
1

Bypass Strong V-Structures and
Find an Isomorphic Labelled Subgraph

in Linear Time

Heiko Dörr

Institut für Informatik
Freie Universität Berlin

Report B-94-08
7/13/94

This paper identifies a condition for which the existence of an isomorphic subgraph
can be decided in linear time. The condition is evaluated in two steps. First the host
graph is analysed to determine its strong V-structures. Then the guest graph must be
appropriately represented. If this representation exists, the given algorithm con-
structively decides the subgraph isomorphism problem for the guest and the host
graph in linear time.
The results applies especially to the implementation of graph rewriting systems. An
isomorphic subgraph must be determined automatically in each rewriting step. Thus
the efficient solution presented in this paper is an important progress for any imple-
mentation project.

Institut für Informatik Report B-94-08
Freie Universität Berlin July 13, 1994
Takustraße 9
D-14195 Berlin
doerr@inf.fu-berlin.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/199416719?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

1 Introduction

A main effort in any implementation of rule-based graph rewriting systems is directed to
the solution of the subgraph isomorphism problem for labelled graphs. A graph rewriting
rule is applicable to a host graph only if there is a subgraph isomorphic to the left-hand side
of the rule. Hence the labelled subgraph problem must be solved in each rewriting step.
Current implementations follow two strategies to deal with the problem. They either keep
the problem open to the user who determines an isomorphic subgraph interactively
[LöBe93], [Him89] or in advance [KiMa92], or they perform a full search [Zün92]. Neither
strategy is satisfying with respect to a fast execution which is a key condition for a broader
use of graph rewriting.

In general the subgraph isomorphism problem lies in NP for undirected and directed
labelled graphs [GaJo79]. When considering labelled graphs more information on the
problem instances is available. Vertices and edges become distinguishable by their labels.
Our approach to an efficient algorithm for the labelled subgraph isomorphism makes heavy
use of labels.

Let be finite alphabets. A finite non-empty set V is the set of vertices, and
 is the set of edges. A total function is a vertex labelling. The tri-

ple is a directed labelled graph over , or just a graph. The numbers
 and denote the order and size of G. The set of unique vertex labels of G

is defined as .

Let and be graphs. The graph G' is a subgraph of G,
 iff and . Let be a bijective vertex map such that

for the corresponding edge map , defined as =
, holds and . Based on the vertex bijection the

graph isomorphism is defined. The graph G contains a
subgraph isomorphic to G' iff there is a graph isomorphism such that . The
graph G is the host, whereas G' is the guest graph. When clear from context we omit the
indices of the vertex and edge maps and respectively.

The subgraph isomorphism problem for labelled graph is stated as follows: Given two
graphs G and G', is there a graph isomorphism such that ?

Let G and G' be two graphs. Any graph for which there exists a partial graph iso-
morphism is a partial handle. If is total, then is a full handle. A partial
handle with is an initial handle.

Let be a partial graph morphism. The graph morphism extends by a
vertex iff and there is an edge incident to v such
that where dom determines the domains of the vertex and edge
maps h induced by .

ΣV ΣE,
E V ΣE× V×⊆ l: V ΣV→

G V E l, ,()= ΣV ΣE,
p V= q E=

uv G() ul ΣV∈ !∃ v V∈ such that l v() ul={ }=

G V E l, ,()= G' V' E' l', ,()=
G' G⊆ V' V E' E⊆,⊆ l' l V '= hV: V' V→

hE: E' E→ hE E'() hV s() el hV t(), ,(){
s el t, ,() E'∈ } hE E'() E= l l' o hV

1−= hV

ĥ G'() hV V'() hE E'() l' o hV
1−, ,()=

ĥ ĥ G'() G⊆

hV hE

ĥ ĥ G'() G⊆

Gp G⊆
ĥ: G' Gp→ ĥ Gp

Gp v{ } ∅ l, ,()= v V∈
ĥ: G' G→ h'ˆ ĥ
v V'∈ v{ } dom h'()\ dom h()= e E'∈

e{ } dom h'()\ dom h()=
ĥ

3

2 The Basic Algorithm

The labelled subgraph isomorphism can be constructed by traversing the guest graph start-
ing at an arbitrary initial vertex. The first step of the procedure determines the set of initial
partial handles according to the initial vertex. In each subsequent step the algorithm tests
whether an edge can be mapped to an edge incident to a current partial handle. If possible,
current partial handles and the induced vertex maps are extended and comprise the set of
handles current to the next step. Thus all handles current to an iteration have an identical
inverse image.

A so-called connected enumeration represents a traversal of the guest graph. The ele-
ments of the enumeration are successively drawn by the algorithm. The enumeration must
ensure that for all edges there is one adjacent edge preceding it in the enumeration because
the main principle of our algorithm is the extension of partial handles. Otherwise an exten-
sion would be impossible. The initial edge deserves special treatment. The root of a con-
nected enumeration is one vertex incident to the initial edge.

Definition 1 Let be a graph with size q. A sequence of edges ,
 is an enumeration of iff . An enumeration

 of is connected iff for all there is an adjacent edge with . The
root vertex of is a vertex incident to .

The connected enumeration of a guest graph G' and the host graph G are the input to the
algorithm for labelled subgraph matching. The algorithm performs a breadth first search
for a graph isomorphism and decides the existence of a graph isomorphism by construction.

Algorithm labelled isomorphic subgraph

Let G and G' be graphs.
INPUT: G and a connected enumeration of with root vertex
OUTPUT: a set of graph isomorphisms with .

1. INITIALIZE

2. SET
3. FOR DO

LET
CASE : (* check *)

: (* extension *)
:

SET
4. OUTPUT

We prove the correctness of the algorithm.

G V E l, ,()= ei() ei E∈
i 1…q= E E ei i 1…q={ }=

ei() i, 1…q= E ei ej j i<
ei() i, 1…q= e1

ei() i, 1…q= E' v V'∈
ĥ ĥ G'() G⊆

A0:= ĥ v'∃ V l' v() l v'()=,∈ h v() v'=,{ }
W0:= v{ }
i 1…q=

s el t, ,() ei=
s t Wi 1−∈, Ai:= ĥ Ai 1−∈ h ei() E∈{ }

s Wi 1−∉ Ai:= ĥi ĥiextends ĥi 1− Ai 1−∈ by s{ }
t Wi 1−∉ Ai:= ĥi ĥiextends ĥi 1− Ai 1−∈ by t{ }

Wi:= Wi 1− s t,{ }∪
Aq

4

Lemma 1 Let G and G' be two graphs. Let be a connected enumeration
of with root vertex . Let A be the output of the labelled subgraph algorithm for the
input G, , and v. For all it holds that .

Proof. We adopt the terminology of the labelled subgraph algorithm and prove
by induction over i. By definition of it holds that for all and initial
handles . Let , , and be the
current edge. Assume now that for the partial handle

 and let be an extension of .
If both endpoints are already found, i.e. , then it holds for all that

. Since extends a proceeding by the mapping of it follows for
the induced vertex maps that . The same argument holds for the
induced edges maps . With it follows that

.
Let now without loss of generality . Since extends by s it holds that

 and .
The extended graph morphism maps s into V and into E. Hence and
the proof is complete. ■

For the analysis of the algorithm, we assume that the host graph G is given in a frame-based
data structure. Each frame stores the direct neighbourhood of a vertex. Each slot of a frame
contains a list of isomorphic edges incident to the frame vertex. With this data structure we
can directly address incident edges by their labels and direction.

The algorithm performs two major operations depending on the current edge, either a
simple check or an extension. A check is executed when both endpoints of the edge are in
the domain of the morphisms found already. It selects those morphisms which are defined
for that edge, i.e. the corresponding partial handles must contain vertices which are incident
to the image of this edge. When one endpoint is missing the algorithm extends the current
handles based on the entries of the slot. We assume that a single check and a single exten-
sion take one unit of time.

The complexity of the algorithm depends strongly on the number of slot entries. In case
of multiple entries the algorithm must scan the list of entries to find the possible images of
the given edge. Consequently the check takes time dependent on the number of entries. If
we have to extend a match and the respective slot has multiple entries, the extension is per-
formed for each entry and each current handle. Thus multiple extensions must be con-
structed.

The run time of the algorithm is determined by steps 1 and 3. The analysis of step 3 de-
pends on the edge which is being processed. Let us determine the run time for the i-th iter-
ation with edge for . If both endpoints are included in the
current match one check is performed for each handle. Let and be the number
of entries in the respective slot of vertices and for morphisms . Hence the
number of tests is

depending on the vertex at which the existence of the edge is checked.

ei() i, 1…q=
E' v V'∈

ei() i, 1…q= ĥ A∈ ĥ G'() G⊆
ĥ G'() G⊆

A0 ĥ0 G0() G⊆ ĥ0 A0∈
G0 v{ } ∅ l', ,()= i 0 … q 1−, ,{ }∈ ĥi Ai∈ s el t, ,() ei 1+=

ĥi Gi() G⊆
Gi Wi ej j 1…i={ } l', ,()= ĥi 1+ Ai 1+∈ ĥi

s t Wi∈, ĥi 1+ Ai 1+∈
hi 1+ ei 1+() E∈ ĥi 1+ ĥi ei 1+

dom hi() dom hi 1+() Wi==
dom hi() dom hi 1+()\ ei 1+{ }= ĥi Gi() G⊆

ĥi 1+ Gi 1+() G⊆
s Wi∉ ĥi 1+ ĥi

dom hi() dom hi 1+()\ s{ } Wi=()= dom hi() dom hi 1+()\ ei 1+{ }=
ei 1+ ĥi 1+ Gi 1+() G⊆

ei s el t, ,()= i 1 … q, ,{ }∈
nh t() i, nh s() i,

h t() h s() ĥ Ai 1−∈

nh t() i,
ĥ Ai 1−∈∑ or nh s() i,

ĥ Ai 1−∈∑

5

When an extension is performed, assume that we extend the current handles by possible
images of the source s, i.e. . Let again be the number of entries in the respec-
tive slot of vertices . When the slot in the image of t is not empty, i.e.

, the algorithm extends all handles of . For each item of a slot an extension
must be defined. The number of extensions in the i-th step is then

To determine the overall run time, let p and q be the order and the size of the guest graph
G'. In step 1, comparisons are necessary to find all initial handles. Then the algorithm
must map vertices onto images in the graph G. The mappings are constructed by
extensions of current handles. As a consequence, the existence of remaining
edges must be checked. Without loss of generality, assume a connected enumeration which
drives the isomorphism algorithm such that all extensions are performed before any edge
existence is checked. Assume further that only source vertices must be found. Let be
defined as above. The overall run time of the algorithm then is

.

An execution of the algorithm does not branch if the number of handles does not increase
in any step. This is a restriction particular for the extension steps since checks per definition
do not increase the number of morphisms. In case the set of initial morphisms has only one
element, the non-branching execution of the algorithm computes a unique full handle if
there is a match at all.

Definition 2 Let G and G' be two graphs and be a connected enumeration
of with root vertex . The labelled subgraph isomorphism algorithm executes with-
out branches iff for all and any there exists at most one exten-
sion .

For an execution without branches we can derive the number of occurring extensions.

Lemma 2 Let G and G' be two graphs with and . Let
be a connected enumeration of with root vertex . Let be the number of
initial handles. If the labelled subgraph isomorphism algorithm executes non-branching it
performs extensions.

Proof. From the premises it follows for all and any that there exists at
most one extension . Hence the algorithm performs extensions only on single
entry slots and either or depending on the direction of the extension. Fur-
thermore it holds that for all ; hence for

. Let us assume that the elements of the enumeration are such that the mapping
algorithm extends by the source vertex. For the number of extensions follows

. ■

s Wi 1−∉ nh t() i,

h t() h Ai 1−∈{ }
nh t() i, 0> Ai 1−

nh t() i,
ĥ Ai 1−∈∑

V
p 1−

q p 1−()−

nh t() i,

V nh t() i,
ĥ Ai 1−∈∑()i 1=

p 1−∑ extensions nh t() i,
ĥ Ai 1−∈∑()i p=

q∑ checks+ +

ei() i, 1…q=
E' v V'∈

i 1 … q 1−, ,{ }∈ ĥi Ai∈
ĥi 1+ Ai 1+∈

p V'= q E'= ei() i, 1…q=
E' v V'∈ m A0=

m p 1−()
i 1…q= ĥi Ai∈

ĥi 1+ Ai 1+∈
nh s() i, 1≤ nh t() i, 1≤

Ai 1+ Ai≤ i 0…q 1−= Ai A0≤ m=
i 1…q=

nh t() i,
ĥ Ai 1−∈∑()i 1=

p 1−∑ Ai()i 1=
p 1−∑ A0()i 1=

p 1−∑ m p 1−()≤ ≤ ≤

6

Theorem 3 The algorithm takes time linear to the size of the guest graph if the extensions
and checks are performed on single entry slots and there is exactly one initial handle.

Proof. Lemma 2 states that if the algorithm executes without branches the number of exten-
sions is bound by . If the root vertex of the input enumeration has a unique image
in the host graph, the number of extensions equals . The run time of the whole algo-
rithm now depends still on the checks for the existence of the remaining edges.
If these checks are performed on vertices which have at most one entry in the slot for the
respective edge, the algorithm performs checks. ■

As a consequence we must determine single entry slots of the host graph. Furthermore if
we can give an appropriate enumeration of the guest graph we have proven the statement
given as the title of the paper.

3 Strong V-Structures

There are two main factors for the combinatorial explosion of the subgraph algorithm.
Firstly there may be several initial handles for the root vertex; secondly the connected enu-
meration of the guest graph may admit multiple extensions of partial handles. In that case
the algorithm must process multiple partial handles in the next iteration.

There are mostly several enumerations for a graph. Why should it not be possible to de-
termine connected enumerations which do not lead to multiple extensions? The major
question would then be: how can we determine that enumeration, if it exists?

Figure 1 gives an example for a host graph for which a multiplying and a non-multiply-
ing connected enumeration exist. The study of that graph provides a first impression of the
problem for a guest graph and a host G. Assume that the algorithm has in an intermedi-
ate state determined the subgraph . Only edges incident with are candidates for the
next extension step. At this stage we have two alternatives. We could test the existence of
an image either of edge (2,b,3) or of edge (1,e,3). The selection of the first alterna-
tive causes three extensions and thus three partial handles which are analysed further. Two
of them are misleading. This fact will be observed in the next iteration. If we try to extend

 following the second alternative, we are lucky because we find a singular extension.
Furthermore we can complete the handle in one additional step.

Obviously we do not want to rely on fortune when we select a connected enumeration
for a given rule. A closer analysis of the example given in Figure 1 provides a hint for this
distinction. The host graph G has a characteristic property causing the multiplication of
partial handles. It contains three edges for which the extension of by the edge
(2,b,3) is possible. Pairs of these potential images form automorphic semipaths of
length 2. Whenever a host graph contains such automorphism, the isomorphism algorithm
may take non-linear time.

The example also includes the key property for the solution of the “multiplication prob-
lem”. There is one enumeration initiated in vertex 1 which performs a non-multiplying
search. When we choose the enumeration ((1,e,3),(2,b,3),(1,a,2)), we do not
fall into the automorphism trap. Thus the occurrence of non-trivial automorphisms on

m p 1−()
p 1−

q p-1()−

q p-1()−

G'
G1 G1

G1

G1

7

semipaths of length 2 is not crucial, but an important information for the selection of a non-
multiplying connected enumeration.

Strong V-structures characterize automorphic semipaths of length 2 by their labels.
Since only the labels of vertices and not their identity is of interest for the algorithm, this
characterization is sufficient. We have chosen the adjective “strong” because the labels of
the automorphic outer vertices will be significant also.

Definition 3 The set of all strong V-structures over alphabets is defined as
. Let be a graph. A pair of edges

 is an instance of a strong V-structure iff there are ver-
tices , such that and for

 or otherwise . The set of
strong V-structures of a graph G is given by

.

Obviously the component of a strong V-structure must not be a unique
label. The edges ((12,b,13)(12,b,14)) of graph G in Figure 1 form an instance of
the strong V-structure (B,C,b,out).

We can determine svs(G) by sorting the incident edges and checking the occurrence of
duplicates.

The strong V-structures of a graph are closely related to the data structure which was pro-
posed for the implementation. We distinguished single and multiple entry slots depending
on the number of entries. For each vertex of a graph G in the frame representation and from
the knowledge of svs(G) it follows whether a slot has definitely at most one entry or not.
For all instances of a strong V-structure it holds that e and e' are
isomorphic with respect to their center vertex. Thus the slot of the center vertex determined
by , and d contains at least e and e', and thus it is a multiple entry slot.

As a consequence of Lemma 2 on the number of extensions, and from the additional
knowledge of svs(G), we can decide whether the labelled subgraph isomorphism executes

Figure 1 Multiplying and non-multiplying connected enumerations

2a

e

b

e

b

b
b

ĥ1 G1()

G

G'
G1

ĥ1

B
3

C
1

A

13

C
14

C
15

C

12a

B
11

A

ΣV ΣE,
SVS ΣV ΣV ΣE in out,{ }×××= G V E l, ,()=

e e',() E2∈ vs vl1 vl2 el d, , ,()=
x y z, , V∈ y z≠ l x() vl1= l y(), l z() vl2= = d out=

e x el z, ,()= e', x el y, ,()= e z el x, ,()= e', y el x, ,()=

svs G() vs SVS e e',() E2 instance of∈ vs∃∈{ }=

vl2 vl1 vl2 el d, , ,()

e e',() vl1 vl2 el d, , ,()

vl2 el,

8

without branching. We therefore consider connected enumerations which bypass a set of
strong V-structures.

Definition 4 Let G be a graph and . Let , be a connected enumer-
ation of with root vertex v. Let be the set of vertices incident to an edge which is part
of the prefix of length i for and . Let svs be a set of strong V-struc-
tures. The connected enumeration , bypasses svs iff for all ,

if
if , and
if : either or .

Lemma 4 Let G and G' be two graphs and let be a connected enumera-
tion of with root vertex . If bypasses then the algorithm
for a labelled subgraph isomorphism executes without branching.

Proof. We adopt the terminology of the algorithm. Let and
be the current edge. When both endpoints are already found, i.e. , the algorithm
does not branch by definition. Otherwise let and be two extensions of

. They must be identical to their predecessor on its domain, i.e.
, and with . Since the

connected enumeration bypasses svs(G) it follows that . Hence
 and the extensions are identical: . ■

Lemma 4 gives a sufficient condition for the non-branching execution of the labelled sub-
graph isomorphism. The remaining question is, how can we perform the existence checks
in constant time? There is a small gap between the definition of bypassing and the algo-
rithm in the case that both endpoints are found and an existence check is to be performed.
The algorithm has no means to determine the endpoint on which the check is performed.
For all edges of a bypassing enumeration with either s or t has
a single entry slot. Thus we refine the elements of the connected enumeration by this addi-
tional information. Consequently we modify the isomorphism algorithm to take that addi-
tional information into account. The modified isomorphism algorithm takes linear time for
an refined enumeration if it bypasses the set of strong V-structures of the host graph.

Theorem 5 Let G be a graph. If for G' there exists an refined connected enumeration by-
passing svs(G) and rooted in a uniquely labelled vertex v, then the algorithm for a labelled
subgraph isomorphism takes time.

Proof. Let G and G' be graphs with . Let be a connected enumer-
ation of bypassing svs(G) and rooted in a uniquely labelled vertex. Thus from Lemma 5
it follows that the algorithm executes without branching. This property also holds for the
modified algorithm. Since the enumeration is rooted in a uniquely labelled vertex the algo-
rithm builds extensions, each extension consuming constant time. By the refinement
of we can drive the modified isomorphism such that each check is per-

q E= ei() i 1…q=
E Wi

i 1…q= W0 v{ }=
ei() i 1…q= ei s el t, ,()=

s Wi 1−∉ : l t() l s() el in, , ,() svs∉
t Wi 1−∉ : l s() l t() el out, , ,() svs∉
s t, Wi 1−∈ l t() l s() el in, , ,() svs∉ l s() l t() el out, , ,() svs∉

ei() i, 1…q=
E' v V'∈ ei() i, 1…q= svs G()

i 1 … q, ,{ }∈ ei s el t, ,()=
s t Wi 1−∈,

s Wi 1−∉ h'ˆ h''ˆ, Ai∈
ĥi Ai 1−∈
ĥi h'ˆ

dom hi() h''ˆ
dom hi()= = h' s() h'' s(), V\ hi V'()∈ h' ei() h'' ei(), E∈

l t() l, s() el in, ,() svs G()∉
h' s() h'' s()= h'ˆ h''ˆ=

ei s el t, ,()= s t, Wi 1−∈

O E'()
p V'= ei() i, 1…q=

E'

p 1−
ei() i, 1…q=

9

formed on a single entry slot. Thus each of the checks takes constant time.
Hence the whole isomorphism needs time linear to q. ■

4 Determination of Bypassing Connected Enumerations

One open problem must be solved: How can we construct an appropriate connected
enumeration? We give a transformation to the rooted spanning tree problem for a guest
graph and a set of strong V-structures. The transformation inspects first the symmetric
guest graph. The shift to a symmetric graph reflects the assumed ability to search for an
adjacent vertex independent of the direction of the joining edge. The algorithm decides
whether it should extend the current partial handles by the source or the target of the current
edge. All edges of the symmetric graph have a common interpretation: try to extend a
current handle by the target vertex! As a consequence each connected enumeration must
contain one edge for each pair of symmetric edges. This holds except for symmetric edges
already included in the left-hand side. In this case both edges must be part of the connected
enumeration by definition.

Secondly, after modelling all possible enumerations, the transformation implements the
information on strong V-structures in the symmetric graph. Some edges of the symmetric
graph may be part of an instance of a strong V-structure. They must not be included in a
bypassing connected enumeration. Thus they are removed from the symmetric graph. All
remaining edges can be traversed without trapping into an instance of a strong V-structure
during the algorithm’s execution. In this transformation bypassing is equivalent to the ex-
istence of a directed spanning tree rooted in a uniquely labelled vertex. The edges of that
tree form the first part of the bypassing connected enumeration. The remaining edges are
put in the second part, still with respect to the set of strong V-structures. Hence the algo-
rithm maps firstly the vertices of the guest graph. Afterwards, it checks the existence of the
remaining edges. The overall transformation can be done in time linear to the size of the
guest graph.

Theorem 6 Let G and G' be graphs. Let and . Let

.
The elements of complete to a symmetric graph. Let

 and

be the edge sets of the symmetric graph cleared with respect to svs(G).
If there are

• a uniquely labelled vertex with ,
• a directed spanning tree of rooted in u, and
• for all it holds that either

 or ,
then there exists a connected enumeration of bypassing svs(G).

Proof. Let be a connected enumeration of the spanning tree of root-
ed in u. Let be the set of vertices incident to the edges , for and

q p 1−()−

p V'= q E'=
E' t el s, ,() s el t, ,() E'∈{ } \ E'=

E' G'

F' s el t, ,() E'∈ l' s() l' t() el out, , ,() svs G()∉{ }=

F' t el s, ,() E∈ l' t() l' s() el in, , ,() svs G()∉{ }=

u V'∈ l' u() uv G() uv G'()∩∈
S G* u,() G* V' F' F' l',∪,()=

s el t, ,() E' s el t, ,() is not in S G* u,()∈{ }
l' s() l' t() el out, , ,() svs G()∉ l' t() l' s() el in, , ,() svs G()∉

E'

ti() i 1…p 1−=, G*
Wi tj() j 1…i= i 1…q=

10

. The enumeration is defined such that for it
holds that . Let , be a connected enumeration with if

 and with otherwise.
The enumeration , bypasses svs(G): let be fixed.
Since the endpoints of and are identical it follows that . Let fur-
ther be . In case it holds that and it follows by definition
that . Hence . In case it follows that .
By definition it holds that and . As a con-
sequence it follows that is bypassing svs(G).
For all remaining edges it holds that all vertices incident with e
are member of . From the premises it follows that any of these edges can be checked
bypassing svs(G). Hence we can add these edges to and receive a con-
nected enumeration of bypassing svs(G). ■

5 Related Work

Our approach to reduce the complexity of the labelled subgraph isomorphism analyses the
input to the algorithm. Corneil and Gotlieb take a similar approach for an efficient solution
of the graph isomorphism problem [CoGo70]. In a preprocessing step a representative and
a reordered representation of both input graphs is computed, and the problem is decided
based on the transformed graphs. In contrast to our algorithm their procedure only gives an
incomplete answer to the isomorphism problem. For some inputs it cannot decide whether
the two input graphs are isomorphic.

The RETE-algorithm proposed by Bunke et al. [BGT91] addresses the labelled subgraph
isomorphism problem in the context of graph rewriting systems. The algorithm is based on
the observation that each rewriting step performs only local changes on the host graph. In
a preprocessing step the rewriting system is analysed and the RETE-network created. Its to-
pology represents the left-hand sides of the rewriting rules. It is supposed to carry all full
handles. The network is initialized by input of the initial graph. In each rewriting step an
appropriate isomorphic subgraph can be selected by inspection of the network. After exe-
cution of the rewriting step the information in the network is updated. This approach is not
static since at runtime the network must be updated. We on the contrary precompute the by-
passing enumeration only once and apply the rewriting rule without auxiliary updates.

We share our interest in V-structures with Witt who studied locally unique graphs [Wit81].
He shows that, by extension of the edge label alphabet, it is possible to create a homomor-
phic and locally unique image for any graph with bounded degree. Furthermore he proves
the existence of a linearizable hull for each locally unique graph. In his context a graph is
linearizable iff each vertex of the graph has a unique address given as a list of edge labels.
A connected enumeration which bypasses the set of strong V-structures can serve as a lin-
ear addressing scheme for a subset of its vertices. But that enumeration contains more in-
formation to solve the isomorphic subgraph problem efficiently. The notion of local

W0 u{ }= ti() i 1…p 1−=, ti s el t, ,()=
t Wi 1−∉ ei() i 1…p 1−= ei ti=

ti E'∈ ei s el t, ,()= ti t el s, ,()=
ei() i 1…p 1−= i 1 … p 1−, ,{ }∈

ei ti Wi incG ' ej()j 1…i=∪=
ei s el t, ,()= ei ti= t Wi 1−∉

ti F'∈ l' s() l' t() el out, , ,() svs G()∉ ei ti≠ s Wi 1−∉
ti t el s, ,()= F'∈ l' t() l' s() el in, , ,() svs G()∉

ei() i 1…p 1−=,
e E' \ ei i 1…p 1−={ }∈

Wp 1−

ei() i 1…p 1−=,
E'

11

uniqueness is not sufficient for that purpose because it cannot distinguish as much edges as
strong V-structures can.

Unique vertex labels are a property which is already mentioned by Nagl and Göttler
[Nag79], [Gött88]. Nagl introduces the “statische Verankerungsstruktur” (static anchor),
Göttler uses a “Fixknoten” (fixed vertex) to define an application area of a rewriting rule
and to force the application of subsequent rules to that area. The static anchor is used to
program graph rewriting systems by means of graph rewriting systems only. None of the
authors and even none of the recent publications on graph rewriting systems [Schü91],
[KlMa92] have given a formal definition not to mention a criterion for that static anchor.

6 Conclusions

We can apply our results to graph rewriting systems, if we infer information for all
sentential forms. Then we can we decide whether a connected enumeration drives a non-
multiplying subgraph isomorphism for an arbitrary host graph. Thus we must analyse all
graphs generated by a given graph rewriting system. An appropriate analysis technique is
abstract interpretation. The major result of our analysis is an upper bound for a set of strong
V-structures present in any sentential form. These results are of major importance for an
implementation of graph rewriting systems [Dö94].

The strong V-structures of a host graph determine single entry slots. This information on
the host graph enables us to select a connected enumeration as input for the labelled sub-
graph isomorphism algorithm. We proved that the algorithm takes time linear in the size of
the guest graph if two conditions hold for a connected enumeration: first, its root must be a
uniquely labelled vertex and, second, it must bypass the set of strong V-structures of the
host graph. We gave a construction for bypassing enumerations. Based on our approach we
can implement graph rewriting systems which perform the application test in linear time.

References

[BGT91] Bunke, H.; Glauser, T.; Tran, T.-H.: ‘An efficient implementation of graph grammars based on the RETE
matching algorithm’, [EKR91], pp.174-189.

[CoGo70] Corneil, D.G.; Gotlieb, C.C.: ‘An Efficient Algorithm for Graph Isomorphism’, Journal of the Associa-
tion for Computing Machinery, 17 (1) 51-64 (1970).

[Dö94] Dörr, Heiko: ‘An Abstract Machine for the Execution of Graph Grammars’, to appear.

[EKR91] Ehrig, Hartmut; Kreowski, Hans-Jörg; Rozenberg, Grzegorz (ed.): Graph-Grammars and Their Applica-
tion to Computer Science, 4th Int. Workshop, Bremen, March 5-9, 1990, LNCS 532, Springer, Berlin,
1991.

[GaJo79] Garey, Michael R.; Johnson, David S.: ‘Computers and Intractability’, W.H. Freeman and Co., New
York, 1979.

[Gött88] Göttler, Herbert: ‘Graphgrammatiken in der Softwaretechnik’, Informatik-Fachberichte 178, Springer,
Berlin, 1988.

[Him89] Himsolt, Michael: ‘Graphed: An interactive Graph Editor’, in STACS 89, LNCS 349 Spinger Verlag, Ber-
lin, 1989.

12

[KlMa92] Klauck, Christoph; Mauss, Jakob: ‘A Heuristic Driven Chart-Parser for Attributed Node Labelled Graph
Grammars and its Application to Feature Recognition in CIM’, Research Report, Deutsches Forschung-
szentrum für Künstliche Intelligenz, Kaiserslautern/Saarbrücken, DFKI-RR-92-43, 1992.

[LöBe93] Löwe, Michael; Beyer, Martin: ‘AGG — An Implementation of Algebraic Graph Rewriting’ in Kirchner,
Claude (ed.) Rewriting Techniques and Applications, Montreal, Canada, June 16-18, 1993, LNCS 690,
Springer, Berlin, 1993, pp.451-456.

[Nag79] Nagl, Manfred: ‘Graph-Grammatiken, Theorie, Implementierung, Anwendungen’; Vieweg, Braunschweig,
1979.

[Schü91] Schürr, Andreas: ‘Operationales Spezifizieren mit programmierten Graphersetzungssystemen’, Deutscher
Universitäts-Verlag, Wiesbaden, 1991.

[Wit81] Witt, Kurt-Ulrich: ‘On linearizing graphs’, in Noltemeier, Hartmut (ed.) Graphtheoretic Concepts on
Computer Science, WG ’80, Bad Honnef, LNCS 100, Springer, Berlin, 1981, pp.32-41.

[Zün92] Zündorf, Albert: ‘Implementation of the imperative/rule based language PROGRES’, Aachener Informa-
tik-Berichte Nr. 92-38, RWTH Fachgruppe Informatik, Aachen, 1992.

