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Abstract

The aim of this study was to test whether a combination of plant bioactive lipid compounds

(also termed ‘essential oils’) and biotin (PBLC+B) could decrease the mobilization of body

reserves and ketosis incidence in postpartum dairy cows. We compared non-supplemented

control (CON) cows with cows receiving monensin (MON) as a controlled-release capsule

at d -21, and with cows receiving PBLC+B from day (d) -21 before calving until calving

(Phase 1) and further until d 37 after calving (Phase 2), followed by PBLC+B discontinuation

from d 38 to d 58 (Phase 3). The PBLC+B cows had higher body weight and higher back fat

thickness than CON cows and lesser body weight change than MON and CON cows in

Phase 3. Body condition score was not different among groups. Milk protein concentration

tended to be higher on the first herd test day in PBLC+B vs. CON cows. Milk fat concentra-

tion tended to be highest in PBLC+B cows throughout Phases 2 and 3, with significantly

higher values in PBLC+B vs. MON cows on the second herd test day. Yields of energy-cor-

rected milk were higher in PBLC+B vs. CON and MON cows in Phase 2 and higher in PBLC

+B and MON cows vs. CON cows in Phase 3. The incidence of subclinical ketosis was 83%,

61% and 50% in CON, PBLC+B and MON cows, respectively, with lower mean β-hydroxy-

butyrate values in MON than in PBLC+B cows in Phase 1 prepartum. The serum triglyceride

concentration was higher in PBLC+B vs. CON cows on d 37. No differences were observed

in serum glucose, urea, non-esterified fatty acids, cholesterol and bilirubin concentrations.

Aspartate transaminase and γ-glutamyltranspeptidase but not glutamate dehydrogenase

activities tended to be highest in MON and lowest in PBLC+B in Phase 2. We conclude that

PBLC+B prevent body weight loss after parturition and are associated with similar ketosis

incidence and partly higher yields of energy-corrected milk compared to MON supplementa-

tion of dairy cows.
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Introduction

High-yielding dairy cows regularly experience metabolic challenges in early lactation. Follow-

ing calving, their energy demand rises greatly because of the onset of milk production and the

metabolic priority of the mammary gland [1–3]. In addition to significant energy output, espe-

cially via milk fat, lactose production is challenging because the demand of glucose rises

abruptly [4]. A shortage of glucose leads to instant hormonal adaption via an increasing gluca-

gon:insulin ratio [5], one major consequence being the mobilization of large amounts of body

fat [6–8]. The mobilized non-esterified fatty acids (NEFA) can serve as an energy fuel in tissues

capable of β-oxidation. For tissues not capable of β-oxidation (e.g. neuronal tissues), the liver

produces ketone bodies as a glucose-substituting energy fuel [1, 6]. Despite their roles as essen-

tial metabolic fuels, high concentrations of ketone bodies and NEFA lead to redox damage [9,

10] and are associated with production losses and health disturbances, commonly referred to

as ketosis of transition dairy cows. Clinical ketosis is easily detectable based on clinical signs

such as the abrupt loss of appetite, decreased milk performance and neuronal (shivering, apa-

thy, disorientation, blindness, cramps) and gastrointestinal (decreased ruminal motility, con-

stipation) signs [6, 11–13]. The more subtle forms of subclinical ketosis are not as easily

detectable because the associated weight and production losses are not linearly related to the

degree of lipomobilization and ketone body production. In serum, minimum ketone body

thresholds that provide an acceptable specificity for the prediction of health disturbances and

production losses on the individual cow level have mostly been identified as lying between 1.2

to 1.4 mmol/L β-hydroxybutyric acid (BHB) [14].

Subclinical ketosis is highly prevalent in transition dairy cows with typical herd incidences

of between 40 to 60% [15, 16]. The costs attributable to associated diseases and production

losses have recently been estimated at $289 per case of hyperketonemia in the US [17]. The

reduction of ketosis incidence is therefore a key issue in current dairy herd management and

dairy research. Because a glucose deficit is the ultimate trigger for ketone production, major

prevention strategies include the provision of gluconeogenic precursors in the form of feed

additives or the modulation of ruminal fermentation to increase ruminal propionate produc-

tion [4]. Ionophore antibiotics, especially monensin (MON), are potent enhancer of ruminal

propionate production [18–20] and are thus widely used in many countries around the time of

calving for the prevention of ketosis [15, 21] and associated diseases [22]. However, their pro-

phylactic use has low public acceptance in several countries and was, for example, banned in

the EU in 2006 [23]. In 2013, the reintroduction of MON into the European market as the con-

trolled-release capsule Kexxtone1 (Elanco, Indianapolis, IN, USA) for targeted metaphylactic

use to prevent hyperketonemia and associated diseases in risk animals [24] re-initiated a gen-

eral public debate about antibiotic use in farming, especially, in Germany [25]. Therefore,

despite the proven efficacy of the MON controlled-release capsule in ketosis prevention [21,

26, 27], alternative methods of ketosis prevention is an urgent need. Plant bioactive lipid com-

pounds (PBLC), especially those traditionally referred to as ‘essential oils’, could provide such

alternatives based on their antimicrobial effects [28–30] with the potential of stimulating rumi-

nal propionate fermentation [31, 32]. Biotin, on the other hand, is a cofactor of propionyl-

CoA carboxylase and pyruvate carboxylase [33] and might thus support gluconeogenesis at the

level of intermediate metabolism [34–36]. In a preceding study, we have observed improved

ruminal propionate fermentation and decreased loss of body condition in postpartum dairy

cows when supplemented with both PBLC and biotin [32], named PBLC+B hereafter. The aim

of the present study has been to substantiate such beneficial effects of PBLC+B on body condi-

tion with an additional focus on energy metabolism and milk performance when compared

with untreated control (CON) cows. In the extension of our previous study, our intension has
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also been to compare the effects of PBLC+B with those of a widely applied metaphylactic

scheme involving the use of MON.

Materials and methods

Animals, housing, feeding and treatments

The study was performed on a commercial dairy farm in Lower Saxony (Germany) and was

approved by the State Office of Lower Saxony for Consumer Protection and Food Safety (ref.

33.12-42502-04-14/1661). The farm housed a total of 140 Holstein dairy cows. The study

included 58 multiparous cows. It began in November 2014 and lasted until September 2015.

Each cow remained in the trial for 11 weeks, starting on day (d) -21 before the expected calving

date until d 58 postpartum. Cows were fed a partial mixed ration (PMR) and concentrates

based on the recommendations of the Society of Nutrition Physiology (GfE) [37], allowing for

5% orts. The concentrates consisted of a basal concentrate C1 that was provided in the dry and

lactation periods as explained later and a protein-rich concentrate C2 that was provided in the

lactation period only (Table 1).

Before the start of the study, cows were blocked according to their day of expected calving,

average milk yield in previous lactations, number of parturition and sex of the first calf and

then randomly assigned to treatment within block. Sex of first calf was used as a blocking crite-

rion because it has an epigenetic link to milk yield [38]. The first treatment group received 2 g/

d CRINA1 Ruminants and 40 mg/d ROVIMIX1 Biotin (both from DSM Nutritional Prod-

ucts Ltd, Kaiseraugst, Switzerland). Treatment PBLC+B was provided as a daily feed supple-

ment contained in 1 kg pelleted concentrate C1, named C1�PBLC+B hereafter (Table 1). The 1

kg C1�PBLC+B was supplied to each cow individually as a single portion once a day from d

-21 before expected calving until d 37 after calving. CRINA1 Ruminants is a proprietary mix-

ture of PBLC containing thymol, eugenol, limonene and vanillin as the main bioactive ingredi-

ents. It is a listed and authorized feed additive (list for feed additives of the EU (Reg 1831/

2003), FEMA (Flavor and Extracts Manufacturers Association) and the GRAS (Generally Rec-

ognised as Safe) database of the US Food and Drug Administration). The recommended PBLC

dose for lactating dairy cows is 1 g/d. Biotin is recommended at doses of 20 mg/d for lactating

dairy cows [39, 40]. The recommended dosages were doubled in the present study as these

higher dosages had proven effective in our previous study [32]. Furthermore, PBLC have dose-

dependent effects on ruminal fermentation [31] and performance [41] that extend beyond the

currently recommended dose by the supplier. Higher doses of 40 mg/d biotin have been asso-

ciated with marginal additional benefits for milk protein content [42] and beneficial effects in

the treatment of sole ulcers [43]. Each cow of the second treatment group received a single

MON controlled-release capsule (Kexxtone1) on d -21 by using a rumen bolus applicator.

The controlled-release capsule is designed to release ~335 mg/d MON into the rumen over a

period of 95 d according to the information deposited at the (European) Community Register

of Veterinary Medicinal Products (http://ec.europa.eu/health/documents/community-

register/html/v145.htm). A third group served as a control (CON) and received neither the

PBLC+B feed supplement nor the MON rumen bolus.

From d -21 until parturition, cows remained in a separate barn with a straw-bedded pen.

To increase comfort levels and to minimize ranking fights, the pen was subdivided into units

of ~30 m2 in which up to three cows were kept at a time. The pen was equipped with a feeding

fence in which the cows were fixed to receive their manually allocated concentrate portion at

09:30 h. The distance between cows was such that every cow only had access to its individual

concentrate portion, i.e. 1 kg/d concentrate C1 for cows in groups CON and MON and 1 kg/d

concentrate C1�PBLC+B for cows in group PBLC+B. Once cows had consumed their
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Table 1. Ingredients, analyzed chemical composition and energy contents of partial mixed ration and concentrates used in close-up and lactation diets.

Partial mixed ration1 Concentrate2

Close-up Lactation C13 C1�PBLC+B C24

Ingredients (as fed) g/kg g/kg g/kg g/kg g/kg

Grass silage 423 528

Corn silage 423 407

Straw 95 4

Wheat 20 155 155

Protein booster5 42 29

Premix P16 17

Premix P27 12

Rape extraction meal 270 270 330

Soy extraction meal 330

Corn 180 178 330

Sugar beet molasses 10

Palm kernel expeller 250 250

Molassed beet pulp 50 50

Dried beet pulp 50 50

Sugar beet molasses 15 15

Glucose molasses 10 10

Rapeseed 10 10

Calcium carbonate 8 8

Sodium chloride 1 1

Premix P38 1 1

CRINA1 Ruminants9 2

ROVIMIX Biotin9 0.04

Dry matter (DM) 360 ± 11.6 358 ± 6.9 894 ± 5.2 893 ± 5.5 887 ± 4.2

Chemical composition g/kg DM g/kg DM g/kg DM g/kg DM g/kg DM

Crude ash 90 ± 2.2 89 ± 2.8 60 ± 1.0 64 ± 0.6 59 ± 0.0

Crude protein 136 ± 4.9 143 ± 3.7 196 ± 2.6 202 ± 3.2 305 ± 5.6

Utilizable crude protein 138 ± 2.5 143 ± 3.7

Crude fibre 250 ± 9.5 235 ± 8.7 111 ± 8.0 128 ± 3.9 86 ± 3.7

Crude fat 36 ± 1.0 42 ± 3.1 38 ± 1.7 34 ± 4.0 36 ± 1.5

Sugar 10 ± 3.7 13 ± 3.1 80 ± 3.5 85 ± 5.4 67 ± 3.8

Starch 109 ± 11.0 125 ± 11.5 283 ± 5.7 235 ± 1.5 297 ± 3.0

aNDFom10 467 ± 10.7 448 ± 8.7 308 ± 4.8 341 ± 0.9 191 ± 5.0

ADFom10 260 ± 9.1 244 ± 9.6 166 ± 5.8 203 ± 0.7 125 ± 4.4

ADL10 27 ± 0.8 24 ± 1.7 53 ± 1.2 73 ± 1.2 41 ± 0.7

NFC10 271 ± 9.4 279 ± 5.1 398 ± 8.4 359 ± 2.9 408 ± 1.7

Energy MJ/kg DM MJ/kg DM MJ/kg DM MJ/kg DM MJ/kg DM

Metabolic energy 10.0 ± 0.2 10.4 ± 0.3 12.6 ± 0.1 12.3 ± 0.1 13.3 ± 0.0

(Continued)
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concentrate feeds, they were released from the feeding fence and the first half of PMR was

served at 10:00 h, followed by the second half of PMR at 18:00 h. The dry matter (DM) allow-

ance from PMR was 12 kg/d in the close-up period. The composition of the PMR is shown in

Table 1.

After calving, cows were moved to a free stall barn equipped with 110 lying places for an

average of 125 cows in milk. The barn area was divided into two milking units, each served by

a Lely Astronaut A4 milking robot (Lely S.à.r.l., Maassluis, The Netherlands). The milking

robot allowed up to 4 daily visits per cow; each visit included the weighing of cows, milking,

and feeding of a concentrate aliquot. To assure the consumption of the daily PBLC+B dose by

each individual cow, 1 kg/d concentrate C1 was supplied first during the first daily milking.

This first kilogram of concentrate C1 was either not supplemented (CON and MON groups)

or supplemented with PBLC+B (i.e. concentrate C1�PBLC+B for cows of the PBLC+B group).

The remaining daily allocation of concentrate consisted of equal parts of C1 and C2 (Table 1).

The total daily concentrate allowance started with 3 kg/d after calving, was increased incre-

mentally by 100 to 250 g/d between d 1 and d 6 and was further increased by 250 g/d between

d 7 to 25 to a final allowance of 8.5 kg/d that was maintained until the end of the study. The

unused concentrate allowance was recorded in order to calculate concentrate intake. Postpar-

tum lactating cows were fed PMR for lactating cows (Table 1) at a feedbunk twice daily at

09:00 and 17:00 h. The average DM allowance from PMR was 16.6 kg/d in the lactation period.

Health was monitored daily by visual inspection and by the assessment of data from the

milking robot. In addition to concentrate intake, BW and milk performance, the data from the

milking robot included a physical activity index and rumination time of each cow. For this

Table 1. (Continued)

Partial mixed ration1 Concentrate2

Close-up Lactation C13 C1�PBLC+B C24

Net energy for lactation 6.0 ± 0.1 6.3 ± 0.2 7.9 ± 0.0 7.5 ± 0.1 8.4 ± 0.0

1Samples were taken weekly and pooled over two months for chemical analyses; chemical analysis data are means ± SEM of four (close-up diet) to five analyses

(lactation diet).
2Samples were taken weekly and pooled over two or four months for chemical analysis; chemical analysis data are means ± SEM of three analyses.
3Based on milk-performance feed TvP Exclusiv 18/7 (Trede & von Pein)
4Based on soybean meal:rapeseed meal:corn, 1:1:1 (Trede & von Pein, Dammfleth, Germany)
5Protein booster, Lacto36solo (Trede & von Pein) containing (per kg): 480 g rape extraction meal, 480 g steam-heated soy extraction meal, and 40 g sugar beet molasses
6Premix P1, SALVAmin Prenatal TR-40 (with SALVANA dairy vital complex) (SALVANA Tiernahrung GmbH, Sparrieshoop, Germany) containing (per kg): 299 g

MgO2, 258 g Ca(H2PO4)2, 220 g NaCl, 60 g wheat, 47 g sugar beet pulp, 20 g sugar beet molasses, 10 g fruit pulp, vitamin and mineral mix (the latter containing 900,000

IU vitamin A, 200,000 IU vitamin D3, 10,000 mg vitamin E, 950 mg Cu as CuSO4×5H2O, 250 mg Cu as Cu2(OH)3Cl, 5,500 mg Zn as ZnO, 1000 mg Zn as ZnCl

(OH)×H2O, 5,000 mg Mn as MgO2, 50 mg I as Ca(IO3)2, 35 mg Se as Na2SeO3, 10 mg Se as rumen-protected Na2SeO3, 5 mg Se in organic form as Saccharomyces
cerevisae, 50 mg Co as CoCO3, and 33 × 109 KBE Saccharomyces cerivisea)
7Premix P2, SALVANA Rinderstolz 9848 GF 600 (SALVANA Tiernahrung GmbH) containing (per kg): 336 g RaPass, 334 g calcium salts of palm oil fatty acids, 87 g

calcium carbonate, 86 g sodium chloride, 56 g monocalciumphosphat, 30 g magnesiumoxid, 12 g sugar beet molasses,190,000 IU vitamin A, 19,000 IU vitamin D3, 1,500

mg vitamin E, 288 mg Cu as CuSO4×5H2O, 72 mg Cu as Cu2(OH)3Cl, 1,100 mg Zn as ZnO, 300 mg Zn as ZnCl(OH)×H2O, 100 mg Zn as glycin zinc chelate hydrate,

1,140 mg Mn as MgO2, 14 mg I as Ca(IO3)2, 6 mg Se as Na2SeO3, 4 mg Se as rumen-protected Na2SeO3, 9 mg Co as CoCO3×H2O, and 33 × 109 KBE Saccharomyces
cerevisiae
8Premix P3, Premix cow 0.1% 8399 (Trede & von Pein) containing (per kg): 938 g calcium carbonate, 7,500,000 IU vitamin A, 875,000 IU vitamin D3, 19 g Mn as MgO3,

0.1 g I as Ca(IO3)2, 0.4 g Se as Na2SeO3, 0.2 g Co as CoCO3×H2O, 40 g Zn as ZnO
9Analyzed concentrations in the final C1�PBLC+B concentrate were 1.03 g/kg PBLC and 0.034 g/kg biotin.
10aNDFom = Neutral detergent fiber corrected for residual ash and analyzed with amylase; ADFom = acid detergent fiber corrected for residual ash; ADL = acid

detergent lignin; NFC = non-fibre carbohydrates [100 - (% aNDFom + % crude protein + % crude fat + % crude ash)].

https://doi.org/10.1371/journal.pone.0193685.t001
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purpose, the neck collar of each cow was equipped with a Lely Qwes-HR System (including

acceleration sensor, rumination microphone, microprocessor and memory) from which the

continuously logged data were downloaded during milking. Health disturbances were treated

by the farm veterinarian and were recorded. Special attention was given to the occurrence of

clinical ketosis. The latter was diagnosed based on the clinical signs listed in the Introduction

and concurrently high serum BHB concentrations with a cautious interpretation of clinical

signs when 1.4� BHB < 3.0 mmol/L and strict interpretation of clinical signs when BHB�

3.0 mmol/L. Based on predefined exclusion criteria for severe or recurrent diseases, two cows

of the CON group had to be excluded because of a displaced abomasum, one cow in the MON

group because of multiple mastitis and two cows in the PBLC+B group because of a displaced

abomasum or multiple mastitis. Thus, the finally analyzed group sizes were 17, 18 and 18 cows

in the CON, PBLC+B and MON groups, respectively.

Sampling

The sampling of blood and the assessment of back fat thickness (BFT) and body condition

score (BCS) were always carried out at the same time of the day between 07:30 and 08:30. For

practical reasons, sampling days were Mondays, Wednesdays and Fridays based on the

expected (prepartum values) or real (postpartum values) calving dates of each individual cow.

Target sampling days were d -21, -14, -7 before calving and d 2, 9, 16, 23, 30, 37, 44, 51, 58

after calving, this timing being achieved with a variation of ± 1 d after calving. However, as

calving varied from the predicted date by several days, d -21 was defined as the day of the

inclusion in the study and finally varied by ± 4 d to the real d -21. Day -7 was defined as the

last sampling at least 4 d prior to real calving, i.e. d -7 ± 3. Day -14 was not available in some

cows that calved earlier than expected and was thus removed from the data set.

Blood sampling and analyses

The blood samples were collected from the coccygeal vein by using one 10-mL monovette with

clot activator/additive carrier (S-Monovettes, Sarstedt, Nümbrecht, Germany). Within 1–2 h

after taking the blood samples, serum was separated by centrifugation at 3000 g for 10 min

(centrifuge Z364, BHG Hermle GmbH u Co., Gosheim, Germany) and stored at -20˚C until

analysis. The serum concentrations of glucose, BHB, NEFA, triglycerides, bilirubin, cholesterol

and urea and the serum activities of aspartate transaminase (AST), γ-glutamyltranspeptidase

(GGT) and glutamate dehydrogenase (GLDH) were measured by a Cobas C 311 (Roche Diag-

nostics Deutschland GmbH, Mannheim, Germany) in the Laboratory of the Clinic for Internal

Veterinary Medicine of Leipzig University (Leipzig, Germany) with ready-to-use e pack

reagents (Roche Diagnostics Deutschland GmbH).

Body condition score and back fat thickness

The BCS was evaluated on a scale from 1 (emaciated) to 5 (overweight) in increments of 0.25

according to Edmonson et al. [44] with the only modification being that the transverse pro-

cesses were assessed by using both visual and tactile assessment. The BCS was always assessed

by the same trained person. The BFT was measured by ultrasound with an Eickemeyer Magic

1100 Smart Scanner equipped with a linear transducer as recommended by Staufenbiel [45].

The measuring point laid on the connecting line between the upper part of the Tuber ischiadi-

cum and the upper part of the Tuber coxae, at one hand width cranial of the Tuber ischiadi-

cum. The measurement included the skin and subcutaneous fat up to the Fascia trunci

profunda. Ethanol (70%; Carl Roth GmbH u Co. KG, Karlsruhe, Germany) was used as a cou-

pling medium on non-depilated skin [45].
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Body weight (BW)

The average body weight per cow per day was automatically calculated daily by the milking

robot software by using the body weight recorded before each milking, which was up to four

times per day.

Milk yield and milk components

The milk yield was recorded by the milking robot at each milking and was summed by the soft-

ware of the milking robot per cow per day. Milk components were determined in the monthly

herd test by the MKV EW (Milchkontrollverband Elbe-Weser e.V., Hankensbüttel, Germany),

which was performed if cows were� 5 DIM. Milk sample collection on test days included all

milkings in a 24-h sampling period by using the ICAR-approved Lely Shuttle milk sampling

unit (Lely S.à.r.l.). The concentrations of fat, crude protein and urea were analyzed by infrared

spectrophotometry and somatic cell count by flow cytometry using Combi Foss (Foss Electric,

Hillerød, Denmark). In addition to the data from the milk test days, the milking robot was

equipped with flow velocity, conductivity and optical sensors to estimate the daily milk fat and

protein percentages according to proprietary algorithms. The latter data were used to extrapo-

late the daily energy-corrected milk yield (ECM). The ECM was calculated using the formula

of German herd testing organizations (LKV) extrapolating to 40 g/kg fat and 34 g/kg crude

protein (equivalent to 32 g/kg true protein): ECM (kg/d) = milk yield (kg/d) × [0.038 × fat (g/

kg) + 0.021 × protein (g/kg) + 1.05] / 3.28.

Feed analysis

Samples of PMR were taken weekly directly after feed supply at 5–10 different places on the

feeding table. The samples were stored in labelled freezer bags at -20˚C and pooled over two

months before analysis. Samples of concentrates were taken weekly from the concentrate silos,

stored in labelled freezer bags at -20˚C and pooled over two to four months before analysis.

Feed analyses were performed in the laboratory of the LKS Landwirtschaftliche Kommunika-

tions und Service GmbH (Lichtenwalde, Germany) according to standard procedures [46].

Dry matter was determined in a drying cabinet (VDLUFA MB III 3.1). For concentrates,

crude ash was determined in a muffle furnace at 550˚C (VDLUFA III 8.1). Starch was deter-

mined by using a polarimeter (VDLUFA MB III 7.2.1), crude fat by the Soxhlet method with

hydrolysis (VDLUFA MB III 5.1.1) and crude protein by incineration (VDLUFA MB III

4.1.2). Acid detergent fibre expressed exclusive of residual ash (ADFom) was determined by

using FibertecTM 8000 (FOSS, Hilleroed, Denmark; method, VDLUFA MB III 6.5.2). Neutral

detergent fibre (comparable to assay with heat-stable amylase and expressed exclusive of resid-

ual ash; aNDFom), sugar, acid detergent lignin (ADL) and chemical components of PMR were

estimated by near-infrared spectroscopy according to the method VDLUFA MB III 31.2. Gas

formation for the estimation of net energy for lactation in feeds was measured by using the

Hohenheim Gas Test (VDLUFA MB III 25.1).

Statistical analysis

Statistical analyses were performed by using the software SAS (2001; version 8.2, SAS Institute

Inc, Cary, USA) and Sigma Plot 11.0 (Systat Software GmbH, Erkrath, Germany). Before all

analyses, data retrieved from the milking robot (BW, milk yield, milk composition and con-

centrate intake contained in Table 2, S1 Table, S2 Table, S1 Fig and S2 Fig) were pooled over

three consecutive days; e.g. values for d 2 represent the arithmetic mean of d 1 to 3. Data were

allocated to three experimental phases: the prepartum Phase 1 including d -21 to d -1, the
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PBLC+B supplementation Phase 2 from d 1 to d 37, and the post-supplementation Phase 3

from d 38 to d 58. Data were analyzed as a randomised block design using the mixed model

procedure of SAS with repeated measures within a phase. The model contained group, parity

as block, day as the repeated measure with cow as subject, and interaction between group and

day as the main effects. The phases were distinct periods with respect to physiological stages

and dietary treatments, which were usually significantly varied for different response variables

in this study. Parity was excluded from the model, if it increased P-values. Random effect of

cow was included in the model, if it improved model fit according to Akaike (or Bayesian)

information criterion (AIC). Different covariance structures including compound symmetry

(type = cs), autoregressive (type = ar(1)), unstructured (type = un), variance components

(type = vc) and Toeplitz (type = toep) were evaluated and the best covariance structure was

finally selected according to the best model fit (smaller-is-better rule of the AIC values) and

lower P-values. Usually, statistical models containing random effect of cow, parity and autore-

gressive covariance structure showed better model fit. When the interaction between group

and day was significant (P< 0.05), the ‘slice’ option in the ‘lsmeans’ statement was used to

determine differences among the treatments at each day. Comparisons among overall groups

or groups at a day (if they were found to be significant based on the ‘slice’ option) were per-

formed using ‘diff’ option in the ‘lsmeans’ statement.

Data from individual days (Table 3 and all supporting material) were analyzed by Sigma

Plot 11.0 (Systat Software GmbH, Erkrath, Germany) and are expressed as means and pooled

SEM. Before statistical comparisons, data sets were tested for normality (Kolmogorov-Smir-

nov’s test with Lilliefors’ correction) and equal variance (Levene’s median test). If both tests

Table 2. Concentrate intake, body weight (BW), BW changes, body condition score and back fat thickness of cows receiving plant bioactive lipid compounds and

biotin (PBLC+B; n = 18) from d -21 to 37 relative to parturition, cows receiving a monensin bolus (MON; n = 18) at d -21 or cows receiving no such supplements

(CON; n = 17).

Item Group1 SEM P-values

CON PBLC+B MON Group Day Group × day

Phase 1

Body condition score 3.56 3.74 3.63 0.141 0.41 <0.001 0.15

Back fat thickness, cm 2.86 3.33 3.21 0.268 0.37 0.34 0.23

Phase 2

Concentrate intake, kg/d2 5.01 4.98 4.85 0.344 0.90 <0.001 0.003

Body condition score 2.89 3.09 2.99 0.100 0.26 <0.001 0.88

Back fat thickness, cm 1.96 2.50 2.27 0.197 0.099 <0.001 0.80

BW, kg 685b 746a 723ab 22.8 0.049 <0.001 0.39

BW change, kg -45 -19 -46 14.0 0.089 <0.001 0.48

Phase 3

Concentrate intake, kg/d 6.94 6.77 7.14 0.381 0.70 0.041 0.13

Body condition score 2.42 2.64 2.58 0.091 0.17 <0.001 0.73

Back fat thickness, cm 1.18b 1.65a 1.51ab 0.145 0.048 <0.001 0.81

BW, kg 663b 750a 689ab 24.6 <0.001 0.57 0.67

BW change, kg -72b -19a -65b 14.9 0.002 <0.001 0.92

Phase 1: from d -21 to d -1 relative to parturition; Phase 2: from d 1 to d 37 relative to parturition; Phase 3: from d 38 to d 58 relative to parturition. SEM = standard

error of mean (for group × day).
1Least square mean values of the groups are reported.
2For concentrate intake, diet effect was not significant at any individual day.
abSuperscript letters indicate differences among treatment groups at P < 0.05.

https://doi.org/10.1371/journal.pone.0193685.t002
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were passed, data at each time point were compared by one-way ANOVA. If either test failed,

the Kruskal-Wallis one-way ANOVA on ranks was performed. The multiple comparison pro-

cedure of Student-Newman-Keuls was performed to identify the means that differed.

Significant differences were accepted at P< 0.05. Trends were generally considered when

0.05< P< 0.10. However, trends for effects on milk and ECM yields were considered when

0.05< P< 0.15 because these variables appeared far outside the power range of the test design.

Results

General health records

No obvious differences were found in the clinical health status among groups. Clinical ketosis was

not observed (for subclinical ketosis, see later section). Postpartum diseases for all 58 cows that ini-

tially entered the study included retained placenta (MON, n = 2), metritis (CON, n = 5; PBLC+B,

n = 2; MON, n = 3), mastitis (CON, n = 4; PBLC+B, n = 6; MON, n = 6), lameness (CON, n = 4;

PBLC+B, n = 4; MON, n = 2) and displaced abomasum (CON, n = 2; PBLC+B, n = 1). Some cows

were given calcium (CON, n = 1; PBLC+B, n = 4; MON, n = 5) and/or phosphorous infusions

(CON, n = 2; PBLC+B, n = 1). Treatments and calcium and phosphorous infusions were applied

by the local veterinarian and cows generally responded well. However, five of the cows listed here

had to be excluded from further analyses based on pre-defined exclusion criteria, including dis-

placed abomasum and recurring mastitis (CON, n = 2; PBLC+B, n = 2; MON; n = 1).

Concentrate intakes

The concentrate intakes resulting from the concentrate allowance minus unused concentrate

allowance are listed in Table 2 for Phase 2 and Phase 3, and in S1 Table for individual days.

Day effect was significant (P< 0.05; Table 2) as expected. Group × day interaction was signifi-

cant in Phase 2 (P< 0.05; Table 2); however, no differences in concentrate intakes were noted

among groups at any specific day (S1 Table).

Body condition

Body condition was assessed based on BFT and BCS recorded weekly by the same operator,

whereas BW was recorded daily by the milking robot after the beginning of lactation and

Table 3. Milk performance on herd test days of cows receiving plant bioactive lipid compounds and biotin (PBLC+B) from d -21 to 37 relative to parturition, cows

receiving a monensin bolus (MON) at d -21 or cows receiving no such supplements (CON).

Item First test day Second test day

CON PBLC+B MON SEM P-value CON PBLC+B MON SEM P-value

Days after calving 22 20 21 4.4 0.55 54 52 53 5.2 0.86

Milk yield, kg/d 39.1 39.0 41.1 3.06 0.72 42.0 45.0 46.3 2.38 0.17

ECM yield, kg/d 40.4 41.5 42.2 2.67 0.52 40.6 44.4 42.7 2.31 0.13

Fat, % 4.59 4.64 4.53 0.276 0.93 3.97ab 4.09a 3.56b 0.160 0.004

Protein, % 3.11 3.32 3.18 0.092 0.076 2.98 3.04 2.98 0.066 0.53

Urea, mg/L 240 236 267 19.3 0.17 254 261 266 15.7 0.74

Somatic cell count, cells/L 4011 97 61 34.5 0.83 7411 124 169 71.2 0.45

Data are presented as means and pooled SEM of 17 cows in the CON group, 18 cows in the PBLC+B group and 18 cows in the MON group.
abSuperscript letters indicate differences among treatment groups at P < 0.05.
1The CON group included two cows with >1000 somatic cells/L at each test day

ECM = energy corrected milk; SEM = standard error of mean

https://doi.org/10.1371/journal.pone.0193685.t003
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pooled over three consecutive days. The BFT was not different in Phase 1 prepartum, but

PBLC+B cows showed a trend for values higher than CON in postpartal Phase 2 (P = 0.099)

and significantly higher values in Phase 3 (P = 0.048), with MON cows being intermediate.

Similarly, although least square mean (LSM) of BCS were not different for the three phases

(Table 2), BCS of PBLC+B cows showed a trend for values higher than CON at several individ-

ual days after parturition (d 9, 16, 23, 51 and 58; P< 0.1) with significantly higher values than

CON at d 44 (P< 0.05; S2 Table). A very clear effect was seen on BW. Cows of the PBLC+B

group had higher BW than CON in both Phase 2 and Phase 3 (P< 0.05; Table 2). When plot-

ting the BW change relative to d 2 after parturition, it became obvious that cows of the PBLC

+B group almost retained their parturition BW throughout the postpartum period in contrast

to CON and MON cows that showed a trend for higher BW loss in Phase 2 (P = 0.089) and sig-

nificantly higher BW loss in Phase 3 (P = 0.002; Table 2; S1 Fig).

Milk yield and milk components

The first and second herd tests were performed 20 to 22 (± 4.4) and 52 to 54 (± 5.2) d after

calving, respectively, with no differences among groups (Table 3). Daily milk yield was not dif-

ferent among groups on these days (Table 3). On the first herd test day, the milk fat concentra-

tion was not different among groups; however, a trend for higher milk protein concentration

was observed in the PBLC+B group compared with the other two groups (P< 0.1). The trend

for higher milk protein concentration did not continue until the second test day. Instead, milk

fat concentration was higher on the second test day in PBLC+B vs. MON cows (P< 0.01),

with CON cows showing intermediate values. Concomitantly, ECM yield showed a trend for

higher values in PBLC+B vs. CON cows (P = 0.13; Table 3). Milk urea concentration and

somatic cell count were not different among groups on the herd test days.

Data from the milking robot are presented in Table 4 and, for individual days, in the sup-

porting material (S1 Table and S2 Fig). Frequency of milk robot visits did not differ among

groups throughout the trial period (Table 4; S1 Table). Daily milk yield was not different

among groups in Phase 2 but was higher in MON vs. CON cows in Phase 2 (P = 0.001), with

PBLC+B cows showing intermediate values. The yield of ECM was higher in PBLC+B cows

compared to both CON and MON cows in Phase 2 (P< 0.001; Table 4). In Phase 3, ECM

yield was higher in PLBLC+B and MON cows compared with CON cows (P< 0.001; Table 4).

The higher yields of ECM in the PBLC+B group was based, in part, on a trend for higher esti-

mated milk fat percentage of cows of the PBLC+B group compared to both other groups in

Phase 2 and Phase 3 (P< 0.1), coinciding with a trend for higher milk fat yield in Phase 2

(P = 0.094; Table 4). An interaction between group × day (P = 0.01) indicated that estimated

milk fat percentage of PBLC+B cows was higher than that of CON cows at the beginning of

Phase 2 (d 5 and d 8), higher than that of MON cows in the middle of Phase 2 (d 20 and d 26)

and higher than that of MON and CON cows at the end of Phase 2 (d 35; P< 0.05; Table 4; S2

Fig). The estimated milk protein percentage and yield showed no difference among groups

(Table 4), except for individual d 2, when estimated milk protein percentage was higher in

PBLC+B cows compared with CON and MON cows (P< 0.05; S2 Fig).

Blood serum metabolites and enzymes

Key indicators of energy metabolism are shown in Table 5 for phases and in S3 Table for indi-

vidual days. Serum glucose concentrations generally decreased with progressing of trial days

in Phase 1 and Phase 2 (P< 0.01) with no differences among groups and with no interaction

effect between group and day in each of the three trial phases (Table 5). Serum NEFA values

peaked at d 2 after parturition followed by a progressive decrease throughout Phases 2 and 3

Dairy cow supplementation with plant bioactive lipid compounds and biotin compared with monensin

PLOS ONE | https://doi.org/10.1371/journal.pone.0193685 March 27, 2018 10 / 20

https://doi.org/10.1371/journal.pone.0193685


(P< 0.01; Table 5; S3 Table), The peak in serum NEFA concentrations was followed by a peak

in BHB concentrations between 16 d to 30 d after parturition as indicated by day effects in

Phase 1 and Phase 2 (P< 0.01; Table 5; S3 Table). One prominent finding was a lower BHB

value in MON cows compared with PBLC+B cows in Phase 1 before parturition, with CON

cows having intermediate values (P< 0.05; Table 5). A trend for a group × day interaction

indicated that this was primarily due to lower BHB values in MON vs. CON and PBLC+B at d

-7 (P< 0.01; S3 Table). Based on a cut-off value of 1.4 mmol/L, the incidence of ketosis was

83% in CON, 61% in PBLC+B and 50% in MON cows over the whole trial period. Serum

NEFA concentrations did not differ among groups (Table 5). The triglyceride concentration

generally decreased after parturition in Phase 2 in all groups (P< 0.001). However, a

group × day interaction (P = 0.033) indicated that serum triglyceride concentrations were

higher in the PBLC+B group compared with the CON group on d 37 (Table 5; S3 Table).

Other metabolic indicators (cholesterol, bilirubin and urea; Table 5; S4 Table) and serum

activities of enzymes with relation to liver and muscle function (AST, GGT and GLDH;

Table 6; S5 Table) showed no differences among groups (P> 0.1), except for a trend for higher

AST and GGT values in MON in Phase 2 (P< 0.1; Table 6). Day effects were noted for most of

these variables in different phases. With advancing time of Phase 1, concentrations of choles-

terol and the activity of GGT generally decreased (P< 0.001); whereas, concentrations of bili-

rubin increased (P< 0.001). In Phase 2, the activity of AST decreased gradually (P< 0.001);

whereas concentrations of cholesterol, bilirubin and urea, as well as the activities of GGT and

GLDH, increased (P< 0.001). In Phase 3, the activity of GGT decreased (P = 0.045); whereas

Table 4. Milk robot visits, milk yield and milk composition of cows receiving plant bioactive lipid compounds and biotin (PBLC+B; n = 18) from d -21 to d 37 rela-

tive to parturition, cows receiving a monensin bolus (MON; n = 18) at d -21 or cows receiving no such supplements (CON; n = 17).

Item Group1 SEM P-values

CON PBLC+B MON Group Day Group × day

Phase 2

Milk robot visit per day 2.7 2.7 2.8 0.20 0.75 <0.001 0.17

Milk yield, kg/d 36.2 37.3 37.6 1.12 0.063 <0.001 0.99

ECM yield, kg/d 36.8b 39.5a 37.6b 0.48 <0.001 <0.001 1.00

Milk fat, %2 4.16 4.48 4.10 0.161 0.083 <0.001 0.010

Milk protein, % 3.55 3.63 3.55 0.060 0.35 <0.001 0.13

Fat yield, kg/d 1.55 1.74 1.58 0.081 0.094 0.003 0.99

Protein yield, kg/d 1.26 1.31 1.29 0.060 0.68 <0.001 0.84

Phase 3

Milk robot visit per day 3.1 3.2 3.1 0.21 0.89 0.86 0.83

yield, kg/d 43.6b 45.0ab 46.6a 1.10 0.001 1.00 1.00

ECM yield, kg/d 41.6b 45.0a 44.1a 0.63 <0.001 1.00 1.00

Milk fat, % 3.69 4.03 3.66 0.135 0.055 0.33 0.47

Milk protein, % 3.26 3.32 3.23 0.053 0.43 0.68 0.47

Fat yield, kg/d 1.61 1.82 1.69 0.079 0.12 0.97 0.89

Protein yield, kg/d 1.43 1.49 1.50 0.055 0.49 0.82 0.43

Phase 2: from d 1 to d 37 relative to parturition; Phase 3: from d 38 to d 58 relative to parturition. ECM = energy corrected milk; SEM = standard error of mean (for

group × day).
1Least square mean values of the groups are reported.
2For milk fat percentage: at d 5 and d 8, CON vs. PBLC+B: P < 0.05; at d 20 and d 26, MON vs. PBLC+B: P < 0.05; at d 35, CON vs. PBLC and MON vs. PBLC+B:

P < 0.05.
abSuperscript letters indicate differences among treatment groups at P < 0.05.

https://doi.org/10.1371/journal.pone.0193685.t004
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concentrations of cholesterol (P< 0.001) and urea (P = 0.014) increased (Tables 5 and 6; S4

and S5 Tables).

Discussion

To date, several nutritional intervention strategies have been developed to optimize energy

metabolism around parturition and, thereby, to decrease the incidence of subclinical ketosis of

dairy cows. As the pathophysiology of ketosis proceeds from a shortage of energy, especially in

the form of glucose [4, 47], most strategies target measures to increase energy density in the

diet and energy intake [48–50], measures to increase the supply of glucogenic precursors and

measures to enhance the conversion of glucogenic precursors to glucose [51–53].

In the present study, we used MON as one current ‘gold standard’ supplement that targets

ketosis prevention after calving [21, 54, 55]. The main action of MON is to increase ruminal

propionate production, thereby, increasing the supply of this glucogenic precursor [20, 21,

Table 5. Serum metabolite concentrations in cows receiving plant bioactive lipid compounds and biotin (PBLC+B; n = 18) from d -21 to 37 relative to parturition,

cows receiving a monensin bolus (MON; n = 18) at d -21 or cows receiving no such supplements (CON; n = 17).

Item Group1 SEM P-values

CON PBLC+B MON Group Day Group × day

Phase 1

Glucose, mmol/L 3.70 3.64 3.72 0.077 0.72 0.003 0.86

BHB, mmol/L 0.77ab 0.83a 0.68b 0.047 0.024 0.004 0.097

NEFA, mmol/L 0.15 0.17 0.20 0.035 0.40 <0.001 0.54

Triglycerides, mmol/L 0.29 0.31 0.28 0.018 0.35 0.10 0.39

Cholesterol, mmol/L 2.38 2.39 2.33 0.167 0.96 <0.001 0.98

Bilirubin, μmol/L 1.16 1.06 1.30 0.278 0.72 <0.001 0.65

Urea, mmol/L 4.17 4.32 4.35 0.187 0.66 0.20 0.27

Phase 2

Glucose, mmol/L 2.99 2.97 3.18 0.143 0.17 <0.001 0.34

BHB, mmol/L 1.64 1.48 1.33 0.183 0.28 <0.001 0.23

NEFA, mmol/L 0.45 0.48 0.43 0.059 0.36 <0.001 0.78

Triglycerides, mmol/L2 0.13 0.14 0.13 0.006 0.52 <0.001 0.033

Cholesterol, mmol/L3 2.82 2.98 2.90 0.185 0.78 <0.001 0.007

Bilirubin, μmol/L 2.81 2.13 2.94 0.519 0.18 <0.001 0.32

Urea, mmol/L 4.41 4.25 4.68 0.244 0.16 <0.001 0.82

Phase 3

Glucose, mmol/L 3.01 3.15 3.10 0.114 0.55 0.46 0.37

BHB, mmol/L 1.61 1.31 1.31 0.218 0.47 0.11 0.48

NEFA, mmol/L 0.19 0.20 0.21 0.023 0.78 0.001 0.65

Triglycerides, mmol/L 0.15 0.17 0.17 0.009 0.24 0.16 0.50

Cholesterol, mmol/L 4.48 4.78 4.80 0.271 0.60 <0.001 0.76

Bilirubin, μmol/L 0.73 0.82 0.98 0.157 0.28 0.37 0.12

Urea, mmol/L 5.07 4.86 5.14 0.226 0.52 0.014 0.47

Phase 1: from d -21 to d -1 relative to parturition; Phase 2: from d 1 to d 37 relative to parturition; Phase 3: from d 38 to d 58 relative to parturition. BHB = β-

hydroxybutyric acid; NEFA = non-esterified fatty acids; SEM = standard error of mean (for group × day).
1Least square mean values of the groups are reported.
2For triglyceride at d 37, CON vs. PBLC+B: P = 0.005.
3For cholesterol, treatment effect was not significant at any individual day.
abSuperscript letters indicate differences among treatment groups at P < 0.05.

https://doi.org/10.1371/journal.pone.0193685.t005
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56]. Previous trials have shown that PBLC can equally increase ruminal propionate production

[31, 32, 56] and, when combined with biotin as a cofactor of gluconeogenic enzymes (propio-

nyl-CoA carboxylase and pyruvate carboxylase; [33]), it can possibly provide additional bene-

fits for body condition [32].

To compare the effects of PBLC+B with those of MON, we performed a controlled study in

a commercial dairy herd that was managed according to very high standards but that neverthe-

less had a history of frequent cases of subclinical ketosis. We included all multiparous cows

that calved in the study period, because multiparous cows are especially prone to metabolic

dysfunctions in early lactation [57]. The design of the present study involved labour- and cost-

intensive in-depth investigations in a representative number of individual cows. As such, the

number of included cows did not allow a statistical comparison of general health benefits

among treatments. At a descriptive level, however, no obvious differences were seen among

the groups.

No clinical ketosis was observed during the course of the study. As expected from the herd

history, however, subclinical ketosis was highly prevalent throughout of the study, especially,

in the CON group. The cut-off points at which serum BHB concentrations of individual cows

are verifiably associated with diseases have mostly been identified between 1.2 and 1.4 mmol/L

[14]. Even when applying the higher value of 1.4 mmol/L, the incidence of subclinical ketosis

was 83% in the CON group. Ketosis incidence in the PCLB+B and MON groups was 61% and

50%, respectively, with MON additionally inducing a decrease in mean serum concentrations

of BHB around calving. This is in agreement with the previously established potential of MON

to decrease the incidence of subclinical ketosis in postpartum dairy cows [21, 54, 55] and fur-

thermore indicates a similar potential for the tested combination of PBLC+B.

Serum variables other than BHB were either not or not markedly altered by the two treat-

ments. Serum glucose concentrations were generally very low in all groups, especially immedi-

ately after calving. This was as expected, because the shortage of glucose is the ultimate trigger

Table 6. Serum activities of enzymes in cows receiving plant bioactive lipid compounds and biotin (PBLC+B; n = 18) from d -21 to 37 relative to parturition, cows

receiving a monensin bolus (MON; n = 18) at d -21 or cows receiving no such supplements (CON; n = 17).

Item Group1 SEM P-values

CON PBLC+B MON Group Day Group × day

Phase 1

AST, U/L2 67.4 67.2 79.7 5.66 0.16 0.33 0.045

GGT, U/L 23.6 24.8 25.7 1.74 0.65 <0.001 0.96

GLDH, U/L 11.0 11.2 12.5 2.63 0.88 0.12 0.088

Phase 2

AST, U/L 98.3 89.3 109.8 9.23 0.094 <0.001 0.55

GGT, U/L 29.1 27.5 33.9 2.15 0.093 <0.001 0.76

GLDH, U/L 18.7 16.1 20.3 6.26 0.79 <0.001 0.94

Phase 3

AST, U/L 80.9 70.9 83.9 5.53 0.107 0.59 0.48

GGT, U/L 30.7 30.4 36.2 2.64 0.16 0.045 0.49

GLDH, U/L 16.5 13.8 16.0 4.20 0.85 0.53 0.17

Phase 1: from d -21 to d -1 relative to parturition; Phase 2: from d 1 to d 37 relative to parturition; Phase 3: from d 38 to d 58 relative to parturition. AST = Aspartate

transaminase; GGT = γ-Glutamyl transpeptidase, U/L; GLDH = Glutamate dehydrogenase, U/L; SEM = standard error of mean (for group × day).
1Least square mean values of the groups are reported.
2For AST at d -7, CON vs. MON: P = 0.033 and PBLC+B vs. MON: P = 0.022.

One outlier for GLDH was removed in MON.

https://doi.org/10.1371/journal.pone.0193685.t006
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of ketone body production in the liver. The latter was recently substantiated by Ruoff et al.

[58] who identified that hypoglycaemia after calving is associated with the onset of hyperketo-

naemia in multiparous cows. When analysing individual days, occasional trends were noted

for higher serum glucose concentrations in the PBLC+B and MON groups and for lower urea

concentrations in the PBLC+B group. However, because the group and group × day P-values

for these variables were> 0.1, care should be taken to interpret this as indicators of improved

glucose and protein metabolism, respectively, especially when considering that other factors

can also have an impact on these metabolites. Serum triglyceride concentration was slightly

higher in the PBLC+B group on d 37, which may have some relationship to the higher milk fat

concentrations observed in this group (see later). On the other hand, serum concentrations of

NEFA, cholesterol and bilirubin were not different among groups.

The activity of the serum enzyme GLDH was also not different among groups. However,

AST and GGT activities tended to be highest in the MON and lowest in the PBLC+B cows

between 1 and 37 d after calving. Thus, our results are in partial contrast to a recent study

involving the same MON controlled-release capsule and the same PBLC (at 1 g/d without bio-

tin) in cows that were slightly more overconditioned (BCS = 3.95 ± 0.08) than the cows of the

present study. In the previous study, GGT and GLDH activities selectively increased in the

PBLC group during d 15 to d 56 after calving, indicating some degree of liver injury, whereas

MON cows appeared to be protected [59]. In the present study, by contrast, the reference

range of the analysing laboratory for AST (< 50 U/L), GGT (< 50 U/L) and GLDH (< 30 U/

L) was exceeded most frequently in the MON group, and group values of AST and GGT activi-

ties tended to be lower in PBLC+B cows in Phase 1. Therefore, future studies should determine

whether the increased GGT and GLDH activities observed by Drong et al. [59] after PBLC sup-

plementation were merely an incidental finding or whether the co-supplementation of biotin

should be routinely recommended to achieve optimum PBLC effects without compromising

the liver, at least in overconditioned cows.

The most striking finding of the present study was the effect of PBLC+B on BW. Because of

a negative energy balance, high-yielding dairy cows typically lose between 40 and 70 kg BW at

one to two months after calving [60–62]. A weight loss of ~70 kg was also observed in the

CON and MON groups in Phase 3 of the present study. The cows of the PBLC+B group, how-

ever, did not lose any significant weight and were the only group that had completely retained

their BW at the end of the study. The prevented weight loss after calving in the PBLC+B group

was partially reflected by a smaller loss of BFT; whereas, BCS points were not different for the

analyzed phases but only some individual time points. Therefore, the reason for the protection

against BW loss is not easily evident and probably includes any combination of lower mobili-

zation of body fat, lower mobilization of lean body mass and/or increased feed intake, i.e.

higher weight of the gastrointestinal tract. An argument in favour of an PBLC+B effect on feed

intake can be made from the expected stimulation of DM intake by biotin supplementation as

established by meta-analysis [39], whereas DM intake-increasing effects of PBLC have been

observed only occasionally [63]. The intakes of concentrates were not different among the

groups; however, as we were unable to record the intake of PMR in the present study, we can-

not proof or disproof stimulation of feed intake. Nonetheless, lower mobilization of body fat,

lower mobilization of lean body mass and increased feed intake can all be judged as positive

effects of PBLC+B on postpartum metabolic health and appear to distinguish PBLC+B from

MON. Monensin has a proven feed-depressing action [20, 56, 64], which partially counteracts

its several positive influences on postpartum metabolic health. The positive influence of MON

on postpartum BW has been quantified at 60 g/d in a meta-analysis [64], which appears consis-

tent with the results of the present study, but is far less than that observed for PBLC+B under

otherwise identical conditions.
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One frequently used criterion for judging the effects of a treatment on dairy cow metabo-

lism is milk performance. As expectable from meta-analysis [64], MON increased milk yield in

Phase 3 of the study; however, milk components responded primarily to PBLC+B treatment. A

trend for higher milk protein concentration was observed in the PBLC+B group on the first

herd test day. Interestingly, an almost identical trend for an increase in milk protein concen-

tration by 0.2% on the first (but not second) herd test day was observed in our preceding pilot

study involving PBLC+B on another farm [32]. The latter greatly substantiates the present

finding, despite the lack of statistical significance. Biotin is not known to affect milk protein

concentration [39]. Therefore, the increase in milk protein concentration may be attributed

either to the established effects of PBLC on milk protein output [31, 41] or to the combined

effect of both PBLC and biotin.

Milk fat concentration responded to treatment on the second test day when PBLC+B cows

showed higher values than MON cows, with CON cows being intermediate. A higher milk fat

percentage of the PBLC+B group was also indicated as a trend from the daily estimates of the

milking robot over the whole observation period (Phase 2 and Phase 3). Part of the contrast in

the milk fat concentration of PBLC+B vs. MON cows is probably attributable to the milk fat-

depressing action of MON. The latter has been linked to a higher concentration of trans-10

18:1 fatty acid in milk, indicative of the impaired bio-hydrogenation of linoleic acid in the

rumen [54, 65]. Trans-10 18:1 fatty acid, on the other hand, is a potent inhibitor of milk fat

synthesis [66]. Alternatively, a higher milk fat concentration could also, in part, result from

enhanced milk fat synthesis during PBLC+B treatment. An increase in milk fat concentration

is not typically observed when PBLC supplementation of cows is applied after the transition

period [31, 65]. However, an increase in milk fat percentage has been seen in high-conditioned

(BCS 3.95) transition cows with restricted concentrate feeding and PBLC supplementation, as

reported by Drong et al. [21]. The latter authors suggested that this might be attributable to the

enhanced clearance of circulating NEFA by the mammary gland in PBLC-supplemented cows.

Biotin supplementation could theoretically also stimulate milk fat synthesis, although this is

not typically seen in dairy cows [39]. However, a key role of biotin for fatty acid synthesis in

the bovine mammary gland is deductible from the profound inhibition of mammary fatty acid

synthesis by the biotin antagonist avidin [67], supporting the view that an increased supply of

biotin as cofactor of acetyl-CoA synthase can enhance lipid generation from ruminally-pro-

duced acetate.

The differences in the milk fat concentration together with a milk yield intermediate

between CON and MON resulted in increased yields of energy-corrected milk for PBLC+B vs.

CON cows of ~3 to 4 kg/d in both treatment phases. Moreover, ECM yield was also higher in

PBLC+B cows compared to MON cows in Phase 2. This conforms with results of previous

studies with the used PBLC at dosages of 1 to 2 g/d per cow [32, 41, 63] and with results of a

meta-analysis of 238 cows in 11 trials with biotin at dosages of 20 mg/d per cow, showing an

increase in daily milk yield. Notably, this increase in ECM yield was associated with lower BW

loss and was, as such, not produced at the expense of body condition.

Conclusion

Negative energy balance and excessive BW loss are major challenges that coincide with sub-

clinical ketosis and associated diseases in postpartum dairy cows. The key result of the present

study is that a combination of PBLC+B prevents body weight loss after parturition almost

completely. Future studies will have to elucidate to what extent this PBLC+B effect is attribut-

able to a better conservation of body fat, a better conservation of lean body mass and/or an

increased DM intake. Supplementation of PBLC+B were further associated with a similar
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ketosis incidence and partly higher yields of energy-corrected milk compared with MON-sup-

plemented cows. Thus, the PBLC+B treatment appears to be an attractive alternative to MON

supplementation in transition dairy cows, with a high potential of reducing antibiotic use in

agriculture.
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