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IMPROVED TIME-SPACE TRADE-OFFS FOR COMPUTING VORONOI
DIAGRAMS∗
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Marcel Roeloffzen,¶Paul Seiferth,†Yannik Stein†

Abstract. Let P be a planar set of n sites in general position. For k ∈ {1, . . . , n− 1}, the
Voronoi diagram of order k for P is obtained by subdividing the plane into cells such that
points in the same cell have the same set of nearest k neighbors in P . The (nearest site)
Voronoi diagram (NVD) and the farthest site Voronoi diagram (FVD) are the particular
cases of k = 1 and k = n − 1, respectively. For any given K ∈ {1, . . . , n − 1}, the family
of all higher-order Voronoi diagrams of order k = 1, . . . ,K for P can be computed in total
time O(nK2 + n log n) using O(K2(n −K)) space [Aggarwal et al., DCG’89; Lee, TC’82].
Moreover, NVD and FVD for P can be computed in O(n log n) time using O(n) space
[Preparata, Shamos, Springer’85].

For s ∈ {1, . . . , n}, an s-workspace algorithm has random access to a read-only array
with the sites of P in arbitrary order. Additionally, the algorithm may use O(s) words, of
Θ(log n) bits each, for reading and writing intermediate data. The output can be written
only once and cannot be accessed or modified afterwards.

We describe a deterministic s-workspace algorithm for computing NVD and FVD for
P that runs in O((n2/s) log s) time. Moreover, we generalize our s-workspace algorithm so
that for any given K ∈ O(

√
s), we compute the family of all higher-order Voronoi diagrams

of order k = 1, . . . ,K for P in total expected time O
(
n2K5

s (log s+K 2O(log∗K))
)
or in total

deterministic time O
(
n2K5

s (log s + K logK)
)
. Previously, for Voronoi diagrams, the only

known s-workspace algorithm runs in expected time O
(
(n2/s) log s+n log s log∗ s

)
[Korman

et al., WADS’15] and only works for NVD (i.e., k = 1). Unlike the previous algorithm,
our new method is very simple and does not rely on advanced data structures or random
sampling techniques.
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1 Introduction

In recent years, we have seen an explosive growth of small distributed devices such as
tracking devices and wireless sensors. These gadgets are small, have only limited energy
supply, are easily moved, and should not be too expensive. To accommodate these needs,
the amount of memory on them is tightly budgeted. This poses a significant challenge to
software developers and algorithm designers: how to create useful and efficient programs in
the presence of strong memory constraints?

Memory constraints have been studied since the introduction of computers (see for
example Pohl [31]). The first computers often had limited memory compared to the available
processing power. As hardware progressed, this gap narrowed, other concerns became more
important, and the focus of algorithms research shifted away from memory-constrained
models. However, nowadays, memory constraints are again an important problem to tackle
for these new devices as well as for huge datasets that have become available through cloud
computing.

An easy way to model algorithms with memory constraints is to assume that the
input is stored in a read-only memory. This is appealing for several reasons. From a practical
viewpoint, writing to external memory is often a costly operation, e.g., if the data resides on
a read-only medium such as a DVD or on hardware where writing is slow and wears out the
material, such as flash memory. Similarly, in concurrent environments, writing operations
may lead to race conditions. Thus, it is useful to limit or simply disallow writing operations.
From a theoretical viewpoint, this model is also advantageous: keeping the working memory
separate from the (read-only) input memory allows for a more detailed accounting of the
space requirements of an algorithm and for a better understanding of the required resources.
In fact, this is exactly the approach taken by computational complexity theory. Here, one
defines complexity classes that model sublinear space requirements, such as the complexity
class of problems that use a logarithmic amount of space [4].

Some of the earliest results in this setting concern the sorting problem [28,29]. Sup-
pose we want to sort data items whose total size is n bits, all of them residing in a read-only
memory. For our computations, we can use a workspace of O(b) bits freely (both read
and write operations are allowed). Then, it is known that the time-space product must be
Ω(n2) [15], and a matching upper bound for the case b ∈ Ω(log n) ∩ O(n/ log n) was given
by Pagter and Rauhe [30] (b is the available workspace in bits). A result along these lines
is known as a time-space trade-off [33].

The model used in this work was introduced by Asano et al. [7], following simi-
lar earlier models [18, 20]. Asano et al. provided constant workspace algorithms for many
classic problems from computational geometry, such as computing convex hulls, Delaunay
triangulations, Euclidean minimum spanning trees, or shortest paths in polygons [7]. Since
then, the model has enjoyed increasing popularity, with work on shortest paths in trees [8]
and time-space trade-offs for computing shortest paths [5, 24], visibility regions in simple
polygons [11,13], planar convex hulls [12,22], general plane-sweep algorithms [23], or trian-
gulating simple polygons [3, 5, 6]. We refer the reader to [25] for an overview of different
ways of modeling computation in the presence of space constraints.
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Let us specify our model more precisely: we are given a set P of n point sites in the
plane. The set P is stored in a read-only array that allows random access. Furthermore, we
may use O(s) words of memory (for a parameter s ∈ {1, . . . , n}) for reading and writing.
We assume that all the data items and pointers are represented by Θ(log n) bits. Other
than this, the model allows the usual word RAM operations.

We consider the problem of computing various Voronoi diagrams for P , namely the
nearest site Voronoi diagram NVD(P ), the farthest site Voronoi diagram FVD(P ), and the
family of all higher-order Voronoi diagrams up to a given order K ∈ {1, . . . , O(

√
s)}. For

most values of s, the output cannot be stored explicitly. Thus, we require that the algo-
rithm reports the edges of the Voronoi diagrams one by one in a write-only data structure,
separately for each diagram, in increasing order of k. Once written, the output cannot be
read or further modified. Note that we may report edges of each Voronoi diagram in any
order, but we are not allowed to report an edge more than once.

Previous Work and Our Results. If we forego memory constraints, it is well known that
both NVD(P ) and FVD(P ) can be computed in O(n log n) time using O(n) space [10, 14].
For computing a single Voronoi diagram of order k, the best known randomized algorithm
takes O

(
n log n+ nk 2O(log∗ k)

)
time and O(nk) space [32], while the best known determin-

istic algorithm takes O(n log n + nk log k) time and O(nk) space [19, 21].1 For any given
K ∈ {1, . . . , n − 1}, the family of all higher-order Voronoi diagrams of order k = 1, . . . ,K
can be computed in O(nK2 + n log n) deterministic time using O(K2(n−K)) space [2,27].

In the literature, there are very few memory-constrained algorithms that compute
Voronoi diagrams. Asano et al. [7] showed that NVD(P ) can be found in O(n2) time using
O(1) words of workspace. Korman et al. [26] gave a time-space trade-off for computing
NVD(P ). Their algorithm is based on random sampling and achieves an expected running
time of O((n2/s) log s + n log s log∗ s) using O(s) words of workspace. We provide time-
space trade-offs that improve and generalize the known memory-constrained algorithms for
computing Voronoi diagrams. We believe that our method is simpler and more flexible
than previous methods. In Section 3, we show that the approach of Asano et al. [7] can
be used to compute FVD(P ). In Section 4, we introduce a new time-space trade-off for
computing NVD(P ) and FVD(P ). Unlike the result of Korman et al. [26], this new algorithm
is deterministic and slightly faster. It runs in O((n2/s) log s) time using O(s) words of
workspace, thus saving a log∗ s factor for large values of s.

Finally, in Section 5, we use the s-workspace algorithm from Section 4 as a building
block in a new pipelined algorithm. For any given K ∈ O(

√
s), this algorithm computes

the family of all higher-order Voronoi diagrams of order k = 1, . . . ,K in total expected time
O
(
n2K5

s (log s+K 2O(log∗K))
)
or in total deterministic time O

(
n2K5

s (log s+K logK)
)
, using

O(s) words of workspace. To compute the edges of a Voronoi diagram of order k, we use
the edges of the diagram of order k− 1. However, this needs to be coordinated carefully, to
prevent edges from being reported multiple times and to not exceed the space budget.

1This algorithm uses the rather involved dynamic planar convex hull structure of Brodal and Jacob [17].
If the reader prefers a more elementary method, we can substitute the slightly slower, but much simpler,
previous result by the same authors. The running time then becomes O(n logn+ nk log k log log k) [16, 21].
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(a) NVD(P ) = VD1(P ) (b) FVD(P ) = VDn−1(P ) (c) VD2(P )

Figure 1: For P , a set of planar sites (a) The nearest site Voronoi diagram (b) The farthest
site Voronoi diagram (c) The Voronoi diagram of order 2.

2 Preliminaries and Notation

Throughout the paper we denote by P = {p1, . . . , pn} a set of n ≥ 3 sites in the plane.
We assume general position, meaning that no three sites of P lie on a common line and no
four sites of P lie on a common circle. To fix our terminology, we recall some classic and
well-known properties of Voronoi diagrams [10,14].

The nearest site Voronoi diagram for P , NVD(P ), is obtained by classifying the
points in the plane according to their nearest neighbor in P . For each site p ∈ P , the open
set of points in R2 with p as their unique nearest site in P is called the Voronoi cell of p.
For any two sites p, q ∈ P , the bisector B(p, q) of p and q is defined as the line containing all
points in the plane that are equidistant to p and q. The Voronoi edge for p, q consists of all
points in the plane with p and q as their only two nearest sites. If it exists, the Voronoi edge
for p and q is a subset of the bisector B(p, q) of p and q. Our general position assumption,
and the fact that n ≥ 3, guarantee that each Voronoi edge is an open line segment or a
halfline. Voronoi vertices are the points in the plane that have exactly three nearest sites
in P . Again by general position, we have that every point in R2 is either a Voronoi vertex,
or lies on a Voronoi edge or in a Voronoi cell. The Voronoi vertices and the Voronoi edges
form the set of vertices and edges of a plane graph whose faces are the Voronoi cells. This
graph is called the nearest site Voronoi diagram for P , NVD(P ); see Figure 1a. It has O(n)
vertices, O(n) edges, and n cells.

The farthest site Voronoi diagram for P , FVD(P ), is defined analogously. Farthest
Voronoi cells, edges, and vertices are obtained by replacing the term “nearest site” by the
term “farthest site” in the respective definitions. Again, the farthest Voronoi vertices and
edges constitute the vertices and edges of a plane graph, called FVD(P ). As before, it has
O(n) vertices and O(n) edges. However, unlike in NVD(P ), in FVD(P ) it is not necessarily
the case that all sites in P have a corresponding cell in FVD(P ). Indeed, the sites with
non-empty farthest Voronoi cells are exactly the sites on the convex hull of P , conv(P ).
Furthermore, all cells in FVD(P ) are unbounded. Hence, FVD(P ), considered as a plane
graph, is a tree; see Figure 1b.
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Figure 2: An illustration of Facts 3.1 and 3.2: The sites l, p, r ∈ P are consecutive on
conv(P ). The boundary ∂Cn−1(p) contains a subset of B(p, l) and of B(p, r). The ray from
p toward c = B(p, l) ∩B(p, r) intersects ∂Cn−1(p).

Now, for k ∈ {1, . . . , n − 1}, the Voronoi diagram of order k for P is obtained by
classifying the points in the plane into cells, edges, and vertices according to the set of sites
in P that achieve the k smallest distances. We denote the Voronoi diagram of order k for
P by VDk(P ); see Figure 1c. Observe that NVD(P ) = VD1(P ) and FVD(P ) = VDn−1(P ).
For each set Q ⊂ P of k sites from P , we denote the Voronoi cell of order k for Q by Ck(Q).
It is known that VDk(P ) is a plane graph of complexity O(k(n− k)) [10,27]. For simplicity,
the cell of p ∈ P in NVD(P ) and FVD(P ) are denoted, respectively, by C1(p) and Cn−1(p).
We will denote the boundary of a cell C by ∂C. We will give more properties of higher-order
Voronoi diagrams in Section 5.

3 A Constant Workspace Algorithm for FVDs and NVDs

We are given a set P = {p1, . . . , pn} of n sites in the plane stored in a read-only array to
which we have random access. Our task is to report the edges of NVD(P ) and of FVD(P )
using only a constant amount of additional workspace. First, we show how to find a single
edge of a given cell of NVD(P ) or of FVD(P ). Then, we repeatedly use this procedure to
find all the edges of NVD(P ) and FVD(P ). We summarize the properties of FVD(P ) that
are relevant to our algorithms in the following two facts. More details can be found, e.g., in
the book by Aurenhammer, Klein, and Lee [10]. See Figure 2 for an illustration.

Fact 3.1. Let P be a set of n point sites in the plane in general position, and let p ∈ P .
The cell Cn−1(p) is not empty if and only if p lies on the convex hull of P . In this case, the
farthest Voronoi cell of p is unbounded. Furthermore, if r, l ∈ P are the two adjacent sites
of p on conv(P ), then Cn−1(p) contains an unbounded edge for p and l and an unbounded
edge for p and r. These edges are subsets of B(p, l) and of B(p, r), respectively.

Fact 3.2. Let P be a set of n point sites in the plane in general position. Let l, p, r ∈ P
be three consecutive sites on conv(P ), and let c be the intersection of B(p, l) and B(p, r).
Then, the ray from p toward c intersects ∂Cn−1(p) (not necessarily at c).

Lemma 3.3. Let P be a set of n point sites in the plane in general position. Suppose that
P is given in a read-only array. For any p ∈ P , in O(n) time and using constant workspace,
we can determine whether Cn−1(p) is not empty. If so, we can also find a ray that intersects
∂Cn−1(p).
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Proof. By Fact 3.1, it suffices to check whether p lies inside conv(P ). This can be done
using simple gift-wrapping : pick an arbitrary site q ∈ P \ {p}. Scan through P and find the
sites pcw and pccw in P which make, respectively, the largest clockwise angle and the largest
counterclockwise angle with the ray pq, such that both angles are at most π. Both pcw and
pccw are easily obtained in O(n) time using constant workspace. If the cone pcwppccw that
contains q has an opening angle larger than π, then p is inside conv(P ) and consequently
Cn−1(p) is empty. Otherwise, p is on conv(P ), with pcw and pccw as its two neighbors. By
Fact 3.2, the ray from p through B(p, pcw) ∩B(p, pccw) intersects ∂Cn−1(p).

Lemma 3.4. Let P be a planar n-point set in general position in a read-only array. Suppose
we are given a site p ∈ P and a ray γ that emanates from p and intersects ∂C1(p). Then, we
can report an edge e of C1(p) that intersects γ, in O(n) time using O(1) words of workspace.
An analogous statement holds for FVD(P ).

Proof. Among all bisectors B(p, p′), for p′ ∈ P \ {p}, we find a bisector B∗ = B(p, p∗) that
intersects γ closest to p.2 We can find B∗ by scanning the sites of P and maintaining a
closest bisector in each step. The edge e is a subset of B∗. To find the portion of B∗ that
forms a Voronoi edge in NVD(P ), we do a second scan of P . For each p′ ∈ P \ {p, p∗}, we
check where B(p, p′) intersects B∗. Each such intersection cuts a piece from B∗ that cannot
appear in NVD(P ), namely the part of B∗ that is closer to p′ than to p. After scanning all
the sites of P , the remaining portion of B∗ is exactly e. Since the current piece of B∗ in each
step is connected, we need to store only at most two endpoints in each step. Overall, we
can find the edge e of C1(p) that intersects γ in O(n) time using O(1) words of workspace.

The procedure for FVD(P ) is analogous, but we take B∗ to be the bisector inter-
secting γ farthest from p, and we cut from B∗ the pieces that are closer to p than to any
other site.

Theorem 3.5. Suppose we are given a planar n-point set P = {p1, . . . , pn} in general
position in a read-only array. We can find all the edges of NVD(P ) in O(n2) time using
O(1) words of workspace. The same holds for FVD(P ).

Proof. First, we restate the strategy for NVD(P ) that was proposed by Asano et al. [7], and
then we show how to adapt it for FVD(P ).

We go through the sites in P . In step i, we process pi ∈ P to detect all edges of
C1(pi). For this, we need a ray γ to apply Lemma 3.4. We choose γ as the ray from pi to an
arbitrary site of P \ {pi}. This ensures that γ intersects ∂C1(pi). Now, we use Lemma 3.4
to find an edge e of C1(pi) that intersects γ. We consider the ray γ′ from pi through the
left endpoint of e (if it exists), and we apply Lemma 3.4 to find the adjacent edge e′ of e in
C1(pi).3 The ray γ′ hits both e and e′, so we perform a symbolic perturbation to γ′ so that

2If γ happens to intersect a vertex of C1(p), there are two such bisectors. Otherwise, B∗ is unique.
3Note that the bisector that defines the left endpoint of e is also the bisector that is spanned by e′. Thus,

the first scan of the input in Lemma 3.4, for finding the line spanned by e′, is not strictly necessary. However,
since we must scan the input anyway to determine the endpoint of e′, we chose to present the algorithm as
doing two scans. This keeps the presentation more uniform, at the expense of only a constant factor in the
running time. The same comment also applies to our later algorithms.
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only e′ is hit. We repeat this procedure to find further edges of C1(pi), in counterclockwise
direction. This continues until we return to e or until we find an unbounded edge of C1(pi).
In the latter case, we start again from the right endpoint of e (if it exists), and we find the
remaining edges of C1(pi) in clockwise direction.

Since each edge of NVD(P ) is incident to two Voronoi cells, this process will detect
each edge twice. To avoid repetitions, whenever we find an edge e of C1(pi) with e ⊆
B(pi, pj), we report e if and only if i < j. Since NVD(P ) has O(n) edges, and reporting one
edge takes O(n) time and O(1) words of workspace, the result follows.

For FVD(P ), the procedure is almost the same. However, when going through the
sites in P , for each pi ∈ P , we first check if Cn−1(pi) is non-empty, using Lemma 3.3. If so,
the algorithm from the lemma also gives us a ray γ that intersects ∂Cn−1(pi). From here,
we proceed exactly as for NVD(P ) to find the remaining edges of Cn−1(pi).

4 Obtaining a Time-Space Trade-off

Now we adapt the previous algorithm to a time-space trade-off. Suppose we have O(s)
words of workspace at our disposal, for some s ∈ {1, . . . , n}.4 As before, we are given a
planar n-point set P = {p1, . . . , pn} in general position in a read-only array, and we would
like to report all edges of NVD(P ) or FVD(P ) as quickly as possible. While the algorithm
from Section 3 needs two passes over the input to find a single edge of the Voronoi diagram,
the idea now is to exploit the additional workspace in order to find s edges of the Voronoi
diagram in parallel using two passes. For this, we first show how to find simultaneously a
single edge for s different cells of NVD(P ) or of FVD(P ).

Lemma 4.1. Suppose we are given a set V = {v1, . . . , vs} of s sites in P , and for each
i = 1, . . . , s, a ray γi emanating from vi such that γi intersects the boundary of C1(vi). Then,
we can report for each i = 1, . . . , s, an edge ei of C1(vi) that intersects γi, in O(n log s) total
time using O(s) words of workspace. An analogous statement holds for FVD(P ).

Proof. The algorithm has two phases. In the first phase, for i = 1, . . . , s, we find the bisector
B∗i that contains ei, and in the second phase, for i = 1, . . . , s, we find ei, i.e., the portion of
B∗i that is in NVD(P ).

The first phase proceeds as follows: we group P into batches Q1, Q2, . . . , Qn/s of s
consecutive sites (according to the order in the input array). First, we compute NVD(V ∪
Q1). Since |V ∪ Q1| ≤ 2s, this takes O(s log s) time using O(s) words of workspace. Now,
for i = 1, . . . , s, we find the edge e′i of NVD(V ∪Q1) that intersects γi closest to vi, and we
store the bisector B′i that contains e′i. This can be done in total time O(|V ∪ Q1|), since
each ray originates in a unique Voronoi cell and since we can simply traverse the whole
diagram NVD(V ∪ Q1) to find the intersection points. Then, for j = 2, . . . , n/s, we again
compute NVD(V ∪Qj). For i = 1, . . . , s, we find the edge in NVD(V ∪Qj) that intersects
γi closest to vi, in total time O(|V ∪Qj |). We update B′i to the bisector that contains this

4The assumption that we have O(s) words instead of exactly s words of workspace is mostly for the sake
of a simple presentation. Thus, when describing our algorithm, we can ignore constant factors in the space
usage. The precise constant is a function that only depends on the implementation of the algorithm.
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edge if and only if its intersection with γi is closer to vi than for the current B′i. We claim
that after all batches Q1, . . . , Qn/s have been scanned, B′i is the desired bisector B∗i . To
see this, let B∗i = B(vi, p), for a site p ∈ P \ {vi}. Then, for the batch Qj with p ∈ Qj ,
the Voronoi diagram NVD(V ∪Qj) contains an edge on B∗i . Furthermore, by definition, no
other bisector intersects γi closer to vi than B∗i .

In the second phase, we again group P into batches Q1, . . . , Qn/s of size s. We again
compute NVD(V ∪ Q1). For i = 1, . . . , s, we find the portion of B∗i inside the cell of vi in
NVD(V ∪Q1), and we store it in ei. Then, for j = 2, . . . , n/s, we compute NVD(V ∪Qj),
and for i = 1, . . . , s, we update the endpoints of ei to the intersection of the current ei and
the cell of vi in NVD(V ∪Qj). After processing Qj , there is no site in V ∪

⋃j
m=1Qm that

is closer to ei than vi. Thus, at the end of the second phase, ei is the edge of C1(vi) that
intersects γi. Due to the properties of the Voronoi diagram, throughout the algorithm, ei is
a connected subset of B∗i (i.e., a ray or a line segment), and it can be described with O(1)
words of workspace.

In total, we construct O(n/s) Voronoi diagrams, each with at most 2s sites. Since
we have O(s) words of workspace available, it takes O(s log s) time to compute a single
Voronoi diagram. Thus, the total running time is O(n log s). At each point in time, we have
O(s) sites in workspace and a constant amount of information for each site, including the
Voronoi diagram of these sites, so the space bound is not exceeded. The proof for FVD(P )
is analogous.

Now we describe our time-space trade-off algorithm. At each point in time, we have
a set V of s sites in workspace. We use Lemma 4.1 to produce a new edge for each site in
V . Once all edges for a site v ∈ V have been found, we discard v from V and replace it
with a new site from P (we say that v has been processed completely). We stop this process
as soon as all but fewer than s sites have been processed completely. At this point, we do
not use Lemma 4.1 any longer. This is because Lemma 4.1 needs two passes of the input
to find a single new edge for each site in V . Thus, if there is a cell with many edges, too
many passes will be necessary. To avoid this, we will need a different method for finding the
edges of the remaining cells, see below. We call these remaining cells big, and the other cells
small. By definition, all small cells have O(n/s) edges, but big cells may have a lot more
edges (even though this does not have to be the case).

In order to avoid doubly reporting edges, our algorithm is split into three phases.
In the first phase, we process the whole input to identify the big cells (no edge is reported
in this phase). The second phase scans the input again and reports all edges incident to at
least one small cell. The third phase reports edges incident to two big cells.

First phase. The aim of this phase is to find the big cells. We describe how we use
Lemma 4.1 in more detail. We scan all sites with non-empty Voronoi cells. For NVD(P ),
since all sites have a non-empty cell, we can scan them sequentially. The starting ray is
constructed in the same way as in Theorem 3.5. For FVD(P ), by Fact 3.2, we need to find
the sites on the convex hull of P . For this, we use the algorithm of Darwish and Elmasry [22]
that reports the sites on the convex hull of P in clockwise order in O( n2

s logn + n log s) time
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Figure 3: The state of the algorithm at the end of iteration 9 of applying Lemma 4.1, for a
set P of 35 sites and workspace of size O(s) = O(blog nc). The black segments are the edges
of NVD(P ) that have already been found. The gray and the red sites represent, respectively,
the sites which have been fully processed and those which are currently in the workspace.

using O(s) words of workspace. We run the Darwish-Elmasry algorithm until s sites on the
convex hull have been identified. Then, we suspend the convex hull computation and process
those sites. Whenever more sites are needed, we simply resume the convex hull algorithm.
Since the convex hull is reported in clockwise order, we know the two neighbors for each site
on the convex hull and we can find a starting ray using Fact 3.2

At each point in time, our Voronoi algorithm has s sites from P with non-empty
cells in memory. We apply Lemma 4.1 to compute one edge on the cell of each such site.
After that, we iteratively update the rays of all sites in memory to find the next edge of
each cell, as in Theorem 3.5. Whenever all edges of a cell have been found, we remove the
corresponding site from memory, and we replace it with the next relevant site; see Figure 3.
Since (1) the Voronoi diagram of P has O(n) edges, (2) in each iteration we produce s edges,
and (3) each edge is produced at most twice, it follows that after O(n/s) iterations, fewer
than s sites remain in memory. All other sites of P must have been processed.

Thus, after the first phase, we have identified all big cells (those that have not been
processed fully). Since there are at most s of them, we can store the corresponding sites
explicitly in a table B. We sort those sites according to their indices, so that membership
in B can be tested in O(log s) time.

Second phase. The second phase is very similar to the first one.5 Pick s sites to process;
repeatedly use Lemma 4.1 to find edges for each site; once all edges of a site v have been
found, replace v with the next site; continue until only big cells remain. The main difference
now is we report some Voronoi edges (making sure that every edge is reported exactly once).
More precisely, suppose that we discover a Voronoi edge e while scanning the cell Ci of a
site vi, and that e is also incident to the cell Cj of the site vj . Then, we report e only if one
of the following conditions holds:

5Indeed, these two phases could be merged into one. However, as we will see below, it is not straight-
forward to do so for higher-order Voronoi diagrams. Thus, for consistency, we split the two phases even for
k = 1 and k = n− 1.
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(i) both Ci and Cj are small and i < j; or
(ii) Ci is small and Cj is big.

Third phase. The purpose of the third phase is to report every Voronoi edge that is incident
to two big cells. For this, we compute the Voronoi diagram of the sites of big cells, in
O(s log s) time. Let EB denote the set of its edges. The edges of EB that are also present
in the Voronoi diagram of P need to be reported (the edges may need to be truncated).

In order to determine which edges of EB remain in the diagram, we proceed similarly
as in the second scan of Lemma 4.1: in each step, we compute the Voronoi diagram V of B
and a batch of s sites from P . For each edge e of EB, we check whether e is cut off in V.
If so, we update the endpoints of e to the intersection of e and the cell for one of the sites
defining e. After all edges have been checked, we continue with the next batch of s sites
from P . After processing all the sites of P , the remaining O(s) edges in EB that have not
become empty constitute all the edges of the Voronoi diagram of P that are incident to two
big cells. In contrast to Lemma 4.1, we report O(s) edges that are not necessarily incident
to s different cells.

Theorem 4.2. Let P = {p1, . . . , pn} be a planar n-point set in general position stored in a
read-only array. Let s be a parameter in {1, . . . , n}. We can report all edges of NVD(P ) in
O((n2/s) log s) time using O(s) words of workspace. An analogous result holds for FVD(P ).

Proof. Lemma 4.1 guarantees that the edges reported in the second phase are part of
NVD(P ). Also, conditions (i) and (ii) ensure that no edge is reported twice. Clearly, if
an edge e ∈ NVD(P ) is incident to two big cells, the same edge (possibly a superset) must
be present in NVD(B). For the reverse inclusion, first note that since B ⊂ P , an edge
incident to two big cells that is not present in NVD(B) cannot be present in NVD(P ). Fur-
thermore, for each edge e of NVD(B), we consider all sites of P and we remove only the
portions of e that cannot be present in NVD(P ).

Finally, we need to analyze the running time. The most expensive part of the
algorithm lies in the O(n/s) invocations of Lemma 4.1 during the first and the second
phase. Other than that, creating the table B needs O(s log s) time, and we perform O(n)
lookups in B, two for each edge of NVD(P ). Each lookup needs O(log s) time, so O(n log s)
time in total. The third phase does a single scan over the input, and it computes a Voronoi
diagram for each batch of s sites, which totally takes O(n log s) time. Thus, the running
time of the algorithm is O((n2/s) log s).

At each point during the algorithm, we store only s sites that are currently being
processed (along with a constant amount of information attached to each such site), the
table B of at most s sites, the batch of s sites being processed (and the associated Voronoi
diagram). All of this can be stored using O(s) words of workspace, as claimed.

For FVD(P ), the approach is analogous. The only difference is that now we must
also find the convex hull of P . With the algorithm of Darwish and Elmasry [22], this takes
O((n2/s) log s) time for O(s) words of workspace, so the asymptotic running time does not
increase.
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Figure 4: The diagram VDk(P ) for k = 3 and P = {p1, . . . , p6}. (a) The interior of the disk
Dvn with center vn contains k − 1 sites {p5, p6}, so the k-vertex vn is new. The interior of
the disk Dvo with center vo contains k−2 sites {p3}, so the k-vertex vo is old. (b) The k-cell
C4,5,6 is the cell of {p4, p5, p6}. The k-edge e1 is represented by the set {p5, p6} containing
the k−1 sites closest to e1, the two sites p3 and p4 that are equidistant to e1, and the site p2
that defines the k-vertex vn. Since vn is a new k-vertex, the site p2 is not among the k − 1
closest sites to e1. The k-edge e2 of the k-cell C2,3,6 for {p2, p3, p6} is represented by the set
{p2, p3} of k − 1 sites closest to e2, the two sites p5 and p6 that are equidistant to e2, and
the site p2 that defines the k-vertex vo. Since vo is an old k-vertex, the site p2 is among the
k − 1 closest sites to e2.

5 Higher-Order Voronoi Diagrams

We now consider computing higher-order Voronoi diagrams [27]. More precisely, we are given
an integer K ∈ O(

√
s), and we would like to report the family of all higher-order Voronoi

diagrams of order k = 1, . . . ,K, where we have O(s) words of workspace at our disposal, for
some s ∈ {1, . . . , n}. For this, we generalize our approach from the previous section, and
we combine it with a recursive procedure: for k = 1, . . . ,K − 1, we compute the edges of
VDk+1(P ) by using previously computed edges of VDk(P ). To make efficient use of the avail-
able memory, we perform the computation of the diagrams VD1(P ),VD2(P ), . . . ,VDK(P )
in a pipelined fashion, so that in each stage, the necessary edges of the previous Voronoi
diagrams are at our disposal and the total memory usage remains O(s).

We begin with some more background on higher-order Voronoi diagrams. Let x ∈ R2

be a point in the plane. The distance order for x is the sequence of sites in P ordered accord-
ing to their distance from x, from closest to farthest. By our general position assumption,
there are at most three sites in P with the same distance to x. We call a cell C of VDk(P ) a
k-cell, and we represent it as the set of k sites that are closest to all points in C. Similarly,
we call a vertex v of VDk(P ) a k-vertex. It is known that there exists a disk Dv with center
v such that |∂Dv ∩ P | = 3 and |D̊v ∩ P | ∈ {k − 2, k − 1}, where ∂Dv is the boundary and
D̊v is the interior of Dv. We call v an old vertex if |D̊v ∩ P | = k − 2, and a new vertex if
|D̊v∩P | = k−1; see Figure 4a. We represent v by the set Dv∩P , marking the sites on ∂Dv.
Finally, the edges of VDk(P ) are called k-edges. We represent them in a somewhat unusual
manner: each edge of VDk(P ) is split into two directed half-edges, such that the half-edges
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Figure 5: The diagrams VDk(P ) (black) and VDk+1(P ) (gray), for k = 2 and P =
{p1, . . . , p6}. (a) The k-cells C4,5 = Ck({p4, p5}) and C5,6 = Ck({p5, p6}) share the k-
edge e. The set Q = {p4, p5} ∪ {p5, p6} = {p4, p5, p6} gives a non-empty (k + 1)-cell (shown
hashed) which contains e. (b) The (k + 1)-cell C2,3,5 = Ck+1({p2, p3, p5}) is shown in gray.
Inside C2,3,5, the edges of VDk(P ) are identical to the edges of FVD({p2, p3, p5}). These
edges meet the boundary of C2,3,5 only in the vertices of C2,3,5.

are oriented in opposing directions and such that each half-edge is associated with the k-cell
to its left. A half-edge e is represented by k + 3 sites of P : the k − 1 sites closest to e, the
two sites that come next in the distance order for the points on e and are equidistant to e,
and one more site for each endpoint of e, to define the corresponding k-vertices. For each
endpoint v of e, there are two cases: if v is an old vertex, the third site defining v is among
the k − 1 sites closest to e, and if v is a new vertex, the third site is not among those k − 1
sites; see Figure 4b. The order of the endpoints encodes the direction of the half-edge. The
half-edge is directed from the tail vertex to the head vertex.

We will need several well-known properties of higher-order Voronoi diagrams [27]:

(I) let Q1, Q2 ⊂ P be two k-subsets such that the k-cells Ck(Q1) and Ck(Q2) are non-
empty and adjacent (i.e., share a k-edge e). Then, the set Q = Q1 ∪Q2 has size k+ 1,
and Ck+1(Q) is a non-empty (k + 1)-cell; see Figure 5a.

(II) Let Q ⊂ P be a (k + 1)-subset with Ck+1(Q) non-empty. Then, the part of VDk(P )
restricted to Ck+1(Q) is identical to (i.e., has the same vertices and edges as) the part
of FVD(Q) restricted to Ck+1(Q). Furthermore, the edges of FVD(Q) in Ck+1(Q) do
not intersect the boundary, but their endpoints either lie in the interior of Ck+1(Q)
or coincide with vertices of Ck+1(Q). Hence, for every (k + 1)-cell C, the number of
k-edges in C lies between 1 and O(k + 1), and these edges form a tree; see Figure 5b.

(III) If v is an old k-vertex, then it is also a new (k − 1)-vertex, and if v is a new k-vertex,
then it is also an old (k+ 1)-vertex. In particular, every vertex appears in exactly two
Voronoi diagrams of consecutive order; see Figure 6. Note that all 1-vertices are new,
and all (n− 1)-vertices are old.

Next, we describe a procedure to generate all (directed) (k+ 1)-half-edges, assuming
that we have all (directed) k-half-edges at hand. Later, we will combine these procedures,
for k = 1, . . . ,K, in a space-efficient manner. Our high-level idea is as follows: let e be a
k-half-edge. By property (II), the k-half-edge e lies inside a (k+ 1)-cell C. We will see that
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Figure 6: The diagram VDk(P ) (black) for k = 2 and P = {p1, . . . , p6}. (a) The diagram
VDk−1(P ) is shown in gray. The empty vertices of VDk(P ) are old k-vertices, and they also
appear in VDk−1(P ) as new (k − 1)-vertices. (b) The diagram VDk+1(P ) is shown in gray.
The empty vertices of VDk(P ) are new k-vertices, and they also appear in VDk+1(P ) as old
(k+1)-vertices. Every vertex of VDk(P ) appears in exactly one of VDk−1(P ) or VDk+1(P ).

we can use e as a starting ray to report all half-edges incident to C, similar to Lemma 4.1.
However, if we repeat this procedure for every k-half-edge, we may report a (k+1)-half-edge
Ω(k) times. This will lead to problems when we combine the procedures for computing the
Voronoi diagrams of different orders. To avoid this, we do the following: we call a k-half-edge
relevant if its head vertex lies on the boundary of the (k+1)-cell C that contains it. For each
(k + 1)-cell C, we partition the boundary of C into intervals of (k + 1)-half-edges between
two consecutive head vertices of relevant k-half-edges that lie inside C. We assign each such
interval to the relevant k-half-edge of its clockwise endpoint; see Figures 7a and 7b.

Now, our algorithm goes through all k-half-edges. If the current k-half-edge e is not
relevant, the algorithm does nothing. Otherwise, it reports the (k + 1)-half-edges of the
interval assigned to e. This ensures that every half-edge is reported exactly once. As in the
previous section, we distinguish between big and small cells in VDk+1(P ), lest we spend too
much time on cells with many incident edges. A more detailed description follows below.

The following lemma describes an algorithm that takes s different k-half-edges. For
each such k-half-edge e, the algorithm either determines that e is not relevant or finds the
first edge of the interval of (k + 1)-half-edges assigned to e.

Lemma 5.1. Suppose we are given s different k-half-edges ek1, . . . , e
k
s represented by the

subsets E1, . . . , Es of P . There is an algorithm that, for i = 1, . . . , s, either determines
that eki is not relevant, or finds ek+1

i , the first (k + 1)-edge of the interval assigned to eki .
The algorithm takes total expected time O

(
n log s+ nk 2O(log∗ k)

)
or total deterministic time

O(n log s+ nk log k) and uses O(sk2) words of workspace.

Proof. Our algorithm proceeds analogously to Lemma 4.1. First, we inspect all k-half-edges
eki . If the head vertex v of eki is an old k-vertex, then v is not a vertex of VDk+1(P ), and it
lies in the interior of a (k+ 1)-cell, so eki is not relevant. Otherwise, v is a new k-vertex and
an old (k + 1)-vertex, so it appears on the boundary of a (k + 1)-cell. In this case, we need
to determine the first (k + 1)-half-edge for the interval assigned to eki . Let I be the set of
all indices i such that eki is relevant.
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Figure 7: (a) The diagram VDk(P ) (gray) for k = 3 and P = {p1, . . . , p7}. The k-half-edge
e1 lies in the (k+1)-cell C = Ck+1({p2, p3, p5, p6}). The head vertex of e1 is not on ∂C, thus
e1 is not a relevant k-half-edge. The opposite direction of e1 is also not relevant. (b) The
k-half-edges e2, e3, e4, e5 are relevant, since their head vertices lie on ∂C. The interval of
(k+ 1)-half-edges on C assigned to each of these k-half-edges is shown. In this example, the
opposite direction of none of e2, e3, e4, e5 is relevant. (c) The (k+ 1)-half-edge f2 is incident
to the head vertex of e2 and lies to the left of the directed line spanned by e2. Among all
such edges, f2 makes the smallest angle θ with e2.

To determine the first half-edge of each interval, we process the sites in P in batches
of size sk. In each iteration, we pick a new batch Q of sk sites. Then, we construct
VDk+1

(⋃
i∈I Ei ∪ Q

)
in O

(
sk log(sk) + sk2 2O(log∗ k)

)
expected time or in O(sk log(sk) +

sk2 log k) deterministic time (note that
⋃

i∈I Ei ∪ Q contains O(sk) sites, so the diagram
VDk+1

(⋃
i∈I Ei ∪ Q

)
has complexity O(sk2)) [19, 21]. By construction, the head vertex of

each eki with i ∈ I belongs to the resulting diagram, and we can find each head vertex in
O(log(sk2)) = O(log(sk)) time by using a point location structure [14]. Thus, we iterate
over all batches, and for each eki , we determine the edge fk+1

i that appears in one of the
resulting diagrams such that (i) fk+1

i is incident to the head vertex of eki ; (ii) f
k+1
i is to

the left of the directed line spanned by eki ; and (iii) among all such edges, fk+1
i makes the

smallest angle with eki ; see Figure 7c. We need O(n/sk) iterations to find fk+1
i . Now,

for each i ∈ I, the desired (k + 1)-half-edge ek+1
i is a subset of fk+1

i . This is because, by
property (I) there is one site which is different in the second cell incident to ek+1

i , and this
site exists in one of the batches. Thus, to find the other endpoint of ek+1

i , as in Lemma 4.1,
we perform a second scan over P in batches of sk sites. As before, for each batch Q, we
construct VDk+1

(⋃
i∈I Ei ∪ Q

)
and we check, for each i ∈ I, where fk+1

i is cut-off in the
new diagram. After scanning all the sites of P , we have the desired endpoint of ek+1

i . This
is because the endpoint of ek+1

i is defined by one more site of P , and this site exists in one
of the batches. We orient ek+1

i such that the cell containing eki lies to the left of it.

It follows that we can process s edges of VDk(P ) in O(n/sk) iterations, each of which
takes O

(
sk log(sk) + sk2 2O(log∗ k)

)
expected time or O(sk log(sk) + sk2 log k) deterministic

time. Thus, we get O
(
n log s + nk 2O(log∗ k)

)
total expected time or O(n log s + nk log k)

total deterministic time, using a workspace with O(sk2) words (for storing the intermediate
Voronoi diagrams). Note that the term n log(sk) is substituted by n log(s), since n log(sk) =
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n log s+ n log k, and since n log k is dominated by nk in the total running time.

The algorithm from Lemma 5.1 is actually more general. If, instead of a k-half-edge
eki that lies inside a (k+1)-cell C, we have a (k+1)-half-edge ek+1

i that lies on the boundary
of C, the same method of processing P in batches of size sk allows us to find the next
(k + 1)-half-edge incident to C in counterclockwise order from ek+1

i . These two kinds of
edges can be handled simultaneously.

Corollary 5.2. Let ei denote either a k-half-edge or a (k+1)-half-edge. Suppose we are given
s such half-edges e1, . . . , es. Then, we can find in total expected time O

(
n log s+nk 2O(log∗ k)

)
or in total deterministic time O(n log s + nk log k) and using O(sk2) words of workspace a
sequence f1, . . . , fs of (k + 1)-half-edges such that, for i = 1, . . . , s, we have

(I) if ei is a relevant k-half-edge, then fi is the first (k+ 1)-half-edge of the interval for ei;
(II) if ei is a k-half-edge that is not relevant, then fi is null;
(III) if ei is a (k + 1)-half-edge, then fi is the counterclockwise successor of ei.

Lemma 5.3. Using two scans over all k-half-edges, we can report all (k + 1)-half-edges in
batches of size at most s such that each (k+ 1)-half-edge is reported exactly once. This takes
O
(
n2k
s (log s+ k 2O(log∗ k))

)
expected time or O

(
n2k
s (log s+ k log k)

)
deterministic time using

O(sk2) words of workspace.

Proof. The algorithm consists of three phases analogous of the ones introduced in Section 4:
in the first phase, we aim at finding the big cells. Let ei denote either a k-half-edge or
a (k + 1)-half-edge. To find the big cells we keep s such half-edges e1, . . . , es in memory.
At the beginning of this phase, e1, . . . , es are all k-half-edges. In each iteration, we apply
Corollary 5.2 to these half-edges, to obtain s new (k + 1)-half-edges f1, . . . , fs. Now, for
each i = 1, . . . , s, three cases can apply: (i) fi is null, i.e., ei was not relevant. In the next
iteration, we replace ei with a fresh k-half-edge; (ii)/(iii) fi is not null. Now we need to
determine whether fi is the last (k+ 1)-half-edge of its interval. For this, we check whether
the head vertex of fi is an old (k+ 1)-vertex. (ii) If fi is not the last (k+ 1)-half-edge of its
interval, i.e., if its head vertex is a new (k+ 1)-vertex, we set ei to fi for the next iteration;
otherwise, (iii) we set ei to a fresh k-half-edge. We repeat this procedure until there are no
fresh k-half-edges left.

The remaining (k + 1)-half-edges in the working memory are incident to the big
(k+1)-cells. For each such cell, we store the center of gravity of its defining sites in an array
Bk+1, sorted according to lexicographic order. We emphasize that in the first phase, we do
not report any (k + 1)-half-edge.

In the second phase, we repeat the same procedure as in the first phase, but now
that we know the big (k + 1)-cells, we can report edges. In order to avoid repetitions, we
only report (i) every (k + 1)-half-edge incident to a small (k + 1)-cell; and (ii) the opposite
direction of every (k+ 1)-half-edge e incident to a small (k+ 1)-cell, so that the (k+ 1)-cell
on the right of e is a big (k + 1)-cell. We use Bk+1 to identify the big cells, by locating the
center of gravity of the defining sites of a cell in Bk+1 with a binary search, see below for
details.
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In the third phase, we report every (k+1)-half-edge e that is incident to a big (k+1)-
cell, while the (k + 1)-cell on the right of e is also a big (k + 1)-cell. Let {Bk+1} denote the
sites that define the big (k+ 1)-cells. We construct VDk+1({Bk+1}) in the working memory.
Then, we go through the sites in P in batches of size sk, adding the sites of each batch
to VDk+1({Bk+1}). While doing this, as in the algorithm for Lemma 4.2, we keep track of
how the edges of VDk+1({Bk+1}) are cut by the corresponding cell in the new diagrams. In
the end, we report all (k + 1)-edges of VDk+1({Bk+1}) that are not empty. By report, we
mean report two (k+1)-half-edges in opposing directions. As we explained in the algorithm
for Lemma 4.2, these (k + 1)-half-edges cover all the (k + 1)-half-edges incident to a big
(k + 1)-cell, while their right cell is also a big (k + 1)-cell.

Regarding the running time, the first and the second phase consist of O(nk/s) ap-
plications of Corollary 5.2 which takes O

(
n2k
s (log s + k 2O(log∗ k))

)
total expected time or

O
(
n2k
s (log s + k log k)

)
total deterministic time. Creating the array Bk+1 to represent the

big cells takes O(sk+s log s) steps: we compute the center of gravity of the defining sites for
each big (k+ 1)-cell in O(k) steps. Then we sort these center points in lexicographcic order
in O(s log s) steps. A query in Bk+1 takes O(k+log s) time: given a query (k+1)-cell C, we
compute the center of gravity for its defining sites in O(k) time. Then we use binary-search
in Bk+1 to find a big (k + 1)-cell with the same center of gravity. Aurenhammer [9] showed
that these centers are pairwise distinct, so that a (k + 1)-cell can be uniquely identified by
the center of gravity of its defining sites.6

The algorithm performs at most two queries in Bk+1 per (k+1)-half-edge, for a total
of O(nk) edges. Thus, the total time for the queries is O(nk2 +nk log s). In the third phase,
constructing a (k+ 1)-order Voronoi diagram of O(sk) sites takes O(sk log s+ sk2 2O(log∗ k))
expected time or O(sk log s + sk2 log k) deterministic time. We repeat it O(n/sk) times,
which takes O(n log s + nk 2O(log∗ k)) expected time or O(n log s + nk log k) deterministic
time in total.

Overall, the running time of the algorithm simplifies to O
(
n2k
s (log s + k 2O(log∗ k))

)
expected time or O

(
n2k
s (log s+k log k)

)
deterministic time. The algorithm uses a workspace

of O(sk2) words, for running Corollary 5.2, for storing big (k+ 1)-cells and for constructing
Voronoi diagrams with O(sk) sites.

Now, in order to find the k-half-edges for all k = 1, . . . ,K, we proceed as follows:
For a parameter s′ (that we will define later), we compute s′ different 1-edges (we report
every 1-edge as two 1-half-edges in opposing directions). Then, we apply Lemma 5.3 (with
parameter s′) in a pipelined fashion to obtain the k-half-edges for k = 2, . . . ,K. In each
iteration, the algorithm from Lemma 5.3 consumes at most s′ different k-half-edges from
the previous order and produces at most 2s′ new (k + 1)-half-edges to be used at the next
order. This means that if we have between s′ and 3s′ new k-half-edges available in a buffer,
then we can use them one by one whenever the algorithm for computing (k + 1)-half-edges

6To be precise, Aurenhammer [9, Theorem 1] showed the following: take the standard lifting of P onto
the unit paraboloid and compute the center of gravity for each subset of k+1 lifted points. Call the resulting
point set R. Then, the vertical projection of the lower convex hull of R is dual to VDk+1(P ). In particular,
the vertices of the projection are the centers of gravity of the defining sites for the cells of VDk+1(P ).
Therefore, they must be pairwise distinct: otherwise, they could not all appear on the lower convex hull.
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Figure 8: For k′ = 1, . . . ,K, Voro k′ is the processor for computing the k′-half-edges. The
roman numerals I, II and III refer to the first, second, and third phase of Voro k′. The
memory cells Pk′ , Ok′ and Bk′ indicate the private workspace for Voro k′, the output buffer
for k′-edges, and the array for big k′-cells. The common memory of all the processors is
called C. The figure shows the algorithm in stage k. The direction of the arrows indicates
reading from or writing to memory cells. The gray boxes and arrows show the inactive parts
in stage k. In stage k, the algorithm reads data from B1, . . . ,Bk and writes into Bk+1. In
this stage, all the k-half-edges are reported and the big (k + 1)-cells are identified.

in Lemma 5.3 requires such a new k-half-edge. Whenever the size of a buffer falls below
s′, we run the algorithm for the previous order until the buffer size is again between s′ and
3s′. Applying this idea for all the orders k = 1, . . . ,K − 1, we need to store K − 1 buffers,
each containing up to 3s′ half-edges for the corresponding diagram. Since a k-half-edge is
represented by O(k) sites from P , the buffer for k-edges requires O(s′k) words of workspace.
We call this the output buffer and denote it by Ok. Furthermore, for each k, we need to
store O(s′) half-edges that reflect the current state of the corresponding algorithm. This
requires O(s′k) words of workspace. This is called the private workspace and is denoted by
Pk. Finally, for the algorithm that is currently active, we need O(s′k2) words of workspace
to compute the Voronoi diagram of order k for the next batch of O(s′k) sites from P (see
Lemma 5.3). Since this workspace is used by all the algorithms, it is called the common
workspace and denoted by C, see below.

Theorem 5.4. Let P = {p1, . . . , pn} be a planar n-point set in general position, given in
a read-only array. Let s be a parameter in {1, . . . , n} and K ∈ O(

√
s). We can report

all the edges of VD1(P ), . . . ,VDK(P ) in O
(
n2K5

s (log s + K 2O(log∗K))
)
expected time or in

O
(
n2K5

s (log s+K logK)
)
deterministic time, using a workspace of size O(s).

Proof. We compute the half-edges of VD1(P ), . . . ,VDK(P ) in a pipelined fashion. The
algorithm simulates having K processors, each one computing a Voronoi diagram of different
order. For k = 1, . . . ,K, let Voro k be the processor in charge of computing the Voronoi
diagram of order k. We emphasize that the algorithm is sequential, but the analogy of
K processors helps our exposition. Set s′ = s/K2. The first processor Voro 1 uses the
algorithm of Theorem 4.2 with space parameter s′. For k ≥ 2, Voro k runs the algorithm
from Lemma 5.3 to compute the k-half-edges with space parameter s′. Recall that Lemma 5.3
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requires O(s′k2) words of workspace. This space is needed for computing VDk(P ) for a set
of O(s′k) sites. However, when Voro k does not compute a diagram, it needs only a state of
O(s′k) words.

Thus, all the processors share a common workspace C of size O(s′k). At any point in
time, C is used by a single processor Voro k to compute VDk(P ) (for some k ∈ {1, . . . ,K}).
The local state and the other variables needed by each processor Voro k are stored in a private
workspace Pk. In addition, Voro k has an array Bk to store the big k-cells. Whenever an
edge of VDk(P ) (for k ∈ {1, . . . ,K}) would be reported, we instead insert it into an output
buffer Ok. Each of these local arrays should be able to store O(s′) half-edges and cells of
VDk(P ). Since we need O(k) sites to represent a k-half-edge or a k-cell, the total space
requirement for all processors is O(s′k2) = O(s).

We simulate the parallel execution of the processors with stages. In stage 0, we
perform only the first phase of Theorem 4.2, to find the O(s′) big cells of VD1(P ), and we
store them in B1. Now, we know the big 1-cells. Then, in stage 1, we perform the second
and the third phase of Theorem 4.2 to find and report the half-edges of VD1(P ) in batches
of size at most 2s′. When we find a batch of 1-half-edges, we store them in O1. Whenever
we have at least s′ half-edges in O1, we pause Voro 1, and we start Voro 2 to perform the
first phase of Lemma 5.3 with O1 as input. This gives the half-edges of VD2(P ). Whenever
Voro 2 requires new 1-half-edges, and the buffer O1 falls below s′ half-edges, we continue
running Voro 1. When Voro 2 has consumed all 1-half-edges and there are less than s′

half-edges in P2, we stop Voro 2 (this is the end of the first phase of Lemma 5.3). The
current half-edges in P2 represent the big cells of VD2(P ), and we store them in B2. This
concludes the description of stage 1.

In general, in stage k of the algorithm, we have identified the big cells B1, . . . ,Bk of
the first k diagrams, and we want to use Voro k + 1 to identify the big cells of VDk+1(P ).
For this, we perform the second and the third phase of Theorem 4.2 and Lemma 5.3, for
all orders 1, . . . , k, in a pipelined fashion to generate all half-edges of VD1(P ), . . . ,VDk(P ),
and we store them in the buffers O1, . . . ,Ok. We also use Ok as an input of the first phase
of Lemma 5.3, which gives us Bk+1 for the next stage; see Figure 8. Stage K is similar, but
we do not need to determine the big cells of order K + 1.

By running the K stages of the algorithm, we compute all the Voronoi half-edges
and add them to the corresponding output buffers. The edges are computed more than
once. Therefore, in order to make sure that they are written into the output memory only
once, we report them only the first time they are inserted into the output buffers. For the
half-edges of VDk(P ), this happens in stage k of the algorithm. Thus, we can be certain
that every half-edge of each diagram VD1(P ), . . . ,VDK(P ) is reported exactly once and in
order or their containing diagrams (in other words, the k-half-edges are reported before the
(k + 1)-half-edges).

Regarding the running time, in each stage k = 1, . . . ,K, we have to compute all
diagrams VD1(P ), . . . ,VDk(P ), using Lemma 5.3. This takes

k∑
k′=1

O
(n2k′
s′
(

log s′ + k′ 2O(log∗ k′)
))

= O
(n2k2

s′
(

log s′ + k 2O(log∗ k)
))
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expected time in stage k. The running time for stage 0 is negligible. The complete algorithm
takes

K∑
k=1

O
(n2k2

s′
(

log s′ + k 2O(log∗ k)
))

= O
(n2K3

s′
(

log s′ +K 2O(log∗K)
))

expected time for all stages 1 to K. This is O
(
n2K5

s

(
log s + K 2O(log∗K)

))
in terms of s,

since s′ = s/K2. The analysis for the deterministic running time is completely analogous,
replacing the term 2O(log∗ k) by log k.

Note that our requirement that K = O(
√
s) was crucial in ensuring that the space

constraints are not exceeded; we need Θ(k) words of workspace to store the necessary edges
of each VDk(P ), for k = 1, . . . ,K − 1, giving a total of Θ(K2) words in our workspace.

6 Conclusion

There are several efficient algorithms that compute a specific higher-order Voronoi diagram
without first finding the diagrams of lower order [1,21,32]. It would be interesting to extend
any of them to obtain a general trade-off, or even an algorithm for constant workspace. As of
now, for the whole range of k and s, we are not aware of any better trade-off than the naive
algorithm that considers the whole arrangement and requires O(n4/s) time to compute the
Voronoi diagram of any order k for a given n-point set using s words of workspace. For
k = 1 and k = n − 1, our running times come close to the sorting lower bound which says
that the time-space product for sorting is Ω(n2), where the space is measured in bits [15].
Although improvement by a logarithmic factor may be possible, the gap between upper and
lower bounds is very small.

There is a much larger gap for general higher-order Voronoi diagrams. We are not
aware of any lower bounds (beyond the sorting lower bound). In particular, it would be
interesting to have a bound in terms of the order of the diagram (for example, show that
Ω(n2K2/s) steps are needed to find the family of all Voronoi diagrams of order up to K for a
given n-point set using s words of workspace). Several questions remain also unsolved when
looking at upper bounds. Even though we do not believe our algorithms to be optimal,
it seems difficult to improve them drastically. Even in constant sized workspaces, we do
not know how to improve over the naive running time of O(n4K) that can be obtained by
computing the whole arrangement and considering each k ∈ {1, . . . ,K} individually.
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