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Abstract: For a different medical applications nanoparticles (NPs) with well-defined 

magnetic properties have to be used. Coating ligand can change the magnetic 

moment on the surface of nanostructures and therefore the magnetic behavior of the 

system. Here we investigated magnetic NPs in a size of 13 nm conjugated with four 

different kind of surfactants. The surface anisotropy and the magnetic moment of the 

system was changed due to the present of the surfactant on the surface of iron oxide 

NPs.  
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Introduction 

Magnetic nanoparticles (NPs) are commonly researched because of possibilities to 

use them in medicine as a contrast agent, for cell separation or drug delivery. 

Important parameter for magnetic behavior are kind of synthesis, shape, size and 

organic ligand bind to the surface.  

A number of groups report results which have shown that ligand have influence on 

susceptibility, magnetization and coercivity [1,2]. 

Here we present four different samples in the same average size of 13 nm, but with 

different substances bonded to the surface. We measured dynamic and static 

magnetic properties. All samples are in superparamagnetic state in room temperature 

where the magnetic moment can fluctuate between two anisotropy easy axis.  
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1. Synthesis 

1.1 Synthesis of oleic acid (OA) coated iron oxide NPs 

Iron oxide NPs were prepared by thermal decomposition in a organic solution using 

Sun’s method [3,4]. The NPs were dispersed in chloroform and transferred to 

physiological solution or water using three different techniques: 

1.2 Coating of iron oxide NPs with CTAB[5] 

To the solution of NPs in chloroform 0.045 g cetyltrimethylammonium bromide 

(CTAB) was added and stirred. For a better separation distillation process was used 

in order to remove chloroform. System was redispersed in water and centifugated 

several times.  

1.3 Coating of iron oxide NPs with mPAA -mPAA - PEG  

 

Polimer synthesis 

Modify polyacrylic acid (mPAA- 1 g) was prepared after Bawendi group[6]. 1 g  

Polyacrylic acid was dissolved in 10 ml DMF(dimethyloformamide). 0.72 g N-octyl 

amine was added into solution. The reaction mixture was stirred for 2 hours before 

1,06 g 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide(EDC) was added. In the next 

step mixture was stirred at room temperature for 20 hours. DMF was then removed 

under reduce pressure and 2 ml of water with 1 g of tetramethylammonium hydroxide 

was added and stirred for 2 h. After stirring 4 ml 1.3 M hydrochloric acid was added in 

order to re-precipitate the mPAA and the supernatant was then removed. The purified 

mPAA was then dissolved and kept in ethylacetate.  

Coating process of iron oxide nanoparticles 

5 mg of magnetic NPs was mixed with mPAA in chloroform for 12 h. Chloroform was  

slowly reduced by pressure and dropwise addition of PBS (Phosphate buffer saline) 

during the sonication.  
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Modified mPAA – mPAA - PEG 

mPAA coated magnetic NPs in PBS were mixed with 0,003 g EDC for 2 h and 10 μL 

O-(2aminopropyl)O'(2-methoxyethyl)polypropylene ethylene glycol was added. 

Solution was stirred for 12 h.   

Magnetic NPs in PBS were modified by amino group using EDC/NHS[7] technique by 

O-(2aminopropyl)O'(2-methoxyethyl)polypropylene ethylene glycol.  

1.4 Redispersion in water with Sodium hyaluronan HA 

0,1 mg of magnetic NPs were redispersed  in 5 ml chloroform and 13 ml water with 

0,01 g sodium hyaluronan. Then the solution was mixed for 20 h. Afterwards 

chloroform was removed by reducing pressure and nanostructures were redispersed 

in water. NPs were then cleaned by centrifugation (in order to remove the exceed of 

hyaluronan) and finally the supernatant was exchanged by water.  

2. Discussion 

2.1 TEM and Raman spectroscopy characterization of the coated iron oxide 

NPs 

A morphology of iron oxide nanoparticles was measured using Transmission Electron 

Microscopy (TEM) a  120 keV JOEL JEM – 1400. All samples are spherical and 

monodisperse. The average size of our four systems was 13 nm, see Figure 1. For 

later discussion about magnetic anisotropy, it is important that nanostructures had 

almost the same size, see Table 1.  

Figure 1. TEM image of iron oxide nanoparticles coated by a)oleic acid b)CTAB c) 

mPAA-PEG d)HA. 

To ensure that ligand exchange process was correct we measured Raman spectra of 

our samples which have been shown on Figure 2. Because of high absorption of our 

systems, laser with wavelength of 785 nm was used for all samples. 

Figure 2. Raman spectra of iron oxide nanoparticles coated by a) CTAB b)mPAA c) 

HA. 
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Iron oxide coated by CTAB present peaks from alkyl groups (1061 cm-1, 1288 cm-1, 

from 2735 cm-1 to 2880 cm-1). Moreover bands from nitrogen-carbon bonds (952 cm-

1, 1526 cm-1) were observed. The typical peaks at 1153 cm-1, which correlates with 

vibration of C-C chain were also visible.  

For sample coated by mPAA-PEG some bonds from our ligand on the surface were 

observed. Following peaks were observed: alkyl groups (1057 cm-1,1091 cm-1), 

hydroxyl (1387 cm-1) and oscillation comes from CNH group (1556 cm-1) [8]. 

NPs stabilized by HA revealed typical peaks for iron oxide structures (235 cm-1) and 

some peaks which are related to the structure of  sodium hyaluronan. Furthermore 

oscillation of carbon – oxide (445 cm-1, 825 cm-1, 1112 cm-1, 1178 cm-1), hydroxyl 

groups (1300 cm-1) and double bond C=O (1606 cm-1) was observed.  

2.2 Magnetic properties of coated iron oxide NPs 

The fluctuating magnetic moment between two easy axis[9], which is isolated by 

energy barrier could be estimated using Zero-Filed Cooling (ZFC) and Field- Cooling 

(FC) techniques. In ZFC samples were cooled without magnetic field, and after that 

heated in very week magnetic field (100 Oe). In FC technique samples were cooled 

and heated in the same value of the field, see Figure 3.  

Figure 3. Zero-field-cooling and field- cooling for iron oxide nanoparticles stabilized 

by a)oleic acid  and CTAB b) mPAA-PEG and HA. 

The blocking temperatures for samples coated by oleic acid, CTAB, mPAA – PEG 

and HA were estimated and are equal 74 K, 70 K, 72 K and 71K respectively. The 

blocking temperatures for all ligand coated iron oxide particles were similar. 

The dynamic properties of our nanostructures were analyzed with 

susceptibility in-phase (real part) and out-of-phase (imaginary part).  Furthermore, AC 

measurements give information about interactions between NPs, see Figure 4. AC 

measurements versus temperature were obtain for eight different frequencies in a 

range from 10 Hz to 1488 Hz.   

Figure 4. Dependence of in-phase suspectibility for a) oleic acid b)CTAB c)mPAA-

PEG d)HA. 
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Typical behavior of superaparamagnetic NPs is shift of the blocking 

temperature with increased frequency. The value of shifting is given by[10,11] : 

)(log10 fT

T

B

B





(2) 

This deviation is the simplest way to describe the quality and quantivity of interactions 

in superaparamagnetic systems. When the value of this parameter ranged from 

0,005 to 0,01 then the system bahave as a spin glass, for the value between 0,01-

0,013 the system is superparamagnetic with weak interactions (non-interacting 

nanosystems)[12,13,14]. 

 

For our samples this deviations for different ligands on surface nanoparticles 

gives values between 0, 012 – 0,031, see Table 2. For NPs stabilized by mPAA - 

PEG and HA parameter ⏀ is between 0,01-0,013, so we can conclude that 

interactions between NPs clusters are weak. Therefore samples can be treated as 

non-interacting nanosystems. For samples coated by CTAB and oleic acid the value 

of this parameter is higher, so in this nanostructures the interactions between 

nanoclusters are stronger.  

The energy barrier between two easy axis could be estimate by Zero-Field 

Cooling and Field –Cooling measurement (ZFC, FC). Time necessary for changing 

the magnetic moment is correlated with time relaxation: 

  )/exp(0 TkET BA 
(1) 

where AE  is the anisotropy energy barrier.  For single domain NPs the height of 

energy barrier corresponds with thermal energy. Below temperature which is called 

blocking temperature, the thermal energy is not able to break interactions between 

NPs and the system is in the “frozen” state. Above blocking temperature 

nanoparticles starts to be in the superparamagnetic state and the susceptibility 

became independent from frequency. 
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Dynamic response of the superparamagnetic systems is correlated with relaxation 

time necessary for exchange direction of the magnetic moment between two easy 

axis[15,16,17]. Rotation along axis is correlated to the energy barrier which can be 

fixed from Arrhenius law (eq. 1). For sample coated by mPAA -PEG this value is the 

smallest one because the interactions in this system are weak. For NPs coated by 

oleic acid or CTAB energy barrier is higher because of strong interactions between 

nanoparticles, see Figure 5 and Table 2. 

Figure 5. Logarithm time relaxation function of temperature a) oleic acid b) CTAB 

c)mPAA-PEG  d)HA.  

All parameters which describes magnetic properties for ours systems are 

completely different because of modified surface of nanoparticles with organic 

ligands. Therefore magnetic moment of surfaces is a key for solution of this behavior. 

We can estimate effective anisotropy using TEM images and solving the equation: 

                (4) 

where  Ea is energy barrier from Table 2. In the simplest approximation Ea equals a 

sum of anisotropy of volume and surface  (eq. 3) . Our results are summarized in 

Table 2.  

For all samples we could see the same magnitude of effective anisotropy. But for the 

NPs stabilized by mPAA- PEG and HA the value of energy barrier are bigger than for 

other two ligands. From magnetic measurments we concluded that nanoparticles 

coated by mPAA –PEG and HA  are superparamagnetic without interactions.  For all 

samples we calculated the effective aniosotropy. As we observed for this two ligands 

the value of this physical parameter is equal. But for nanostructures coated by CTAB 

and oleic acid the effective anisotropy is lower, see Table 2. 

For different organic ligand on surface we change the anisotropy of the 

surface. For simplest approximation we could calculate the effective anisotropy for 

systems by[18,19]: 

SVeff KDKK )/6( 
 (3) 
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where 
VK  is the bulk anisotropy energy per unit volume , 

SK  is the surface density of 

anisotropy energy and D/6 the surface to volume ratio. The change of effective 

anisotropy after coating process is shown. For NPs bonded to mPAA – PEG and HA 

the values of this parameter were increased and decreased for the nanosystem 

coated by CTAB.  

For all four samples we measured hysteresis loop for five different 

temperatures between 5-270 K, see figure 6.  In temperatures 5 K all samples have 

typical hysteresis loop for ferromagnetic material. For temperatures 50 K the value of 

coercivity for all samples decreased, which is typical behaviuor of superparamagnetic 

state. Moreover, the saturation magnetization decreased with the increasing 

temperature, because of the thermal movements. All values of coercivity and 

saturation magnetization changed with temperatures are collected in Table 3.  

Figure 6. Hysteresis loops a) T=5 K b)T=270 K.  

 

3. Conclusions 

We presented here four sample with the same average size around 13 nm with 

different organic ligands on the surface. We could observed that the type of binding 

to the surface of the NPs have influence on magnetic properties such as 

susceptibility, barrier energy and effective anisotropy. For the medical applications we 

would like to obtain NPs with high saturation magnetization at room temperatures. 

Because we want to have NPs well-separated (with small interaction), we can 

conclude from measurements that NPs coated by mPAA– PEG and HA are the most 

stabilized. Organic ligand is changing the magnetic moment on the surface of NPs 

and therefore using different stabilizer manipulation of magnetic moment and 

magnetic properties of the nanosystem is possible.  
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Table 1. Size distribution of nanoparticles  

Number of nanoparticles Mean size (nm) 

341 11 

3578 12 

3952 13 

168 14 

 

Table 2. Blocking temperature, Activation energy and effective anisotropy of all four 

samples 

Sample � �� � ��� ⏀ Activation energy 
(K) 

Effective anisotropy 	 
�� 
(erg/cm3) 

Oleic acid 73,9 0,031 5040 0,60 
CTAB 70,3 0,028 5398 0,65 

mPAA-PEG 71,6 0,013 5626 0,67 
HA 70,8 0,012 5608 0,67 

Table 3. Depenedencecoercivity and saturation magnetization of temperature. 

Temper
ature 
(K) 

Oleic acid CTAB HA mPAA-PEG 

Coercivit
y (Oe) 

Saturation 
magnetiza
tion 
(emu/gFe) 

Coerciv
ity (Oe) 

Saturation 
magnetiza
tion 
(emu/gFe) 

Coerciv
ity (Oe) 

Saturation 
magnetiza
tion 
(emu/gFe) 

Coerciv
ity (Oe) 

Saturation 
magnetiza
tion 
(emu/gFe) 

5 238 114 214 82 223 66 206 46 

50 38 114 31 80 10,5 63 11 41 

100 46 108 15 78 12,5 58,7 22 38 

200 15 108 16 73 12 45,5 12 34 

270 15 102 15 68 12 35,4 11 30 

 

Table


