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Summary 

In the densely populated semiarid territory in and around Delhi (India), the water demand is 

rising continuously, while the surface- and groundwater resources are threatened by 

contamination and overexploitation. This is a typical scenario in many newly industrialising 

and developing countries, where new approaches for a responsible water management have to 

be found. River bank filtration (RBF) holds great potential, thus being a reliable and low tech 

method, benefiting from the storage and contaminant attenuation capacity of the aquifer. For 

this study, three field sites have been constructed to investigate hydraulic, hydrochemical and 

microbiological processes during river bank filtration in different environments in the mega 

city of Delhi. The frequent (monthly) and long term (1.5 years) monitoring of the hydraulic 

behaviour of RBF and the wide range of investigated water quality parameters (e.g. major 

ions, pH, electrical conductivity, temperature), pathogens and its indicators (e.g. adeno-, 

norovirus, bacteriophages) and organic compounds (e.g. pesticides, pharmaceuticals) 

provided new insights to the function of RBF under the given environmental conditions.  

In order to characterize the environmental conditions of the study area the origin and 

dynamics of groundwater salinity was investigated on both regional and local scale in detail. 

Density stratification and local up coning of saline waters was identified by multi level 

monitoring and temperature logging. Stable isotope ratios (δ18O, δ2H) were used to identify 

evaporation rates and for a better understanding of recharge processes and mixing dynamics 

in the study area. The results lead to the conclusion, that surface and groundwater influx into 

the poorly drained semiarid, geomorphological basin naturally results in the accumulation of 

salts in soil, sediments and groundwater. Man made changes of hydrological conditions, 

especially the implementation of traditional canal and modern groundwater irrigation have 

augmented evapotranspiration and led to water logging in large areas. In addition, water level 

fluctuations and perturbation of the natural hydraulic equilibrium favour the mobilization of 

salts from salt stores in the unsaturated zone and deeper aquifer sections.  

Another part of this thesis was focusing on a RBF system in northern Delhi which was 

sampled monthly for hydrochemical/-physical parameters over one and a half years. 

Environmental tracers (chloride, δP18PO and temperature) were used to estimate travel time of 

the bank filtrate from the river to the abstraction well. Selected physico-chemical parameters 

were used to investigate purification and attenuation capacity of the RBF system. The study 

revealed that the combination of environmental tracers, with different transport behaviour, 



 

 XII

allow to characterise travel times during RBF reliably. The winter peak in the Yamuna River 

was found in the RBF well around 2.5 months later, while the summer or monsoon peak is 

observed in the bankfiltrate after 2 months of travel time. In terms of purification and 

attenuation capacity a good equilibration of temperature, electrical conductivity (EC) and 58 

% attenuation of dissolved organic carbon (DOC) was observed after RBF passage. 

At the central Delhi field site the impact of highly contaminated surface water infiltration on 

the urban aquifer systems was investigated. At this field site, RBF takes place because of 

dominant loosing river conditions due to large groundwater abstraction. Fluctuations of the 

hydraulic head in combination with a conservative tracer (chloride) and a retarded tracer 

(heat) were measured, evaluated and modelled to determine (i) infiltration rates and (ii) 

groundwater travel times, (iii) to perform a sensitivity analysis and (iv) to calculate a water 

budget for the flood plain aquifer. This study leads to the conclusion, that groundwater 

recharge by bank filtration is the most important recharge mechanisms. This calibrated 

numerical model was then used to describe the transport and deposition of indigenous 

bacteriophages during RBF. Removal of bacteriophages was calculated by non-equilibrium 

(rate-limited) sorption approach. The measurement of bacteriophages at this high 

contaminated field site offered the opportunity to test removal models based on the Colloid 

Filtration Theory (CFT). Somatic, indigenous bacteriophages underwent attenuation of almost 

5 log after only 8 days of travel time during RBF. Additional, a series of organic trace 

compounds were considerably attenuated and human pathogenic viruses, two of them present 

in the Yamuna at 10P5P genomes/100 ml, were undetectable after RBF passage. 

Considering all three field sites and depending on site-specific conditions, distinct 

hydrogeological conditions were observed and both positive and negative effects on RBF 

performance were identified during this study. Most concerning issues are the impact of 

anthropogenic ammonium, the mixing with ambient brackish groundwater and the 

mobilisation of arsenic during the reductive dissolution of manganese- and iron-(hydr)oxides. 

Positive aspects are the dilution of contaminants during the mixing of waters from different 

sources, the sorption of arsenic, denitrification, the high attenuation capacity of pathogens and 

the precipitation of fluoride under favourable conditions.  

On a generic level, this thesis also aims at identifying climate sensitive factors affecting bank 

filtration performance and assesses their relevance based on hypothetical ‘drought’ and 

‘flood’ climate scenarios. The climate sensitive factors influencing water quantity and quality 

also have influence on substance removal parameters such as redox conditions and travel 
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time. Droughts are found to promote anaerobic conditions during bank filtration passage, 

while flood events can drastically shorten travel time and cause breakthrough of pathogens, 

suspended solids, DOC and organic micropollutants. The study revealed that only RBF 

systems comprising an oxic to anoxic redox sequence ensure maximum removal efficiency. 

The storage capacity of the banks and availability of two source waters renders BF for 

drinking water supply less vulnerable than surface water or groundwater abstraction alone.  

 

Considering all parts, this thesis provides new insights on the function and relevance of RBF 

both on the site-specific and generic level. It also contains knowledge and solutions for 

science and practioners of RBF.   
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Zusammenfassung 

In dem dicht besiedelten, semiariden Territorium in und um Delhi (Indien) steigt der 

Wasserbedarf kontinuierlich, während das Oberflächen- und Grundwasser von 

Verschmutzung und Überbeanspruchung belastet ist. Dies ist ein typisches Szenario für viele 

Schwellen- und Entwicklungsländer, für die neue Ansätze für ein verantwortungsvolles 

Wasser Management gefunden werden müssen. Die Uferfiltration (UF) besitzt ein großes 

Potenzial, da es eine nur mit geringem technischem Aufwand verbundene und bewährte 

Methode ist, die von der Speicher- und Reinigungskapazität des Grundwasserleiters profitiert. 

In dieser Studie wurden drei Feldstandorte entwickelt um hydraulische, hydrochemische und 

mikrobielle Transport- und Abbauprozesse bei der  Uferfiltration unter unterschiedlichen 

Umweltbedingungen in der Megastadt Delhi zu untersuchen. Durch das häufige (monatlich) 

und langzeitliche (eineinhalb Jahre) Monitoring des hydraulischen Verhaltens der 

Uferfiltrations-Standorte und die große Bandbreite der beobachteten 

Wasserqualitätsparameter (z.B. Hauptinhaltsstoffe, pH, elektrische Leitfähigkeit, 

Temperatur), Pathogene und Pathogenindikatoren (z.B. Adeno- und Noroviren, 

Bakteriophagen) und organische Spurenstoffe (z.B. Pestizide, Medikamentenrückstände) 

wurden neue Einsichten in die Funktionsweise der UF unter den gegebenen 

Umweltbedingungen erlangt. 

Um die Umweltbedingungen im Untersuchungsgebiet besser charakterisieren zu können, 

wurde die Herkunft und Dynamik der Grundwasserversalzung auf regionaler sowie lokaler 

Ebene näher untersucht. Dichteschichtungen und lokales Upconing von Salzwasser wurden 

mithilfe tiefenorientierter Beprobung und durch Temperatur Messungen festgestellt. Stabile 

Isotope (δ18O, δ2H) wurden benutzt um Verdunstungsverluste zu berechnen und um ein 

besseres Verständnis über die Grundwasserneubildungs- und Mischungsdynamik im 

Untersuchungsgebiet zu erlangen. Die Ergebnisse führen zu den Schlussfolgerungen, dass der 

Zufluss von Oberflächen- und Grundwasser in ein semiarides, geomorphologisches Becken 

mit geringem Abfluss, zur Akkumulation von Salz im Boden und Grundwasser führt. 

Anthropogene Änderungen der hydraulischen Bedingungen, insbesondere der Bau von 

Bewässerungskanälen führen zu vermehrter Evapotranspiration und Staunässe in Teilen des 

Untersuchungsgebietes. Hinzu kommt, dass Fluktuationen der Grundwasserstände und 

Eingriffe in das natürliche hydraulische Regime die Mobilisierung von Salz in der 

ungesättigten Zone und im tiefen Grundwasser begünstigen. 
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Ein weiterer Teil dieser Arbeit widmet sich einem einzelnen UF System im nördlichen Teil 

von Delhi. Hier wurden monatliche Beprobungen von hydrochemischen und –physikalischen 

Parametern über einen Zeitraum von mehr als einem jährlichen Zyklus durchgeführt. 

Umweltmarker (Chlorid, δ18O und Temperatur) wurden benutzt um Fließzeiten des 

Uferfiltrats vom Fluss zu dem UF Brunnen abzuschätzen. Einige ausgewählte 

physico/chemische Parameter wurden benutzt um die Reinigungsleistung des UF Systems zu 

untersuchen. Die Studie zeigt, dass eine Kombination von Markern mit unterschiedlichem 

Transport Verhalten eine zuverlässige Charakterisierung von Fließzeiten erlaubt. Dabei wurde 

festgestellt, dass die Aufenthaltszeiten des Uferfiltrats im Jahresverlauf sehr variabel sind und 

zwischen ca. 2,5 Monaten im Winter und ca. 2 Monaten im Sommer schwanken. Hinsichtlich 

der Reinigungsleistung wurde eine Abschwächung des Temperatursignals und der 

elektrischen Leitfähigkeit und eine Verminderung des gelösten organischen Kohlenstoffs 

(DOC) um 58% nach der UF Passage beobachtet.  

An einem weiteren Feldstandort, im zentralen Bereich Delhis, wurde der Einfluss der 

Infiltration von stark kontaminiertem Oberflächenwasser auf den städtischen 

Grundwasserleiter untersucht. An diesem Standort findet UF statt, weil der natürliche 

hydraulische Gradient durch hohe Grundwasserentnahmen umgedreht ist und influente 

Verhältnisse permanent vorherrschen. Ein Numerisches 2D Modell wurde entwickelt um (i) 

Infiltrationsraten des Flusses und (ii) Fließzeiten des Uferfiltrats zu bestimmen und um (iii) 

eine Sensitivitätsanalyse durchzuführen und (iv) ein Wasserbudget für den Grundwasserleiter 

der Überflutungsebene zu berechnen. Das Modell wurde anhand der gemessenen 

Wasserstände im Fluss und Grundwasser in Verbindung mit Zeitreihen eines hydrochemisch 

konservativen (Chlorid) und eines retardierten Markers (Temperatur) kalibriert. Dabei wurde 

festgestellt,  dass die Infiltration von kontaminiertem Oberflächenwasser in den städtischen 

Grundwasserleiter die dominierende Art der Grundwasserneubildung ist. Das kalibrierte 

numerische Modell wurde dann benutzt, um das Transport- und Sorptionsverhalten von 

Bakteriophagen bei der Uferfiltration zu beschreiben. Die Entfernung von Bakteriophagen 

wurde mithilfe eines Nicht-Gleichgewichts Sorptions Ansatzes berechnet. Die Messungen der 

Bakteriophagen an diesem stark kontaminierten Standort ermöglichten eine Überprüfung der 

Kolloid Filtration Theorie. Die somatischen, indigenen Phagen wurden um 5 log Stufen nach 

nur acht Tagen Aufenthaltszeit im Grundwasserleiter verringert. Dabei wurde auf den ersten 

Infiltrationsmeter die höchste Entfernungsrate festgestellt. Zusätzlich waren eine ganze Reihe 

von organischen Spurenstoffen, die im Fluss gemessen wurden, nach der UF Passage 

erheblich verringert oder nicht mehr nachweisbar. Humanpathogene Viren, welche im Fluss 
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in Konzentrationen von bis zu 105 Genome/100 mL vorhanden waren, waren nach der UF 

Passage nicht mehr nachweisbar. 

Bei der Betrachtung aller drei Feldstandorte konnten sehr unterschiedliche, 

standortspezifische hydrogeologische Bedingungen beobachtet werden. Hinsichtlich der 

Reinigungsleistung der UF wurden sowohl positive als auch negative Faktoren festgestellt. 

Der Einfluss von anthropogenem Ammonium, die Mischung mit brackischem Grundwasser 

und die Mobilisierung von Arsen während der Lösung von Mangan- und Eisen(hydro-)oxiden 

sind negative Aspekte der UF in Delhi. Positive Aspekte sind die Verdünnung von 

Schadstoffen, die Sorption von Arsen, die Denitrifikation, die hohe Rückhaltekapazität von 

Pathogene und die Ausfällung von Fluorid unter geeigneten Bedingungen. 

Auf einer übergeordneten, allgemeinen Ebene wird in dieser Arbeit der Einfluss der Folgen 

des Klimawandels auf die Leistung der UF untersucht. Anhand von hypothetischen „Trocken-

“ und „Überflutungs-“ Szenarien wurden die Einflüsse von klimasensitiven Faktoren, wie 

Temperatur und Niederschlag, auf die Leistung der UF untersucht. Die klimasensitiven 

Faktoren beeinflussen die Wasserverfügbarkeit und die Wassergüte, haben aber auch Einfluss 

auf die Reinigungsleistung durch eine Veränderung der Redoxbedingungen und Fließzeiten. 

Bei Zeiten anhaltender Trockenheit werden verstärkt anoxische Redoxbedingungen bei der 

UF Passage entwickelt, während Überflutungen die Aufenthaltszeiten des Uferfiltrats 

drastisch verkürzen können und damit zu einem Durchbruch von Pathogenen, Schwebstoffen, 

DOC und organischen Spurenstoffen führen können. Die Studie zeigt, dass nur UF Systeme 

die eine oxische zu anoxische Redoxsequenz besitzen eine maximale Reinigungsleistung 

gewährleisten. Die Speicherkapazität des Grundwasserleiters und die Verfügbarkeit von zwei 

Quellen bei der UF macht diese viel weniger anfällig gegenüber den Folgen des 

Klimawandels als eine Wasserversorgung, die nur auf Oberflächenwasser oder Grundwasser 

allein beruht. 

 

Insgesamt betrachtet bietet diese Arbeit neue Einsichten in die Funktionsweise und Relevanz 

der Uferfiltration auf standortspezifischer und übergeordneter Ebene. Diese Arbeit beinhaltet 

Wissen und Lösungen für Wissenschaftler und Praktiker von Uferfiltration.  
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1 Introduction 

1.1 Objectives 

 

The broad objectives of this thesis are: 

 

 Investigation of the hydraulic function of RBF under the given monsoonal climate 

conditions 

 

 Identification and understanding of the fate and transport processes of relevant 

pollutants during RBF 

 

 Description of the advantages and constraints of RBF in a regional and generic context 

1.2 Synopsis of the remaining chapters 

 

The following provides a synopsis of the remaining chapters with their main scientific 

contributions, the connecting link to the general objectives of this thesis and the approximate 

share of the author contribution. More detail is, of course, given in each of the respective 

chapters that follow.    

  

Chapter 2: Assessment of the potential for bank filtration in a water-stressed mega city 

(Delhi, India)1
 

 

This chapter gives a broad overview of the study area. The main problems related to surface-

/groundwater pollution and availability were presented here and all three investigated field 

sites in Delhi have been introduced. Prior to this study, RBF was not practised intentionally in 

Delhi and the capabilities of RBF were unknown to a large extent. This study revealed 

advantages and disadvantages of RBF within the Delhi context and received the attention of 

                                                 
TP

1
PT Lorenzen G, Sprenger C, Taute T, Pekdeger A, Mittal A, Massmann G (2010) Environmental Earth Sciences, 

Volume 61, Number 7H, 1419-1434, DOI 10.1007/s12665-010-0458-x 
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local and national authorities, stakeholders and the interested public through various 

dissemination activities. In this paper the function and relevance of RBF in Delhi was 

described for the first time within a scientific context.   

As the second author, I was mainly involved in field campaigns and correction of manuscript 

templates. My contribution was focusing on discussion with the first author and the common 

development of the manuscript structure. Only the data interpretation concerning iron and 

arsenic at the field sites was my personal contribution. 

 

Chapter 3 Origin and dynamics of groundwater salinity in the alluvial plains of western 

Delhi and Haryana, India2  

 

This chapter gives more details on the environmental conditions focusing on salinity ingress 

in the study area. The combination of depth-dependant and regional sampling and the analysis 

of classical hydrochemical parameters along with stable isotopes of water provided new 

insights to the origin and dynamics of salinity ingress. An innovative aspect of this chapter is 

the description of salinity ingress over historical and geological time scales. The connecting 

link to the other chapters is the improved understanding of the hydrogeological context of the 

study area. 

As the second author, I was mainly involved in the field campaigns in Haryana and Delhi. My 

contribution to this manuscript was focusing on discussion with first author, improving the 

manuscript and the interpretation of the stable isotope data.   

 

Chapter 4: Environmental tracer application and purification capacity at a river bank 

filtration well in Delhi (India)3
 

 

This chapter focuses on the hydraulic behaviour and the attenuation capacity of selected 

physico-chemical parameters of a RBF well in the northern part of Delhi. The frequent and 

long term monitoring of the RBF well revealed, for the first time in India, the influence of the 

monsoon climate on travel times of bank filtrate. This characterisation was achieved by 

frequent and long term monitoring and the combination of multiple environmental tracers 

                                                 
2 Lorenzen G, Sprenger C, Baudron P, Gupta D, Pekdeger A (accepted) Hydrological Processes, 

DOI: 10.1002/hyp.8311   
TP

3
PT Sprenger C, Lorenzen G, Pekdeger A (2011) in Journal of Indian Water Works Association (accepted) 
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(chloride, δP

18
PO and temperature). This is a standard procedure in Europe but new approach in 

the Indian context. 

In combination with the studie in chapter 2 it could be shown that RBF provides water that 

meets Indian and international (WHO) drinking water standards.  

As the first author, I was responsible for manuscript preparation, data interpretation and data 

display. Field work was equally distributed between the first and second author.  

 

Chapter 5: Numerical quantification of surface-/groundwater interactions at the flood 

plain aquifer in central Delhi (India) using a multi tracer approach 

 

This chapter focuses on the hydraulic surface-/groundwater interactions at the central Delhi 

field site. The hydraulic connection of the Yamuna River to the local aquifer was unknown 

prior to this study. It was assumed that the river is receiving groundwater (gaining river 

conditions), but this study had shown that the opposite is true. By the means of numerical 

modelling it was achieved to establish a water budget for the surface-/groundwater interaction 

at the central Delhi field site. This chapter provides also more details on the flow and 

transport model that is used in the following chapter to simulate transport and deposition of 

bacteriophages.  

This chapter is the only chapter of this thesis that is not published in a peer-reviewed journal. 

I was responsible for the whole content of this chapter.  

 

Chapter 6: Removal of bacteriophages, enteric viruses and organic pollutants during 

river bank filtration under anoxic conditions in Delhi (India)4 

 

This study was conducted at the central Delhi field site to ascertain if RBF can significantly 

improve the quality of the highly polluted surface water in terms of virus removal 

(bacteriophages, enteric viruses) and organic pollutant attenuation during anoxic underground 

passage. The experimental setting of this study was unique since it provided the possibility to 

investigate the transport of indigenous viruses under field conditions. The detailed description 

of the hydrogeological properties and the transport parameters yielded by the numerical 

modelling allowed the comparison with other field studies.        

                                                 
TP

4
PT Sprenger C, Lorenzen G, Grunert A, Ronghang M, Dizer H, Selinka HC, Girones R, Lopez-Pila  JM, Mittal 

A, Szewzyk R (2011) Journal of Water, Sanitation and Hygiene for Development (revised April 2011) 



 

 4

As the first author, I was the main contributing author but with a focus on the virological part. 

I was responsible for organisation and realisation of the sampling campaigns, the manuscript 

preparation, data interpretation and data display in cooperation with the co-authors.  

 

Chapter 7: Vulnerability of bank filtration systems to climate change  

5
 

 

This chapter can be considered as a summary and concluding chapter as it reviews not only 

climate sensitive factors influencing the performance of RBF, but also gives a comprehensive 

overview of relevant removal processes during RBF for a wide range of pollutants. The 

assessment of the vulnerability of RBF systems to climate change was achieved by extensive 

literature review in combination with the author’s experiences and considerations. Prior to 

this publication the literature focusing on the likely effects of climate change on RBF 

performance was very limited.      

As the first author, I was the main contributing author for this paper. Most of the relevant 

pollutants were reviewed by me. I was responsible for the manuscript preparation, data 

interpretation and data display in cooperation with the co-authors.  
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5
PT Sprenger C, Lorenzen G, Hülshoff I, Grützmacher G, Ronghang M, Pekdeger A (2010) Science of the Total 

Environment, Volume 409, Issue 4, 655-663, doi:10.1016/j.scitotenv.2010.11.002 
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2 Assessment of the potential for bank filtration in a water-stressed mega 
city (Delhi, India) 6

PT 

 

 

Abstract 

In the densely populated semiarid territory around Delhi, the water demand is rising 

continuously, while the surface- and groundwater resources are threatened by contamination 

and overexploitation. This is a typical scenario in many newly industrialising and developing 

countries, where new approaches for a responsible water management have to be found. Bank 

filtration holds a great potential, thus being a low tech method and benefiting from the storage 

and contaminant attenuation capacity of the natural soil/rock. For this study, three field sites 

have been constructed to investigate bank filtration in different environments in and around 

the mega city with a main focus on inorganic contaminants. Hydraulic heads, temperature 

gradients and hydrochemistry of surface water and groundwater were analysed in three 

different seasons. Depending on site specific conditions, distinct hydrogeological conditions 

were observed and both positive and negative effects on water quality were identified. Most 

concerning issues are the impact of anthropogenic ammonia, the mixing with ambient saline 

groundwater and the mobilisation of arsenic during the reductive dissolution of manganese- 

and iron-(hydr)oxides. Positive aspects are the dilution of contaminants during the mixing of 

waters from different sources, the sorption of arsenic, denitrification, and the precipitation of 

fluoride under favourable conditions.

                                                 
TP

6
PT Lorenzen, G., Sprenger, C., Taute, T., Pekdeger, A., Mittal, A., Massmann, G., (2010) 

Environmental Earth Sciences, Volume 61, Number 7 H, 1419-1434, DOI: 10.1007/s12665-

010-0458-x  
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3 Origin and dynamics of groundwater salinity in the alluvial plains of 
western Delhi and Haryana, India7  

 

Abstract 

Groundwater salinity is widespread problem and increasing concern in the alluvial plains of 

Delhi and neighbouring Haryana state. This study aims to identify potential sources of 

dissolved salts and the driving mechanisms of salinity ingress in the shallow aquifer. It 

combines a review of environmental conditions and the analysis of groundwater samples from 

25 sampling points. Major ions are analysed to describe the composition and distribution of 

saline groundwater and dissolution/precipitation dynamics. Density stratification and local up 

coning of saline waters was identified by multi level monitoring and temperature logging. 

Bromide-chloride ratios hold information on the formation of saline waters and nitrate is used 

as an indicator for anthropogenic influences. In addition, stable isotope analysis helps to 

identify evaporation and to better understand recharge processes and mixing dynamics in the 

study area. The results lead to the conclusion, that surface and groundwater influx into the 

poorly drained semiarid basin naturally results in the accumulation of salts in soil, sediments 

and groundwater. Man made changes of environmental conditions, especially the 

implementation of traditional canal and modern groundwater irrigation have augmented 

evapotranspiration and led to water logging in large areas. In addition, water level fluctuations 

and perturbation of the natural hydraulic equilibrium favour the mobilization of salts from salt 

stores in the unsaturated zone and deeper aquifer section.

                                                 
7 Lorenzen, G., Sprenger, C., Baudron, P., Gupta, D., Pekdeger, A. (accepted) Hydrological 

Processes, DOI: 10.1002/hyp.8311  
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4 Environmental tracer application and purification capacity at a 
riverbank filtration well in Delhi (India) 8 
 

Abstract 

A riverbank filtration (RBF) system in northern Delhi was sampled monthly for 

hydrochemical/-physical parameters through more than one annual cycle. 

Environmental tracers (chloride, δ18O and temperature) were used to estimate travel 

time of the bank filtrate from the river to the abstraction well. Selected 

physical/chemical parameters were used to show purification and attenuation capacity 

of the RBF system. The study revealed that a combination of tracers allow to 

characterise travel times reliably. The winter peak in the Yamuna River was found in 

the RBF well around 2.5 months later, while the summer or monsoon peak is observed 

in the bankfiltrate after 2 months of travel time. In terms of purification performance 

the studied RBF well showed a good equilibration of temperature, electrical 

conductivity and 58 % attenuation of dissolved organic carbon.  

4.1 Introduction 

 

Riverbank filtration (RBF) is a natural water treatment method in which surface water is 

infiltrated into an aquifer and subsequently abstracted for agricultural or drinking water 

purposes (Dillon, 2002). The abstracted water is a mixture between the infiltrated surface 

water (bank filtrate) and the ambient groundwater. The quality of water derived from RBF 

strongly depends on site specific conditions (Lorenzen, et al. 2010). Important factors are the 

quality of surface water, the hydrological and (hydro-) geochemical conditions of the 

subsurface and the travel time of the bankfiltrate. For groundwater resource protection, 

especially at RBF sites travel time of bankfiltrate plays an important role because pathogens 

(bacteria, viruses) do not survive beyond certain time periods in the aquifer. Typical 

groundwater protection regulations in Europe are 50 days travel time in Germany (DVGW, 

1995) or 60 days in Denmark (Stockmarr, 1998). Another important aspect is the degradation 

of organic compounds during bank filtration.  

                                                 
TP

8
PT Sprenger C, Lorenzen G, Pekdeger A (in press) in Journal of Indian Water Works 

Association  
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In this paper, a case study from a bank filtration well field in Delhi is presented with field data 

from surface and groundwater. Travel times are estimated by the analysis of multiple tracers 

and degradation of organic compounds and nutrients is identified by the analysis of 

physicochemical and chemical data from surface water and the RBF well.  

 

Information about flow velocities, travel times and fluxes between surface- and groundwater 

can be obtained by different hydrogeological tracer parameters (Massmann, et al. 2008a, 

Schubert, 2002). In this study, temperature, chloride and δP

18
PO were used as in-situ tracers for 

surface-/groundwater interactions. The ideal tracer is of either natural or anthropogenic origin, 

widely distributed in the study system, easy to detect, and its geochemical behaviour is 

conservative (or at least predictable). Seasonal variations of the tracer in the river are reflected 

by attenuated and time shifted curves in the groundwater, but if travel times are too long 

seasonal variations will diminish and cannot be detected in the groundwater anymore. 

Therefore, a combination of geochemically different tracers were used: (i) two conservative 

tracers (chloride, δP

18
PO) and (ii) retarded tracer (temperature or heat).  

 
Since many decades hydrogeologists investigated temperature (heat) transport in the 

subsurface to estimate groundwater velocities or exchange rates with surface waters 

(Anderson, 2005, Stallmann, 1963). Heat is transported not only by the flowing water 

(advective heat flow) but also by heat conduction through non-moving solids and fluids 

(conductive heat flow). The mutual heat exchange of the groundwater with the surrounding 

aquifer material retains the heat signal compared to pure advective transport, resulting in 

attenuation and retardation of the temperature signal. The use of heat as a tracer has several 

advantages over hydrochemical tracers. Temperature is inexpensive, easy and a robust 

parameter to measure. In contrast to chemical tracers, no laboratory analysis is required and 

the data is immediately available.  

4.2 Hydrogeology of the well field 

 

The well field is situated in north Delhi (Palla) on the western flood plain of the Yamuna 

River, upstream of the confluence with the Najafgarh Drain (Figure 4.1). The Central 
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Groundwater Board (CGWB) drilled around 90 wells since 2001 to cope with the growing 

water demand of the capital. The well field was reported to abstract around 100,000 L/day (24 

MGD) (Rao, et al. 2007) to the municipal water supply of Delhi.   

 

Initially the well field was designed to abstract groundwater mostly during flood events, 

recharged from the inundated plains. Pump houses of all wells and the transformators for the 

power supply were contructed on pillars, which allows operation also during flood events. 

However, over the last decades, it was observed that the once periodic flooding is nowadays 

occurring only as an extreme event. According to the statements of Central Ground Water 

Board officials a major flood event, setting the entire floodplain area under water has not 

occurred for at least 15 years.  

 

The geology of the floodplain is dominated by sandy fluviatile deposits which build up the 

younger alluvium, covering the entire area with a thickness of tens of meters. The upper 

aquifer is unconfined and groundwater level is found at about 4 – 6 metres below ground 

level. These sediments have been deposited upon a series of several hundreds of meters of 

older alluvium, which is less permeable and predominately composed of silt, clay and sand. 

The bedrock is represented by the Delhi Ridge, a precambian metamorphic rock composed of 

quartzite with intercalations of schist phyllite (Thussu, 2006). The land of the well field and 

its surrounding is used intensively for cultivation of different kind of crops like turnip, rice 

and wheat.  

  

Within one year, the course of the river seems to be relatively stable, meandering only within 

the slopes of the riverbed. Anyhow, oxbow lake structures within the floodplain and 

comparison of satellite images and maps from different years show that locally the riverbed 

has shifted several hundred meters throughout the last decades (Figure 4.1).  
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Figure 4.1 Location map of the well field in north Delhi.   

 

Saline and brackish groundwater that occurs in deeper wells are covered by a horizon of some 

tens of meters of sweet water in the floodplain area (Shekhar and Prasad, 2009). Salinisation 

is a severe problem in the southern part of the well field (Rao et al. 2007). 

 

The lithology of the aquifer and the well assembly of the studied RBF well is shown in figure 

4.2.  The well is partially penetrating with a total depth of 54 m below ground level. 

Depending on the river stage and the course of the Yamuna River the RBF well is between 40 

- 60 m distance from the river. Diameter of the casing is given with 12” and the well diameter 

is around 15“ (CGWB, 2005). A gravel pack filled the entire depth of the well and no clay 

grout was build. The filter screen were constructed with a total length of 29 m (CGWB, 

2005). The drawdown of the pumping well could not be measured directly but is estimated to 
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be 5-6 m. The well is operating between 6 – 12 hours per day with an estimated maximum 

discharge of 1200 L/min.  

 

 

 
Figure 4.2 Well assembly of the studied RBF well with the local lithology (mbgl = meter below ground level, 
m.s. = mild steel). 

 
 
 
 



 

 58

4.3 Methods 

 

The Yamuna River and the studied RBF well were sampled monthly from September 2006 to 

March 2008 in order to detect seasonal changes of hydraulic and hydrochemical parameters. 

The removal of at least three static water volumes of the observation wells was applied in this 

study according to German guidelines. In-situ parameters like pH, temperature, ORP (Oxygen 

reduction potential), EC (electrical conductivity) and DO (dissolved oxygen) were measured 

with Eutech Cyberscan devices in a flow-through cell. After the in-situ parameters were stable 

samples were taken and stored in 20 mL polypropylene bottles with watertight caps. All 

samples for ion determination were filtered on site with 0.2 µm acetate cellulose filters. 

Isotope analysis was performed at the Freie Universitaet Berlin on a Thermo Finnegan Mat 

253 isotope ratio spectrometer using a Gas Bench II peripheral unit with autosampler-assisted 

loop injection. Analytical values were standardised to the international reference Vienna 

Standard Mean Ocean Water (VSMOW) and internal standards. For δP

18
PO measurements, a 

sample volume of 1000 µL were flushed with 0.5% CO B2 B in He environment and then 

equipped with platinum catalyst to accelerate equilibrium. Measurement was performed after 

an equilibration time of 40 minutes. Precision was ±0.02 for δP

18
PO ‰ - VSMOW. 

4.4 Results and discussion 

4.4.1 Estimation of bank filtrate travel times with hydrogeological tracers 

 
The temporal distribution of temperature (°C), chloride (mg/L) and δP

18
PO (‰-VSMOW) of the 

Yamuna River and the RBF well is shown in figure 4.3. The seasonal signal in the Yamuna 

River for all three tracers is attenuated and shifted in the corresponding curve of the RBF 

well. However, seasonal peaks (positive and negative) in the surface water and the 

corresponding curve in the bank filtrate were different for each tracer.  
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Figure 4.3 Temperature (°C), chloride (mg/L) and δ18O (‰-VSMOW) of the Yamuna River (squares) and bank 
filtration well (open circles) against time. 

 

Chloride and δP

18
PO are highly mobile in groundwater and not involved in most geochemical 

reactions that commonly occur in aquifers (Clark and Fritz, 1997, Freeze and Cherry, 1979). 

Both are conservative tracer, which are only transported by the flow of water (advective 

transport) and hydrodynamic dispersion.   

 

The pronounced seasonal variation in the surface water makes chloride an ideal tracer, with a 

high concentration in winter (maximum 75 mg/L) and low concentration due to dilution 

during monsoon in September (minimum 17 mg/L). The winter peak in the Yamuna River 

(early January) can be found in the RBF well around 2.5 months later (middle of March), 

while the summer or monsoon peak (August) is observed in the bankfiltrate after 2 months 

(end of September) travel time.  
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Stable isotope of water (δP

18
PO ‰ VSMOW) show clear fluctuations in the Yamuna River, but 

the signal was not following a regular pattern. E.g. the monsoon isotope ratio in 2006 was 

around -9 ‰ while the ratio during the monsoon 2007 was enriched by heavy isotopes (from -

6.5 to -5 ‰ VSMOW). Rozanski et al. (1993) showed that the isotopic seasonal precipitation 

pattern in Delhi is characterised by enriched δP

18
PO signatures during the dry, non-monsoon 

months (from -2 to -1 ‰ VSMOW) and by depleted δP

18
PO signatures during monsoon (-10 to -

9 ‰ VSMOW). During the non-monsoonal period, the amount effect enriches δP

18
PO and 

imparts a negative Temperature - δP

18
PO correlation (Clark and Fritz, 1997, Datta et al. 1991, 

Rozanski et al. 1993). The strong enriched isotopic signature in monsoon 2007 cannot be 

explained by natural conditions, it is rather likely that the natural signal is interfered by 

anthropogenic impacts such as inter basin water transfer. However, also an irregular seasonal 

isotopic signal may be used as a tracer. The amplitude of the isotopic signal in the river was 

lower compared to the chloride or temperature amplitude, and the isotopic amplitude in the 

bankfiltrate well is almost completely attenuated but still above the analytical error of 0.1 ‰ 

VSMOW. Therefore, the winter peak (January) can be observed in the bankfiltrate well ~2.5 

months later (middle of March), while the summer peak (September) is observed after ~1.5 

months (end of October). It must be taken into account that due to the low seasonal 

amplitude/analytical error ratio, the error is higher compared to the two other tracers.  

 

Because of its tracer-like behaviour, heat carried by groundwater can be used as a tracer for 

estimating travel times (Anderson, 2005, Becker et al. 2004, Cox et al. 2007). Temperature in 

the Yamuna River is following the annual air temperature with a winter minimum in 

December (~18°C) and summer maximum in July (~32°C), before the onset of the monsoon 

season. The annual peaks can be observed attenuated, but still clearly visible (accuracy 0.5°C) 

in the RBF well after around 3.5 months (winter peak) and after approx. 3 months (summer 

peak). Compared to pure advective flow, heat transfer is retarded by a factor (R), which is the 

ratio between the transport velocity of the temperature (vBTB) and the pore water velocity (vBaB) 

according to: 

 

T

a

v
v

R =  eq. 4.1 
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The retardation factor R calculated with travel times taken from the chloride and the 

temperature signal is for the winter and summer season 1.4 and 1.5, respectively. That means 

that temperature is transported around 1.5 times slower than chloride.  

 

All three tracer parameters show that travel times of the bank filtrate are shorter in monsoon 

period compared to the dry season. This is probably a consequence of increased hydraulic 

gradient between the river and the adjacent groundwater level in the aquifer. During 

monsoon, river stage was observed to be elevated by about 2 m compared to dry season.  

4.4.2 Attenuation and purification capacity of RBF in Delhi 

 

Physicochemical parameters, namely temperature, dissolved oxygen and pH from the 

Yamuna River and the RBF well are presented as box plots in figure 4.4. The box plots show 

minimum (bottom line), maximum (top line), median (line in the box), lower (bottom of box) 

and upper (top of box) quartile for the respective parameter.  

 

The median temperature in the Yamuna River and the RBF well is around 25.5°C, but the 

seasonal fluctuations in the river were equilibrated during the underground passage (see also 

Figure 4.3). The equilibration is generally more effective in longer underground passages and 

will be confined to the mean annual temperature of the region. Riverbank filtration provides 

the possibility for a cost-effective equilibration of strongly fluctuating surface water 

temperatures. This is especially important when RBF is used as a pre-treatment and the 

subsequent treatment steps can be managed better if the input temperature is rather constant.  

 

 



 

 62

 
Figure 4.4 Box plots of physicochemical parameters (temperature, dissolved oxygen, pH) measured in the 
Yamuna River (dark grey) and the RBF well (light grey). 
 

Surface water is in direct contact with the atmosphere and the dissolution of oxygen is a 

function of the partial pressure of oxygen in the air and the temperature. The capacity to 

dissolve oxygen is lowered in warm water: e.g. water of 18°C (measured minimum river 

temperature) can dissolve 9.7 mg/L of OB2 B until saturation while water with 32°C (measured 

maximum river temperature) can dissolve only 7.7 mg/L of oxygen in equilibrium with the 

atmosphere. The median value of dissolved oxygen in the Yamuna River is 9.5 mg/L 

indicating a slight super saturation of oxygen. With respect to most organic compounds, the 

most favourable degradation processes in the subsurface occur under oxygen consumption 

and the production of COB2 B(eq. 4.2). As a consequence of the oxidation of dissolved organic 

matter, oxygen levels in groundwater systems are usually lower than in surface water. Figure 

4.4 shows that oxygen is decreased during underground passage but not completely consumed 

in the bank filtrate (median 1.7 mg/L). The remaining oxygen must not necessarily come from 

the surface water. The cone of depression produced by the abstraction well is dewatering a 

certain volume of the aquifer that was water saturated before. The dewatering introduces 

atmospheric air to the aquifer pores and the oxygen will dissolve when the well is turned off 

and the groundwater level recovers. This effect is more pronounced at wells without 

protective soil cover and at wells with frequent interruptions in pumping. 
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The pH from the Yamuna River to the abstraction well is attenuated and decreased. The most 

likely process to decrease the pH during underground passage is the degradation of organic 

matter according to: 

 

OHCOOOCH 2222 +→+  (aerobic respiration) eq. 4.2 

 

A proportion of the COB2 B reacts with water to form carbonic acid and hydrogen carbonate, 

thereby lowering the pH. 

 

Box plots of electrical conductivity, dissolved organic carbon (DOC) and nitrate from the 

Yamuna River and the RBF well are shown in figure 4.5.  

 

Electrical conductivity (EC) of the surface water is fluctuating largely between 1254 µS/cm 

and 260 µS/cm. In the RBF well EC is attenuated but the median is slightly increased 

compared to the surface water. The increase of EC from 511 µS/cm to 561 µS/cm (median 

values) must be attributed to dissolution processes during underground passage.    

 

 

 
Figure 4.5 Box plots of electrical conductivity, DOC and nitrate measured in the Yamuna River (dark grey) and 
RBF well (light grey). 
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DOC is a complex sum parameter, composed of humic and fulvic acids and non-humic 

substances such as amino acids and carbohydrates (Frimmel, 1998). Many authors reported on 

the removal potential of bank filtration for DOC (Ray et al. 2003) and most of the DOC 

removal occurs at the very first cm of the underground passage at the river-aquifer interface. 

In this study, the median DOC concentration in the river and the RBF well were given with 

2.5 mg/L and 1.05 mg/L, respectively. Based on the median values the total removal of DOC 

can be calculated with 58 %.   

 

Nitrate (NOB3 PB

-
P) in surface- and groundwater can be of natural and anthropogenic origin. Apart 

from its common application as fertilisers, nitrate may originate from diffuse and point 

sources such as seepage from unlined drains, domestic sewage, cattle sheds or landfill sites. 

At the RBF well the NOB3 PB

- 
Pconcentrations from the surface water (median 5.8 mg/L) are 

lowered to 2.5 mg/L. The reduction of nitrate to NB2 B by organic matter (denitrification) is the 

dominant process and can be described as (Appelo and Postma, 1993): 

 

OHCOHHCONNOOCH 2323232 24245 +++→+ −−  (denitrification) eq. 4.1 

 

The reaction product NB2B will degas to the atmosphere. Intermediate metastable products such 

as nitrite (NOB2 PB

-
P) occurred at low concentration (median 5 µg/L, not shown). 

4.5 Conclusions 

Reliable characterisation of travel times during riverbank filtration can be achieved by a 

combination of conservative and retarded environmental tracers. The seasonal signal of stable 

isotopes (δP

18
PO) can be very different from year to year during the same season and the low 

amplitude/analytical error ratio allows only reliable estimation for short travel times. Chloride 

and temperature showed large seasonal variations in the Yamuna River and a retardation 

factor of 1.5 was found for temperature. It was found that travel times during monsoon (2 

months) are substantially shorter compared to pre-/post monsoon period (2.5 months). 

Anyhow, travel times in this range should be sufficient for a reliable and robust removal of 

pathogens. This was also confirmed by microbiological studies, carried out at the field site 

where fecal and total coliform counts in the RBF well were always below detection limit 

(Sprenger et al. 2008). 
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The study has also shown that nitrate decreases during bank filtration and organic compounds 

are degraded under the consumption of oxygen. Hence, riverbank filtration can significantly 

lower the concentrations of many surface water pollutants (DOC, nitrate) and can attenuate 

large fluctuations of physico-chemical parameters (temperature, electrical conductivity, pH). 

DOC concentrations in the surface water were lowered by 58%.  

 

The improvement in water quality makes RBF an attractive technique with the potential to 

replace or support other treatment steps. The natural treatment during underground passage is 

cost effective and can lead to decreased overall water treatment costs.  
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5 Numerical quantification of surface-/groundwater interactions at the 
flood plain aquifer in central Delhi (India) using a multi tracer approach 
 

Abstract 

So far, little was known about the impact of contaminated surface water infiltration on the 

urban aquifer systems, which are of the highest importance as a water resource for the present 

and future water management of the mega city. Fluctuations of the hydraulic head in 

combination with a conservative tracer (chloride) and a retarded tracer (heat) were measured, 

evaluated and modelled to determine (i) infiltration rates and (ii) groundwater travel times, 

(iii) to perform a sensitivity analysis and (iv) to develop a water budget for the flood plain 

aquifer at the study site in central Delhi. The advection/dispersion model was used and 

provided approximations for travel times and infiltration rates, which are more comparable to 

field-based observations than standard particle-tracking simulations. Heat transfer was 

simulated using the linear sorption isotherm. The Yamuna River and the adjacent aquifer are 

in hydraulic contact and the river is characterized by losing river conditions on the eastern 

banks. The infiltration rate during monsoon was 5.5×10-2 m3/m2/day and during non-

monsoonal time 3.6×10-2 m3/m2/day with an average pore water velocity of 0.9 m/day, which 

makes groundwater recharge by bank filtration one of the most important recharge 

mechanisms. 

5.1 Introduction 

In Delhi the gap between water supply and demand has led to an uncontrolled groundwater 

abstraction and hence to a declining water table all over the city (CGWB 2006, Maria 2004). 

As a consequence the polluted surface water infiltrates into the central Delhi flood plain 

aquifer. The floodplain in central Delhi have an important hydrogeological role as the 

interface zone between river- and groundwater where exchange of water and solutes occur. It 

can be assumed that the rapid growth of many cities in developing and newly industrialized 

countries is leading to severe pollution of groundwater by losing river conditions (Foppen 

2005, Lawrence et al. 2000). Therefore, it is important to determine the transport and fate of 

contaminants from the surface water to the groundwater under the influence of natural factorsP

 

Pand anthropogenic practices. UnderstandingP

 
Pthe transport of chemicals (and organics) requires 

estimates of infiltration rates, travelP

 
Ptimes and reaction rates. As part of this effort, the 
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hydraulic behavior of the surface-/groundwater interface of the Yamuna River and the 

adjacent urban flood-plain aquifer in the central part of Delhi in India was investigated. 

 

During SW/GW exchange, the hydraulic properties of the riverbed (Grischek et al. 2003), 

stream partial penetration and aquifer heterogeneities (Sophocleous 2002) control the 

interaction between the two hydro(geo)logical compartments. All parameters can vary over 

time and/or space, but most analytical approaches ignore these facts (Sophocleous 2002). 

Therefore, a numerical simulation was carried out to evaluate mixing, advective and 

dispersive processes calibrated with field site observation of environmental tracers (chloride 

and temperature). This section aims at quantifying the fluxes between surface water and 

groundwater compartment, namely river water infiltration rates, travel times of bank filtrate 

and abstraction rates. 

 

Information about flow velocities, travel times and fluxes between surface- and groundwater 

can be obtained by different tracer parameters (Massmann et al. 2008a, Schubert 2002, Sheets 

et al. 2002, Wett et al. 2002). The ideal tracer is of either natural or anthropogenic origin, 

commonly occuring in the study system, easy to detect, and its geochemical behaviour is 

conservative (or at least predictable). Seasonal variations of the tracer in the river are reflected 

by attenuated and prolonged curves in the groundwater. In this section chloride and 

temperature were used as tracers. Chloride is used as a tracer substance to evaluate travel 

times in the SW/GW interface because it is highly mobile and conservative in its chemical 

behaviour. Because of its tracer-like behaviour, heat carried by groundwater can be used as a 

tracer for estimating travel times and infiltration rates (Becker et al. 2004, Cox et al. 2007). 

5.2 Materials and Methods 

5.2.1 Field site and hydrogeology 

The study area is situated within the Indo-Gangetic alluvial plains in the central part of Delhi 

along the Yamuna River (Figure 5.1). Between two major dams upstream (Wazirabad 

barrage) and downstream (Okhla barrage), the Yamuna River is joined by a number of 

tributaries. These so-called drains are channelled water bodies used for urban wastewater 

disposal (predominantly untreated sewage) and flood control during monsoon season. The 
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most important one is the Najafgarh Drain, which flows into the Yamuna River at the 

Wazirabad barrage. Within this segment, the Yamuna River is highly contaminated by 

discharge of sewage and industrial waste. For a more detailed description of the contaminants 

in the surface water see (CPCB 2006, CSE 2007, Lorenzen et al. 2010). 

 

According to Daga (2003), almost every domestic complex in Delhi has a tube well to 

complement or replace the public water supply. Different sources estimate the actual number 

of private tube wells between 200 000 and 360 000 (Daga 2003, Maria 2004, Maria and 

Jaouen 2004). Groundwater levels monitored over the past decades indicate a dramatic 

decline of groundwater level in vast parts of the city territory (CGWB 2006). Groundwater 

recharge rates through rainwater infiltration are reported to be low, and most parts of Delhi 

receive less than 5% recharge. Lateral flow, canal/river seepage and localized infiltration of 

highly degraded agricultural and urban surface run-off through stagnant water pools are the 

main contributors to recharge (Datta and Tyagi 2004). 

 

 

Figure 5.1 A) Location map of India and Delhi; B) City limits of Delhi and the main river with barrages and 
main geology; C) The study area with the urbanized parts of Delhi, X-Y indicates the geological cross section 
shown in figure 5.2; D) Location map of the observation wells at the field site; Hydrogeological cross sectional 
view with the filter screen depths of the observation wells (vertical bars). 
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5.2.2 Drilling, levelling and sampling of observation wells 

A field site was established on the eastern banks of the Yamuna River in the central part of 

Delhi (Figure 5.1). Observation wells (OW1, OW2, OW3) consist of multiple, independent 

wells drilled by a rotary method to depths of 8, 10 and 32 m below ground level, respectively. 

All observation wells are 4" in diameter and were assembled with PVC pipes with 3-6 m filter 

screens at the end. 

Levelling of each piezometer and the Yamuna River, relative to an arbitrary level, was 

measured by theodolite survey. Levelling was carried out 4 times within the study period 

using a Sokkia C410 device. The hydraulic changes were monitored by pressure- and 

temperature logger units and by manual depth-to-water measurements. Hydrographs were 

compensated by the barometric pressure measured a few kilometres away from the field site.  

The observation wells were sampled monthly from November 2006 to March 2008 to detect 

seasonal changes of hydraulic and hydrochemical parameters through the annual cycle. 

During the sampling campaigns, at least three static water volumes within the observation 

wells were removed according to German groundwater sampling guidelines (DVWK 1992).  

5.2.3 Construction of water table map 

A new groundwater table trend map along the Yamuna River at the study area was developed. 

Three types of data were used to construct the regional-scale water table contour map, 

including depth-to-water measurements from observation wells (i.e. dug- , tube wells 

measured by the CGWB 2006, land surface topography from Shuttle Radar Topography 

Mission (SRTM) data in combination with land surface benchmarks from topographical maps 

and stage elevation data of the perennial river Yamuna. Considering all uncertainties (e.g. 

elevation accuracy of the SRTM data), this map should be regarded as a trend map and not as 

an exact groundwater table map. Nevertheless, this groundwater table map is an update to the 

regional groundwater table map presented by CGWB (2006b) and can be used (i) to provide a 

support frame for regional-scale water table maps, (ii) to analyse contaminant migration and 

(iii) to set boundary conditions for groundwater flow and transport model.  The calculation of 

the groundwater table trend map was based on a May 2006 dataset. 
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5.2.4 Model construction 

A vertical two-dimensional (2D) transient groundwater flow model was constructed using 

Modflow (Harbough and McDonald 2000), and transport was modelled with MT3DMS 

(Zheng and Wang 1999) under the graphical user interface of Visual Modflow (Waterloo 

Hydrogeologic, Inc.). The model accounts for infiltration into and processes in the saturated 

zone, but does not simulate surface runoff and percolation through the unsaturated zone. The 

model was calibrated with hydraulic heads and tracer curves of chloride and temperature. 

Prior to the transport modelling with MT3DMS, ModPath (Pollock 1994) was used to 

visualize groundwater flow directions and pure advective travel times. The simulation time 

from November 2006 to March 2008 was divided into 45 stress periods, each of ten-day 

duration. Each stress period was attributed to the corresponding hydraulic head and input for 

solute transport (chloride and temperature) at the river boundary. A steady-state model 

provided the initial hydraulic heads for the following transient simulations. 

 

Hydraulic conductivity and storativity 

During drilling of the observation wells, three lithological units were encountered: i) the 

younger alluvial, ii) the older alluvial, and iii) the quartzitic hardrock (Figure 5.1, Figure 5.2). 

The younger alluvium is composed of Holocene sediments of the Yamuna floodplain, 

deposited close to the present course of the river. This unit consists mainly of grey, medium-

sand fluviatile deposits interbedded with calciferous gravel size HconcretionH, locally known as 

kankar. This upper aquifer unit extends down to 12 m below ground level at the river and 

shows an increasing thickness to the east (up to 30 to 40 m below ground level). The 

coefficient of hydraulic conductivity (k-value) is estimated by grain size analysis with 29 - 33 

m/d (Table 5.1). The younger alluvium was deposited upon a series of variable thickness of 

older alluvium. The older alluvium is composed of Tertiary sediments which are outcropping 

to the west of the present course of the Yamuna (CGWB 2006). This unit consists mostly of 

yellow to brown silt and is more consolidated than the upper floodplain sediments. Mica is 

HaccessoryH or absent, and in places the fine sand is interbedded with layers of fine to medium 

sand.  

At a depth of 38 m below ground level, the Precambrian metamorphic hardrock (Aravalli 

formation forming the Delhi Ridge) was encountered. In the upper part of this formation these 

metamorphites are weathered, but owing to the low permeability of this quartzitic unit, it is 

considered to be an aquitard.  
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Table 5.1 Parameters (dB10 B, dB60 B) determined from grain size distribution of the aquifer at different depths and 
calculated coefficients of hydraulic conductivity (k) according to Hazen 1893 and Beyer 1964 

Depth (mbgl) dB10B (mm) dB60 B(mm) 
Hazen 1893 

k (m/d) 

Beyer 1964 

k (m/d) 

3 0.15 0.39 33.3 29 

6 0.15 0.4 33.3 28.9 

13 0.06 0.38 5.3 3.9 

20 0.02 0.1 0.6 0.5 

30 0.01 0.08 0.1 0.1 

40 0.002 0.08 0.01 0.002 
Hazen (1893) 

k = C * dB10 B^2 (only valid for dB10 B>0.06 mm) 

C = 0.7 + 0.03 * T / 86.4 (T=26 °C) 

Beyer  (1964) 

k = g/v*CBb B*dB10 B^2 (only valid for dB10 B>0.06 mm) 

g=gravity constant; v=kinematic viscosity of water 

CBb B=0.0006*log(500/U) 

U=dB60 B/d B10 B       

 

Coefficients of hydraulic conductivities were calculated according to Hazen (1893) and Beyer 

(1964) under consideration of the temperature-dependent kinematic viscosity of water. Owing 

to the limited validity of the Hazen and Beyer method, the k-value was also estimated by 

small-scale pumping tests and slug/baile tests (not shown here). According to the k values 

obtained by the grain size distribution (Table 5.1) the model was subdivided into three zones 

of hydraulic conductivity. The k values were iteratively calibrated by trial-and-error to the 

measured tracer curves. Therefore, values were slightly higher than those derived from grain 

size distribution. The upper alluvium was attributed to k = 36 m/d. As a first approximation, it 

was assumed that the hydraulic conductivity was isotropic for the younger alluvium aquifer, 

but it was determined iteratively that an anisotropy factor of KBh B/KBv B = 10 gives the best fit. The 

older alluvium was attributed uniformly with a horizontal k = 5 m/d and the vertical 

conductivity was set to 0.05 m/d owing to the occurrence of small silt/clay layer. The bottom 

of the model corresponds to the quartzitic hardrock and was set inactive. The upper alluvium 

is unconfined, which means that the effective porosity is equal to the storage coefficient. The 
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effective porosity was estimated to be 25% (nBeB = 0.25). The storage coefficients were 

considered to decrease with depth. 

 

Grid discretization, coverage and dispersion  

The model area extends over a length of 2400 m on the eastern side of the Yamuna River in 

the central part of Delhi. The grid was oriented so that the flow is parallel to the x-axis. The 

model domain was divided into 100 m wide columns and 1 m layer thickness. Near the 

observation wells, the grid was refined to columns of 1 m width, resulting in 55 columns and 

20 layers in total (Table 5.1, Figure 5.2). In total, the model represents 50 m depth of constant 

layer thickness. The bottom of the model domain corresponds to the hardrock unit and was 

attributed to a no-flow boundary.  

 

 
Figure 5.2 Grid discretization and boundary conditions. 
 

To minimize numerical dispersion effect, grid discretization on the local scale was adapted so 

that the Peclet (and Courant 5/1) criteria are fulfilled. The grid peclet number should be ≤ 2 
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(Zheng and Bennett 2002). For the 2D case, the grid peclet number can be calculated 

according to:  

 

    
z
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where x is the grid length (m); D is the dispersion coefficient (mP

2
Ps P

-1
P); α BLB is the longitudinal 

dispersivity (m); u is the pore water velocity (m/s). The dispersion coefficient depends on the 

pore water velocity and can be calculated using the dispersivity α and pore water velocity u 

according to: 

 

uD ×=α  eq. 5.2 

 

The longitudinal dispersivity was set to αBLB = 5 m which was approximated with one tenth of 

the total flow distance to the observation wells (Adams and Gelhar 1992, Käss 2004). Vertical 

transversal dispersivity was set to 0.5. By using equation 1 a Peclet number of 2 was obtained 

for both directions. 

 

Boundary conditions 

Groundwater abstraction data is critical for model calibration, especially when SW/GW 

interactions are involved. This data includes the spatial distribution and magnitude of 

pumping. Data about groundwater abstraction in urban Delhi is very general and cannot be 

used for site-specific problems. Therefore, a groundwater withdrawal survey was conducted 

in May 2008 to detect all types of wells that contribute to the total groundwater abstraction. 

Most of the groundwater is abstracted by suction pumps and it is assumed that hand pumps 

can be neglected. The abstraction amount was estimated by the engine power driving the 

suction pumps given in horsepower (HP). According to typical power curves, a 1 HP diesel 

engine will abstract 3 mP

3
P/h. Assuming an average operational time of 4 h/day and 340 days 

per year (except for the rainy days) for an area of 1.54 kmP

2
P will result in a total areal 

groundwater abstraction of approx. 0.004 mP

3
P/mP

2
Pd. Groundwater abstraction was applied to a 

length of 1600 m, yielding a total abstraction of 6.4 mP

3
P/d for the whole model domain. During 

the rainy days in the monsoon period (approx. 20 days), no irrigation takes place, and 

groundwater recharge was estimated at 3.84×10P

-5
P mP

3
P/mP

2
Pd (14 mm/a), which corresponds to 2 

% of the annual rain (Datta and Tyagi 2004).  
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During the non-monsoonal period, fixed head of 196 masl was attributed to the eastern 

boundaries of the model domain. Hydraulic heads were used from the groundwater table map 

(Figure 5.3). During monsoon time, the groundwater table increase was only minor and no 

change to the eastern and western boundary was made.     

 

The location and the width of the river were estimated from aerial photographs, and the depth 

of the river is based on bathymetric cross section measured by the authors with pressure 

transducers. The river is approximately 200 m wide and has a maximum depth of 3 m in the 

centre. For the sake of HsimplicityH, the river was simulated with 100 m width and a constant 

increasing depth to 3m in the centre (Figure 5.2). The river was simulated using the 

MODFLOW river package (head dependent flux boundary) with a temporal variable fixed 

head boundary in the uppermost layer of the model. The river bed was attributed to a constant 

elevation of 198.50 masl, while the river head changes with time. Maximum head is 200.7 

masl during monsoon, with an average river stage of 199.9 masl. The river bed elevation is 

taken from flood scenarios evaluated by Vijay et al. 2007. The riverbed conductance (CBriv B) or 

river coefficient is calculated according to:  

 

M
WLKCriv

××
=  eq. 5.3 

 

where CBriv B = leakage factor LP

2
PTP

−1
P; K = hydraulic conductivity of riverbed LTP

−1
P; L = river 

length (L); W = river width (L); M  = thickness of clogging layer (L). The basic assumption 

of the MODFLOW approach is that losses from the river are governed by the low 

permeability of the clogging layer. 

        

∆hCq rivriv ×=  eq. 5.4 

 

The flow from the river to the aquifer qBriv B is now calculated with river coefficient (CBriv B) and 

the head difference between the river stage and the adjacent groundwater head ( ∆h ). The rate 

of streambed infiltration is a function of streambed conductance and the difference in the 

hydraulic head of the river and the aquifer. Both equations are solved individually for each 

model time step at each model grid cell, which is identified as a river cell. This approach 

enables consideration of the temporally and spatially variable extent of the interactions 
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between the groundwater and the surface water. During the monsoonal high flow period, the 

river inundates the agricultural area between the river bank and the dike, but the short period 

of this flood event had no substantial effect on the infiltration rate of the river. 

 

The 100 m wide river was divided into a 75 m part with a river coefficient (CBriv B) of 360 mP

2
P/d 

(k=3.6 m/d), whereas the bank of the river was attributed to 3.6 mP

2
P/d (k=0.036 m/d). The 

thickness of the clogging layer was assumed to be 0.5 m (eq. 5.3), and the river coefficient 

was the object of calibration. Different scenarios were tested with i) no clogging layer ii) 0.5 

m thickness and hydraulic conductivity of 1/10 of the aquifer hydraulic conductivity (3.6 m/d) 

and iii) 0.5 m thickness and 1/100 of the aquifer hydraulic conductivity (0.36 m/d).  

 
Table 5.2 Boundary conditions during monsoon and non-monsoonal time 

  Fixed head or 
Dirichlet (masl) 

River or Cauchy 
(masl) 

Abstraction 
(m/d) 

Recharge 
(m/d) 

Non-monsoon    
(340 days per year) 196 

River stage 
highly transient 
199.4 – 200.4 

0.004 - 

Monsoon (20 days 
per year) 196 High river stage 

200.8 - 9x10-5 

5.2.5 Transport parameters 

To simulate SW/GW interaction, MT3DMS was used, a solute transport package included in 

Visual MODFLOW Pro (Waterloo Hydrogeologic, Inc.). MT3DMS uses the flow velocity 

calculated by MODFLOW as an input value to solve the transport equation. Dispersion due to 

macroscopic heterogeneities is the main reason for the not purely advective transport of 

solutes in field observations. TVD (total variation diminishing) is used for solving the 

transport equation because it minimizes mass losses (Goedeke et al. 2004) compared to other 

solutions techniques such as MOC or HMOC.  

 

Simulating heat transport 

SW/GW fluxes were estimated by several authors by using heat transfer models (Anderson 

2005, Cox et al. 2007, Keery et al. 2007). All parameters used for heat transport modelling is 

shown in table 5.3. In principle, MODFLOW is not capable to simulate heat transport, but by 

using the diffusion equation it is possible to simulate heat transport by linear sorption 

isotherm (Holzbecher 1998). Temperature is expressed as concentration and heat capacities 
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by the distribution coefficient (kBdB). Heat is transported not only by convection but also by heat 

conduction described by Fourier’s law of conduction: 

 

dx
dTKqh −=  eq. 5.5 

 

where qBh B= is the heat flux (J mP

-2
P s P

-1
P); K thermal conductivity (W mP

-1
P KP

-1
P); T is the temperature 

(K). By comparing eq. 5.5 to the diffusion equation (eq. 5.6), the same mathematical structure 

is obvious: 

 

dx
dcDJ d −=  eq. 5.6 

 

where dJ  is the diffusive flux (mol mP

-2
P s P

-1
P); D diffusivity (mP

2
P/s); c concentration (mol/mP

3
P). 

The thermal diffusivity D was calculated by dividing the thermal conductivity (KBwet B) of 1.7 

J/msK by the bulk heat capacity for water-saturated sand (CBwet B) with 5.4x10P

9
P J/mP

3
PK according 

to:  

 

wet

wet

C
K

D =  eq. 5.7 

 

resulting in a thermal diffusivity of 3.1×10 P

-10 
PmP

2
P/s, which is then used in MODFLOW as the 

diffusion coefficient . The delayed transport of heat can be described by a retardation factor R 

(-) which is related to the ratio of heat capacities bulkwater CC )/()( ρρκ = and the effective 

porosity (nBeB) by the formula: 

 

en
R κ
=  eq. 5.8 

  

where bρ  is the bulk density of the sediment (kg/mP

3
P); CBbulkB is the heat capacity of bulk 

sediment (J/mP

3
PK). The heat transport can be simulated using a linear sorption isotherm, and 

KBd B can be calculated using the equation:  
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d
e

b k
n
ρ

R +=1  eq. 5.9 

 

where kBd B is the distribution coefficient. Now it is possible to equalize eq. 5.8 with eq. 5.9 

according to: 

 

d
e

b

e

k
n
ρ

n
+= 11

κ
 eq. 5.10 

 

Thus an equivalent kBd B for heat transport can be obtained according to: 

 

)(1
e

b
d n

ρ
k −= κ  eq. 5.11 

 

bulk density of the sediment is given with 1900 kg/mP

3
P, n BeB is 0.25 and κ is 0.77 resulting in a 

distribution coefficient (k Bd B) of 1.4× 10 P

-7
P mg/L. 

 
Table 5.3 Parameters for heat transport simulation. 

parameter unit value 
porosity - 0.25 

heat conductivity s J/msK 2.09 
heat conductivity w J/msK 0.54 

heat capacity s J/m3K 2400000 
heat capacity w J/m3K 4150000 

density s kg/m3 2200 
density w kg/m3 999 

initial temperature °C 25 
aquifer heat capacity J/m3K 5.4E+09 

bulk density kg/m3 1899.75 
bulk heat capacity J/m3K 2837500 

bulk thermal conductivity J/msK 1.7 
s = solid, w = water 

5.2.6 Sensitivity analysis 

To quantify the uncertainty of the calibrated model, a sensitivity analysis was performed. 

Hydraulic anisotropy (KBh B/KBv B), effective porosity (nBeB), river coefficient and groundwater 

abstraction was object of the sensitivity analysis. For the sensitivity analysis, the values of the 
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object parameters were increased/decreased sequentially within plausible ranges, and the 

effect on travel times and infiltration rates was examined.  

5.3 Results and discussion 

According to the groundwater table trend map the Yamuna River was dominated by losing 

river conditions on the eastern banks (Figure 5.3). It is important to note that this groundwater 

table map is based only on few measurements and the monitoring points were not levelled 

exactly to a common level. Hence, this map indicates only roughly the groundwater regime in 

the study area. Anyhow, no other groundwater table was available and the measured 

groundwater at the field site scale confirms the regional-scale flow regime.      
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Figure 5.3 Groundwater table map for the dry season (May 2006) and the field site (May 2007); the black 
triangles show the interpolation points (depth-to-water measurements from CGWB, interpolation by the author) 
 

Calibration results 

The model accurately simulated the spatial and temporal distribution of the hydraulic heads in 

the model domain (Figure 5.4). The mean of absolute residual errors is 0.18 m, while the 

overall changes of the hydraulic heads during the study period in all observation wells were 

1.41 m. A hydraulic anisotropy (KBh B/KBv B) of 10 was determined iteratively and reflects the field 

observations of a high mica content in the upper aquifer and sequences of clay and silt layers 

mixed with medium to fine sand in the lower aquifer. Changes in anisotropy (1 or 100) 

produced a poorer fit to the observed hydraulic heads.  

 

During the 2007 monsoon (August – September) the flood plain was flooded twice, but the 

total flood period was short and lasted only for a few days. Therefore, no flood event was 
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intended to be simulated by the model. Anyhow, river stage fluctuated by around 2 m, with a 

maximum stage of 202 m masl during monsoon. The average river stage was around 200 

masl.  

 
Figure 5.4 Modelled Hydrographs (line) and manual depth-to-water measurements (squares) in OW1, OW2 and 
OW3. The stage of the Yamuna River was measured  in a 3-month interval by theodolite survey and the dotted 
line represents the interpolated river stage used as model input. 
 
 
Measured water levels in the observation wells reveal the existence of a downward directed 

vertical head gradient. The downward directed hydraulic gradient between the river and the 

piezometer is present over the whole study period and is caused by high groundwater 

abstraction for agriculture, institutional and domestic purposes in the flood plains and the 

adjacent urban areas. The downward directed hydraulic gradient is typical for overexploited 

aquifers and groundwater table responded immediately with river stage fluctuations, 

reflecting the hydraulic connection between surface- and groundwater.  
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5.3.1 Transport simulation 

Temperature 

Temperature was used to evaluate travel times at the SW/GW interface because it has proved 

to be a robust and predictable tracer (Anderson 2005). Heat as a tracer uses natural variations 

in river water temperature and the resulting exchange of heat with the subsurface to assess 

SW/GW interactions. Heat is transported in the flowing water by advective heat flow and 

thermal conduction through the non-moving solids and fluids (conductive heat flow).  

 

Monthly measured river water temperature showed strong seasonal pattern at the study area 

(Figure 5.5). The highest river water temperature (31.8 °C) was measured before the beginning 

of the monsoon in May 2007 and the lowest temperature (21.5 °C) was measured in January. 

From field sites under natural conditions it is known that the water temperature of the river 

will follow the temperature of the air. At the field site the temperature course of the river 

water differs substantially from the mean air temperature. Only during the hot season from 

April to September a similar temperature between air and river water be observed. During the 

rest of the year, river water temperatures were higher. It is assumed that the inflow of warm 

domestic and industrial wastewater and the urban microclimate increases the river water 

temperature. 
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Figure 5.5 Measured temperature (square) with the calculated curves (line) in the shallow (OW1), medium 
(OW2) and deep observation wells (OW3) and the Yamuna River. The grey line at the upper part of the diagram 
indicates the mean air temperature. 
 

 

Thermal properties for the simulation of heat transfer with MODFLOW/MT3DMS are based 

on data given in table 5.3. For water-saturated sand, the thermal properties vary only little 

compared to variations in hydraulic properties. Uncertainty in assessing proper thermal 

properties is more important in conduction-dominated environments, whereas under 

advection-dominated conditions the total heat flow is more influenced by hydraulic 

properties.  

 

Compared to pure advective/dispersive flow the heat transfer is retarded. Here, we simulated 

the heat transport according to the diffusion equation (eq. 5.7) and the retardation factor (R) is 
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expressed as the distribution coefficient kBd B = 1.4 x 10 P

-7
P kg/mP

3
P (eq. 5.11). Thermal dispersivity 

was set at 5, which is equal to the 1/10 of total flow length. The diffusion coefficient, which 

corresponds now to the thermal diffusivity, was set to 2.7x10P

-5
P mP

2
P/day (eq. 5.7). 

 

In the OW1, the lowest temperature (23.8 °C) was measured on 16.05.2007, but the calculated 

temperature course suggests a lower peak at the beginning of June. In the OW2 only one local 

minimum was observed on 2.08.2007, and one local maximum on 10.03.2008. The maximum 

temperature in December 2006 is a result of the 2005 summer period, which was before the 

start of the sampling campaign. The second maximum in March 2008 is from the 2007 

summer peak, which results in retarded travel times between 214 - 275 days.  

 

The temperature in the deep OW3 was almost constant (26.6 +/-0.1 °C) and 1.6 °C higher 

than the mean annual air temperature of Delhi. The depth of the surficial zone, which is 

influenced by the annual changes in surface water temperature, was approx. 23 mbgl 

(Lorenzen et al. 2010). This finding supports the idea that groundwater recharge was 

dominated during monsoon, when water temperatures were higher than the annual average.  

 

Chloride 

Chloride was used as a tracer substance to evaluate travel times at the SW/GW interface 

because it is highly mobile and conservative in its chemical behaviour. Travel time of bank 

filtrate was determined by comparing the seasonal signal in the Yamuna River with the 

shifted and attenuated signal in the observation wells. Four local minima/maxima in the 

Yamuna River and the observation wells were identified (Figure 5.6). 

 

The Yamuna River showed a diluted (low) chloride concentration in the monsoonal season 

(~100 mg/L), whereas in the dry season the chloride content was higher (up to 240 mg/L). 

This input signal was transported by advection and thereby shifted and attenuated. The highly 

transient infiltration regime is reflected by variable travel times. Travel times to OW1 ranged 

from 61 days to 91 days, with a mean travel time of 75 days. Travel times increases with 

depth and range from 107 days to 137 days, with a mean travel time of 119 days, to the OW2. 
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Figure 5.6 Measured chloride (square) with the calculated curves (line) in the shallow (OW1), medium (OW2) 
and deep observation wells (OW3) in combination with the Yamuna River. 
 

 

The chloride concentrations in the shallow observation well (OW1) measured in August and 

September cannot be simulated accurately. The measured chloride concentrations were higher 

than the calculated concentrations. It is assumed that these findings indicate the influence of 

percolated flood water, which dissolves salts from the unsaturated zone. This effect is only 

observed in the shallow groundwater, while the chloride concentrations of the medium deep 

groundwater (OW2) can be simulated accurately.      
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In the OW3, chloride concentration was constant (13 mg/L) over time, reflecting the lack of 

any influence of river water on deep groundwater. 

5.3.2 Sensitivity analysis 

The sensitivity analysis demonstrates the relative importance of the individual parameters 

(porosity, riverbed clogging, hydraulic anisotropy and groundwater abstraction)  to the overall 

accuracy of model in terms of infiltration rates and travel time to OW2. The parameters 

porosity, riverbed clogging, hydraulic anisotropy and groundwater abstraction were changed 

within plausible ranges and the effect on river infiltration rates and travel time to OW2 was 

investigated. Sensitivity analysis of the average infiltration rate of the Yamuna River indicates 

that changes in abstraction amount, aquifer anisotropy and riverbed clogging were causing the 

largest changes. Increasing the abstraction amount by 20 %, 50 % results in an increase in the 

infiltration rate of approx. 12 %, 25 %, respectively. A strong impact on the infiltration rate is 

also observed for the hydraulic anisotropy of the aquifer. If the hydraulic anisotropy is 

increased/decreased by one order of magnitude, the infiltration rate changes by +/- 17 %. 

Interestingly, the riverbed conductance was comparably insensitive within ranges of +/- 90%. 

A decrease of 90 % (from k = 3.6 m/d to 0.36 m/d) resulted in a decrease of the average 

infiltration rate of 4 %. Equalizing the hydraulic conductivity of the streambed and the aquifer 

yielded a calculated increase of 4%. As expected, a further increase had no impact on the 

infiltration rate. By decreasing the riverbed conductance by 99% (k= 3.6 m/d to 0.036 m/day) 

a strong impact on the infiltration rates was calculated with a decrease of 32 % (Figure 5.7).  

 

 
Figure 5.7 Sensitivity analysis of riverbed conductance, groundwater abstraction, porosity and hydraulic 
anisotropy on the average river water infiltration rate (left) and on the average travel time to the OW2 (right). 
 



 

 86

Sensitivity analysis of the effective porosity on groundwater travel time was not performed 

because of the linear dependency. The decrease of the riverbed conductance, hydraulic 

anisotropy and abstraction caused large changes in the average travel time to the OW2.  

Riverbed conductance was found to cause the largest changes within the investigated ranges 

(Figure 5.7). In general, the uncertainty of riverbed conductance and hydraulic gradient 

(caused by groundwater abstraction) has the largest impact on the modelling results of 

infiltration rates and travel time. Therefore, the riverbed conductance and the hydraulic 

gradient are key elements of SW/GW interactions and must be evaluated carefully. 

5.3.3 Surface-/groundwater budget 

Based on the modelling approach, the following water budget was developed for the Delhi 

flood plain aquifer. The surface-/groundwater flow system consists of inflow to the aquifer by 

river water infiltration, direct recharge during monsoon, lateral fluxes and changes in storage. 

Outflow from the flood plain aquifer consists of groundwater abstraction and changes in 

storage.  

 

Water-budget calculations for the period from November 2006 to January 2008 indicate that  

river water infiltration was the most dominant inflow component. The average infiltration rate 

during monsoon was calculated with 5.5 mP

3
P/day and for the non-monsoonal time with 3.6 

mP

3
P/day for the whole river width (Figure 5.8). Lateral fluxes to the flood plain aquifer were 

rather constant around 2 mP

3
P/day over the whole study period and show only minor decline 

during monsoon. Only during phases of high river stage a positive balance in storage was 

calculated. Direct recharge by rainfall was only minor (0.15 mP

3
P/d) during monsoon. The most 

dominant outflow component was groundwater abstraction given with 6.4 mP

3
P/day. During 

phases of relative low river stages balance in storage was negative.  

 

 



 

 87

 
Figure 5.8 Temporal changes of river stage, infiltration rates, storage. 
 
 
(Trisal et al. 2008) estimated the agricultural abstraction amount with 59 mP

3
P/s for the whole 

urban stretch of the Yamuna flood plain. Converting this amount into areal abstraction per mP

2
P 

(urban flood plain area: 22 km x 3 km) will give an abstraction amount of 0.08 mP

3
P/mP

2
Pd. This 

is 20 times more than the abstraction amount estimated in this study. Many areas in India 

suffer from unreliable or lack of data and unmetered and uncontrolled abstraction of 

groundwater is the main problem in calculating water budgets. However, the high abstraction 

amount for agriculture is causing the hydraulic gradient to be directed to the hinterland, 

resulting in permanently losing river conditions.  

5.4 Conclusions 

The following conclusions can be drawn from this study: 
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 The Yamuna River is in hydraulic contact to the adjacent flood plain aquifer and 

losing river conditions (influent conditions) dominates the eastern side of the Yamuna 

River  

 Unsustainable groundwater abstraction volumes cause the hydraulic gradient 

indicating the flow from the river to the aquifer    

 Reliable travel time evaluation is achieved by a combination of time variant 

environmental tracers (chloride and temperature) 

 Since the chloride signal in the groundwater can be disturbed due to dissolution of salt 

from the unsaturated zone, temperature is considered to be more reliable as a tracer 

 The greatest impact on infiltration rates are caused by changes in groundwater 

abstraction and riverbed conductance  

 The greatest impact on travel times are caused by riverbed conductance and hydraulic 

anisotropy 

 Infiltration rates of the Yamuna River during phases of high river stage (monsoon) is 

about 1.5 times higher than during phases of low river stage 

 Data on spatial and temporal distribution of groundwater abstraction is poor and is the 

parameters with the highest uncertainty 
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6 Removal of bacteriophages, enteric viruses and organic pollutants during 
river bank filtration under anoxic conditions in Delhi (India)9 
 

Abstract 

Emerging countries, frequently afflicted by waterborne diseases, are in need of producing safe 

and cost-efficient drinking water; a task the more challenging, as many rivers carry a high 

degree of pollution. A study was conducted in Delhi (India) to ascertain if river bank filtration 

(RBF) can significantly improve the quality of the highly polluted surface water in terms of 

virus removal (bacteriophages, enteric viruses) and organic pollutants. A numerical model 

was used to describe the underground water flow and the transport and deposition of 

bacteriophages during RBF. A series of organic trace compounds including polar to non-polar 

substances from household, industrial and agricultural sources were considerably attenuated. 

Human adenoviruses and noroviruses, both present in the Yamuna at 105 genomes/100 ml, 

were undetectable after approx. 119 days of RBF passage. Indigenous somatic 

bacteriophages, used as surrogates of human pathogenic viruses, underwent approximately 

5 log10 removal after only 3.8 m of RBF. The initial removal after 1 m was 3.3 log10, the 

removal between 1 and 2.4 meter and between 2.4 and 3.8 meter, 0.7 log10 each. RBF is 

therefore an excellent candidate to improve the water situation also in emerging countries.

                                                 
TP

9
PT Sprenger C, Lorenzen G, Grunert A, Ronghang M, Dizer H, Selinka HC, Girones R, 

Lopez-Pila  JM, Mittal A, Szewzyk R Journal of Water, Sanitation and Hygiene for 

Development (revised April 2011) 

 



 

 110

7 Vulnerability of bank filtration systems to climate change10
PT 

 

Abstract 

Bank filtration (BF) is a well established and proven natural water treatment technology, 

where surface water is infiltrated to an aquifer through river or lake banks. Improvement of 

water quality is achieved by a series of chemical, biological and physical processes during 

subsurface passage. This paper aims at identifying climate sensitive factors affecting bank 

filtration performance and assesses their relevance based on hypothetical ‘drought’ and 

‘flood’ climate scenarios. The climate sensitive factors influencing water quantity and quality 

also have influence on substance removal parameters such as redox conditions and travel 

time. Droughts are found to promote anaerobic conditions during bank filtration passage, 

while flood events can drastically shorten travel time and cause breakthrough of pathogens, 

metals, suspended solids, DOC and organic micropollutants. The study revealed that only BF 

systems comprising an oxic to anoxic redox sequence ensure maximum removal efficiency. 

The storage capacity of the banks and availability of two source waters renders BF for 

drinking water supply less vulnerable than surface water or groundwater abstraction alone. 

Overall, BF is vulnerable to climate change although anthropogenic impacts are at least as 

important.

                                                 
TP

10
PT Sprenger C, Lorenzen G, Hülshoff I, Grützmacher G, Ronghang M, Pekdeger A (2010) 

Science of the Total Environment, Volume 409, Issue 4, 655-663, 

doi:10.1016/j.scitotenv.2010.11.002 
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Appendix 3 Tables 

Table A.1 Physicochemical properties and ion concentrations of the water samples (selected parameters). 
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Physicochemical parameters:             
Feb: 2520 3740 10520 15600 5000 1277 1527 1051 847 - 738 601 734 420 928 
May: 349 3480 12830 17300 4370 1196 1429 1274 838 - 452 406 704 398 - 

EC 
[µS/cm] 

Sep: 350 4030 13370 19700 7620 724 1353 1160 791 1027 862 495 537 377 951 
Feb: 8.3 6.8 6.7 6.7 8.6 7.3 6.7 7.3 8.0 6.7 8.8 8.2 7.6 8.2 7.2 
May: 9.0 6.9 6.8 6.5 7.2 7.6 6.8 7.4 8.1 - 9.6 7.9 7.6 7.9 7.4 pH 
Sep: 7.5 6.8 6.7 6.7 7.3 7.4 6.7 7.4 8.0 7.1 9.1 7.7 7.7 7.9 7.1 

Major ions:                
Feb: 71 187 477 723 240 87 131 83 15 - 49 39 55 18 144 
May: 38.8 146 539 737 151 65 125 100 15 - 31 41 58 27 - 

Ca 
[mg/L] 

Sep: 38.7 80.8 478 844 225 49.2 159 30.9 14.1 113 35.6 50.3 40 22.2 76.7 
Feb: 360 605 1940 3180 795 141 158 58 210 - 75 61 58 62 69 
May: 38 535 2150 3400 625 146 154 151 199 - 45 31 58 48 - 

NaB 

[mg/L] 
Sep: 22 685 2575 3600 1180 80 154 122 200 102 122 34 56 41 67 
Feb: 35 69 233 427 180 31 33 23 6 - 17 15 25 10 36 
May: 12.2 53 278 458 134 28 31 30 6 - 11 14 25 15 18 

MgB 

[mg/L] 
Sep: 12 71.4 335 520 205 18.8 41.3 37.7 5.94 31.3 25.5 15.7 18.5 18.2 32.2 
Feb: 30 2 18 36 15 14 12 18 2 - 8 5 4 3 6 
May: 4 2 20 40 12 16 12 16 2 - 6 6 4 3 4 

KB 

[mg/L] 
Sep: 3.3 2.7 25 42 32 9.5 13 12.3 1.6 8 9.5 7.5 3.3 2.5 6 
Feb: 370 850 3200 6000 1400 185 196 157 12 - 90 58 95 10 20 
May: 47 750 3940 6700 1050 185 200 194 11 - 45 18 85 12 7 

ClB 

[mg/L] 
Sep: 42 960 4700 7330 1860 110 195 178 14 117 132 44 73 19 21 
Feb: 702 519 342 275 702 366 699 372 531 - 223 183 220 220 488 
May: 134 513 317 244 708 366 732 519 519 - 214 159 189 217 - 

HCOB3 

[mg/L] 
Sep: 128 537 305 214 751 214 775 543 506 531 226 201 177 195 506 
Feb: 56 360 1200 1340 470 123 46 3 50 - 51 50 68 29 98 
May: 50 270 1300 1390 270 90 32 58 43 - 36 34 86 32 70 

SOB4 

[mg/L] 
Sep: 35 340 1410 1520 620 70 55 <1 50 15 110 40 61 35 110 
Feb: <1 <1 - 5 20 <1 <1 <1 <1 - 6 3 <1 <1 <1 NOB3 

[mg/L] May: <1 <1 4 3 6 <1 <1 <1 <1 - <1 <1 3 <1 1 
 Sep: 0.3 1 0.8 2.7 6 34 70 0.4 0.2 7 0.9 0.1 0.3 <1 1 

 Selected trace ions:           
Feb: 40 0.4 <0,05 - <0,05 16 16.5 30 <0,05 - 0.1 0.05 0.45 0.1 0.6 
May: - - <0,05 - - 4 - - - - 0.05 - 0.4 <0,05 0.05 

NHB4 

[mg/L] 
Sep: 0.2 0.01 <0,05 0.5 0.1 7 33 32 0.05 23 <0,05 0.25 0.4 0.1 0.5 
Feb: 1.4 1 1 1 2 1.4 1 1.3 3 - 1.1 1 1.2 2.1 1.1 
May: 1.1 1.1 1 1.9 1.9 1.6 1.1 1.2 3.4 - 1.1 1 1.2 2.2 1.4 

F 
[mg/L] 

Sep: 1.1 1 1.2 <1 2.6 1.2 1 1.5 3.6 1.4 1.2 1 1.2 2 1.2 
Feb: 0.2 0.4 <0.05 0.2 0.1 0.4 30.1 3.2 0.2 - 0.3 0.2 0.3 0.2 1.3 
May: 0.2 0.2 0.1 0.2 0.3 0.5 28.9 3.5 0.6 - 0.2 0.3 0.3 0.5 0.1 

Fe 
[mg/L] 

Sep: 0.4 1.2 - - 0.1 0.7 12.1 4.0 0.5 7.9 0.2 <0.05 0.3 <0.05 0.7 
Feb: 0.2 0.4 0.7 0.6 <0.01 0.5 2.4 1.6 0.1 - <0.01 0.3 0.9 0.4 1.0 
May: <0.01 0.4 0.8 0.3 0.1 0.5 1.8 1.3 0.1 - <0.01 0.2 0.6 0.3 0.5 

Mn 
[mg/L] 

Sep: 0.1 0.3 - - 0.4 0.2 1.6 1.4 0.1 0.7 <0.01 0.2 0.3 0.1 0.5 
Feb: <1 3 <1 3 2 2 35 56 3 <1 - <1 2 4 11 
May: <1 <1 <1 <1 <1 2 31 46 <1 - - <1 <1 <1 - As [µg/L] 
Sep: 1 1 - - <1 3 27 35 1 95 5 2 1 1 10 
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Table A.2 Groundwater samples and the results of hydrogeochemical and stable isotope analysis. 
no SITE Type date Na+ Ca+ Mg+ Cl- SO4

2- HCO3
- Br- NO3

- δ18O δ2H TDS 
A) Delhi Field Site 

1a shallow I OW 12/06 555 169 61 890 290 506 - 0.1 -1.39 -22.1 2487 
1b shallow I OW 05/07 535 146 53 750 270 512 - 0.1 -1.21 -20.3 2281 
1c shallow I OW 02/08 876 260 103 1350 323 - 2 3.6 -1.93 -24.62 2934 
2a medium OW 12/06 2060 499 264 3800 1250 317 - 0.5 -3.99 -32.8 8223 
2b medium OW 05/07 2150 539 278 3940 1300 317 8 4 -3.84 -30.6 8559 
2c medium OW 02/08 2610 628 330 4680 1350 - 5.9 24 -3.82 -32.0 9657 
3a deep OW 12/06 3200 680 442 6600 1450 256 - 0.5 -4.71 -38.0 12677 
3b deep OW 05/07 3400 737 458 6700 1390 244 9 3 -4.53 -38.3 12983 
3c deep OW 02/08 4750 867 553 9320 1500 - 8.5 2 -5.01 -38.4 17053 
4a distal DW 12/06 800 193 185 1500 400 732 - 22 -3.15 -28.7 3862 
4b distal DW 05/07 625 151 134 1050 270 708 - 6.00 -3.41 -31.10 2965 
4c distal DW 02/08    1460 472 - 2.3 14 -3.07 -29.54 1974 

B) Haryana groundwater sampling points 
5 Ismailpur TW 04/08 54 69 42.5 87 8 336 0.4 37 -6.15 -48.67 648 
6 Bridge 8-1 TW 04/08 284 153 61.5 524 183 - 1.6 2 - - 1223 
7 Bamlad TW 04/08 5430 893 1335 10500 4270 232 21 15 -4.99 -45.66 22703 
8 Budhera TW 04/08 27 35 24 6 5 214 0.2 21 -5.85 -52.69 346 
9 Center HP 04/08 148 62 43 45 17 702 0.3 1 -4.25 -39.64 1032 

10 DAD FW TW 04/08 429 78 67 370 270 506 1.6 67 -4.93 -37.36 1802 
11 Daria TW 04/08 1230 168 356 2080 1160 403 5 45 -4.88 -35.69 5466 
12 HP Drain HP 04/08 232 78 91 470 103 482 1.4 0.7 -5.76 -43.81 1467 
13 Kurk TW 04/08 763 394 374 2600 760 349 6 71 -4.01 -36.72 5359 
14 LAG-DE TW 04/08 687 341 227 1800 380 354 4 17 -3.12 -30.4 3824 
15 Mubarik HP 04/08 207 169 158 580 136 358 2.8 150 -5.38 -40.64 1811 
16 Munur TW 04/08 147 32 52 90 36 488 0.5 23 -4.86 -41.06 888 
17 Pelpa HP 04/08 683 100 156 1000 278 775 3.7 72 -5.56 -46.91 3084 
18 Sondhi TW 04/08 1217 262 392 3100 608 738 12 91 -5.48 -36.84 6070 
19 Sultanpur1 TW 04/08 151 66 55 270 31 329 0.6 60 -5.97 -46.47 978 
20 Sultanpur2 HP 04/08 310 33 35 98 192 592 0.4 50 -5.64 -42.32 1322 
21 Weir-FW TW 04/08 358 196 164 1280 110 336 3 6 -5.27 -38.84 2464 
22 Weir-HP HP 04/08 224 59 55 275 34 513 0.7 20 -5.50 -45.19 1192 
23 Workers TW 04/08 315 26 44 205 186 - 0.6 0.1 - - 795 
24 Dadri HP 04/08 253 67 55 320 193 342 2 35 - - 1280 

C) Additional sample: 
25 Tiki Kalan TW 04/08 1920 845 733 5550 2000 244 6 9 -5.55 -43.3 11338 
Units: concentrations in ppm; stable isotope ratios in ‰ (vs. V-SMOW) 
Sample type: OW = observation well, TW = private tube well (motor pump), HP = hand pump, DW = 
traditional open dug well 
 

 

 

 



 153

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Der Lebenslauf ist in der Online-Version aus Gründen des Datenschutzes nicht enthalten. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 154

 




