) .

(E[[e1]] ρ Δ (E[[e2]] ρ) V1 … Vm)♦t = ⊥ implies

⊥ = Δ (E[[e1]] (Ρ t) (E[[e2]] (Ρ t)) (V1 t) … (Vm t)) = E[[e1 e2]] (Ρ t) (V1 t) … (Vm t) .

 (E[[e1]] ρ[V1/x] Δ V2 … Vm)♦t = ⊥ implies

⊥ = Δ (E[[e1]] (Ρ t)[V1 t/x] (V2 t) … (Vm t)) = Δ ((λv. E[[e1]] (Ρ t)[v/x]) (V1 t) … (Vm t))

= Δ (E[[λx. e1]] (Ρ t) (V1 t) … (Vm t)) .

The Safety of Higher Order Demand Propagation 19

case e=case ec of C1 v11…v1a1
 ⇒ e1; …; Cn vn1…vnan

 ⇒ en; v ⇒ edef

It is Δm = (E[[ec]] ρ WHNF & (π1 V1 … Vm | … | πn V1 … Vm | πdef V1 … Vm))♦, since

lifttype(e)(E[[ec]] ρ WHNF) V1 … Vm = E[[ec]] ρ WHNF, with the definitions of πi and πdef

given in the demand propagation semantics.

Assume now Δm t = ⊥. From the definition of & it follows that

(E[[ec]] ρ WHNF) t = ⊥ or (5)

(π1 V1 … Vm | … | πn V1 … Vm | πdef V1 … Vm) t = ⊥ (6)

1. Consider (E[[ec]] ρ WHNF) t = ⊥. By induction hypothesis is E[[ec]] ρ safe for

λt. E[[ec]] (Ρ t), hence WHNF (E[[ec]] (Ρ t)) = ⊥, which is equivalent to E[[ec]] (Ρ t) = ⊥.

From the standard semantics of the case expression then follows E[[e]] (Ρ t) = ⊥,

hence Δ (E[[e]] (Ρ t) (V1 t) … (Vm t)) = ⊥ for arbitrary Vi, since Δ is effective.

2. In the second case we consider that (6) is true but (5) is false. Then define

E = λv. E[[ec]] (Ρ v). We now have to look at the standard semantics of the case-

expression, which relies on the value of E t:

(a) If E t = ⊥, then also E[[e]] (Ρ t) (V1 t) … (Vm t) = ⊥, regardless of the values of

the arguments, hence also Δ (E[[e]] (Ρ t) (V1 t) … (Vm t)) = ⊥.

(b) If tag(E t) = Ck for one k, 1≤k≤n, then E[[e]] (Ρ t) = E[[ek]] (Ρ' t) with

Ρ' t = (Ρ t)[projCk,1(E t)/vk1, …, projCk,ak
(E t)/vkak

]. From (6) follows:

ρ[W1/vk1, …, Wak
/vkak

] is safe for λt. (Ρ' t) by lemmata 4.5 (1) and 4.6 (2),

hence we can use the induction hypothesis for both subterms, yielding:

The definition of Ck NO…NO shows, that the first term is always false, if

tag(E[[ec]] (Ρ t))=Ck, hence Δ (E[[e]] (Ρ t) (V1 t) … (Vm t)) = ⊥.

(πk V1 … Vm)♦t = ⊥ with

πk = lifttype(e)(E[[ec]] ρ (Ck NO…NO)) & E[[ek]] ρ[W1/vk1, …, Wak
/vkak

] Δ and

Wj = λΔ. E[[ec]] ρ (Ck NO…Δ(j)…NO)

(Ck NO…NO) (E[[ec]] (Ρ t)) = ⊥ or

⊥ = Δ (E[[ek]] (Ρ' t) (V1 t) … (Vm t)) = Δ (E[[e]] (Ρ t) (V1 t) … (Vm t)).

20 The Safety of Higher Order Demand Propagation

(c) If ⊥ ≠ tag(E t) ∉ CS={C1,…,Cn}, then E[[e]] (Ρ t) = E[[edef]] (Ρ' t) with (Ρ' t) =

(Ρ t)[restCS(E t)/v]. From (6) follows:

ρ[(λΔ. E[[ec]] ρ Δ\CS)/v] is safe for λt. Ρ' t by lemmata 4.5 (2) and 4.6 (1),

hence we can use the induction hypothesis for both subterms, yielding:

The first term can only be true, if E[[ec]] (Ρ t) = ⊥ or tag(E t) ∈ CS, both

excluded in this case, hence Δ (E[[e]] (Ρ t) (V1 t) … (Vm t)) = ⊥.

Thus in all cases Δm t = ⊥ implies Δ (E[[e]] (Ρ t) (V1 t) … (Vm t)) = ⊥.

case e=let m in e’

It is E[[e]] ρ = E[[e’]] (M[[m]] ρ) and E[[e]] (Ρ t) = E[[e’]] (M[[m]] (Ρ t)).

From the induction hypothesis (applying to all definitions in m) and lemma 4.7

it follows that M[[m]] ρ is safe for λt. M[[m]] (Ρ t), and hence E[[e’]] (M[[m]] ρ) is safe

for λt. E[[e’]] (M[[m]] (Ρ t)) again by induction hypothesis.

q.e.d.

5 Conclusions and Further Work

Higher order demand propagation semantics is a non-standard semantics for

functional languages, which is able to capture generalised strictness properties for

higher order polymorphic functions. The examples in [Pa98] showed how

demand propagators can be used to find very accurate generalised strictness. This

report provides a formal proof for the correctness of this strictness information.

On the basis of this we plan to design a strictness analysis, which can be used in

a compiler to hint for optimisation possibilities. A raw idea for this design has also

been presented in [Pa98], and a prototype of the analysis is in implementation.

References

[Bu91] G. Burn: Lazy Functional Languages: Abstract Interpretation and Compila-
tion. Pitman 1991

(πdef V1 … Vm)♦t = ⊥ with

πdef = lifttype(e)(E[[ec]] ρ (WHNF\CS)) & E[[edef]] ρ[(λΔ. E[[ec]] ρ Δ\CS)/v] Δ

(WHNF\CS) (E[[ec]] (Ρ t)) = ⊥ or

⊥ = Δ (E[[edef]] (Ρ' t) (V1 t) … (Vm t)) = Δ (E[[e]] (Ρ t) (V1 t) … (Vm t)).

The Safety of Higher Order Demand Propagation 21

[Fe89] E. Fehr: Semantik von Programmiersprachen. Springer, Heidelberg, 1989

[Pa98] D. Pape: Higher Order Demand Propagation. Technical Report, Dept. of
Comp. Science, Freie Universität Berlin 1998. Available at <http://www.inf.fu-
berlin.de/~pape/papers/>

[PH97] J. Peterson, K. Hammond (editors) and many authors: Report of the Program-
ming Language Haskell – A Non-strict, Purely Functional Language – Version
1.4. Available at <http://www.haskell.org/onlinereport/>

