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Abstract We provide a new criterion for flexibility of affine cones over varieties covered by
flexible affine varieties. We apply this criterion to prove flexibility of affine cones over secant
varieties of Segre–Veronese embeddings and over certain Fano threefolds. We further prove
flexibility of total coordinate spaces of Cox rings of del Pezzo surfaces.
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In this article we study affine algebraic varieties with the following property: the (special)
automorphism group acts infinitely transitively on the regular locus. The systematic study of
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1458 M. Michałek et al.

this remarkable property and its complex analytic counterpart is presented in Arzhantsev et
al. [1].

Let X be an affine variety over an algebraically closed field k of characteristic zero. We
consider actions of the additive groupGa = (k,+) on X . The subgroup of Aut(X) generated
by all Ga-actions is called the special automorphism group of X and will be denoted by
SAut(X). We are interested in transitivity of the SAut(X)-actions on the regular locus Xreg.
Recall that an action of a group G on a set M is m-transitive if for every two m-tuples
(x1, . . . , xm) and (x ′

1, . . . , x
′
m) of pairwise distinct elements of M there exists g ∈ G such

that g · xi = x ′
i for i = 1, . . .m.

We have the following result.

Theorem 0.1 ([1, Theorem 0.1]) Let X be an irreducible affine variety of dimension ≥ 2.
Then the following conditions are equivalent.

(i) The group SAut(X) acts transitively on the regular locus Xreg.
(ii) The group SAut(X) acts m-transitively on Xreg for every m > 0.
(iii) The tangent space of every x ∈ Xreg is spanned by tangent vectors to orbits of Ga-

actions.

We say that X is flexible if these conditions are fulfilled.
As examples of flexible varieties, let us mention affine cones over del Pezzo surfaces

of degree ≥ 4 (see [30]), over flag varieties, and affine toric varieties without torus factors
[5]. It is also possible to construct new flexible varieties from a given flexible one, e.g. via
suspensions [5] or open subsets with complement of codimension ≥ 2 [14].

Our first main result provides a new criterion for flexibility of affine cones, see Sect. 1 for
the proof. A similar, but independent, criterion using the notions of cylinders was provided
in Perepechko [30, Th. 5].

Theorem 1.4 Let Y be a normal projective variety covered by flexible affine open subsets
Ui , i ∈ I , and H be a very ample divisor on Y . If each subset Y\Ui is the support of an
effective Q-divisor Di linearly equivalent to H, then the affine cone X = AffConeH Y is
flexible.

Recall that a Segre–Veronese variety is an embedding of the direct product Pd1 ×· · ·×P
dn

of projective spaces by the very ample line bundle of the formO(s1) � · · · �O(sn). Further,
given a projective variety X ⊂ P

n , the Zariski closure of the union of the secant (resp.
tangent) lines to X is called a secant (resp. tangential) variety of X . As the first application
of Theorem 1.4, we deduce the following result, see Sect. 2 for details.

Theorem 2.20 Let X = vs1(P(V1)) × · · · × vsn (P(Vn)) be a Segre–Veronese variety. Then
the affine cone over the secant variety of X is flexible. Further, if s1 = · · · = sn = 1, then
also the affine cone over the tangential variety of X is flexible.

Our proof technique relies on triangular transformations of the affine charts of the ambi-
ent projective space. They are inspired by algebraic statistics, precisely by computation of
cumulants [10,29,34,41,42].

Section 3 contains preliminaries on smooth rational T -varieties of complexity one. These
are varieties X with an effective action of a torus T , where dim X = dim T + 1. Section 4 is
devoted to flexibility of affine cones over such varieties.

In Arzhantsev et al. [6] it was shown that smooth varieties of this type admit a toric
covering and for certain affine cones over these varieties we, indeed, obtain flexibility. For
example, this applies to all known Fano threefolds with 2-torus action. We use below the list
of Fano threefolds in Mori–Mukai’s classification [26].
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Flexible affine cones and flexible coverings 1459

Theorem 4.5 All the affine cones over the Fano threefolds Q, 2.29, 2.30, 2.31, 2.32, 3.8,
3.18, 3.19, 3.23, 3.24, 4.4, and certain elements of the families 2.24, 3.10 admitting a 2-torus
action in Mori–Mukai’s classification are flexible.

Themain tool to obtain these results is the combinatorial description of T -varieties developed
in Altmann andHausen [2] and Altmann et al. [3], which in the case of complexity one allows
to study (torus equivariant) coverings as in Theorem 1.4.

While Theorems 2.20 and 4.5 are concerned with projective coordinate rings, in Sect. 5
of the paper we obtain related results for total coordinate rings or Cox rings.

Theorem 5.4 The total coordinate spaces of smooth del Pezzo surfaces are flexible.

This was known so far only for the toric del Pezzo surfaces (i.e. those of degree 9, 8, 7 and
6) and by Arzhantsev et al. [5, Thm. 0.2] for the case of degree 5, where the total coordinate
space is known to be the affine cone over the Grassmannian G(2, 5). On the other hand, this
extends a result of Arzhantsev et al. [6], where flexibility was proved only outside a subset
of codimension 2.

Theorem 5.9 The total coordinate space of a complete smooth rational T -variety of com-
plexity one is flexible.

1 Flexibility of affine cones

Lemma 1.1 Let X ⊂ A
n+1 be the affine cone over a projective variety Y ⊂ P

n of dimension
≥ 1. Consider a subgroup G ⊂ Aut X such that

• the canonical Gm-action on X by homotheties sends G-orbits to G-orbits,
• all G-orbits are locally closed, and
• there is an orbit Gx ⊂ X\{0}, whose image Y ∗ under the projection π : X\{0} → Y is

an open subset in Y with complement of codimension ≥ 2.

Then Gx = π−1(Y ∗) and is open in X.

Proof Since the G-action is Gm-equivariant, X∗ = π−1(Y ∗) is a union of G-orbits, whose
projections coincide with Y ∗. Hence X∗ = ⋃

λ∈Gm
λGx , where all G-orbits are closed in

X∗.
Let us show thatGx = X∗. Assume the contrary. Then dimGx = dim Y and the stabilizer

S ⊂ Gm of the orbit Gx is finite. Indeed, two points v, v′ ∈ Gx lie in the same Gm-orbit if
and only if v = λ · v′ for some λ ∈ Gm . The latter is equivalent to λGx = Gx , i.e., λ ∈ S.
So, Gv ∩ Gmv = Sv for any v ∈ X∗.

Denote by X× the blow up of X at 0. This is the total space of the line bundle OY (−1)
over Y . Consider the quotient morphism

μ : X× /S−−→ X ′ = X×/S

given by t 	→ t |S| on every trivialization chart, where t is the coordinate of the fibers. Then
μ(Gx) intersects each fiber at most once, so it is a meromorphic, nonvanishing section of
the line bundle X ′ → Y . Indeed, it is a graph of a rational function on trivialization charts
of the line bundle. However, the subset D ⊂ Y , where our rational section of the line bundle
X ′ → Y is not defined or vanishes, if non-empty, is a Cartier divisor.
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1460 M. Michałek et al.

On the other hand, under our assumptions D ⊆ Y\Y ∗ is of codimension at least 2.
Therefore, D is empty and μ(Gx) is a global section of X ′ → Y disjoint with the zero-
section. Since Y is of positive dimension X ′ → Y is non-trivial. This gives a contradiction.

So, the group G acts on X∗ transitively. ��
Corollary 1.2 Under the setup of Lemma 1.1, if Y is smooth in codimension one and
π(Gx) = Y ∗ coincides with the regular locus Yreg, then Gx = Xreg\{0}.
Lemma 1.3 Let Y ⊂ P

n be a linearly nondegenerate projective variety, and let H = Y ∩
{x0 = 0} be a hyperplane section of Y . Suppose that U = Y\H is endowed with a Ga-
action φ : Ga × U → U. Let π : X\{x0 = 0} → U be the natural projection, where X =
AffCone Y ⊂ A

n+1 is the affine cone over Y . Then X admits a Ga-action ˆφ : Ga × X → X
normalised by the Gm-action of the cone, such that

• φ(Ga × {π(x)}) = π(φ̂(Ga × {x})) for any x ∈ π−1(U ).
• φ̂ is trivial on X\π−1(U ).

In other words, π : X\{x0 = 0} → U provides a correspondence between φ̂-orbits and
φ-orbits.

Proof Let Y be defined by a homogeneous ideal I ⊂ k[x0, . . . , xn] which does not contain
x0, k[X ] = k[x0, . . . , xn]/I , and U = {x0 = 0} ⊂ Y .

There exists a natural embedding ρ : U ↪→ X , ρ(U ) = {x0 = 1} ⊂ X . On the other hand,
π : X\{x0 = 0} → U is a trivial Gm-bundle. Therefore, we may extend the Ga-action φ on
U to a Ga-action φ̃ on X\{x0 = 0} defined by a homogeneous locally nilpotent derivation δ̃.

There exists d ∈ N such that xd0 δ̃(xi ) ∈ k[X ] for i = 1, . . . , n. Since x0 ∈ ker δ̃, a
homogeneous derivation δ̂ = xd+1

0 δ̃ on X is locally nilpotent. The corresponding Ga-action
φ̂ is normalised by the Gm-action, coincides with φ on the hypeplane section {x0 = 1} ∼= U
of X , and is trivial on {x0 = 0} ⊂ X . ��
Theorem 1.4 Let Y be a normal projective variety covered by flexible affine open subsets
Ui , i ∈ I , and H be a very ample divisor on Y . If each subset Y\Ui is the support of an
effective Q-divisor Di linearly equivalent to H, then the affine cone X = AffConeH Y is
flexible.

Proof The tangent space at 0 to X must contain all lines through 0 contained in X . As X is
covered by such lines, the tangent space is equal to the linear span of X . If X = A

n+1 the
theorem is trivial. Otherwise, the origin is a singular point of X , which we assume from now
on.

For each subset Ui there exists a finite number of Ga-actions {φi j } such that the orbit of
the group generated by them is the regular locus of Ui , see [1, Prop. 1.5]. Let k ∈ N be such
that kDi is aZ-divisor for any i ∈ I . For each action φi j we can consider a lifted action φ̃i j on
AffConekH Y as in Lemma 1.3. Since the Veronese map X → AffConekH Y is unramified
outside the vertex, Theorem 1.3 of Masuda and Miyanishi [27] implies the existence of an
action φ̂i j on X , whose orbits have the same image in Y as the orbits of φ̃i j .

Let a subgroup G = 〈φ̂i j 〉 ⊂ SAut X be generated by the Ga-actions on X which corre-
spond to all the open subsets Ui . Then the image of the orbit Gx of a regular point x ∈ Xreg

under the projection X\{0} → Y is equal to Yreg. Thus, the statement follows from Corol-
lary 1.2, as the variety Y is normal, in particular smooth in codimension one, and theG-orbits
are locally closed by Arzhantsev et al. [1, Prop. 1.3]. ��
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Flexible affine cones and flexible coverings 1461

Example 1.5 Consider P
n with coordinates x0, . . . , xn and a smooth subvariety Y =

V(x0, f ) of codimension 2, where f is an irreducible homogeneous polynomial of degree d .
Let q : X → P

n be the blowup in Y . We apply Theorem 1.4 to show that all the affine cones
over X are flexible. Notice that X is a Fano variety if d ≤ n holds.

Let Ui := P
n\Hi := P

n\V(xi ). The preimage q−1(U0) is isomorphic to U0 ∼= A
n , since

Y does not intersect U0. For i = 0 the preimage q−1(Ui ) is given by

V

(
f

xdi
· u − x0

xi
· v

)

⊂ Ui × P
1.

Hence, q−1(Ui ) is covered by the affine charts

U 0
i := q−1(Ui )\[v = 0] and U∞

i := q−1(Ui )\[u = 0], (1)

the first one being an affine space and the second one being isomorphic to

V

(
f

xdi
− x0

xi
· v

u

)

⊂ Spec k

[
x0
xi

, . . . ,
xn
xi

,
v

u

]

.

In the notation of Arzhantsev et al. [5] this is a suspension over A
n−1 and hence flexible

by Theorem 0.2 in loc. cit.
Given a divisor D ⊂ P

n , we denote by D̃ its strict transform on the blowup. We also
denote by E the exceptional divisor at Y and by H the pullback of a general hyperplane. To
see that the given covering is polar ([22, Def. 3.7]) with respect to every ample divisor, note
that

X\q−1(U0) = E ∪ H̃0; X\U∞
i = H̃i ∪ H̃0; X\U 0

i = H̃i ∪ Ṽ( f ); for i > 0. (2)

Now, X has Picard group Z
2 with generators [H ] and [E]. The effective cone is generated

by [E] and [H ] − [E] and the nef-cone by [H ] and d[H ] − [E]. Moreover, [Ṽ( f )] =
d[H ] − [E] and [H̃0] = [H ] − [E] hold. So, for every affine charts from (1) the boundary
components in (2) span a cone in the Neron-Severi space containing the whole nef cone of X .
Hence, every ample class can be expressed as a positive linear combination of the complement
components. In other words, for every affine charts U from (1) there is an effective divisor
D with support X\U , which lies in the chosen ample class. By Theorem 1.4 the flexibility
of the corresponding affine cone follows.

Let further be q ′ : X ′ → P
n the combined blowup of P

n in Y as above and additionally
in the point y = (1 : 0 : · · · : 0). Similarly, using the same notation and denoting by E ′ the
exceptional divisor of the blowup in the point y, we have the following flexible charts on X ′:

Ui
0 := X\(H̃0 ∪ E ∪ H̃i ), U∞

i := X\(H̃i ∪ H̃0 ∪ E ′), U 0
i := X\(H̃i ∪ Ṽ( f ) ∪ E ′).

The first two are affine spaces and the last one is a suspension as before. We see that the com-
plements of the affine charts always consist of three components with classes corresponding
to one of the triples

([H ] − [E], [E], [H ] − [E ′]), ([H ] − [E ′], d[H ] − [E], [E ′]),
([H ] − [E ′], [H ] − [E], [E ′]).

Further, each triple spans a cone containing the nef cone of X ′, which is spanned by
d[H ] − [E], [H ] − [E ′], and [H ]. Hence, every ample class can be expressed as a posi-
tive linear combination of complement components. As above this implies the flexibility of
the corresponding affine cone by Theorem 1.4.
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1462 M. Michałek et al.

2 Secant of Segre–Veronese variety

This section is based on Michalek et al. [29], where the toric covering of a Segre variety was
constructed. Here we generalize that construction to a Segre–Veronese variety and hence
prove Theorem 2.20. Throughout this section by a parameterization of a variety Z we mean
a dominant morphism from a dense open subset of an affine space to Z .

Definition 2.1 Given for each i = 1, . . . , n a finite-dimensional vector space Vi and its
symmetric power Ssi (Vi ), si ∈ Z>0, the Segre–Veronese variety

X = vs1(P(V1)) × · · · × vsn (P(Vn)) ⊂ P(Ss1(V1) ⊗ · · · ⊗ Ssn (Vn))

is defined as the embedding of the product P(V1)×· · ·×P(Vn) by the very ample line bundle
O(s1) � · · · � O(sn).

We will be using an equivalent construction. Apart from (projective) Segre–Veronese
varieties we will consider affine cones over them and refer to those as Segre–Veronese cones.
They should not be confused with intersections of Segre–Veronese varieties with principal
affine open subsets, which also play a crucial role.

For each Vi , 1 ≤ i ≤ n, we denote di = dim Vi − 1 and fix a basis ei0, . . . , e
i
di
of Vi . We

also denote elements of the basis of V⊗s
i by

eii1,...,is = eii1 ⊗ · · · ⊗ eiis .

Thus, the symmetric power is Ssi (Vi ) =
{v ∈ V⊗s

i | (eii1,...,is )
∗(v) = (eiiσ(1),...,iσ(s)

)∗(v) for any permutation σ ∈ Ss}.
This allows us to embed the Veronese cone into the Segre cone and obtain the following
diagram:

V1 ⊕ · · · ⊕ Vn V s1
1 ⊕ · · · ⊕ V sn

n

Ss1(V1) ⊗ · · · ⊗ Ssn(Vn) V ⊗s1
1 ⊗ · · · ⊗ V ⊗sn

n ,

e

ψ ψ̃

⊂
sV1⊗···⊗sVn

where

• e : (v1, . . . , vn) 	→ (v1, . . . , v1, v2, . . . , v2, v3, . . . , vn) is the diagonal embedding,
• ψ̃ : (v11, . . . , v

s1
1 , v12, . . . , v

s2
2 , v13, . . . , v

sn
n ) 	→ v11 ⊗ · · · ⊗ v

sn
n is the parameterization of

the Segre cone, which is a nonlinear map,
• ψ = ψ̃ |im(e) ◦ e is the parameterization of the Segre–Veronese cone, and
• sVi : V⊗si

i → Ssi (Vi ) are the natural symmetrizing projections.

Notation 2.2 (i) For a vector space V = Vi1 ⊗ · · · ⊗ Vik we denote

V̂ := {x ∈ V | (ei10 ⊗ · · · ⊗ eik0 )∗(x) = 1}
and regard it as a vector space with basis {ei1j1 ⊗ · · · ⊗ eikjk | j1 + · · · + jn > 0}.

(ii) We may, and often will, consider V̂ as a complement to a hyperplane section {[x] :
(ei10 ⊗ · · · ⊗ eik0 )∗(x) = 0} of P(V ). Thus V̂ may be regarded as an affine open subset
of P(V ).
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Flexible affine cones and flexible coverings 1463

(iii) We denote A := V⊗s1
1 ⊗ · · · ⊗ V⊗sn

n .
(iv) We also define

B :=
n∏

i=1

V̂i
×si ⊂ V s1

1 ⊕ · · · ⊕ V sn
n ,

B ′ :=
n∏

i=1

V̂i ⊂ V1 ⊕ · · · ⊕ Vn .

(v) Finally,we denoteπ : A\{0} → P(A) and obtain the following diagramof open subsets:

B ⊂ V1 ⊕ · · · ⊕ Vn V s1
1 ⊕ · · · ⊕ V sn

n B

Ss1(V1) ⊗ · · · ⊗ Ssn(Vn) V ⊗s1
1 ⊗ · · · ⊗ V ⊗sn

n Â

P(A) ⊃ Â.

e

ψ ψ̃

⊃

⊂
π

⊃

Remark 2.3 Since P(Ss1(V1) ⊗ · · · ⊗ Ssn (Vn)) ⊂ P(A), we can study the Segre–Veronese
variety as a subvariety of X = π ◦ ψ(B ′) ⊂ P(A). Note that the image of ψ̃ |B does not
contain the origin.

Cumulants

In this setting we may apply the (nonlinear) coordinate systems of B, called cumulants
and presented in Michalek et al. [29]. For the motivations to consider them, coming from
algebraic statistics, we refer the reader to Refs. [34,41,42]. A general mathematical setting
for these methods is well presented in Ciliberto et al. [10]. Further results are obtained for
other varieties, e.g. Grassmannians and spinor varieties [28]. However, in other cases we do
not obtain toric coverings. Still, we believe that similar methods can be applied to a larger
class of secant and tangential varieties.

Notation 2.4 Basis elements of A are of the form e1
c11,...,c

1
s1

⊗· · ·⊗encn1 ,...,cnsn
and are in natural

correspondence with tuples (c11, . . . , c
1
s1 , . . . , c

n
1 , . . . , c

n
sn ), where 0 ≤ cij ≤ di for 1 ≤ i ≤ n

and 1 ≤ j ≤ si . Let us denote the set of these tuples by C(A) and for each c ∈ C(A) the
corresponding basis element by e(c). Finally, denote the dual basis elements by x(c) = e(c)∗.
Similarly, we denote C( Â) = C(A)\{(0, . . . , 0)}.
Definition 2.5 (degree, ordering) Given a tuple c ∈ C( Â), the number of its nonzero entries
is called the degree of c. Given c1, c2 ∈ C( Â), we say that c1 ≤ c2 if c1 can be obtained
from c2 by setting some entries to zero.

Thus, we have a natural poset structure onC( Â), which induces a poset structure on the basis
of Â. Simply speaking, the ordering on the basis is defined by replacing eij by e

i
0 in the tensor

product elements.

Example 2.6 Consider t2 := e11 ⊗ e10 ⊗ e25, t1 := e10 ⊗ e10 ⊗ e25 and t0 := e11 ⊗ e13 ⊗ e24. We
have t1 < t2 and t1, t2 are not comparable with t0.
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Denote the set of indices

Ind( Â) =
{[1

1

]
, . . . ,

[ 1
s1

]
, . . . ,

[n
1

]
, . . . ,

[ n
sn

]}

and endow it with a natural lexicographic order, namely, the order of appearance above.
Given c ∈ C( Â) and a subset of indices I ⊂ Ind( Â), we introduce the index tuple

cI = (b11, . . . , b
n
sn ), where bij =

[
cij ,

[i
j

] ∈ I,

0,
[i
j

]
/∈ I.

Note that {b ∈ C( Â) | b ≤ c} = {cI | I ⊂ Ind( Â)}. We will use either one-element subsets
I = [i

j

]
or subsets of the following form, where i1, i2 ∈ Ind( Â):

I = [i1 : i2] := {i | i1 ≤ i < i2} ⊂ Ind( Â).

Definition 2.7 A thick interval partition of a tuple c ∈ C( Â) of degree at least two is an
increasing sequence of indices

[1
1

] = b0 < . . . < bk = [ n
sn

]
such that deg c[bi :bi+1] ≥ 2 for

each i . The set of all thick interval partitions of c will be denoted by I P(c). It is always

nonempty as it contains
{[1

1

]
,
[ n
sn

]}
.

Now we can recall the coordinate systems from [29, Sec. 2].

Notation 2.8 For each c ∈ C( Â) we denote

y(c) :=
[
x(c), deg c = 1,∑

(b)≤(c)(−1)deg(c)−deg(b)x(b)
∏

c
i0
j0

=b
i0
j0

x(c[i0j0]
), deg c > 1.

Then for each c ∈ C( Â) we introduce a function in k[ Â]

z(c) :=
[
y(c), deg c = 1,
∑

(b0,...,bk )∈I P(c)(−1)k
∏k

m=1 y(c[bm−1:bm ]), deg c > 1.

Lemma 2.9 Each one of the sets {x(c)}c∈C( Â)
, {y(c)}c∈C( Â)

, and {z(c)}c∈C( Â)
is an alge-

braically independent system of functions generating O( Â). In other words, {z(c)} is a
coordinate system on Â as an affine space.

Proof Since y(c) is a sum of x(c) and of terms of smaller degree, the endomorphism of k[ Â]
that maps x(c) to y(c) for each c is invertible. The same holds for {y(c)} and {z(c)}. So, the
statement follows. ��
Secant

The secant variety Sec X ⊂ P(A) of the Segre–Veronese variety X is parameterized by a
map

secX : A
1 × B ′ × B ′ → Â, (t, v, w) 	→ π(t · ψ(v) + (1 − t) · ψ(w)). (3)

Hereinafter, given a tuple of degree one, we denote the index of its only non-zero entry
by

[i◦
j◦
]
. Generalizing [29, Lemma 3.1], we obtain the following result.
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Flexible affine cones and flexible coverings 1465

Lemma 2.10 Let {(eij )′∗ | 1 ≤ i ≤ n, 0 ≤ j ≤ di } be the set of coordinate functions on the
first copy of B ′ in (3) and {(eij )′′∗} the respective set on the second one.1 Then

sec∗
X : z(c) 	→

⎡

⎢
⎢
⎣

t

(

ei◦
ci◦j◦

)′∗
+ (1 − t)

(

ei◦
ci◦j◦

)′′∗
, deg c = 1 with ci◦j◦ = 0,

t (1 − t)(1 − 2t)deg(z(c))−2 ∏
cij =0

((

ei
cij

)′∗
−

(

ei
cij

)′′∗)
, deg c > 1,

for each c ∈ C( Â).

Proof Let Y be the affine cone over the Segre product P(V1)s1 × · · · × P(Vn)sn . Then the
secant of Y is parameterized by

secY : A
1 × B × B → Â, (t, v, w) 	→ π(tψ̃(v) + (1 − t)ψ̃(w)).

Thus, secX = secY ◦(id×e × e). The statement follows after applying [29, Lemma 3.1] to
secY . ��
Torus action

We can infer the following decomposition of secX .

Notation 2.11 Let rep : A
1 × B ′ × B ′ → A

1 × B ′ × B ′, be a reparameterization:

rep : (t, v, w) 	→
(

t (1 − t)

(1 − 2t)2
, tv + (1 − t)w, (1 − 2t)(w − v)

)

and let m : A
1 × B ′ × B ′ → Â, be a monomial map:

m∗ : z(c) 	→

⎡

⎢
⎢
⎣

(

ei◦
ci◦j◦

)′∗
, deg c = 1 with ci◦j◦ = 0,

t
∏

cij =0

(

ei
cij

)′′∗
, deg c > 1.

Lemma 2.12 There is a decomposition secX = m ◦ rep . In particular, m is a monomial
parameterization of Sec X.

Proof Straightforward. ��

This monomial parameterization of Sec X already provides a structure of a toric variety on
im(m) = Â ∩ Sec X, hence provides us with a toric chart of Sec X . Below we describe in
detail its structure.

Notation 2.13 Let us introduce the following closed subsets of Â:

Â1 = {z(c) = 0 | deg c > 1},
Â2 = {z(c) = 0 | deg c = 1},
S2 = Sec X ∩ A2.

1 That is, (eij )
′∗(v) = vij and (eij )

′′∗(w) = wi
j respectively.
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Notation 2.14 (Lattice Polytope P) Consider the lattice M = ⊕
1≤i≤n1≤ j≤di Zχ i

j , where

χ i
j = (eij )

∗. Let P ⊂ M ⊗ Q be the lattice polytope defined by inequalities
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
χ i
j

)∗ ≥ 0, 1 ≤ i ≤ n, 1 ≤ j ≤ di ,
di∑

j=1
(χ i

j )
∗ ≤ si , 1 ≤ i ≤ n,

∑
1≤i≤n
1≤ j≤di

(χ i
j )

∗ ≥ 2.

Proposition 2.15 In the terminology above,

(i) Sec X ∩ Â = Â1 × S2 via natural projections along coordinates z(c),
(ii) Â1 = X ∩ Â ∼= A

N , where N = ∑n
i=1 dim V̂i ,

(iii) S2 ∼= AffCone(XP ), where XP is a projective toric variety with polarization corre-
sponding to the polytope P, see, e.g., [11, §2.3] for the construction.

Proof The morphism m is a direct product of m|{0}×B′×{0} and m|A1×{0}×B′ , which respec-

tively parameterize Â1 and S2. This implies (i). The Segre–Veronese variety X is also
parameterized by m|{0}×B′×{0}, thus (ii) holds.

Let us consider the standard torus T = Speck[M] ⊂ B ′ and a projectivization
πz : Â\{0} → P( Â) along z(c)-coordinates. Then XP = πz(S2) is parameterized by a
T -equivariant map πz ◦ m|{0}×{0}×B′ , which is defined by the set of monomials {(ei

cij
)∗ |

deg c > 1} ⊂ O(B ′) corresponding exactly to lattice points P ∩ M . This implies (iii). ��
Proposition 2.16 Let Tan X ⊂ P(A) be the tangential variety of X. Then

Tan X ∩ Â = Â1 × X ′
P ,

where X ′
P ⊂ Â2 is a nondegenerate toric variety parameterized by m|{− 1

4 }×{0}×B′ .

Proof We present here a sketch of a proof for k = C, see [29] and [28, Lem. 3.3] for a
complete proof. Consider (ε−1, v, v + εw) ∈ A

1 × B ′ × B ′. If ε → 0, then secX (ε−1, v, v +
εw) tends to an element of Tπ◦ψ(v)X ↪→ Tan X corresponding to w. On the other hand, by
Lemma 2.10,

lim
ε→0

z(c)(secX (ε−1, v, v + εw)) =
⎡

⎢
⎣

v
i◦
ci◦j◦

− w
i◦
ci◦j◦

, deg c = 1 with ci◦j◦ = 0,

− 1
4

∏
cij =0 2w

i
cij

, deg c > 1.

Thus, the decomposition follows. It remains to check that X ′
P is nondegenerate. Indeed,

O(X ′
P ) ↪→ O(B ′) does not contain invertible elements. ��

These propositions imply the following relationship of the tangential and secant varieties,
which, in turn, implies Zak’s theorem [40] for Segre–Veronese varieties.

Corollary 2.17 The following conditions are equivalent:

(i) P is not contained in the hyperplane
∑

i, j (χ
i
j )

∗ = 2,
(ii) dim Sec X = 2 dim X + 1,
(iii) Sec X = Tan X,

(iv) dim Tan X = dim Sec X − 1.
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Then Sec X is called non-degenerate.

Proof Let d = dim X . As a toric variety, X is represented by a d-dimensional polytope
S, which is a product of simplices. Then P is the intersection of S with the halfspace∑

i, j (χ
i
j )

∗ ≥ 2.

(i) ⇒ (i i) The assumption implies dim P = d . Hence, dim S2 = d + 1 and dim Sec X =
dim Â1 + dim S2 = 2d + 1.
(i) ⇒ (iv) As before, dim Cone(P) = d . Hence, dim Tan X = dim Â1 + d = 2d . The
implications (i i) ⇒ (i i i) and (iv) ⇒ (i i i) are obvious.
(i i i) ⇒ (i) If P is contained in the hyperplane, then all monomials corresponding to lattice
points in P are of the same degree. In particular, X ′

P
∼= AffCone(XP ). ��

Example 2.18 1. Consider theVeronese surfaceY = P
2 ↪→ P

5. It is a projective toric variety
corresponding to the simplex S = conv(0, 2χ1, 2χ2) ⊂ 〈χ1, χ2〉 ∼= Z

2, i.e. parameterized by
characters of a two-dimensional torus that correspond to the lattice points of S. By Proposi-
tion 2.15, the variety XP that defines the secant is parameterized by P = S∩{χ∗

1 +χ∗
2 ≥ 2},

i.e., by the lattice points 2χ1, χ1 +χ2, 2χ2. Hence, both factors of Sec X ∩ Â = Â1 × S2 are
of dimension two, so dim Sec X = 4. Thus, the secant variety is degenerate and defined by
z(1, 2)2 = z(1, 1)z(2, 2).

2. Consider the Segre product P
1 × P

1 × P
1. The representing polytope is a cube [0, 1]3.

The secant variety is represented by a polytope with vertices (1, 1, 0), (1, 0, 1), (0, 1, 1),
(1, 1, 1). We see that the affine cone over it is the whole affine space; indeed, in this case the
secant variety is non-degenerate and fills the whole ambient space. The tangential variety is
a hypersurface defined by the equation z(1, 1, 0)z(1, 0, 1)z(0, 1, 1) = z(1, 1, 1)2.

Theorem 2.19 The tangential and secant varieties of a Segre–Veronese variety are covered
by complements of hyperplane sections. Each complement is an affine toric variety without
torus factors. In case of the secant variety, these are always normal toric varieties. In case
of the tangential variety they are normal if the underlying variety is the Segre product.

Proof By [39, Theorem 2.2] we know that Sec X is normal. By [29, Proposition 8.5] we
know that Tan X is normal, when X is the Segre product. The open subsets Sec X ∩ Â and
Tan X ∩ Â are toric varieties by Propositions 2.15 and 2.16. Moreover, they do not contain
torus factors, since they are products of an affine space Â1 with either an affine cone over a
projective toric variety XP or a non-degenerate toric variety X ′

P . By taking such subsets for
various choices of basis vectors ei0, i = 1, . . . , n, we obtain the statement. ��
Theorem 2.20 Let X = vs1(P(V1)) × · · · × vsn (P(Vn)) be a Segre–Veronese variety. Then
the affine cone over the secant variety of X is flexible. Further, if s1 = · · · = sn = 1, then
also the affine cone over the tangential variety of X is flexible.

Proof By [5, Theorem 0.2] we know that all the affine charts from Theorem 2.19 are flexible.
Now, by Theorem 1.4 we obtain flexibility of the affine cone. ��
Example 2.21 Consider the third Veronese embedding X = v3(P

1). It is represented by
characters in the interval S = conv(0, 3). Then Tan X ∩ Â ∼= A

1 × X ′
P , where the monoid of

characters associated to the toric variety X ′
P is generated by {2, 3}. Namely, X ′

P is the curve
with a cusp singularity at the origin. Thus, Tan X is a surface, whose singular locus is the
curve X . This example can be generalized to tangential varieties of other Segre–Veronese
varieties provided that at least one of the Veronese factors is of degree at least 3.

123



1468 M. Michałek et al.

3 The combinatorial description of T -varieties

We consider a normal variety X with an effective action of an algebraic torus T ∼= (Gm)r .
Then X is called a T -variety of complexity (dim X −dim T ). Here, the case of a complexity-
one torus is the most widely studied one, with contributions by many different authors [2,
16,21,24,35,37]. In the following we restrict ourselves to the case of rational T -varieties of
complexity one. Following [4] and generalising the classification of toric varieties by their
fans, we introduce some combinatorial language to classify rational T -varieties of complexity
one.

Let us denote the character lattice of the torus T by M and the dual lattice by N . For the
associated Q-vector spaces we write MQ and NQ.

For a polyhedron � ⊂ NQ we define its tail cone as follows

tail(�) := {v ∈ NQ | � + Q≥0 · v = �}.
Now, we consider polyhedral complexes  in NQ. Here, by polyhedral complex we mean a
set of convex polyhedra, which is closed under the face relation and every pair of polyhedra
intersect in a common face. Moreover, we assume that the set of tail cones has the structure of
a polyhedral complex itself, which is called the tail fan of  and will be denoted by tail().
Consider a pair S = (

∑
P∈P1 SP ⊗ P, degS) where SP are polyhedral complexes in NQ

with some common tail fan � and degS ⊂ |�|. Here, ∑
P SP ⊗ P is just a formal sum.

The complexes SP are called slices of S. We assume that there are only finitely many slices
that differ from the tail fan tail(S) := �. The set of the points P ∈ P

1 such that SP = � is
called the support of S and will be denoted by suppS. Note that for every full-dimensional
σ ∈ � there is a unique polyhedron �σ

P in SP with tail(�σ
P ) = σ .

Definition 3.1 (f-divisor) A pair S as above is called an f-divisor if for any full-dimensional
σ ∈ tail(S) we have either degS ∩ σ = ∅ or

∑

P

�σ
P = degS ∩ σ � σ.

An f-divisor as above corresponds to a rational T -variety of complexity one, see [19,
Section 1]. Moreover, this correspondence is even functorial. In particular, invariant open
subvarieties correspond to f-divisorsS ′, such thatS ′

P ⊂ SP as sets of polyhedra and degS ′ =
| tail(S ′)| ∩ degS. For simplicity we write S ′ ⊂ S in this situation. As a consequence of
Proposition 1.6 in [19], f-divisors S1, . . . ,S� ⊂ S give rise to an open covering if and only
if their slices cover the slices of S, i.e.

|S| =
⋃

i

|Si |.

Remark 3.2 Affine charts correspond to f-divisors S such that SP consists of a single poly-
hedron (and its faces) and degS = ∑

P∈P1 SP . These objects are called p-divisors in [4,19].

Example 3.3 In Fig. 1 we sketched the non-trivial slices of an f-divisor as well as its degree.
It describes the blowup of the quadric threefold in one point, see [33].

Lemma 3.4 [20, Remark 1.8.] An f-divisor describes a subtorus action on a toric variety if
and only if SP equals a lattice translate of the tail fan for all but at most two P ∈ P

1.
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Fig. 1 An f-divisor

In the language of f-divisors we also may describe torus invariant Cartier divisors by support
functions. A support function h on a polyhedral subdivision  is a continuous function that
is affine linear on every polyhedra in . We denote by lin h the linear part of h. This is a
piecewise linear function on the tail fan defined as follows:

(lin h)(v) := h(w + v) − h(w)

for some w ∈ � ∈  with v ∈ tail(�).

Definition 3.5 (Support function on S) A support function h on an f-divisor S is a collection
{hP }P∈P1 of support functions on SP such that

(i) all hP have the same linear part, which will be denoted by lin h,
(ii) only finitely many of them differ from lin h.

We have two kinds of torus invariant prime divisors on X (S). Horizontal prime divisors
correspond to rays ρ ∈ tail(S)(1) that do not intersect degS and are denoted by Dρ . Vertical
prime divisors correspond to vertices v in the subdivisions SP and are denoted by DP,v . Now,
the divisor corresponding to the support function h is given by

Dh = −
∑

ρ

(lin h)(ρ) · Dρ −
∑

P,v

μ(v) · hP (v)DP,v, (4)

where we identify the ray with the ray generator and μ(v) denotes the minimal positive
integer such that μ(v) · v is a lattice element. In particular,

(i) if hP ≤ 0 for all P ∈ P
1, then Dh is effective.

(ii) in this case X (S)\ supp Dh is given by the f-divisor

[h = 0] :=
(

∑

P

[hP = 0] ⊗ P, degS ∩ [lin h = 0]
)

, (5)

where [hP = 0] denotes the polyhedral subcomplex of SP consisting of those polyhedra
on which hP vanishes.

By [36, Section 4] (or [31]), every invariant Cartier divisor arises in this way. We have
Dh ∼ Dh′ if and only if hP − h′

P is affine linear for every P , i.e. hP − h′
P = 〈u, ·〉 + aP ,

and
∑

P aP = 0. Moreover, we have a criterion for ampleness expressed in the following
notation. We denote by �h the polytope given by

�h = {u ∈ MQ | 〈u, ·〉 ≥ (lin h)} (6)

and consider concave piecewise affine function h∗
P on �h as “dual” of hP :

h∗
P (u) := inf

v
(〈u, v〉 − hP (v)).

The definition implies that h∗
P (u) is finite for u ∈ �h .
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Theorem 3.6 If Dh is ample, then hP is strongly concave for every P ∈ P
1 and h∗

P (u) ≥ 0
for every u ∈ �h.

Proof By Petersen and Süß [31, Theorem 3.28], hP has to be strongly concave and by [19,
Prop. 3.1(i)] we get that h∗

P (u) ≥ 0. ��
Remark 3.7 Ona T -variety every divisor is linearly equivalent to some torus invariant divisor.
This follows for example from Fulton et al. [15, Theorem 1].

4 Affine cones over projective T -varieties

From now on we assume that the T -varieties which we consider are proper over the base,
i.e. the corresponding f-divisors S satisfy the condition that all its slices SP are subdivisions
of NQ.

Definition 4.1 (Equivariant covering by toric charts) A T -variety is called equivariantly
covered by toric charts, if there is an open covering by toric varieties Ui such that the torus
T acts as a subtorus of the embedded torus of Ui .

Lemma 4.2 The T -variety X (S) is equivariantly covered by toric charts if and only if for
every maximal polyhedron � in SP , P ∈ P

1, all but at most two slices contain a lattice
translate of tail(�). In particular, either X (S) itself is toric or there is at most one P ∈ P

1

such that SP does not contain a lattice vertex.

Proof The first part is a corollary of Lemma 3.4. To prove the last statement, we consider two
points P, Q such that SP ,SQ contain only non-lattice vertices. Now, consider a third point
R and a maximal polyhedron � ⊂ SR . Since there is no lattice translate of tail(�) in SP and
SQ ,� itself must be a translated cone. Notice that all maximal cones in SR must be translated
by the same lattice point. Indeed, otherwise they would not cover NQ and there would exist
a different maximal dimensional polyhedron that could not be a lattice translate of its tail
cone. Hence, for any R /∈ {P, Q} the slice SR is just a translated tail fan. By Lemma 3.4,
X (S) is a toric variety. ��
Remark 4.3 By [6, Appendix] this criterion is fulfilled for all smooth complete rational T -
varieties of complexity one. Hence, they are covered by affine charts isomorphic to affine
spaces.

To get flexibility for every affine cone we need to strengthen the condition in Lemma 4.2.

Theorem 4.4 Let X = X(S) be a T -variety such that for any maximal polyhedron � ∈ Sy ,
y ∈ P

1, at most two slices contain a polyhedron with the same tail cone tail(�) that is not
a lattice translate of tail(�). Then for every very ample divisor H the corresponding affine
cone is flexible.

Proof By Theorem 1.4 it is enough to show that there exists a T -invariant H -polar covering
by toric charts. Let us first rephrase this condition in terms of f-divisors. Remember that
being H -polar means that the complement of every chart is the support of an effective
divisor linearly equivalent to H . Having T -invariant charts means that we have to choose
the effective divisors above to be T -invariant. Therefore, we are looking for a collection of
support functions h, which via (4) give rise to divisors Dh ∼ H , where ∼ denotes linear
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equivalence. Moreover, the open subsets X\ supp Dh have to cover X . By (5) the latter is
equivalent to the fact that for every maximal polyhedron �P ∈ SP there exists a strictly
concave non-positive support function h on S corresponding to an effective divisor Dh ∼ H ,
such that [hP = 0] = �P (i.e. hP |�P ≡ 0 and negative elsewhere). For being a toric covering
additionally we have to impose that [h = 0] has only two slices that are not lattice translates
of the tail fan.

We now construct such a covering for some very ample divisor H . By Remark 3.7 every
divisor is linearly equivalent to a torus invariant one. Hence, using [36, Section 4] we can
assume that H ∼ Dh for some support function h. Fix a maximal polyhedron � ⊂ SQ .
Then hQ |� is affine linear, i.e. hQ(v) = 〈u, v〉 + a. By concavity this implies u ∈ �h , with
�h defined as in (6). We now consider h′ := h − u with h′

P (v) := hP (v) − 〈u, v〉. Now,
h′
P is again strongly concave and achieves its maximum at a polyhedron �P with tail cone

tail(�P ) = tail(�). Moreover, by construction we have 0 ∈ �h′ .
By our precondition, we may assume without loss of generality that for every point R ∈

P\{0,∞} the polyhedron �R is a lattice translate of tail(�). Assume further Q = ∞ and
introduce h∞ by

{
h∞
P (v) := h′

P (v) − max Im h′
P for P = ∞,

h∞∞(v) := h′∞(v) + ∑
P =∞ max Im h′

P .

It remains to check that h′∞(v)+∑
P =∞ max Im h′

P ≤ 0 to see that Dh∞ is indeed effective.
Recall that we have 0 ∈ �h′ . The claim follows from the ampleness of Dh′ and Theorem 3.6.

Now, by construction we have Dh∞ ∼ H and [h∞
Q = 0] = �. Moreover, [h∞

P = 0] is a
lattice translate of tail(�) for each P /∈ {0,∞}. Then it describes a toric chart.

Taking these toric charts for every maximal polyhedron provides us with an H -polar
covering. Now, our result follows by Theorem 1.4. ��
Theorem 4.5 All the affine cones over the Fano threefolds Q, 2.29, 2.30, 2.31, 2.32, 3.8,
3.18, 3.19, 3.23, 3.24, 4.4, and certain elements of the families 2.24, 3.10 admitting a 2-torus
action in Mori–Mukai’s classification are flexible.

Proof For all Fano threefolds from Theorem 4.5 the corresponding f-divisors are listed in
Süß [33]. One can easily check that the precondition of Theorem 4.4 is fulfilled in every case.

��
Example 4.6 Let us illustrate the difference of assumptions in Lemma 4.2 and Theorem 4.4.
In the lemma we are allowed to choose the polyhedron with the given tail cone. Hence, if we
consider the variety given by the slice (−∞,− 1], [− 1, 1], [1,∞) taken three times, then it
does satisfy the assumptions. Indeed, if we take the maximal polytope [− 1, 1] in one slice,
in other two slices we can take just the vertex {1}, which is a lattice shift of the tail cone {0}.
On the other hand, in the theorem we ask for all polyhedra with the given tail cone. Here,
we get three times [−1, 1] which is not a lattice translate of {0}. Such a difference is only
possible for cones that are not full-dimensional.

Example 4.7 We are coming back to the blowup of the quadric threefold from Example 3.3.
Wemay check that the corresponding f-divisor in Fig. 1 fulfills the condition of Theorem 4.4.
Hence, all the affine cones over the blowup of the quadric threefold are flexible.

Example 4.8 The hypersurface V(x0y20 + x1y21 + x2y22 ) ⊂ P
2 × P

2 is 2.24 from our list in
Theorem 4.5. Hence, every affine cone over this variety is flexible. In particular, this is true
for the affine cone over the Segre embedding.
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5 Total coordinate spaces

We recall the definition of Cox rings.

Definition 5.1 (Cox sheaf, Cox ring, universal torsor, total coordinate space) Let X be a
complete normal variety, whose class group is a free abelian group. Assume that the classes
of divisors D1, . . . , Dr form a basis of this class group. The Cox sheaf of X is defined by

R =
⊕

a∈Zr≥0

O
(

r∑

i=1
ai Di

)

.

It becomes a sheaf ofOX -algebras via the usual multiplication of sections. The algebraR(X)

of global sections of R is called the Cox ring of X .
The relative spectrum X̂ = SpecX (R) is called the universal torsor of X . It is an open

subset of the absolute spectrum X = Spec(R(X)), which is called the total coordinate space
of X . By construction, the Cox ring is graded by the class group of X inducing an action of
the torus Spec k[Cl(X)] on the total coordinate space.

In the following we are studying flexibility of total coordinate spaces for several classes
of varieties.

5.1 Del Pezzo surfaces

Since the smooth del Pezzo surfaces of degrees 6, 7, 8, and 9 are toric, their total coordinate
spaces are just affine spaces and hence flexible. The remaining del Pezzo surfaces are blowups
Xr of P

2 in r points of general position, where 4 ≤ r ≤ 8. Their Cox rings are described for
example in Batyrev and Popov [8], Derenthal [13], and Testa et al. [38].

An exceptional curve on X is a curve of self-intersection − 1 and anti-canonical degree 1.
On every del Pezzo surface there are only finitely many of them, we denote their number by
N (r). Seen as an effective divisor every such curve C corresponds to a section in the degree-
[C] part of the Cox ring. This section is uniquely determined up to scaling by a non-zero
constant.

We will use the following facts from Batyrev and Popov [8].

Theorem 5.2 [8, Thm 3.2 and Prop. 3.4] Let N (r) be the number of exceptional curves on a
del Pezzo surface Xr . Denote by e1 . . . , eN (r) the sections corresponding to the exceptional
curves and by I the ideal of their relations. Then

(i) R(Xr ) = k[e1, . . . , eN (r)]/I for 4 ≤ r ≤ 7;
(ii) R(X8) = k[e1, . . . , eN (r)]/I ⊕ 〈 f1, f2〉k as a vector space, where f1, f2 ∈

H0(X8,O(−KX8)) are elements of degree one with respect to the Z-grading by the
anti-canonical degree of a divisor class.

Theorem 5.2 shows that the Cox ring R(X) is generated by elements of degree 1 and
Yr := Proj(R(Xr )) comes with an embedding into P

N−1, where N (resp. N − 2) is the
number of exceptional curves in the case 4 ≤ r ≤ 7 (resp. r = 8).

In this situation the total coordinate space Xr is the affine cone over this embedding.

Proposition 5.3 Let e be a section corresponding to an exceptional curve. Then the principal
open subset (Yr )e is isomorphic to Xr−1.

Proof This can be found for example in the proof of Proposition 3.4 in Batyrev and Popov
[8]. ��
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Theorem 5.4 The total coordinate spaces of smooth del Pezzo surfaces are flexible.

Proof As said above, it is enough to check the statement for Xr with 4 ≤ r ≤ 8. We will go
by induction. The del Pezzo surface X3 is toric. Therefore, it has a flexible total coordinate
space. Now, consider Xr with 4 ≤ r ≤ 8. Then we have seen that Xr is the affine cone over
Yr . Moreover, the principal open subsets corresponding to sections of exceptional curves
are isomorphic to Xr−1 and hence flexible by induction hypothesis. It remains to check that
these principal open subsets cover Yr to conclude flexibility of Xr from Theorem 1.4. For
4 ≤ r ≤ 7 this follows directly from Theorem 5.2(i). For the case r = 8 we have to take
care for the remaining generators. By Theorem 5.2(ii) their squares are contained in the
ideal (e1 . . . , eN ) generated by the sections corresponding to exceptional curves, but then
the common vanishing of e1 . . . , eN implies the vanishing of the remaining generators and
hence Yr = ⋃N

i=1(Yr )ei . ��
5.2 Smooth complexity-one T -varieties

In Hausen and Süß [18] the Cox rings of T -varieties are studied. For the case of a complexity-
one action they have a very particular form.

Proposition 5.5 [18, Corollary 4.9] Let S be an f-divisor and let us denote by S× the subset
of rays in tail(S)(1) that do not intersect degS. Then the Cox ring of X (S) is given by

k[Sρ, TP,v | ρ ∈ S×, P ∈ suppS, v ∈ S(0)
P ]

〈z · Tμ(0) + Tμ(∞) + Tμ(z) | z ∈ suppS ∩ k∗〉
where Tμ(P) := ∏

v∈S(0)
P

Tμ(v)
P,v and μ(v) denotes the minimal positive integer such that

μ(v) · v is a lattice element.

If we impose the additional condition that the T -variety is equivariantly covered by toric
charts (which is fulfilled in the smooth case), then we can conclude the following.

Proposition 5.6 The Cox ring of a complexity-one T -variety equivariantly covered by toric
charts is isomorphic to

k[S1, . . . , SnS ; T�, j | 0 ≤ � ≤ m, 1 ≤ j ≤ n�]/〈z� · A0 + A1 + A� | 2 ≤ � ≤ m〉,
where

(i) N ,m, n0, . . . , nm ∈ Z>0;
(ii) z2, . . . , zm are distinct elements of k∗;
(iii) for � = 0, . . . ,m, A� is a monomial in k[T�,1, . . . , T�,n�

];
(iv) for � = 1, . . . ,m the monomial A� is linear in at least one variable.

Moreover, if X is Fano, then we may assume that A� for � ≥ 3 is linear in each variable.

Proof The first statements follow directly from Proposition 5.5 and Lemma 4.2. For the Fano
case note that the Cox ring of a Fano variety is log-terminal by Brown [9] and Gongyo et al.
[17] and factorial by [7]. Hence, by Remark 6.4 in [25] we obtain the last statement. ��

Proposition 5.7 Let X be a complexity-one T -variety equivariantly covered by toric charts
and X be the total coordinate space of X. Then X is flexible.
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Proof Let k[X ] be as in Proposition 5.6. We assume that X is naturally embedded into an
affine space A

N = Speck[S1, . . . , SN ; T�, j | 0 ≤ � ≤ m, 1 ≤ j ≤ n�].
The images of monomials A0, . . . , Am in k[X ] span a two-dimensional subspace, and

no two of them are collinear. Therefore, we may permute A0, . . . , Am along with a proper
change of their coefficients, indices of variables, and numbers zi . ��
Lemma 5.8 The point x ∈ X is singular if and only if there are at least three monomials Ai

such that all their partial derivatives are vanishing at x.

Proof Let x be singular and denote L� = z� · A0 + A1 + A� for � = 2, . . . ,m. Then there is
a non-trivial linear combination L ∈ 〈L2, . . . , Lm〉k, whose partial derivatives vanish at x .
Since L is a sum of at least three monomials Ai , whose partial derivatives also vanish, the
statement follows.

Conversely, given three monomials with partial derivatives vanishing at x , we assume that
they are A0, A1, A2. Then we take L = L2. ��

So, for a smooth point x ∈ X , up to permutation of monomials and variables we assume
that each monomial Ai , i = 2, . . . ,m, has a non-zero partial derivative, say, ∂Ai

∂Ti,1
(x) = 0.

Moreover, we may choose Ti,1 to be linear in Ai . Indeed, if Ti,1 is not linear, then Ai (x) = 0,
and we take Ti,1 to be a linear variable by 5.6 (iv). We denote Bi = ∂Ai

∂Ti,1
, which is non-zero

at x .
Given a set of arbitrary numbers c0,1, . . . , c0,n0 , c1,1, . . . , c1,n1 ∈ k, we construct a Ga-

action φ on A
N in two steps. First, denoting a parameter of Ga by t , we let

φ∗ : k[AN ] → k[AN ] ⊗ k[t],
Si 	→ Si , for i = 1, . . . , nS,

T0, j 	→ T0, j + tc0, j

m∏

k=2

Bk, for j = 1, . . . , n0,

T1, j 	→ T1, j + tc1, j

m∏

k=2

Bk, for j = 1, . . . , n1.

Then, for some H0, H1 ∈ k[AN ] ⊗ k[Ga],

φ∗(A0) =A0 + H0

m∏

k=2

Bk,

φ∗(A1) =A1 + H1

m∏

k=2

Bk .

Now, for each � = 2, . . . ,m we let

T�,1 	→ T�,1 − (z� · H0 + H1)
∏

2≤k≤m
k =�

Bk,

T�, j 	→ T�, j , for j = 2, . . . , n�.

Then the trinomial z� · A0 + A1 + A� is fixed by φ∗, so φ preserves X ⊂ A
N . Thus, we have

constructed a Ga-action on the total coordinate space X , which we also denote by φ.
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As said before, for a chosen smooth point x we have Bi (x) = 0. Let us take another
smooth point y ∈ X with non-zero coordinates and move x to y by Ga-actions, denoting
images of x by same letter. By translations along coordinates S1, . . . , SnS we ‘equalize’ them,
i.e., obtain Si (x) = Si (y), i = 1, . . . , nS .

Since c0,1, . . . , c0,n0 , c1,1, . . . , c1,n1 ∈ k are arbitrary,withφ we also equalize coordinates
T0, j , j = 1, . . . , n0, and T1, j , j = 1, . . . , n1, at x and y. Now, let T1,1 be a linear variable
in A1, then for each � = 2, . . . ,m we construct a Ga-action φ� by permuting monomials

A1 and A� and applying the procedure above. Since ∂A1
∂T1,1

(x) = ∂A1
∂T1,1

(y) = 0, with φ� we
may equalize coordinates T�,2, . . . , T�,m , but break the equality of coordinate T1,1, which we
restore with φ.

Proceeding in this way for each � = 2, . . . ,m, we equalize all coordinates except
T2,1, . . . , Tm,1. But in this case the equation z� · A0 + A1 + A� = 0 with condition
B�(x), B�(y) = 0 implies T�,1(x) = T�,1(y) for each �. So, we may send any smooth
point to any point with non-zero coordinates. Hence the action of SAut X is transitive on the
regular locus of X . ��
Theorem 5.9 The total coordinate space of a complete smooth rational T -variety of com-
plexity one is flexible.

Proof By [6, Thm A.1], every rational smooth complete rational T -variety of complexity
one is covered by affine spaces, so the statement follows from Proposition 5.7. ��
5.3 Flexibility of total coordinate spaces vs. flexible coverings

In [6] it was proved that for a variety with an open covering by affine spaces one obtains
flexibility of the universal torsor. However, it is not clear whether the flexibility property
extends to the total coordinate space.Thismotivates the following evenmoregeneral question.

Question 5.10 Provided a variety admits an open covering by flexible affine subsets, does
this imply flexibility of the total coordinate space?

It is also tempting to try to connect flexibility of the total coordinate space of the Cox ring
of X with that of affine cones over X . The following example shows that flexibility of the
total coordinate space does not imply flexibility of all the affine cones.

Example 5.11 (Del Pezzo surfaces) We have seen in Sect. 5.1 that all total coordinate spaces
of del Pezzo surfaces are flexible. On the other hand, del Pezzo surfaces are covered by affine
spaces, which are flexible. Concerning flexibilty of affine cones it was shown in Perepechko
[30] and Park and Won [32] that for degree 4 and 5 all the affine cones are flexible, but by
Cheltsov et al. [23] and Kishimoto et al. [12] the anti-canonical affine cones over del Pezzo
surfaces of degree 3, 2, and 1 are not flexible.

One may still ask if flexibility of all the affine cones implies flexibility of the total coor-
dinate space or for a more subtle relation, e.g. involving the grading of the Cox ring.

Question 5.12 Is there a relation between flexibility of the total coordinate space of X and
the fact that all affine cones over X are flexible?

Let us give some illustrating examples for these questions.

Example 5.13 (Toric varieties) The Cox ring of a complete toric variety is a polynomial
ring. Hence, the total coordinate space is flexible. On the other hand, the torus invariant
affine charts and also the affine cones of a toric variety are again toric and hence flexible by
Arzhantsev et al. [5, Theorem 0.2].
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Example 5.14 (Blowups of a projective space in cubic hypersurfaces inside hyperplanes)
The blowup constructions from Example 1.5 give varieties for which all the affine cones are
flexible, as we have seen. On the other hand, the total coordinate space is flexible, as we see
in the following.

We can consider the k∗-action on P
n given by multiplication with the coordinate x0. It

comes with a natural quotient map to P
n−1 being defined outside the isolated fixed point

(1 : 0 : . . . : 0). Then the centers of our blowups are fixed points of the action and we obtain
induced actions on X and X ′ with natural quotient maps given by composition of the original
quotient map with the blowup. Now, we may use Theorem 1.2 in Hausen and Süß [18] to
calculate the Cox rings

R(X) ∼= k[T0, . . . , Tn, T ′
n, S1]/(TnT ′

n − f (T0, . . . , Tn−1, 0))

and

R(X ′) ∼= k[T0, . . . , Tn, T ′
n, S1, S2]/(TnT ′

n − f (T0, . . . , Tn−1, 0))).

We see that they are suspensions over an affine space and hence flexible by Theorem 0.2 in
Arzhantsev et al. [5].

Example 5.15 (T -varieties of complexity one) The proof of Theorem 5.9 implies that for
T -varieties of complexity one the condition of being covered by toric (and hence flexible)
charts is enough to deduce the flexibility of the total coordinate space. On the other hand, to
conclude flexibility of all the affine cones we had to impose the stronger (technical) condition
of Theorem 4.4.

Acknowledgements Open access funding provided by Max Planck Society. We would like to thank Mikhail
Zaidenberg for motivating questions and inspiring results and Ivan Arzhantsev for many useful remarks
and suggestions. The first author started the project under Mobilnosc+ Polish Ministry of Science program,
finished under DAAD PRIME program and was supported by the Foundation for Polish Science (FNP). The
formulation and proof of Lemma 1.1 (A.Perepechko) were supported by a Grant from the Dynasty Foundation.
The research of A. Perepechko, which lead to the results of Sect. 5, was carried out at the IITP RAS at the
expense of the Russian Foundation for Sciences (Project no. 14-50-00150).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Arzhantsev, I., Flenner, H., Kaliman, S., Kutzschebauch, F., Zaidenberg, M.: Flexible varieties and auto-
morphism groups. Duke Math. J. 162(4), 767–823 (2013)

2. Altmann, K., Hausen, J.: Polyhedral divisors and algebraic torus actions. Math. Ann. 334(3), 557–607
(2006)

3. Altmann, K., Hausen, J., Süß, H.: Gluing affine torus actions via divisorial fans. Transform. Groups 13(2),
215–242 (2008)

4. Altmann, K., Ilten, N., Petersen, L., Hendrik, V., Robert: The geometry of T-varieties. In: Pragacz, P. (ed.)
Contributions to Algebraic Geometry: Impanga Lecture Notes (2011)

5. Arzhantsev, I., Kuyumzhiyan, K., Zaidenberg, M.: Flag varieties, toric varieties, and suspensions: three
instances of infinite transitivity. Sb. Math. 203(7), 923–949 (2012)

6. Arzhantsev, I., Perepechko, A., Süß, H.: Infinite transitivity on universal torsors. J. Lond. Math. Soc.
89(3), 762–778 (2014)

7. Berchtold, F., Hausen, J.: Homogeneous coordinates for algebraic varieties. J. Algebra 266(2), 636–670
(2003)

123

http://creativecommons.org/licenses/by/4.0/


Flexible affine cones and flexible coverings 1477

8. Batyrev, V., Popov, O.: The Cox ring of a del Pezzo surface. In: Arithmetic of Higher-Dimensional
Algebraic Varieties. Proceedings of theWorkshop on Rational and Integral Points of Higher-Dimensional
Varieties, Palo Alto, CA, USA, December 11–20, 2002. Birkhäuser, Boston, pp. 85–103 (2004)

9. Brown, M.: Singularities of Cox rings of Fano varieties. J. Math. Pures Appl. 99(6), 655–667 (2013)
10. Ciliberto, C., Cueto, M., Mella, M., Ranestad, K., Zwiernik, P.: Cremona linearizations of some classical

varieties. In: Gianfranco, C., Alberto, C., Letterio, G., Livia, G., Marina, M., Alessandro, V. (eds.) From
Classical to Modern Algebraic Geometry, pp. 375–407. Springer International Publishing, Cham (2016)

11. Cox, D.A., Little, J.B., Schenck, H.K.: Toric varieties. Graduate Studies in Mathematics, American
Mathematical Society, vol. 124, p. 841 (2011)

12. Cheltsov, I., Park, J., Won, J.: Affine cones over smooth cubic surfaces. J. Eur. Math. Soc. 18, 1537–1564
(2016)

13. Derenthal, U.: Universal torsors of del Pezzo surfaces and homogeneous spaces. Adv. Math. 213(2),
849–864 (2007)

14. Flenner, H., Kaliman, S., Zaidenberg, M.: A Gromov–Winkelmann type theorem for flexible varieties. J.
Eur. Math. Soc. 18(11), 2483–2510 (2016)

15. Fulton, W., MacPherson, R., Sottile, F., Sturmfels, B.: Intersection theory on spherical varieties. J. Alge-
braic Geom. 4(1), 181–193 (1995)

16. Flenner, H., Zaidenberg, M.: Normal affine surfaces with C
∗-actions. Osaka J. Math. 40(4), 981–1009

(2003)
17. Gongyo, Y., Okawa, S., Sannai, A., Takagi, S.: Characterization of varieties of Fano type via singularities

of Cox rings. J. Alg. Geom. 24(1), 159–182 (2015)
18. Hausen, J., Süß, H.: The Cox ring of an algebraic variety with torus action. Adv. Math. 225(2), 977–1012

(2010)
19. Ilten, N., Süß, H.: Polarized complexity-1 T -varieties. Mich. Math. J. 60(3), 561–578 (2011)
20. Ilten, N., Vollmert, R.: Deformations of rational T -varieties. J. Algebraic Geom. 21(3), 531–562 (2012)
21. Kempf, G., Knudsen, F., Mumford, D., Saint-Donat, B.: Toroidal embeddings I. Lecture Notes Math.,

vol. 339. Springer, Berlin (1973)
22. Kishimoto, T., Prokhorov, Y., Zaidenberg, M.: Group actions on affine cones. In: Montreal Centre de

Recherches Mathématiques, CRM Proc. and lecture notes, vol. 54, pp 123–163 (2011)
23. Kishimoto, T., Prokhorov, Y., Zaidenberg, M.: Unipotent group actions on del Pezzo cones. Algebraic

Geom. 1(1), 46–56 (2014)
24. Langlois, K.: Polyhedral divisors and torus actions of complexity one over arbitrary fields. J. Pure Appl.

Algebra 219(6), 2015–2045 (2015)
25. Liendo, A., Süß, H.: Normal singularities with torus actions. Tohoku Math. J. 65, 105–130 (2013)
26. Mori, S., Mukai, S.: Classification of Fano 3-folds with b2 ≥ 2. Manuscr. Math. 36(2), 147–162 (1981)
27. Masuda, K., Miyanishi, M.: Lifting of the additive group scheme actions. TohokuMath. J. 61(2), 267–286

(2009)
28. Manivel, L., Michałek, M.: Secants of minuscule and cominuscule minimal orbits. Linear Algebra Appl.

481, 288–312 (2015)
29. Michałek, M., Oeding, L., Zwiernik, P.: Secant cumulants and toric geometry. Int. Math. Res. Not.

2015(12), 4019–4063 (2015)
30. Perepechko, A.: Flexibility of affine cones over del Pezzo surfaces of degree 4 and 5. Funct. Anal. Appl.

47(4), 284–289 (2013)
31. Petersen, L., Süß, H.: Torus invariant divisors. Isr. J. Math. 182, 481–505 (2011)
32. Park, J., Won, J.: Flexible affine cones over del Pezzo surfaces of degree 4. Eur. J. Math. 2(1), 304–318

(2016)
33. Süß, H.: Fano threefolds with 2-torus action—a picture book. Doc. Math. 19, 905–914 (2014)
34. Sturmfels, B., Zwiernik, P.: Binary cumulant varieties. Ann. Comb. 17(1), 229–250 (2013)
35. Timashev, D.A.: Classification of G-varieties of complexity 1. Izv. Math. 61(2), 363–397 (1997)
36. Timashev, D.A.: Cartier divisors and geometry of normal G-varieties. Transform. Groups 5(2), 181–204

(2000)
37. Timashev, D.: Torus actions of complexity one. Harada M. et al. (eds.) Toric topology. International

conference, Osaka, Japan, May 28–June 3, 2006, Contemp. Math., vol. 460. American Mathematical
Society (AMS), Providence, RI, pp. 349–364 (2008)

38. Testa, D., Várilly-Alvarado, A., Velasco,M.: Cox rings of degree one del Pezzo surfaces. Algebra Number
Theory 3(7), 729–761 (2009)

39. Vermeire, P.: Singularities of the secant variety. J. Pure Appl. Algebra 213(6), 1129–1132 (2009)

123



1478 M. Michałek et al.

40. Zak, F.L.: Tangents and secants of algebraic varieties, volume 127 of Transl. Math. Monogr. American
Mathematical Society, Providence, RI [Translated from the Russian manuscript by the author (1993)]

41. Zwiernik, P.: L-cumulants, L-cumulant embeddings and algebraic statistics. J. Algebraic Stat. 3(1) (2012)
42. Zwiernik, P.: Semialgebraic Statistics and Latent Tree Models. CRC Press, Boca Raton (2015)

123


	Flexible affine cones and flexible coverings
	Abstract
	1 Flexibility of affine cones
	2 Secant of Segre–Veronese variety
	Cumulants
	Secant
	Torus action

	3 The combinatorial description of T-varieties
	4 Affine cones over projective T-varieties
	5 Total coordinate spaces
	5.1 Del Pezzo surfaces
	5.2 Smooth complexity-one T-varieties
	5.3 Flexibility of total coordinate spaces vs. flexible coverings

	Acknowledgements
	References




