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The spontaneous curvature of the water-hydrophobe interface
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The temperature-dependent solvation of hydrophobic solutes in water is investigated by large-
scale molecular dynamics simulations. A simultaneous fit of solvation free energies for spheres
and cylinders with radii up to R = 2 nm yields a negative Tolman length on the order of 1 Å
at room temperature, equivalent to a spontaneous curvature that favors water droplets over cav-
ities. Pronounced crossover effects of the surface free energy are analyzed in terms of higher-
order curvature corrections and water-discreteness effects. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4755753]

I. INTRODUCTION

The hydrophobic effect is the dominant driving force for
self-assembly in the aqueous environment and spans many
length scales from protein folding over macromolecular
aggregation and membrane formation to macroscopic phase
separation.1 In fact, the solvation of hydrophobic objects
displays a characteristic crossover at a length scale of
R* ≈ 0.5 nm,2–4 that can be viewed as being associated
with the discreteness of water: While small hydrophobes
with radii R < R* such as noble gas atoms can be readily
accommodated within the water hydrogen bonding network,
mostly reducing the water configurational freedom, large
hydrophobic solutes with radii R > R* such as oil droplets,
nano particles, or dendrimers lead to a reduction of hydrogen
bonds and the formation of a liquid-vapour like interface
with a positive excess entropy. Also the water density around
small and large hydrophobic solutes turns out to be very
different, showing a characteristic density maximum in the
first solvation shell around small objects and a depletion zone
around large objects.2–4

It has been a long standing question how hydrophobic
solvation on the nanoscale can be described by an interface
model in terms of suitably defined geometrical measures that
would bridge these two very different regimes of hydrophobic
solvation.

In 1949, Tolman5 proposed an asymptotic curvature cor-
rection for the surface tension of a spherical cavity, based on
purely thermodynamic considerations,

γSPH = γ0(1 − 2δ/R), (1)

where γ 0 is the surface tension of a planar interface, R is
the cavity radius, and δ is the Tolman length, which can be
associated with a shift between the Gibbs dividing surface
(GDS) RGDS and the surface of tension RS in the planar limit,
δ = limR→∞ RGDS − RS.6 A general description of the inter-
facial free energy of an arbitrarily shaped interface is given by
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Helfrich’s phenomenological local curvature expansion,7

FHelf =
∫

dA[γ̃ + 2κ(J − c0)2 + κ̄K], (2)

where J = (1/R1 + 1/R2)/2, K = 1/(R1R2), and c0 are the mean,
Gaussian, and spontaneous curvatures, R1, 2 are the local prin-
cipal radii of curvature and κ and κ̄ are the normal and Gaus-
sian bending rigidities. For a sphere with radius R, one obtains

FSPH/A = γ0 − 4κc0

R
+ (2κ + κ̄)

1

R2
, (3)

with γ0 ≡ γ̃ + 2κc2
0 and A = 4πR2. Comparison of the lead-

ing terms in the expansions in powers of the curvature 1/R
in Eqs. (1) and (3) shows that the Tolman length can be ex-
pressed in terms of the coefficients appearing in the Helfrich
curvature expansion as

δ = 2κc0/γ0. (4)

With the convention that the radius of a cavity (or bubble)
is taken as positive (note that all cited results in this paper
are adapted to this sign convention), a negative Tolman length
means that the symmetry between positive and negative radii
is broken such that a droplet is preferred over a cavity. A dif-
ferent way of expressing this is that the surface of tension is
shifted towards the liquid water side of the GDS.

The Helfrich curvature expansion in Eq. (2) can be used
to describe the solvation of arbitrarily shaped hydrophobic
objects in water and thus forms a powerful basis for a
multitude of different advanced implicit solvation models,
e.g., to predict protein folding or ligand-receptor docking.8

However, the unambiguous determination of the coefficients
is for several reasons not straightforward: (i) While the
magnitude of δ is generally agreed to be on the order of
the molecular size, not even for simple Lennard-Jones (LJ)
liquids a consensus is reached about its sign, see Refs. 9 and
10 and references therein. (ii) The aforementioned crossover
between small-scale and large-scale solvation caused by the
water discreteness and which is not captured by the Helfrich
expression for the surface free energy, occurs at roughly
the same scale as the Tolman length, i.e., R* ∼ δ, therefore
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FIG. 1. Simulation snapshots of (a) and (b) spherical and (c) and (d) cylin-
drical hydrophobic solutes in water with different radii. Dashed lines indicate
water hydrogen bonds.

it is not straightforward to disentangle these two lengths
(the same problem hampers accurate determination of the
bending rigidities κ and κ̄ as well). (iii) Furthermore, the
Tolman length for water in contact with a hard solute could in
principle be different from that of a liquid droplet or a bubble,
where one has a liquid-vapor interface,11–15 and therefore
could depend on the substrate properties in an a priori un-
known manner, a point we will come back to in the following.

Using simulations and scaled particle theory (SPT), a
positive Tolman length of the order of 1 Å was predicted for
the water-vapor interface at ambient temperature.16, 17 Ash-
baugh and Pratt4 find δ ≈ 0.6 Å at T = 300 K, which decreases
with increasing temperature and changes sign at T ≈ 350 K.
Huang et al.18 deduce δ = 0.9 Å at T = 298 K for SPC/E
water from simulated solvation free energies of hydrophobic
spheres. Yamamoto and Ohnishi19 on the other hand find a
maximum in the surface tension of helium bubbles in water
as a function of bubble radius, which, considering the curva-
ture expansion in Eqs. (1) or (3), corresponds to a negative
Tolman length, in contrast to the previous studies. Not sur-
prisingly, the sign and magnitude of the second order curva-
ture correction in Eq. (3), proportional to the sum of Gaussian
and mean curvatures 2κ + κ̄ , is much debated as well.20–23

In the present work we employ large-scale MD simula-
tions and determine solvation free energies of hydrophobic
spherical and cylindrical solutes of radii up to R = 2 nm in
water (see Fig. 1). For a cylinder of radius R, Helfrich’s gen-
eral curvature expansion (Eq. (2)) yields for the solvation free
energy per unit area

FCYL/A = γ0 − 2κc0

R
+ κ

2

1

R2
, (5)

and therefore using the same definition for the Tolman length
Eq. (4) the equivalent of Eq. (1) is

γCYL = γ0(1 − δ/R). (6)

Obviously, the first-order correction term of the surface en-
ergy that depends on the Tolman length δ is different for
spheres and cylinders, which provides a numerically sensitive
mean to determine δ in a self-consistent manner. By consid-
ering the full radius range from zero to R = 2 nm, we cover
the crossover between the regimes where the solvation free
energy scales as the solute volume, F ∼ V for R < R*, and
where it scales as the solute surface area, F ∼ A for R > R*.
Simultaneously considering spherical and cylindrical geome-
tries turns out essential in light of the pronounced crossover
effects: only the consistent and simultaneous fit of spherical
and cylindrical solvation data according to Eqs. (1)–(6) al-
lows to reliably extract the Tolman length, which is shown to
be negative. Water favors droplets over cavities. By compar-
ing the solvation free energies of spheres and cylinders, we
also estimate the free energy for aggregation of spheres into
cylindrical objects, which exhibits a change of sign at a ra-
dius of R � 0.3 nm, meaning that only for large radius is the
aggregation of spheres into linear cylindrical aggregates free-
energetically favored.

The solvation of small spherical hydrophobes is often
used as a simplified thermodynamic model for the exposure
of hydrophobic residues to water during protein unfolding. A
salient feature of the solvation of small hydrophobic solutes is
its temperature dependence, characterized by a negative sol-
vation entropy at room temperature and a positive solvation
heat capacity. It has been noticed that experimental solvation
entropies for small spherical solutes differing in radius (e.g.,
noble and molecular gases, small hydrocarbons) intersect at
a universal temperature around T ∗

S � 400 K, a phenomenon
that goes under the name of entropy convergence.26 Based on
the finding of a similar entropy convergence temperature T ∗

S

for the unfolding of several globular proteins,24 it has been ar-
gued that entropy convergence is a universal characteristic of
hydrophobic solvation and from that concluded that the pro-
tein stability is dominated by the hydrophobic effect.25, 26 This
view was initially supported by computer simulation studies
of spherical hard core solutes.27, 28 Consideration of experi-
mental data for a larger set of proteins, however, showed no
evidence of entropy convergence in protein folding.29 This ex-
perimental finding can be rationalized by the spread in sizes
and interaction strengths among the constituent residues as
was first suggested in Ref. 4. Indeed, a recent simulation
study showed that the convergence temperatures for simple
spherical solutes depend sensitively on details of the solute-
water interaction.30 It can be concluded that entropy conver-
gence should only be expected for homologous series of lin-
ear molecules made of identical building blocks and is more
a signature of the additivity of the solvation free energy of
macromolecules than of some underlying universal solvation
features.

In the present work, we go beyond previous theoretical
work and investigate not only how the entropy convergence
varies with the size of a solute, but also with the shape by
comparing spherical and cylindrical solutes. Since a protein,
when completely unfolded, might be viewed as a string of in-
dividual residues, some of which may happen to be hydropho-
bic depending on the sequence, a cylindrical solute might be
better suited as a model for the unfolding of a protein. As
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our results show, there are salient differences between the
solvation of spherical and cylindrical objects that can be ra-
tionalized as corrections due to curvature effects, as can al-
ready be seen by comparing the asymptotic expressions in
Eqs. (3) and (5). One main point of our paper is to bridge the
theoretical description of hydrophobic solvation for solutes
with radii R < R*, where the solvation free energy is to first
order proportional to the solute volume, dominated by a loss
in entropy and accompanied by an excess water adsorption,
and for large solutes with radii R > R*, where the solvation
free energy is to first order proportional to the solute area,
characterized by a positive excess entropy and a pronounced
depletion layer, and a local curvature expansion is valid.

II. METHODS AND MODELING

In this section, we give a detailed account of the simu-
lation methods and solute models that are employed in this
work.

A. Water model

For all atomistic computer simulations involving water,
the used water model is, of course, crucial. In the present
work, we choose the extended simple point charge (SPC/E)
water model,31 which is widely used and has been employed
in previous studies of hydrophobic solvation (see for instance
Refs. 4 and 18). Due to its computational efficiency it al-
lows simulations of large solutes necessary to obtain robust
results as we will show below. We note, however, that the
SPC/E model does not accurately reproduce the experimen-
tal air/water surface tension and therefore quantitative results
have to be interpreted with care.

B. Solute modeling

Spherical solutes interact with water oxygen atoms via a
purely repulsive Buckingham (BH) exponential potential of
the form

VSPH−OW(r) = C e−Br , (7)

where r is the distance between the center of the solute and
the water oxygen atom and the parameters C and B are de-
termined as follows. The decay length 1/B is chosen as 1/B
= 0.03 nm, corresponding to the decay length in a Buck-
ingham exponential-6 parameterization of the water oxy-
gen atom by Errington and Panagiotopoulos.32 The param-
eter C is fixed by the condition that VSPH−OW(R) = kBT0,
where R defines the radius of the solute, kB is the Boltz-
mann constant and T0 = 300 K. From this definition, we ob-
tain C = kBT0 exp[BR] and the potential can be rewritten
as VSPH−OW(r) = kBT0 exp[−B(r − R)]. Using this potential
form makes sure that the stiffness of the potential does not
change with increasing solute size, in contrast to a repulsive
Lennard-Jones potential, that becomes softer for larger solute
radii. One characteristic feature of the exponential potential is
its finite value for r → 0, which allows very small solutes to
overlap with the water molecules. We show below that this ef-

fect is only significant for very small solutes, and is therefore
no serious limitation for our purposes. Interactions between
the solute and water hydrogen atoms are neglected.

Cylindrical solutes are modeled as a string of spheres
aligned along the z-axis, with an axial separation of �z. The
cylinder has the same length as the box size in z-direction,
so that by the use of periodic boundary conditions edge ef-
fects are excluded. The interaction potential of the cylindrical
solute with water oxygens is therefore given by

VCYL−OW(r‖, z) = C

N∑
i=1

e−B
√

r2
‖ +(z−zi )2

, (8)

where N is the number of spheres, r‖ =
√

x2 + y2 is the dis-
tance from the cylinder axis, and zi = i�z, i = 1, . . . , N, are
the z-positions of the spheres that form the cylinder. To obtain
a rather smooth cylinder, we choose the spacing between the
spheres as �z = 0.025 nm, which ensures that the corrugation
of the potential along the z-axis is negligible and we have

VCYL−OW(r‖) ≈ C

∫ ∞

−∞

dz

�z
e−B

√
r2
‖ +z2

= 2Cr‖
�z

K1(Br‖), (9)

where K1 is the first order modified Bessel function of the
second kind. Analogously to the spherical solutes, we choose
1/B = 0.03 nm and determine the constant C by the condi-
tion VCYL−OW(R) = kBT0. From that definition, it follows that
C = �zkBT0fCYL(B,R), with 1/fCYL(B, R) = 2RK1(BR).

For comparison with our results for an exponential po-
tential, we also calculate solvation free energies for solutes
interacting via the repulsive part of a Lennard-Jones potential,

V LJ
SPH−SOL(r) = D

r12
, (10)

for a restricted range of radii, R < 0.5 nm. The solute radii
R are defined analogously to the Buckingham potential by
V LJ

SPH−SOL(R) = kBT0, yielding D = kBT0R
12.

C. Thermodynamic integration (TI)

The main quantity we are interested in is the solvation
free energy F of the spherical and cylindrical solutes. To de-
termine F, the method of thermodynamic integration is used,
which relates the free energy difference F̃ between two states
I and II of a thermodynamic system, characterized by two po-
tential energy functions UI and UII, to the averaged deriva-
tive 〈∂U(λ)/∂λ〉 of an intermediate potential energy U(λ), that
connects the two states by a virtual path, i.e., U(λ = 0) = UI

and U(λ = 1) = UII, where λ = 0 . . . 1 is a path variable. The
free energy difference F̃ between the two states is then given
by the integral

F̃ =
∫ 1

0
dλ

〈
∂U (λ)

∂λ

〉
λ

, (11)

where the average 〈.〉λ has to be taken for a system interacting
via U(λ). To obtain the solvation free energy of a solute, the
initial state I is chosen such that the solute does not interact
with the solvent, while in the final state II, the full interaction
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with the solvent is switched on. That is, the potential energy
function UI contains no solute-solvent interactions, while UII

contains the full interaction. For simulations in an isobaric-
isothermal ensemble, the solvation free energy contains an
additional term due to the volume change,33

F = F̃ + kBT ln

(
V II

V I

)
, (12)

where V I and V II are the system volumes in state I and state II,
respectively. This term accounts for the difference in the ideal
gas entropy in the initial and final state of the thermodynamic
integration. For the solvation of a nonpolar solute, this vol-
ume change is mainly due to the solute’s volume �V , since
the water can be considered incompressible to a good approx-
imation. If the volume of the simulation box V is much larger
than the volume of the solute, the correction term is small.

For large solutes it is convenient to break the thermody-
namic integration into several steps with varying system sizes
and thus with varying water molecule numbers, going from an
initial solute radius RI to a final radius RII in each step, where
RI = 0 for the first step and RII equals the desired solute ra-
dius in the last step. This way, smaller simulation boxes can
be used for small solutes, reducing the computational cost. A
summary of the intermediate radii and the corresponding box
sizes used is given in Table I.

We perform linear scaling between the states, that is the
potential energy function of the intermediate states is defined
by

URI→RII
(λ) = (1 − λ)URI + λURII

. (13)

Since the repulsive Buckingham potential has no divergence
at small distances, linear scaling is possible even for the first
step, where the solute is completely decoupled in the initial
state, without getting a diverging 〈∂URI→RII

(λ)/∂λ〉, as for a
Lennard-Jones potential.34

Since the radius of the solute changes only the prefactor
of the interaction potential, the potential URI→RII

(λ) at each
intermediate λ-value corresponds to a solute of intermediate
radius R(λ). Conversely, the λ-values can be chosen in such a
way, that they correspond to equidistant values of the solute
radius. For the integration step from RI to RII, the intermediate
λ-value corresponding to a solute of radius R (RI < R < RII) is

λ(R) = fX(B,R) − fX(B,RI)

fX(B,RII) − fX(B,RI)
, (14)

for the case of a spherical (X = SPH) and cylindrical
(X = CYL) solute, respectively, where fSPH(B, R) = exp (BR)
and fCYL(B, R) is defined above (see text after Eq. (9)). The
solvation free energy for a solute of radius R is then given by

F (R) =
∫ λ(R)

0
dλ

〈
∂URI→RII

(λ)

∂λ

〉

+ kBT ln

(
V (R)

V (RI)

)
+ F (RI), (15)

with RI < R < RII. In order to ensure proper equilibration,
we calculate 〈∂URI→RII

(λ)/∂λ〉 for a discrete set of λ-values
corresponding to radius increments of �R = 0.0125 nm. The
solvation free energy is subsequently obtained by integrating
a quadratic spline interpolation of the resulting data set,

TABLE I. Simulation details for the thermodynamic integration of spherical and cylindrical solutes. Shown are
the initial and final radii of each step RI and RII, the number of λ-values Nλ, the number of water molecules Nsol,
the final box length LII, the initial and final volume of the simulation box V I and V II, and the real-space cutoff
radius for the solute solvent interactions r ′

c. For the cylindrical solutes, the box lengths in z-direction Lz and the
final box length in x/y-direction LII

x,y are listed.

RI (nm) RII (nm) Nλ Nsol LII (nm) V I (nm3) V II (nm3) r ′
c (nm)

Spherical solutes
0.0 0.05 5 511 2.49 15.5 15.5 0.9
0.05 0.25 17 510 2.49 15.5 15.5 0.9
0.25 0.5 21 862 2.98 26.2 26.6 1.0
0.5 0.75 21 1318 3.47 40.4 41.7 1.25
0.75 1.0 21 2064 4.06 64.3 67.0 1.5
1.0 1.25 21 2659 4.47 85.0 89.5 1.75
1.25 1.5 21 3554 4.98 116.7 123.3 2.0
1.5 1.75 21 4546 5.46 153.5 162.8 2.25
1.75 2.0 21 5843 5.99 202.2 214.6 2.5

RI (nm) RII (nm) Nλ Nsol Lz (nm) LII
x,y (nm) V I (nm3) V II (nm3) r ′

c (nm)
Cylindrical solutes

0.0 0.05 5 506 2.5 2.48 15.5 15.5 0.9
0.05 0.25 17 580 3.0 2.45 17.6 17.9 0.9
0.25 0.5 21 782 3.0 2.95 24.1 26.1 1.0
0.5 0.75 21 1170 3.5 3.48 38.3 42.5 1.25
0.75 1.0 21 1653 4.0 4.02 58.1 64.6 1.5
1.0 1.25 21 2140 4.5 4.48 81.2 90.4 1.75
1.25 1.5 21 2806 5.0 5.01 113.4 125.7 2.0
1.5 1.75 21 3511 5.5 5.51 151.2 167.0 2.25
1.75 2.0 21 4413 6.0 6.05 199.9 219.6 2.5
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FIG. 2. (a) Average of the derivative 〈∂URI→RII
/∂λ〉 as a function of λ for

the integration step from RI = 1.75 nm to RI = 2.0 nm for a spherical so-
lute at T = 300 K. Red crosses and black circles indicate λ-values corre-
sponding to equidistant radii with an increment of �R = 0.0125 nm and �R
= 0.00625 nm, respectively. The black full and red dashed lines are spline
interpolations to the data sets. (b) Free energy difference with respect to
the initial state RI = 1.75 nm obtained by simple trapezoidal integration of
〈∂URI→RII

/∂λ〉 for an increment of �R = 0.0125 nm (red crosses/full line)
and �R = 0.00625 nm (black circles/full line) and by integrating the spline
interpolation of both data sets (red and black dashed lines).

thereby reducing the integration error significantly. We
use the TI method to calculate solvation free energies of
Buckingham spheres and cylinders for radii up to R = 2.0 nm.

To check the accuracy of our integration procedure,
we performed more finely resolved calculations using twice
the number of λ-values, corresponding to a smaller radius
increment of �R = 0.00625 nm, for the integration step
RI = 1.75 nm → RII = 2.0 nm for the spherical solute
at T = 300 K. Figure 2(a) shows a plot of the derivative
〈∂URI→RII

/∂λ〉 as a function of λ for the different step sizes
including the interpolation. The interpolation for the coarser
resolution coincides very well with the additional data points
at finer resolution. In Fig. 2(b), we plot the free energy
difference obtained either by simple trapezoidal integration
of 〈∂URI→RII

(λ)/∂λ〉 (symbols and full lines) or by using the
spline interpolation (dashed lines) for both data sets. It can be
seen that for the trapezoidal integration there is a systemati-
cally increasing difference between the two data sets which is
caused by the systematic integration error due to the concave
shape of the integrand. The two curves obtained by integrat-
ing the spline interpolation lie almost perfectly on top of each
other, indicating that when using the spline interpolation the
coarser resolution of �R = 0.0125 nm is sufficiently accurate.
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FIG. 3. Relative differences of the free energies of solvation (a) for the in-
tegration step from RI = 0.25 nm to RII = 0.5 nm for a spherical solute for
different box sizes L = 3.0, 3.5, 4.0, and 4.5 nm and (b) for the integration
step from RI = 0.75 nm to RII = 1.0 nm for a cylindrical solute for box sizes
of Lz = Lx, y = 3.5, 4.0, and 4.5 nm. The differences are taken with respect to
the smallest box. For the case of the cylinders, the free energy per unit length
is considered. No systematic deviation is observed with increasing box size.
All simulations are done at T = 300 K and p = 1 bar.

D. Finite size effects

We further check the sensitivity of the free energy
calculation to finite size effects by comparing the solvation
free energies for the integration step from RI = 0.25 nm to
RII = 0.5 nm for a spherical solute for different box sizes of L
≈ 3.0, 3.5, 4.0, and 4.5 nm and for the integration step from
RI = 0.75 nm to RII = 1.0 nm for cylindrical solutes for box
sizes of Lz ≈ Lx, y ≈ 3.5, 4.0, and 4.5 nm. Figure 3 shows the
relative free energy differences with respect to the smallest
box size in each case. No significant trend is seen with
the system size and the relative deviations for all cases are
quite small, which again evidences the high accuracy of the
method. Since the simulations are done at fixed pressure, the
box size L (spheres) and Lx, y (cylinders) vary slightly during
each simulation. The actual box sizes at the final integration
step are LII = 2.98, 3.54, 4.06, and 4.54 nm for the spherical
solute and LII

x,y = 3.48, 4.02, and 4.48 nm for the cylindrical
solute, while Lz = 3.5, 4.0, and 4.5 nm is fixed.

E. Test particle insertion (TPI)

To check the results of the thermodynamic integration
and to calculate solvation free energies for Lennard-Jones
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solutes for which TI is problematic, we in addition use
the particle insertion method. In the case of an isobaric-
isothermal ensemble it is given by35, 36

F = −kBT ln

( 〈V e−βUX−SOL〉
〈V 〉

)
, (16)

where V is the volume of the system, β = 1/(kBT ) and the
angular brackets denote an isobaric-isothermal average over
configurations of the solvent system without any solute. The
potential energy of the interaction between solute and solvent
UX-SOL (X = SPH,CYL) is given by

UX−SOL =
Nsol∑
i=1

VX−OW(ri), (17)

where Nsol is the number of water molecules, ri is the distance
between the solute and the oxygen atom of the ith water
molecule, and UX–OW is defined in Eqs. (7) and (8), for
spherical and cylindrical solutes, respectively. In contrast
to the thermodynamic integration method, the particle
insertion method works efficiently only for small solutes.
We use the TPI method to determine the solvation free
energy of Buckingham and Lennard-Jones spheres with radii
R < 0.5 nm for comparison with the TI data (see Fig. 6).

F. Planar surface tension

The surface tension of the planar air water interface γ lv, 0

is determined from the anisotropy of the pressure tensor37 in
simulations of a water slab surrounded by its vapour. It is
given by

γlv,0 = Lz

2

[
〈Pzz〉 − 〈Pxx〉 + 〈Pyy〉

2

]
, (18)

where Lz is the length of the simulation box in z-direction and
Pαβ denotes the components of the pressure tensor. The outer
factor of 1/2 accounts for the fact, that there are two interfaces
present in the simulation box.

G. Entropy-enthalpy decomposition

The solvation free energy can be decomposed into en-
tropic and enthalpic contributions by considering its tempera-
ture dependence. The solvation entropy is given by

S = −∂F

∂T
, (19)

and the solvation enthalpy can be obtained from

H = F + T S. (20)

We calculate �S at a given temperature T by numerically tak-
ing the temperature derivative,

S(T ) = F (T + �T ) − F (T − �T )

2�T
, (21)

where we use �T = 20 K. The enthalpy H is then obtained
from Eq. (20).

H. Molecular dynamics simulations

The necessary averages for the thermodynamic integra-
tion and particle insertion method are obtained by molecular
dynamics simulations performed with a modified version of
the GROMACS simulation package.38, 39

The thermodynamic integration is performed in several
steps. The system sizes and the particle numbers for each step
are summarized in Table I. The λ-values are chosen according
to Eq. (14) corresponding to equidistant solute radii with an
increment of �R = 0.0125 nm. For each λ-value the system
is first equilibrated for t = 50 ps in a NVT (constant particle
number, volume, and temperature) ensemble and subse-
quently for t = 100 ps in a NPT (constant particle number,
pressure, and temperature) ensemble in the case of the spheri-
cal solutes and a NPxyLzT (constant particle number, pressure
in x- and y-direction, box size in z-direction, and temperature)
ensemble in the case of the cylindrical solutes. Production
runs are subsequently performed for t = 5 ns in the NPT
(spherical solutes) or NPxyLzT (cylindrical solutes) ensemble.
For the full range of solute radii (R = 0.0–2.0 nm), this
amounts to a total simulation time of 0.8 μs for each temper-
ature. In order to account for large solutes without changing
the water-water interactions, we use two different cutoff radii
for the non-bonded interactions. All nonbonded real-space
interactions between solvent molecules are cut off at a radius
rc = 0.9 nm in most simulations, while the cutoff radius be-
tween solvent and solute particles r ′

c is chosen at least 0.5 nm
larger than the largest solute radius (see Table I). To check the
cutoff dependence of the solvation free energies, we perform
additional simulations with a cutoff of rc = 1.8 nm as indi-
cated below. Thermodynamic integrations over the full range
of solute radii (R = 0.0–2.0 nm), are performed for tempera-
tures of T = 280, 300, 320, and 360 K and over the range of
R = 0.0–0.5 nm for temperatures of T = 280, 300, 320, 340,
360, 380, 400, 420, and 440 K. For solute sizes of R = 0.05,
0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.75, 1.0, 1.25,
1.5, 1.75, and 2.0 nm additional simulations at T = 300 K
over t = 20 ns are performed to calculate solute-solvent radial
distribution functions. Box sizes and solvent numbers are the
same as for the thermodynamic integration (see Table I).

For test particle insertions, a system consisting of 895
water molecules is simulated at T = 300 K in the NPT ensem-
ble for t = 10 ns, after the same equilibration procedure as for
each step of the thermodynamic integration.

To obtain the planar surface tension of the air/water in-
terface, we perform simulations of a water slab in the NVT
ensemble. The water slab has a thickness of ≈9 nm and con-
tains ≈10000 water molecules. It is placed in a simulation box
of 6 × 6 × 15 nm3 and simulated for t = 10 ns in a NVT en-
semble at temperatures of T = 280, 300, 320, and 360 K. The
first 500 ps of each simulation are discarded for equilibration.

For temperature and pressure control, a Berendsen weak
coupling thermostat and barostat40 with a relaxation time of
τ = 1.0 ps is used. Long-range electrostatics are treated by
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FIG. 4. Radial distribution functions (a) gSPH–OW(r) and (b) gCYL–OW(r) be-
tween solutes and water oxygen atoms for solute radii in the range R = 0.05–
2.0 nm. Vertical dotted lines indicate the solute radii for R ≥ 0.75 nm. All
simulation data for SPC/E water at T = 300 K and p = 1 bar.

the particle mesh Ewald summation technique41, 42 with tinfoil
boundary conditions.

III. RESULTS AND DISCUSSION

A. Radius-dependent solvation

The radial distribution functions in Fig. 4 and the solva-
tion entropy TS in Fig. 5 clearly display the gradual crossover
from small-scale solvation, characterized by a negative
solvation entropy TS and a pronounced density peak in the
first solvation shell, to large-scale solvation characterized by
a monotonic density distribution around the solute, positive
TS, and constant free energy per area F/A. Depending on
the observable one looks at, this crossover occurs around
R* � 0.5–1.0 nm and at a significantly smaller radius for
a cylinder compared to a sphere. This fact makes cylinders
particularly suited for determining the Tolman length, as
shown later on. Note that F/A does not quite reach the inde-
pendently determined planar liquid vapour surface tension
γ lv, 0, denoted by a dotted horizontal line in Fig. 5(a), as will
be discussed in detail below.

For small radii, the solvation free energy of hard-sphere
solutes scales proportional to the volume.2, 3 In contrast, our
Buckingham spheres exhibit for very small R a divergence in
F/A and F/V . This is due to the finite r → 0 limit of the ex-
ponentially decaying Buckingham potential. This divergence
is absent for a potential shape that becomes infinitely repul-
sive as r → 0, as is seen in Fig. 6, where we plot the solvation
free energy for spherical solutes that interact with the water
oxygen atoms via a purely repulsive LJ potential (as given in
Eq. (10)). Solvation free energies of the LJ-spheres are ob-
tained by the TPI method and are shown in Fig. 6 together
with solvation free energies for BH spheres obtained by both
TI and TPI. For the LJ-spheres, F/A smoothly goes to 0 for R
→ 0, while it converges with the solvation free energy of the

(a)

(b)

FIG. 5. Solvation free energy F (full), enthalpy H (dashed), and entropy TS
(dash-dotted lines) of spherical (black) and cylindrical (red lines) solutes as
a function of the solute radius R, plotted (a) per unit surface area and (b)
per unit volume of the solutes. The dotted horizontal line in (a) shows the
independently determined surface tension of a planar liquid vapour interface
γ lv, 0. Red and black shaded areas in (b) indicate the regions, where the dif-
ference of F/V between spheres and cylinders is positive or negative. In fact,
only for R > 0.3 nm is aggregation favored (red shaded region). The solvation
enthalpic and entropic differences between spheres and cylinders change sign
at R � 0.5 nm and R � 1.0 nm, respectively, as indicated by filled circles. All
data at T = 300 K.

Buckingham-spheres for radii R > 0.2 nm. The TPI data for
the Buckingham-spheres agree perfectly with the Bucking-
ham TI data for small radii. Deviations between Buckingham
TPI and TI data for R > 0.4 nm are due to insufficient sam-
pling, which shows that the TPI method becomes inefficient
for solutes of too large size. We note that the solvation free
energy F of the Buckingham spherical solutes of course goes
to zero for R → 0, only slower than the area A such that the
ratio F/A exhibits a weak divergence as well.

The difference between F/V for spheres and cylinders
in Fig. 5(b) can be viewed as the free energy change per vol-
ume upon an aggregation of spheres into a cylinder with the
same radius. Although a liquid cylinder is instable with re-
spect to an isochoric increase in radius, demonstrated by the
free energy minimum at R → ∞ in Fig. 5(b), this simple
model for linear hydrophobic aggregation of spheres into a
cylinder is still instructive: In fact, only for R > 0.3 nm is
aggregation favored (red shaded region), for smaller R the
cylindrical free energy per volume is higher than the spher-
ical one (black shaded region). This transition turns out to be
driven by complex crossovers in the solvation enthalpic and
entropic differences between spheres and cylinders,43 which
change sign at R � 0.5 nm and R � 1.0 nm, respectively, as
indicated by filled circles. For R > 1.0 nm, cylinders are en-
tropically disfavored and enthalpically favored, while for R
< 0.5 nm, cylinders are enthalpically disfavored and entropi-
cally favored.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

160.45.66.20 On: Mon, 10 Mar 2014 09:56:18



135102-8 F. Sedlmeier and R. R. Netz J. Chem. Phys. 137, 135102 (2012)

0 0.1 0.2 0.3 0.4 0.5
R [nm]

0

10

20

30

40

50
F

 / 
A

 [
m

N
/m

]
BH spheres - TI
BH spheres - TPI
LJ spheres - TPI

FIG. 6. Solvation free energy F per solute surface area A as a function of the
solute radius R for purely repulsive spherical solutes interacting with the wa-
ter oxygen atoms either by a Buckingham (BH) (see Eq. (7)) or by a Lennard-
Jones (LJ) potential (see Eq. (10)) obtained by either the test particle insertion
(TPI) or the thermodynamic integration (TI) method. All data are obtained in
SPC/E water at T = 300 K and p = 1 bar.

B. Extracting the Tolman length

To extract the Tolman length, in Fig. 7(a) we plot F/A for
T = 300 K as a function of the inverse radius 1/R as solid
lines. The data are strongly curved and fits according to the
asymptotic expressions, Eqs. (1) and (6) are obviously impos-
sible: The slopes for cylinders and spheres at 1/R = 0.5 nm−1

have opposite signs, so extrapolation to the limit 1/R → 0 and
extraction of the Tolman length (which is the negative slope
in this plot) is not obvious. The situation for higher temper-
ature T = 360 K in Fig. 7(b) is more favorable, since here
crossovers are shifted to smaller radii43 as we will discuss in
more detail in Sec. III E. Indeed, now a maximum in F/A is
clearly resolved in both data sets, although a linear fit accord-
ing to Eqs. (1) and (6) is still not feasible, suggesting that we
are still in the curvature range, where higher order corrections
are important. We take the presence of higher-order correc-
tions explicitly into account by a generalized Helfrich surface
free energy that includes third-order terms in the curvature,

FHelf =
∫

dA

[
γ̃ + 2κ

(
1

2

(
1

R1
+ 1

R2

)
− c0

)2

+ κ̄
1

R1R2

+ η

(
1

R3
1

+ 1

R3
2

)
+ η̄

(
1

R1R
2
2

+ 1

R2
1R2

) ]
, (22)

where we have introduced the third-order moduli η and η̄. For
a spherical solute, Eq. (22) yields

FSPH/A = γ0 − 4κc0

R
+ (2κ + κ̄)

1

R2
+ 2(η + η̄)

1

R3
, (23)

and for a cylindrical solute,

FCYL/A = γ0 − 2κc0

R
+ κ

2

1

R2
+ η

1

R3
. (24)

(b) (d)

(c)(a)

FIG. 7. Solvation free energies F (full lines) per unit area of spherical (black) and cylindrical (red lines) solutes as a function of the inverse radius 1/R at
temperatures (a) T = 300 K and (b) T = 360 K. Black and red dashed-dotted lines are cubic fits in the range 0.5 nm−1 < 1/R < 1.4 nm−1, where Eqs. (23)
and (24) are fit simultaneously to the data for spherical and cylindrical solutes. The resulting best-fit parameters are listed in Table II. (c) and (d) Same data as in
(a) and (b) but for a larger range of 1/R. Linear fits in the region 1.5 nm−1 < 1/R < 3 nm−1 for spheres (black dashed-dotted lines) and 3 nm−1 < 1/R < 5 nm−1

for cylinders (red dashed-dotted lines) with the constraint of an equal surface tension are included. Additionally, in (c) the empirical interpolation function FInter
(Eq. (28)) for different values of the crossover exponent ν = 1, 2, 5, and 10 (dashed lines) together with the limiting expressions FHelf (Eq. (22)) (dotted blue
line) and FV (Eq. (27)) (dotted violet line) for the spherical solute is shown.
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TABLE II. Best fit parameters γ 0, κ , κ̄ , c0, δ, η, and η̄ obtained from fitting Eqs. (23) and (24) to the spherical and cylindrical data in Figs. 7(a) and 7(b) for
(1/R)upper = 1.4 nm−1. The independently determined planar surface tension of the free water/vapour interface, γ lv, 0, is also included for comparison.

T (K) γ lv, 0 (mN/m) γ 0 (mN/m) κ (10−21 J) κ̄ (10−21 J) c0 (nm−1) δ (nm) η (10−32 Jm) η̄ (10−32 Jm)

280 58.1 59.7 −6.7 −2.4 0.41 − 0.092 0.018 3.2
300 54.7 56.8 −5.8 −2.8 0.50 − 0.10 − 0.23 3.0
320 52.0 53.8 −6.2 −2.3 0.53 − 0.12 − 0.23 3.2
360 45.5 47.4 −5.4 −2.5 0.69 − 0.16 − 0.35 3.3

The dashed-dotted lines in Figs. 7(a) and 7(b) show a si-
multaneous fit to both spherical and cylindrical data accord-
ing to Eqs. (23) and (24) with the six coefficients γ 0, δ, κ , κ̄ ,
η, and η̄ as free parameters (fits are performed on the inter-
val 0.5 nm−1 < 1/R < 1.4 nm−1). A comparison between the
third-order and second-order expressions Eqs. (23) and (24)
and Eqs. (3) and (5) and the dependence on the fitting range is
discussed below (see Figs. 8 and 9).

All fit parameters are summarized in Table II. The result-
ing Tolman length, which according to Eqs. (1) and (6) is the
negative slope in the limit 1/R → 0, is negative, which fol-
lows directly from the fact that the surface free energy F/A
goes initially up as 1/R increases starting from 1/R = 0. The
value of δ is on the order of δ ≈ −1 Å, implying that the spon-
taneous curvature is such that water favors droplets over cav-
ities. With rising temperature, δ in fact further decreases. The
maximum of F/A for spheres occurs at 1/Rmax � 0.7 nm−1 for
T = 360 K and extrapolated at 1/Rmax � 0.5 nm−1 for T
= 300 K. This is consistent with previous simulations18 for
spheres in the restricted radius range 1/R > 1 nm−1 that did
not exhibit the maximum in F/A and naturally were inter-
preted in terms of a positive Tolman length. Our increased ra-
dius range up to R = 2 nm, the consideration of a whole range
of temperatures, in conjunction with the cylindrical data, that
show the maximum at considerably smaller radii, allows to
clearly resolve the maximum in F/A and thus to reliably ex-
tract the Tolman length.

The best-fit values for γ 0 are slightly larger than the inde-
pendently determined surface tension γ lv, 0 of the planar liq-
uid/vapour interface, see Table II and the data plot as a func-
tion of R in Fig. 5(a). Similar behaviour for a Lennard-Jones
liquid9 was rationalized by suppressed interfacial fluctuations
near a hard wall.44 Our analysis as presented in the follow-
ing suggests that this deviation can alternatively be interpreted
as a finite-size crossover, as follows from the dependence of
the fitting results on the fitting range: Figure 8 shows fits ac-
cording to Eqs. (23) and (24) including (dashed-dotted lines)
and neglecting (dotted lines) the cubic term. The fitting is per-
formed over the interval 0.5 nm−1 < 1/R < (1/R)upper, where
(1/R)upper = 0.6 and 1.4 nm−1 in Figs. 8(a) and 8(b), respec-
tively. The best fit parameters for (1/R)upper = 1.4 nm−1 from
the full cubic fit correspond to the coefficients summarized in
Table II.

As can be seen from Fig. 8, for small values of the
curvature 1/R the deviations between the quadratic and cubic
fit are quite small. For larger curvature values but within
the fitting range, the cubic function fits the data slightly
better than the quadratic one, showing that higher order (i.e.,
cubic) curvature corrections do play a small but numerically

significant role in the range of curvatures considered. The
planar surface tension and the Tolman length obtained from
the fits show a small but systematic dependence on the
fitting range, as shown in Fig. 9. The trend is similar for the
quadratic and cubic fit models, which shows that the behavior
is rather model-independent and thus robust. In fact, the fitted
surface tension γ 0 decreases with decreasing (1/R)upper and
approaches the surface tension γ lv, 0 of the planar liquid/vapor
interface, which is denoted by a horizontal dotted line in
Fig. 9(a), suggesting that the discrepancy between the γ 0

obtained from the fit and the surface tension obtained from
simulations of a planar air/water interface γ lv, 0 can be
explained by the finite maximal radius that is accessible in
our simulations. Indeed, if we extrapolate γ 0 to (1/R)upper

= 0, it agrees within the statistical errors with γ lv, 0. This
means that the difference between the air-water interface and
the interface between water and a hydrophobic substrate goes
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FIG. 8. Solvation free energies per area for spherical and cylindrical solutes
at T = 360 K and p = 1 bar, simultaneously fit by Eqs. (23) and (24) either ne-
glecting (dashed lines) or including (dashed-dotted lines) the cubic term. The
fit is restricted to the range 0.5 nm−1 < 1/R < (1/R)upper, where (a) (1/R)upper
= 0.6 nm−1 and (b) (1/R)upper = 1.4 nm−1.
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FIG. 9. Dependence of surface tension γ 0 and the Tolman length δ obtained
from fits to the solvation free energies per area of spherical and cylindrical
solutes at T = 360 K and p = 1 bar for a quadratic (black circles) or cubic
(red squares) fitting function (see Fig. 8) on the fitting range 0.5 nm−1 < 1/R
< (1/R)upper. Solid lines are quadratic fits to the data, the dotted horizontal
line in (a) indicates γ lv, 0 = 45.5 mN/m.

to zero in the long wavelength limit, which is expected since
water dewets from a hydrophobic substrate and therefore the
influence of the substrate should vanish for large R. In that
sense, the presence of a finite-size spherical or cylindrical
hydrophobic solute constitutes just another finite-size effect
for the interfacial free energy. We note that the analogous
scaling procedure based on the data in Fig. 9(b) would predict
an even more negative value for the Tolman length.

For the bending rigidities, we find negative values on the
order of κ, κ̄ ≈ −1kBT , see Table II. This is consistent with
earlier estimates based on a capillary wave spectrum analysis
of MD simulations for a planar interface only when a long-
range LJ correction was included.23 Note that the negativity
of the bending rigidities at first sight seems like a quite ro-
bust feature of our results, indicated by the negative curvature
of the data in Figs. 7(a) and 7(b), as follows by comparison
with the explicit surface free energy expansion for spheres
and cylinders in Eqs. (23) and (24). But one has to be careful
here, since the crossover to the small scale solvation regime
for R < R* in which FSPH ∼ V ∼ R3 and thus FSPH/A ∼ R,
in conjunction with a negative Tolman length, necessitates a
negative curvature of F/A in a finite radius range irrespec-
tive of the sign of κ and κ̄ . The consistent fit of sphere and
cylinder data is of no help here, since the values of κ and κ̄

are independent. We conclude that the status of the bending
rigidities is less clear than the value of the Tolman length.
Since we only study solutes up to a radius of 2.0 nm, which is
on the same order as the cutoff length employed in most of our
simulations, rc = 0.9 nm, no strong influence of rc would be
expected. We check this explicitly by comparing results for a
cylindrical solute at T = 360 K obtained with a cutoff length
of rc = 0.9 nm and rc = 1.8 nm. In Fig. 10, we show F/A
for both cutoff lengths rescaled by the planar air/water sur-
face tension, which is γ lv, 0 = 50.9 mN/m for rc = 1.8 nm and
γ lv, 0 = 45.5 mN/m for rc = 0.9 nm. The slight shift, that is
seen in Fig. 10, can be attributed to the statistical uncertainty
of the planar surface tension, which is on the order of 2%.
Apart from this small deviation, the shapes of both curves are
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FIG. 10. Solvation free energy F per area A of a cylindrical solute obtained
using a cutoff radius of rc = 0.9 nm (red curves) and rc = 1.8 nm (green
curves) for the non-bonded water-water interactions as a function of the in-
verse radius R. The solvation free energies per area are rescaled by the planar
surface tension γ lv, 0 of the free air/water interface obtained with the respec-
tive cutoff radii. Simulations are done at a temperature of T = 360 K and a
pressure of p = 1 bar.

very similar, which in particular means that the Tolman length
extracted from the data does not depend significantly on the
Lennard-Jones cutoff length. This shows that the present way
of extracting curvature and bending coefficients from solva-
tion free energies of curved objects is an efficient alternative
to the analysis of the capillary wave spectrum of a planar in-
terface, in which case cutoff effects play a much more im-
portant role.23 Besides, the Tolman length, being proportional
to the spontaneous curvature of the interface, by construction
cannot be obtained from simulations of a planar interface.

C. Dependence on radius definition

The elastic coefficients in Eqs. (1)–(6) depend on the
definition of the radius, for which there are several alterna-
tive choices besides the definition R based on where the bare
water-solute interaction potential equals kBT0, which we use
in the main part of this paper: (i) the radius R1/2 at which the
water density is half of the bulk value, defined by gX–OW(R1/2)
= 1/2, (ii) the radius RGDS, defined by the Gibbs dividing sur-
face, that is,

∫
d3r[gX–OW(r) − θ (r − RGDS)] = 0, where θ (x)

= 1 if x ≥ 0 and θ (x) = 0 if x < 0, and (iii) the radius RMAX,
defined as the first maximum of the radial distribution func-
tion gX–OW(r). In Fig. 11, we compare these different radius
definitions by plotting them as a function of R. It is seen that,
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FIG. 11. Comparison of various definitions for the radius of (a) spherical
and (b) cylindrical solutes in SPC/E water at T = 300 K. Shown are the radii
R1/2, defined by gX–OW(R1/2) = 1/2, RGDS, the radius of the Gibbs dividing
surface (GDS) and RMAX, the radius of the maximum of the radial distribu-
tion function gX–OW(r), as a function of the reference radius R, defined by
VX−OW(R) = kBT0, with X = SPH or CYL. Solid lines are linear fits to the
data. The dashed line marks the identity. In the inset, the radial distribution
function gSPH–OW(r) for a spherical solute with R = 0.75 nm is shown and the
different definitions of the radius are indicated by vertical lines.

except for RMAX, all other radii differ only slightly from R. For
radii R > 0.2 nm, the curves are well fit by a linear function,
if we allow for a non-zero offset. For small radii R < 0.2 nm,
there are deviations from the linear dependence, which are
caused by the finite r → 0 limit of the Buckingham poten-
tial as discussed above. Note that the GDS based radius def-
inition is thermodynamically the most sound definition, but
requires extensive additional simulations for accurate deter-
mination. The heuristic radius definition R based on the bare
solute-water interaction potential we use in the main part of
this paper is the most practical one, since it does not require
additional simulations.

If we assume a general linear relationship between an al-
ternative definition of the solute radius, R′, and the original
definition R, R = R′(1 + ε) + �, then we obtain to linear
order in 1/R′ for the solvation free energy of a sphere,

FSPH = 4πR2γ0

(
1 − 2δ

R
+ O

(
1

R2

))

= 4πR′2γ0(1 + ε)2

(
1 − 2(δ − �)

R′(1 + ε)
+ O

(
1

R′2

))
.

(25)

The modified Tolman length associated with the shifted radius
R′ is therefore given by

δ′ = δ − �

1 + ε
. (26)

For RGDS and R1/2 we obtain from the fits in Fig. 11 ε

= −0.049 and −0.042 and � = 0.040 nm and 0.025 nm,
respectively, with Eq. (26) leading to δ′ = −0.14 nm and δ′

= −0.12 nm at T = 300 K, we thus predict only small changes
of the Tolman length.

Alternatively, using RGDS for the radius, and employing
the same cubic fitting procedure of the solvation free energy
based on Eq. (22) as carried out above, we obtain the mod-
ified parameters γ 0 = 52.6 mN/m, κ = −0.98 × 10−21 J,
κ̄ = −6.49 × 10−21 J, and δ = −0.10 nm at T = 300 K. While
the Tolman length does not change significantly, the bend-
ing rigidities, which constitute higher-order curvature cor-
rections, not surprisingly do. So in line with our arguments
above, our results for the bending rigidities should only be
regarded as indicative.

D. Crossover effects and empirical
interpolation function

We stress that the expressions in Eqs. (1)–(6) as well
as Eqs. (23) and (24) strictly only apply to the asymptotic
small-curvature regime, because the convergence of the
expansion in powers of curvatures is not guaranteed. Ac-
cording to a conservative estimate, the applicability of the
small-curvature expansions would thus be restricted to the
radius range R > Rmax, with Rmax being the radius at the
maximum of the surface free energy data F/A in Figs. 7(a)
and 7(b), because otherwise higher-order curvature terms
can take over. With Rmax being of the order of Rmax ≈ 1 nm,
depending on temperature and geometry, we note that Rmax

is not much larger than R*, which is of the order of R* ≈ 0.5
nm, and thus the small-curvature expansion is independently
invalidated by the crossover from the surface-dominated to
the volume-dominated solvation scaling regime.

There are various ways of interpolating between the
regime for R < R*, where solvation scales to leading order
as F ∼ V with corrections that can be expressed in powers of
R, and the regime R > R* where solvation scales to leading
order as F ∼ A with curvature corrections that can be writ-
ten in powers of 1/R. Curiously, as can be seen in Figs. 7(c)
and 7(d), there is an intermediate range where F/A scales ap-
proximately linear in 1/R with a negative slope, the effective
Tolman lengths extracted from these fits δ̃SPH,CYL are positive
and on the order of 1 Å, see Table III, in rough agreement
with previous estimates.4, 16–18 Although such a fit at inter-
mediate radii is in principle compatible with a surface free
energy functional in terms of local curvatures, it misses the
turnover in the data at larger radii in a fundamental, not easily
correctable way. The extracted Tolman lengths from these fits
are slightly but significantly different for spheres and cylinder,
which shows the inconsistency of such a fit and once more il-
lustrates the subtleties of analyzing simulation data.

The small radius solvation behavior for R < R* can best
be deduced from the plot of the solvation free energy per vol-
ume F/V for spheres and cylinders in Fig. 5(b), where the
data exhibit in a small distance range a scaling

FV � ξV (27)
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TABLE III. Best fit values for the non-asymptotic spherical and cylindrical
Tolman lengths δ̃SPH and δ̃CYL from fitting Eqs. (1) and (6) to the interme-
diate radius range in Figs. 7(c) and 7(d) with the constraint of a common
surface tension γ 0. The asymptotic Tolman length δ obtained from fitting
Eqs. (23) and (24) to the spherical and cylindrical data is also included for
comparison.

T (K) δ (nm) δ̃SPH (nm) δ̃CYL (nm)

280 − 0.092 0.087 0.11
300 − 0.10 0.084 0.10
320 − 0.12 0.080 0.097
360 − 0.16 0.073 0.089

with a prefactor ξ � 200 kJ/(mol nm3) in good agree-
ment with our estimate for SPC/E water45 and previous
calculations.27, 28 Note the deviations from the volume scaling
for very small radii R < 0.2 nm which are due to our usage
of the Buckingham potential, as discussed above (and which
will not be treated explicitly by us in our interpolation func-
tion since it constitutes yet another scaling regime). An empir-
ical interpolation function that encompasses both the small-
scale and large-scale solvation regimes can be constructed by
adding the inverse asymptotic expressions Eqs. (22) and (27)
according to

FInter = [
F−ν

V + F−ν
Helf

]−1/ν
, (28)

where the crossover exponent ν is positive but otherwise a
freely adjustable parameter. Figure 7(c) compares this empir-
ical interpolation function with the sphere data at T = 300 K
for a few different values of ν. As can be seen, a good over-
all match is obtained for a rather large value of ν around
ν = 10, which means that the crossover is quite sharp. Such an
interpolation function might be useful for simple geometries
(spheres, cylinders, cylindrical networks of comparable radii,
etc.) but is bound to fail for objects of more complex geome-
try because the crossover is enforced globally and not locally.
Furthermore, in order for the interpolation formula to work,
the Helfrich free energy expression (Eq. (22)) must be strictly
positive over the full data range, for which cylinders require
an extension to even higher order in the curvature expansion,
which we do not pursue in this paper.

E. Temperature dependence

In this section, we discuss in more detail the tempera-
ture dependence of the solvation free energies of spherical
and cylindrical solutes. Figure 12 shows the solvation free en-
ergy, enthalpy, and entropy for radii R < 0.5 nm and varying
temperatures in the range T = 280–440 K. As already men-
tioned, the crossover radius R* between the volume-like (R
< R*) and surface-like (R > R*) solvation scaling regimes is
smaller at higher temperatures as well as for cylinders com-
pared to spheres. This trend is most clearly reflected in the
zero-crossing of the solvation entropy in Fig. 12 (lower pan-
els) which shifts to smaller radii with increasing temperature,
noting that the small-scale solvation regime is characterized
by a negative entropy associated with the entropy loss of the
clathrate-like water cage around small hydrophobes. At the

0
20
40
60
80

F 
[k

J/
m

ol
]

0
20
40
60
80
100

F/
L

 [
kJ

/(
m

ol
 n

m
)]

0

50

100

H
 [

kJ
/m

ol
]

0

50

100

150

H
/L

 [
kJ

/(
m

ol
 n

m
)]

0 0.1 0.2 0.3 0.4
R [nm]

-15
0

15
30
45

T
S 

[k
J/

m
ol

]

0 0.1 0.2 0.3 0.4 0.5
R [nm]

-20
0
20
40
60

T
S/

L
 [

kJ
/(

m
ol

 n
m

)]

T

T

T

spheres

T

T

T

cylinders

FIG. 12. Solvation free energies F, enthalpies H, and entropies S for spheri-
cal and cylindrical solutes as a function of the solute radius R for temperatures
of T = 280, 300, 320, 340, 360, 380, 400, 420, and 440 K. Arrows indicate
the trends for increasing temperature. All data are obtained for SPC/E water
at a constant pressure of p = 1 bar.

same time, the depth of the minimum decreases, and above
a temperature of ≈360 K vanishes completely. These find-
ings are in line with the SPT results of Ashbaugh43 for spher-
ical hard sphere solutes. Note that the zero-crossing of the
entropy for a given temperature is associated with the cross-
ing of two free energy curves for near-by temperatures in the
upper panel. The enthalpy (middle panels) exhibits neither
crossings nor sign changes.

In Fig. 13, we show in the upper panels the solvation
free energy per area, F/A, for spherical and cylindrical so-
lutes (circles) as a function of temperature in comparison with
the planar surface tension γ lv, 0 (squares). Solid and dashed
lines show polynomial fits to the data. For small spherical so-
lutes in Fig. 13(a), the solvation free energies show a pro-
nounced maximum characteristic for hydrophobic hydration.
For larger solutes, the maximum of F shifts to smaller temper-
atures. As a consequence, the entropy per area S/A, obtained
from the temperature derivative of quadratic (for spherical so-
lutes) or cubic (for cylindrical solutes) fits to the free energies,
in the lower panels exhibits a zero-crossing at a temperature
that quickly decreases with increasing particle radius. Note
that γ lv, 0 is located in the middle of the F/A curves, clearly
showing that F/A exhibits non-monotonic behavior both as a
function of T as well as a function of R. The fact that we see
intersections of F/A curves for different radii is yet another
indication that the radius of maximal F/A decreases with in-
creasing temperature.

In Fig. 14, we plot the bare solvation free energies F
of spherical and cylindrical solutes and the corresponding
entropies S. As the solute size increases, the maximum of
F shifts to smaller temperatures and the curvature becomes
larger, leading to intersections of the entropies of differently
sized solutes. As was noted before,4 the intersection temper-
ature depends systematically on the size of the solutes. For
cylindrical solutes in Figs. 14(c) and 14(d), the maxima of
the solvation free energies per unit length (and thereby the
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(a) (b) (c) (d)

FIG. 13. Solvation free energies (top panels) and entropies (bottom panels) per area in comparison with the surface tension and entropy of a planar air/water
interface as a function of temperature. (a) and (b) Solvation free energies and entropies for spherical solutes and (c) and (d) cylindrical solutes of different radii.
Open circles show F/A of the solutes, squares show the surface tension of the air/water interface, lines are polynomial fits to the data. Solvation entropies are
obtained from fits to the free energy data by Eq. (19). All data are obtained by thermodynamic integration in SPC/E water at a constant pressure of p = 1 bar.

(a) (b) (c) (d)

FIG. 14. Solvation free energies (top panels) and entropies (bottom panels) for solutes of different radii as a function of temperature. (a) and (b) Solvation
free energies and entropies for spherical solutes. (c) and (d) Solvation free energies and entropies for cylindrical solutes. Open symbols show F in the case of
spherical solutes and F/L in the case of cylindrical solutes. Lines are polynomial fits to the data. Entropies are obtained from the fits to the free energies by
Eq. (19). All data are obtained by thermodynamic integration in SPC/E water at a constant pressure of p = 1 bar.

zero crossings of the entropies) are only for the smallest radii
within the studied temperature range. Consequently, most en-
tropy intersections are not accessible. By defining the en-
tropy convergence temperature T ∗

S for a given solute radius R
by4

S(R, T ∗
S ) = S(R + δR, T ∗

S ) (29)

with a radius increment of δR = 0.1 nm, the different be-
havior of the spherical and cylindrical convergence temper-
atures is quantified in Fig. 15. Note, that we only show T ∗

S

for the studied temperature range T > 280 K. The maximum
and subsequent decrease of the convergence temperatures for
spheres with radii R < 0.1 nm is due to the finite r → 0
limit of the Buckingham potential (see discussion above). The
convergence temperature T ∗

S for spherical solutes is much
higher than for cylindrical solutes of the same radius and
for the cylindrical solutes the convergence temperature lies
outside the considered temperature region for solutes with
radii larger than R ≈ 0.18 nm. This difference in convergence
temperatures between spheres and cylinders reflects—among
other factors—the different crossover radii R* for spheres and
cylinders.

IV. CONCLUSION

Extensive MD simulations for spherical and cylindrical
solutes in SPC/E water yield a maximum of the solvation
free energy per area, F/A, as a function of the solute ra-
dius R, which implies that the Tolman length characteriz-
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FIG. 15. Entropy convergence temperature T ∗
S defined by Eq. (29) for spher-

ical (circles) and cylindrical (squares) solutes as a function of the solute ra-
dius R. The entropies are obtained from quadratic (spherical solutes) and cu-
bic (cylindrical solutes) fits to the free energy data F shown in Fig. 14.
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ing the water-hydrophobe interface is negative. This maxi-
mum occurs between radii of Rmax = 2 nm (for spheres at
T = 300 K) and Rmax = 0.8 nm (for cylinders at T = 360 K).
A simultaneous and consistent fit of sphere and cylinder sol-
vation data yields a negative Tolman length of δ = −0.1 nm
at T = 300 K for a hydrophobic surface, which means that
droplets are favored over cavities, with important implications
for current coarse-grained modelling.8 For cylinders in water
at room temperature, the Tolman length δ � −0.1 nm, the
radius Rmax � 1 nm where F/A shows an extremum (which
scales like the inverse spontaneous curvature, Rmax � c−1

0 ),
and the crossover radius R* � 0.5 nm between small-scale
(where F ∼ V ) and large-scale solvation (where F ∼ A) are
quite similar, which requires a careful numerical analysis of
the various crossover effects. In fact, the crossover radius R*
is smaller for cylinders than for spheres and also decreases
with increasing temperature, which makes cylinders particu-
larly suited to study local curvature-based surface free-energy
functionals. Our results suggest that for curvature radii
R > Rmax, a curvature-based local interface free energy func-
tional is valid for arbitrarily shaped solutes and the linear
Tolman correction is dominant. For smaller radii, corrections
have to be accounted for, either in the form of higher-order
curvature terms (involving additional independent elastic con-
stants) or in terms of empirical interpolation formulas that
for a restricted class of geometries correctly account for the
crossover to the small-scale solvation regime.
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