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Abstract

We characterize plasmonic enhancement in a hotspot between two Au nano disks using

Raman scattering of graphene. Single layer graphene is suspended across the dimer cavity and

provides an ideal two-dimensional test material for the local near field distribution. We detect a

Raman enhancement of the order of 103 originating from the cavity. Spatially resolved Raman

measurements reveal a near field localization one order of magnitude smaller than the wave-

length of the excitation, which can be turned off by rotating the polarization of the excitation.
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The suspended graphene is under tensile strain. The resulting phonon mode softening allows

for a clear identification of the enhanced signal compared to unperturbed graphene.

Keywords: Raman spectroscopy, enhancement, plasmonic cavity, suspended graphene, strain

For its fundamental physics and technological applications, graphene has attracted enormous

interest since its experimental discovery.1 It has become the model system for two-dimensional

materials, and its ballistic conduction at room temperature2 makes graphene a promising material

for transistors, interconnects and a variety of optoelectronic applications.1–3 Recently, the combi-

nation of graphene with plasmonic nano structures has substantially improved the photo detection

capabilities of graphene.4–6

From a spectroscopic point of view, surface enhanced Raman scattering (SERS) has become a

spectacular application of plasmonics.7 It combines the generation of highly localized light fields

at metal-dielectric interfaces with the variety of properties that can be obtained by Raman spec-

troscopy, such as strain,8 doping9 or the nature of defects10 in the case of graphene. The 2D

nature of graphene and its well known Raman spectrum makes it a favorable test bed for inves-

tigating the mechanisms of SERS. A variety of nano particle geometries has proven to deliver

considerable Raman enhancement factors, such as well defined arrays of gold nano disks on top

of a graphene/SiO2 system,11 densely packed gold-nanopyramids12 and a photonics crystal nano

cavity13 covered with graphene. An alternative way to control the generation of highly enhanced

electromagnetic fields is to create a nanoscale cavity formed by closely placed metallic nanoparti-

cles of defined geometry, allowing for instance single-molecule detection.14

In this paper we demonstrate a graphene Raman enhancement up to 103 arising from a nanoscale

cavity between two closely spaced gold nanodisks. Graphene is suspended between the two disks

and partially extends into the cavity. Spatially resolved Raman measurements reveal that the en-

hancement in the cavity is localized in an area one order of magnitude smaller than the wavelength

of the excitation. Upon rotating the polarization, we decouple the two disks, which now act as two

separated plasmonic particles. The enhancement factor drops by a factor of 20 and the localization

2



is lifted. The enhanced Raman signal exclusively arises from suspended graphene under tensile

strain, which is induced by the double structure partially elevating the graphene. This allows us to

simultaneously probe strained and unstrained graphene. Raman enhancement in strained graphene

can be used to characterize plasmonic enhancement arising from any variety of nano-structure ge-

ometries. We demonstrate the method and analysis on a double-dot structure, which can be applied

to any other desired plasmonic structure.

A SEM picture of the double structure we investigate is shown in the inset of Figure 1(a). It

consists of two disks with a height of 45nm (5nm Cr + 40nm Au), and diameter of ∼ 100nm

with an inter particle distance of ∼ 30nm on a flat SiO2 surface of 300nm thickness. Graphene

is prepared by mechanical cleavage and transferred on top of the structures. Atomic force micro-

scope measurements reveal the topography of the graphene layer deposited on top of the double

dot structure as shown in Figure 1(a). The graphene layer is suspended over the gap between the

two particles and between the edge of the particles and the surrounding substrate over a length

of around 150nm in all directions. The colored arrows indicate height profiles at different topo-

graphic conditions shown in Figure 1(b), such as crossing the particle centers and the gap (red),

and crossing the edge of the particles and the gap (blue). The green arrow shows the graphene

suspended at half the height of the antennas and the black arrow indicates graphene completely

adsorbed on the substrate. Figure 1(c) shows a sketch of the sample configuration.

The observed topography suggests that the graphene is under tensile strain, which is defined by

the corresponding relative elongation ∆L/L0 as εx =∆Lx/Lx and εy =∆Ly/Ly within our laboratory

frame. The strain configuration (εx,εy) varies for different locations on and around the structure.

We expect the strain components to be maximal on top of and in the very vicinity of the structures,

decreasing outwards. As we will show in the course of the data analysis, Raman spectroscopy

limits the sum of εx and εy to < 1%.

In comparison to a perfect graphene sheet of equal lateral dimensions, the height profiles cross-

ing the particle centers yield maximal relative elongations/strains of εx,εy > 2.5%, assuming zero

elongation at the unsuspended parts. These values are about five times higher than the values de-
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duced from Raman spectroscopy and seem to be unrealistically high; calculations on pressurized

graphene balloons state that strains of 5% require adhesion energies of 3J/m2,15 which is roughly

ten times the experimentally obtained values of 0.45J/m2 on SiO2.16 For strains derived from the

topology only, one would therefore expect immediate delamination, resulting in an increase of the

suspended parts and a reduction of the energy stored in strain.

The differences can be explained by two main mechanisms. Firstly, during processing and

transfer the graphene/PMMA sandwich is placed on top of the structures and bends slightly, par-

tially reflecting their topology. Therefore, the reference for the geometric calculations is larger

than the assumed flat graphene sheet, which as a result reduces the relative elongation. Secondly,

the graphene shows wrinkles and undulation on the suspended parts and on SiO2, which lessens

the relative elongation further. While the topology fails to quantitatively deliver the true strain,

we observe a dominating strain in y-direction, as the graphene is pulled ca. 4nm into the gap be-

tween the two particles. Optical images, and topographic data on this and additional structures are

presented in the Supporting information.

Figure 1(d) shows the scattering cross section (dots) of the double structure obtained by polar-

ized dark field spectroscopy before graphene deposition. The polarization PX of the illumination

source is oriented along the x-axis defined in (a). In order to obtain the maximum SERS en-

hancement, the plasmonic antennas were designed in such a way that the PX resonance matches

the excitation laser of 638nm excitation. We simulate the scattering cross section of the double

structure for PX and PY , where PY is blue shifted compared to PX , using a commercially available

finite-difference-timedomain code (Lumerical FDTD). The polarization dependence of the simu-

lated scattering cross section is explained by near field coupling. The localized plasmon resonance

of a single metallic particle depends on its material, shape, and size. If the distance between two

adjacent particle becomes small (d� λ ), they interact via their near field. This interaction leads

to (i) a shift in the scattering cross section compared to single particles and (ii) a strong near field

localization in the cavity formed between the two particles. Using disks instead of rods as optical

antennas allows us to quantify the coupling effect between the two particles by rotating the excita-
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tion polarization. In our case, PX couples the particles and PY lets them act as two single particles.

Geometrical deviations of the real particles - such as non perfect edges - cause a blueshift of the

experimental data compared to our simulation. In addition, the effect of the Cr adhesive layer may

be underestimated in simulations and contribute to the blueshift.17

The wavelengths of the scattered light corresponding to the G and 2D peaks - the dominant

phonons observed in graphene Raman spectra - are indicated in Figure 1(d) for the two laser lines

employed. Especially the energy of the 2D phonon Eph is of the same order of magnitude as the line

width Γ of the plasmon. We are therefore able to distinguish rudimentarily between the regimes

of enhanced absorption (red) and enhanced emission (green) and expect the SERS enhancement

factor to scale with the square of the field enhancement factor |ELoc|/|E| for both cases. This can be

clearly distinguished from scaling with the fourth power of field enhancement, which is generally

observed in SERS for Eph� Γ.18,19

Figure 2 shows the Raman spectra taken on the structures for 532nm (green, (a) and (b)) and

638nm excitation (red, (c) and (d) ) for PX ((a) and (c)) and PY ((b) and (d)). In all Raman mea-

surements the analyzer in the spectrometer is set parallel to the polarization of the excitation. For

comparison the spectrum of graphene on SiO2 (black) under the same experimental conditions but

1.5 µm away from the structure is shown. All spectra are normalized to the 2D peak height on

SiO2. The position and the full width at half maximum (FWHM) of the G-peak (∼ 1580/11cm−1)

and the 2D peak (∼ 2670/25cm−1) on SiO2, extracted from Figure 2(a), confirm the presence

of single layer graphene.9 This is supported by the peak height ratio 2D/G of 2.8, which is in

agreement with single-layer graphene for an excitation of 532nm and an oxide layer thickness of

300nm.20,21 We relate the intensity drop on top of the dimer to the partial reduction of constructive

interference (see Supporting information). Note that we concentrate on the 2D peak when evaluat-

ing the enhancement, as the G peak is not suitable for two reasons: the gold nano structures exhibit

a luminescence,22 whose shoulder overlaps with the G-peak (negligibly with 2D) and generally

cause noisier spectra. In addition, we observe peaks at 1450cm−1 and 1530cm−1 on top of the

structure and next to it for 638nm excitation, which we assign to remainders of the glue used in
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graphene exfoliation.

Neglecting the shape and the position of the peaks observed on the structure at this stage,

we find a good qualitative agreement between the observed signal intensities and scattering cross

sections in Figure 1(d) with respect to enhanced absorption. The highest 2D intensity occurs for

638nm and PX , where the excitation is closest to the experimentally observed scattering cross

section. Combining the lower simulated scattering cross section with the blueshift for PY - shifting

the maximum further away from the excitation of 638nm - leads to the enhancement we observe

for PY . It is present, but less pronounced than for PX .

Interestingly, we do not observe a notable enhancement for 532nm with either polarization;

while the scattered light is off the plasmon resonance for 638nm, it is in resonance for 532nm,

yet no enhancement occurs. While this observation is not decisive regarding the conclusions of

this work, the apparent lack of enhanced emission is certainly of interest regarding the mechanism

of cavity induced SERS of graphene and is currently being studied. In the following, the term

enhancement refers to enhanced absorption only.

In Figure 2(a) the 2D peak observed on top of the structures shifts down 9cm−1 to 2661cm−1

compared to the spectrum on SiO2. Its width increases from 26cm−1 to 37cm−1. While we

do not observe a downshift of the G peak within the resolution of our spectrometer, the FWHM

increases from 11cm−1 on SiO2 to 17cm−1 on the structure. Strain modifies crystal phonons;

tensile strain results in a phonon mode softening. We expect a frequency downshift from the

graphene topology discussed earlier. In general, the 2D peak is more sensitive to strain than the

G-peak,8,23,24 which explains that we do not observe a downshift of the G-peak in the presence of

peak broadening. The broadening itself reflects the spatial variations of the strain configurations on

and around the structure. A similar behavior of the 2D peak has been observed by Tomori et al.,25

when they deposited graphene on pillars made of e-beam resist and arrived at a comparable type

of topography. The broadened G- and 2D-peaks and the downshifted 2D-peak on the structures

represents the sum of all location in the laser focus.

Peak positions and widths change drastically when plasmonic enhancement comes into play.
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In Figure 2(c), the 2D peak consist of three components; the two lower components arise from

local hot spots where the enhanced near field from the particles interacts with strained graphene.

The same mechanism applies to the now dominating G-peak component at 1558cm−1. The up-

permost 2D- and G-components approximately match the peaks measured on SiO2 in intensity

and frequency. They stem from scattering in the laser focus which is not subject to plasmonic

enhancement.

To evaluate the strain, we use the G mode and the 2D′ mode ( 3200cm−1). The frequency of

these Raman lines under strain depends only on changes in the force constants and is independent

of the electronic structure.26 For both the G and the D′ modes, the change in frequency under strain

∆ω
±
E2G

is given by23,27,28

∆ω
±
E2G

= ∆ω
h
E2G
± 1

2
∆ω

S
E2G

= −ω
0
E2G

γE2Gεh±
1
2

ω
0
E2G

βE2Gεs, (1)

where E2G denotes the phonon symmetry, ∆ωh
E2G

is the shift due to the hydrostatic component

of the strain εh = εy + εx and ∆ωS
E2G

is the phonon splitting due to the shear component of strain

εs = εy−εx
29 . The peak position at zero strain is given by ω0

E2G
, while γE2G denotes the Grüneisen

parameter and βE2G denotes the shear deformation potential of the corresponding vibration. Aver-

aged spectra from a line scan (step size 100nm) are shown for the G and 2D′ mode in Figure 3(a)

and (b), respectively. The G-mode shifts down 23cm−1 and its FWHM increases from 17cm−1 30

to 23cm−1. For 2D′, we observe a downshift of 44cm−1 and an increase in the FWHM from

15cm−1 to 20cm−1. Neglecting the shear strain component, we insert the Grüneisen parameters

γG = 1.8 and γ2D′ = 1.631 in Eq. (1) and obtain an excellent agreement between the hydrostatic

strain components εy + εx derived from G (0.82%) and 2D′(0.81%). The broadening of the modes

under strain indicates a non-vanishing shear strain. This is supported by the splitting of the 2D-

mode and the presumably dominant y-strain determined from the topology. For uniaxialy strained

graphene, a G-peak splitting is recognizable at shear strains > 0.4%.23We conclude that in the ar-
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eas of plasmonic enhancement the graphene is under strain with a hydrostatic component ≈ 0.8%

and shear component < 0.4%.

The 2D-mode cannot be used for strain evaluation because of the non-standard strain config-

uration (i.e. graphene bending on a nm scale at the particle edges). In addition, the nature of the

2D-peak splitting in the presence of shear strain is currently under debate in the literature.24,32–34

While the overall intensity is assumed to be independent of polarization, the relative intensities and

shift rates for each subpeak depend on the polarization of each excitation and emission, the orien-

tation of the strain, the crystallographic axis and their combined relative orientations. Therefore

we use the 2D-peak only for evaluating the plasmonic enhancement via its intensity. Peak fits for

PX are provided in the supporting information. For polarization in y-direction, a comparable strain

analysis is impossible, as the low signal intensities hamper the clear identification of a shifted G

and 2D′ mode.

By investigating the signal intensities and the strain configuration we have so far established

that (i) the enhanced Raman peaks arise from areas under strain, indicating that (ii) the enhance-

ment is localized around the particles and that (iii) the enhancement depends on the polarization.

In the following, we show how the polarization dependence can be directly related to near field

coupling for PX - and the corresponding strong localization in the cavity - and the lack thereof for

PY . In Figure 4(a) we depict a Raman line scan over the structure for 638nm excitation and PX ,

taken in x-direction with a step size of 100nm. The spatial position of the laser focus relative to

the antenna center is plotted versus the sum of integrated intensity of the three 2D components.

The intensity is normalized to the integrated 2D intensity on SiO2 away from the structure. As

expected, the signal enhancement is maximal when the laser focus is centered on the structure.

The profile represents the convolution of the laser spot, which has a FWHM of ≈ 570nm, and

the sites of localized enhancement. Raw data of the line scan and laser spot size are given in the

Supporting information. A Gaussian fit delivers an enhancement factor of 12.8 with a FWHM

of 610nm for PX , exceeding the FWHM of the laser spot by less than 10%. Figure 5(a) depicts

the corresponding simulated near field enhancement |E/E0|2 at a height of 40nm. Due to the near
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field coupling of the particles, the enhancement is concentrated in the area between the particles

and acts approximately like a point-like source.

Why do we choose to evaluate the near field at a height of 40nm instead of the 45nm, the

nominal height of the particles? A near field cross section in the (x,z) plane is shown in Figure 5(b).

The hot spots on the particles edges are caused by the lightning rod effect, which describes field

enhancement as a purely geometrical phenomenon of electromagnetic field line crowding at sharp

edges. While the assumption of perfect edges does not hold for real structures, the evaluation of the

enhancement in the cavity is a very valid approximation. The height profiles shown in Figure 1(b)

confirm that the graphene is suspended at a height of 41nm in the gap center. Over the range of

gap in the y-direction, the height drops to about 37nm (see blue profile). Therefore we achieve

the best correspondence between the simulation and experiment by examining the near field at a

height of 40nm instead of 45nm. A spatial profile of the near field enhancement at z = 40nm and

y = 0 is given in Figure 5(c), where the cavity is indicated by the grey square.

In Figure 4(b) we depict a comparable Raman line scan for PY . A Gaussian fit yields a maximal

enhancement factor of 3.2 and a FWHM of 840nm. Here, the particles approximately act as two

isolated particles. The near field - shown in Figure 5(d) - extends predominantly in y direction for

each of the particles and no cavity enhancement is present. Scanning in x-direction, the simulation

predicts two spatially separated scattering centers, which lead to the observed broadening of the

intensity profile. As explained in the previous paragraph, we evaluate the near field at a height of

40nm to avoid edge effects. A potential contribution of the particle top surface to the enhancement

is negligible, as it does not depend on the polarization. If significant, it would smear the difference

in the width of the intensity profiles of PX and PY . To verify the correlation between polarization

and near field coupling, we conduct similar line scans for 532nm excitation and both polarizations.

While we do not observe a notable enhancement, the effects of the structure can be transformed

into a spatial profile which yields a width of around 710nm for both polarizations (see Supporting

information).

As the field is localized in a very small area compared to the laser spot, the actual enhancement
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is significantly higher than the observed factor of 12.8 for PX . In Figure 5(a), the dashed line

encircles the area relevant for the enhancement. It includes 90% of the calculated integrated near

field intensity within the cavity. Comparing this area with the size of the laser spot yields an overall

enhancement of 4×103. Figure 6 shows how the enhancement depends on the near field intensity

in the cavity considered to be relevant. Applying a similar analysis for PY yields an enhancement

factor of 2.2× 102. The area taken into account is indicated in Figure 5 (d) and (f). Again, the

cut-off is set to 90% of the integrated near field intensity.

A comparison between the experimental enhancement factors for PX and PY allows us to esti-

mate the contribution from the outer particle edges to the cavity enhancement. Upon a 90◦ rotation,

the near field at the outer particle edges for PX approximately matches the near field for PY in shape

and magnitude. This can be easily seen by comparing Figure 5(e) and (f). Therefore, 50% of ex-

perimentally observed enhanced intensity for PY represents the enhancement we expect from the

outer particle edges for x-polarization. Inserting these values yields a contribution of around 12%

- with each edge contributing 6% - and confirms that the observed enhancement predominantly

arises from the cavity. This estimate appears reliable, as it is independent of the real near field dis-

tribution, factors in geometrical deviations of the particles compared to the simulation, and agrees

well with localization observed in the intensity profile for PX .

Note that the observed enhancement factor is inversely proportional to the estimated area of

near field localization. As indicated in Figure 6, variations in the analytical approach may therefore

leverage the same experimental data into enhancement factors that differ by orders of magnitude.

For this reason it is difficult to relate our results to enhancement factors in the literature. In ref. 11,

for instance, an experimental enhancement factor of 35 is observed for gold nano disks placed on

top of graphene. The distance between the particles is too large to allow near field coupling but is

too small to observe the signal from isolated particles. In addition, the authors chose not to factor

in the area of near field localization, which would significantly increase the enhancement factor.

Wang et. al12 measure graphene placed on top of closely spaced gold nano pyramids, observing

an enhancement factor of the order of 104 in the experiment; by assigning the enhancement to
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a narrow area of 5× 5nm - corresponding to a low percentage in Figure 6 - they arrive at an

enhancement of 107. In addition, to our knowledge no surface enhanced Raman study on a single,

isolated plasmonic dimer structure interfaced with graphene has been reported.

While we use the signal on SiO2 as a reference, plasmonic enhancement occurs mainly at

a height around ∼ 40nm. Therefore the interference effect due to the substrate has to be taken

into account. Here, reflection and transmission at multiple interfaces (Si, SiO2, graphene, air) of

the excitation as well as the scattered light may lead to constructive or destructive interference,

depending on the wavelength of excitation, emission and the oxide layer thickness.20,21,35,36 Fol-

lowing the approach of Ref. 36, we arrive at a factor of 0.52 for 638nm excitation on 300nm SiO2.

An in depth-treatment of the interplay between interference and the cavity is beyond the scope

of this work. In addition, it is doubtful that the picture of stratified media holds for the graphene

topography in our sample configuration. We therefore neglect the interference effect for the sus-

pended graphene and correct for the destructive interference on SiO2, leading to an estimate of the

enhancement ≥ 2×103.

The graphene suspended around and between the double structure serves two distinct purposes.

From a purely plasmonics point of view, the graphene is a Raman active, two-dimensional mem-

brane that serves as a detection channel of the near field distribution. In the areas of enhancement,

its Raman signals are shifted and therefore allow a clear assignment. From the perspective of Ra-

man scattering on graphene, the double structures suspend the graphene, induce local strain and

simultaneously provide the means of local detection. The induced strain represents a configura-

tion of hydrostatic and shear strain (εh > εs > 0), which can neither be achieved by uniaxial strain

(εs > εh > 0) nor biaxial strain (εh > 0,εs = 0).

In conclusion, we probe with surface enhanced Raman scattering the plasmonic properties

of an isolated double disk nano structure interfaced with suspended graphene. By rotating the

polarization of the excitation, we switch between the dots acting as single plasmonic particles and a

coupling regime, realizing a plasmonic cavity. In the cavity, we observe a plasmonic enhancement

of the order of 103, where graphene serves as a two-dimensional, Raman active integrator of the
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local near field. The enhanced signal arises from an area one order of magnitude smaller than

the wavelength of the excitation and probes suspended graphene under strain. The combination

of phonon softening and local enhancement will allow to study the impact of high electric fields

on the electrical transport in graphene. Our approach may allow the induction of different types

of local strain configurations via the shape, size, number, and arrangement of plasmonic nano

particles, and simultaneously provide the means to locally probe them by surface enhanced Raman

scattering. This approach can be extended to using silver - the preferred material in plasmonic due

to low losses and resonances towards lower wavelengths; Reed et al37 recently demonstrated that

single layer graphene placed on top silver nano structures passivates their surface and maintains

their performance by preventing oxidation.
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Figure 1: (a) AFM image of graphene placed on top of the double structure. The colored arrows
indicate the y-position of the height profiles shown in (b). Each height profile is set off by 10nm for
clarity. (c) shows a sketch of the sample configuration. (d) depicts experimental dark field spectra
(triangles) and simulated scattering cross sections for PX (solid) and PY (dashed). The excitation
wavelength employed in the Raman experiments are indicated as vertical lines, together with the
corresponding wavelength of the G and 2D modes of graphene.
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Figure 2: Raman spectra on the double structure for (a) λ = 532nm and PX , (b) λ = 532nm and
PY , (c) λ = 638nm and PX ,(d) λ = 638nm and PY . The spectra are normalized to the 2D peak
height measured on SiO2 next to the structure for the corresponding excitation and polarization
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Figure 3: Sum of Raman spectra of (a) G mode and (b) 2D′ mode obtained from a line scan over
the structure with λ = 638nm and PX . The peaks corresponding to strained graphene (red) are
downshifted and compared to the peaks arising from unstrained graphene (blue).
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Figure 4: Raman line scan over the antenna structure, where the sum of all 2D peak components
is plotted versus the spatial position of the laser focus for PX (a) and PY (b) with λ = 638nm. The
corresponding Gaussian fits including FWHM are shown.
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Figure 5: Near field enhancement |E/E0|2 for PX is shown in the (x,y) plane at z = 40nm (a) and
in the (x,z) plane at y = 0 (b). The area considered contributing to the enhancement is indicated in
by the dashed line in (a). The corresponding data for PY is shown in (d) and (e). Cross sections of
the near field enhancement relevant for the enhancement factor are given in (c) for PX and (f) for
PY .
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Figure 6: Percentage of total near field intensity in the cavity plotted versus the resulting enhance-
ment factor. Taking into account 90% of the near field intensity yields an overall enhancement
factor of ca. 4×103.
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Fabrication and structural characterization

Two sets of plasmonic structures which consist of dot patterns with different geometrical shapes

and sizes were exposed by electron-beam lithography in a LEO 1530 Gemini FEG SEM and Raith

Elphy Plus Lithography System with Laser Interferometer Stage. Metallization was carried out by

evaporating 5nm Cr + 40nm Au followed by lift-off in an ultrasonic bath. Structural characteri-

zation of the nanostructures was done using a Veeco Dimension 3100 AFM and an XL30 Sirion

FEI FEG SEM. Graphene flakes were prepared on p-doped Si substrate with 300nm surface SiO2

by micromechanical cleavage.1 The graphene was then accurately transferred on top of plasmonic

structures. A polymer was used to coat the graphene flake for supporting it during its transfer

on the target substrate using the so called ’wet’ transfer method.2 Structural characterization after

graphene transfer was performed using a Park Systems XE 150 AFM.
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Optical characterization

Raman spectra were taken using a Horiba XploRA single-grating Raman spectrometer equipped

with notch filters for laser rejection and a piezo stage for mapping. Laser excitations of 532nm

and 638nm and gratings of 600, 1200, and 1800 grooves per mm were employed, with resolutions

between 1cm−1 and 4cm−1. Typical integration times range between 10s and 120s seconds.

The spectra were calibrated using a neon lamp. In order to record Raman spectra for different

polarizations, the sample was rotated by 90◦.

In the darkfield microscopy setup, the sample was illuminated by a polarized white light from a

halogen bulb. A 50x, NA 0.55, IR-corrected microscope objective was used to collect the scattered

light that is directed to a spectrometer which is equipped with a CCD detector to obtain the spectra

in the visible range.

Simulations

For our numerical calculations, Three-dimensional (3D) simulations were performed to calculate

the scattering cross sections and the near field enhancement of the coupled nanostructures by us-

ing a commercially available finite-difference-timedomain code (Lumerical FDTD). The dielectric

functions of Au used in the simulations were extracted from data by Johnson and Christy.3
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AFM data on structure before and after graphene deposition
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Figure 1: (a) 3D-AFM profile of the structure investigated. In (b) a different structure before
graphene deposition is shown. Comparing height profiles across the gap in x-direction before (d)
and after graphene deposition (c) confirms that graphene is suspended in the gap and between
the edges of the structures and the substrate. While the AFM-data was obtained using different
setups - and therefore different tips - the comparison between the height profiles rules out any
misinterpretation with respect to the observed topography

4



Microscope images of graphene flake
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Figure 2: Optical microscope images of the graphene flake deposited on top of the array of double
structures after graphene deposition.
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AFM data and graphene topograhpy on different structure
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Figure 3: AFM data (b) and corresponding height profiles in for fixed x- (a) and y-values (b) for a
double dot structure of 120nm diameter.

2D peak fits for PX

(a) (b)

(c)Figure 4: Fits including parameters on the structure, 638nm excitation and PX . While the two main
components arise from suspended graphene under strain, the minor high frequency component
arise from unperturbed graphene which is not subject to plasmonic enhancement.
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Raman line scan raw data

(a) (b)

(c) (d)

Figure 5: Raman lines scans over the double structure in x-direction showing the evolution of the
G-peak (a) and 2D-peak (b) for PX and 638nm excitation. The corresponding line scans for PY and
shown in (c) and (d).
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Laser spot profile

Figure 6: Line scan over a graphene edge for λ = 638nm and PX . The integrated G peak intensity
(dots) is fitted by the convolution of a Heaviside step function and a Gaussian profile. The resulting
Gaussian profile represents the laser spot.
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Intensity drop for 532 nm

Figure 7: Integrated 2D intensities extracted from line scans over the double structure for an exci-
tation of 532nm. (a) compares the intensity drop on the structure for PX with corresponding drop
of the main 2D component for PY . (b) shows the intensity profile of the two 2D components for
PY .

Here we depict the variation of the 2D integrated intensity along a line scan over the structure

for 532nm excitation and both polarizations. For PX , the intensity drops ≈ 8% in the structure.

We attribute the intensity drop to the lowered Raman intensity observed for graphene placed on

top of gold (not shown) as well as the variation of the interference condition for the suspended

parts of the graphene sheet. Qualitatively, the width of the intensity drop (730nm) represents the

effect of the sample configuration without plasmonic enhancement. The 2D peak for PY has to be

fitted with two Lorentzian peaks. The intensities are shown in (b). The appearance of a second

notable 2D component indicates a minor enhancement occurring for PY , in agreement with a blue
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shifted resonance compared to PX . This small enhancement compensates for the small intensity

drop observed for PX . The sum of the intensity of the two 2D components does not show a drop as

for PX . The width of the intensity drop of the main 2D component for PY , (690nm) serves as an

indicator of the effect of the structure for PY . Combining the line scans for both polarizations allow

us to transform the effect of the structures into a spatial profile with a FWHM of 710±10nm. Note

that the width of the laser spot for 532nm is slightly smaller than for 638nm. If no enhancement

were present for 638nm, we would therefore expect the effect of the structure to be slightly more

extended.
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