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Robust Statistical Detection of 
Power-Law Cross-Correlation
Duncan A. J. Blythe1,2,3, Vadim V. Nikulin4,5 & Klaus-Robert Müller1,6

We show that widely used approaches in statistical physics incorrectly indicate the existence of power-
law cross-correlations between financial stock market fluctuations measured over several years and 
the neuronal activity of the human brain lasting for only a few minutes. While such cross-correlations 
are nonsensical, no current methodology allows them to be reliably discarded, leaving researchers 
at greater risk when the spurious nature of cross-correlations is not clear from the unrelated origin 
of the time series and rather requires careful statistical estimation. Here we propose a theory and 
method (PLCC-test) which allows us to rigorously and robustly test for power-law cross-correlations, 
correctly detecting genuine and discarding spurious cross-correlations, thus establishing meaningful 
relationships between processes in complex physical systems. Our method reveals for the first time the 
presence of power-law cross-correlations between amplitudes of the alpha and beta frequency ranges of 
the human electroencephalogram.

Analysis of the relationship between distinct physical processes unfolding in parallel over time is a cornerstone in 
the study of complex physical systems. The standard approach to such dependencies is cross-correlation analysis. 
Power-law cross-correlations have generated particular interest in statistical physics1 due to their ubiquity2–5 and 
importance in critical phenomena6. Researchers have emphasized the need to compensate for non-stationarities 
which can potentially jeopardize even the most alluring interpretations of the obtained data. However, just as 
important as coping with non-stationarity is to distinguish true from spurious power-law cross-correlations: in 
the application section of this paper we show that a naïve application of current methods incorrectly indicates 
that the Dow Jones index over 10 years is power-law cross-correlated with the neural activity of a human subject 
over 10 minutes. Thus given the importance of distinguishing true from spurious power-law cross-correlation, 
it is surprising that there has been only one attempt7 to statistically test for true power-law cross-correlations in 
the presence of non-stationarity. Despite the advances proposed, this prior approach did not cover two important 
aspects, namely, generality and simultaneous testing of cross-correlation over time-scales.

Although there exist several sophisticated approaches to quantifying power-law cross-correlation1,8, statistical 
testing for power-law cross-correlation in models without non-stationarity9, as well as numerous non-power-law 
cross-correlation based approaches to studying interactions between and within complex systems (e.g.10,11), there 
is no study in addition to7 which addresses the problem of robust statistical testing for power-law cross-correlation 
in the presence of non-stationarity.

In this paper we provide the first rigorous statistical approach to testing for power-law cross-correlations in 
the presence of non-stationarity. Our approach is based on broad assumptions—our theory depends only on a 
large linear semi-parametric formulation, which we show computationally may be relaxed to include non-linear 
processes, and our method is robust to a large class of non-stationary trends. We validate our approach in simu-
lations and apply the framework to the Dow Jones index and electroencephalographic data to show that spurious 
power-law cross-correlations are correctly rejected. Finally, we show in an application to cross-frequency neural 
activity that novel power-law cross-correlations may be discovered using the framework.

Theory
Let us first define power-law auto-correlation and cross-correlation. Assume processes X1(t) and X2(t) (zero 
mean) are long-range temporally autocorrelated (LRTC) with power-law auto-correlations:
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H and G are the Hurst exponents of X1 and X2, and are assumed to lie in the range (0.5, 1). Power-law 
cross-correlations are defined by the following relation1. Let γ ∈​ (0.5, 1) and A and B be constants then:
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for fractional Gaussian noise processes12 γ = +H G
2

; in general13,14 γ ≤ +H G
2

.
Existing methods focus on the exponents H, G and γ. Since, in many applications X1 and X2 may be contami-

nated with non-stationary trends, detrending approaches have received significant attention. Detrended 
Fluctuation Analysis (DFA)15 estimates H. With = ∑ =x t X t( ) ( )i

t
1  the DFA coefficients F n( )DFA

2 , are given as the 
detrended variance of x(t) over windows of length n:
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T is the total number of time-points recorded, xn
j( ) is the vector of elements of x(t) lying in the jth time-window of 

length n and P x( )d n
j( )  is the least squares polynomial fit of degree d to xn

j( ). H is given as the least squares linear fit 
of log(n) vs. F nlog( ( ))DFA

2 . The degree to which X(t) is power-law auto-correlated is quantified by the quality of 
the linear fit.

Detrended Cross-Correlation Analysis (DCCA) generalizes DFA to pairs of time-series, estimating γ, and 
quantifying scaling of cross-correlations. The DCCA coefficients are given by:
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γ is given by the least squares linear fit of log(n) vs.  F nlog( ( ))DCCA
2 . How well the power-law cross-correlation 

model fits is quantified by the quality of the linear fit.
Note that alternative approaches other than DCCA for estimating γ exist based on averaged periodogram 

estimation14, height cross-correlation analysis16 and moving average approaches17. We focus here on DCCA due 
to its wide use, and as a proof of concept. A similar approach may in principle be applied to alternative estimators.

An important question left unanswered by the DCCA procedure is: how do we know that the cross-correlations 
over the entire range of n are genuine and not spurious? I.e. how do we know that the measured DCCA values and 
scaling relation could not have arisen from two time-series between which there are no power-law 
cross-correlations? It may be the case that the DCCA coefficients scale log-log linearly over a range of magnitudes 
but the time-series are not power-law cross-correlated, i.e. DCCA gives spurious results. If the cross-correlation 
are spurious then estimation of the exponent γ and assessing the quality of the linear fit of F nlog( ( ))DCCA

2  and 
log(n) make no sense.

On the one hand, if the coefficients F n( )DCCA
2  take positive and negative values over a range of time-scales 

clearly it does not make sense to estimate γ using DCCA. On the other hand, in cases in which the coefficients 
take only positive (or only negative) values, which scale log-linearly, it is not possible to know on this basis alone 
whether these cross-correlations are spurious. See Fig. 1 for an illustration: the bottom left plot displays DCCA 
coefficients as crosses and diamonds which are positive over the range of n and scale-log-linearly. Whereas the 
crosses are calculated from two power-law cross-correlated time-series, the diamonds are calculated from 
time-series which are independent: both scale log-linearly and the estimate of γ is larger than >​0.5. This example 
shows that DCCA can give misleading or spurious results for time-series which are actually independent.

The problem with DCCA illustrated in the example of Fig. 1 is that F n( )DCCA
2  quantifies only the scaling of 

cross-correlations but not the absolute value of the correlations. The DCCA cross-correlation coefficient18 was 
proposed to study this distinction, which, in analogy to the Pearson correlation coefficient, is given by the DCCA 
coefficients normalized by the square root of the DFA coefficients:
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In the large T limit, ρDCCA quantifies the level of correlation between X1 and X2
19; ρDCCA is 0 if X1 and X2 are 

independent and 1 if they are identical. The bottom-right panel of Fig. 1 illustrates ρDCCA; the ρDCCA coefficients 
displayed as crosses are calculated from power-law cross-correlated time-series and we clearly observe that these 
values deviate positively from 0 across the time-scales considered.

However as with standard correlation coefficients, for finite sample sizes, ρDCCA is never 0 for independ-
ent time-series. The bottom-right panel of Fig. 1 illustrates that although the crosses, ρDCCA(n) of power-law 
cross-correlated time-series, are larger in magnitude than the diamonds, ρDCCA(n) of independent time-series, the 
diamonds are nevertheless greater than 0 over this range. For this reason a test was recently proposed7 based on 
surrogate data in order to calculate p-values for the null hypothesis of no power-law cross-correlation, addressing 
the question: what range can we expect the ρDCCA(n) to take for a given n assuming independence?.

This approach is, however, subject to several shortcomings. Firstly the test relies on assumptions which are 
difficult to verify in practice: the parametric model chosen for the surrogate data and the distribution of the data 
should agree exactly, for p-values to be correct (no guarantees are given that the test is robust to differences in this 
distribution) and the Hurst exponents of the time-series should be known exactly.

A second and severe shortcoming of this approach is that no consideration is given as to how to incorpo-
rate the information provided by the multiple ρDCCA coefficients over time-scales: ρDCCA(n) is considered in 
isolation from ρDCCA(n′​) for n ≠​ n′​. ρDCCA(n) should in fact rather be considered as a multivariate vector. The 
bottom-left panel of Fig. 1 illustrates this important insight. The circles are ρDCCA coefficients calculated from 
two non-power-law cross-correlated time-series which are nevertheless short-range cross-correlated. We see that 
ρDCCA is large over short time-scales but small over large time-scales. This example demonstrates the need when 
testing for true power-law cross-correlations, to require large ρDCCA over a wide range of time-scales.

A question arises at this point: do we need ρDCCA values to be different from zero for all available time-scales? 
The answer to this question is somewhat subtle. Although it is indeed true that there are time-series mod-
els with power-law cross correlations for which asymptotic correlations vanish13,14, in such cases we expect 
that ρDCCA cross-correlations vanish more slowly over a range of magnitudes than in the case of short-range 

Figure 1.  Illustration of DCCA and ρDCCA. Top: Three long range temporally correlated time-series, where 
the top two are dependent on each other and the bottom is independent of the top two. Bottom left: DCCA 
coefficients in log-log coordinates. Both dependent and independent coefficients scale-log-linearly. Bottom 
right: ρDCCA correlation coefficients over scales. Significant correlation over the range of time-scales may be 
quantified exactly with the proposed method. At the 0.01 test level, all coefficients must lie on one side of 
the turquoise region. The test successfully discriminates between long-range dependent time-series (blue), 
and independent time series (green) and short-range dependent time-series (red), where correlation is only 
manifest at small time-scales.



www.nature.com/scientificreports/

4Scientific Reports | 6:27089 | DOI: 10.1038/srep27089

cross-correlations; thus even in these cases we need to test for simultaneous cross-correlation over a range 
of time-scales. Indeed, considering a sizeable range of magnitudes is a pre-requisite to being able to test for 
power-law cross-correlation at all, since over a narrow range of magnitudes, even a non-log-log linear 
cross-correlation function may appear to scale log-log linearly. Exactly what range of magnitudes we consider to 
certify power-law cross-correlation depends on the application in question—important is that once this range of 
magnitudes is determined, then we need to check that there the cross-correlations across this range of magnitudes 
are indeed non-spurious.

Our theory allows us to calculate the asymptotic distribution of the ρDCCA coefficients, which we use in deriv-
ing a test for power-law cross-correlation. Under the assumption of linearity and independence of X1(t) and X2(t), 
we prove, as → ∞⌊ ⌋T n/ i , ni →​ ∞​, for i =​ 1, …​, r (r number of time-scales) that the vector of ρDCCA coefficients 
converges in distribution to a multivariate Gaussian:

ρ ρ… → Σ⌊ ⌋ ⌊ ⌋T n n T n n H G( / ( ), , / ( )) (0, ( , )), (10)DCCA r DCCA r
d

1 1

where Σ​(H, G) is the covariance matrix of the limiting distribution depending only on H and G (for the detailed 
form of Σ​(H, G) see supplement).

Overview of Derivation.  The supplement gives details of the derivation. Here we give a brief overview. The 
reason why standard correlation analysis is inefficient on long-range dependent data is due to the redundancy 
introduced by the strong autocorrelations between distant time-points20. The efficiency of Detrended 
Cross-Correlation Analysis and the Detrended Cross-Correlation Coefficient lie in the decorrelating effect of 
detrending on the time-varying DCCA coefficients F n( )j DCCA,

2 . Thus we show (Lemma 1.1) that the covariance 
between these coefficients decays rapidly for fractional Gaussian noise:
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here G, H denote the Hurst exponents of the pair of time-series. Since these coefficients are short-range corre-
lated, then we are able to derive a central limit theorem (Proposition 1.4) for F n( )DCCA

2 , under the assumption that 
the analysed time-series are fractional-Gaussian noises, since F n( )DCCA

2  is composed as a sum of the F n( )j DCCA,
2 .
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We then lever an existing central limit theorem21 for F n( )DFA
2  and apply the delta method to show that ρDCCA(n) 

is asymptotically Gaussian with a covariance matrix which we can calculate, under the assumption that the 
time-series are fractional Gaussian noises (Proposition 1.5).

NG G G Gρ ρ… → Σ⌊ ⌋ ⌊ ⌋T n n X X T n n X X H G( / ( , , ), , / ( , , )) (0, ( , )) (13)DCCA r DCCA r
d
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Finally we lever a known22 convergence result on the integrated time-series ∑ = X t( )i
t

i1  for non-Gaussian linear 
time-series which allows us to extend our convergence result of ρDCCA(n) to the general linear time-series setting 
(Theorem 1.7); we show that since ∑ = X t( )i

t
i1  converges in distribution to ∑ = X t( )i

t
i1 , then ρ n X X( , , )DCCA 1 2

   
converges in distribution to ρDCCA(n).

Testing Procedure.  Using the distribution Σ H G(0, ( , )) , we may quantify the likelihood of observing 
extreme values of all ρDCCA coefficients over time scales in the absence of power-law cross-correlation, which can 
then be employed for rejecting or accepting the null hypothesis of no power-law cross-correlation.

Our method (denoted in the following as PLCC-test, where PLCC abbreviates power-law cross-correlation) 
for testing of power-law cross-correlation is based on the previous theory (available in software, see supplement). 
PLCC-test assesses whether significant ρDCCA(n) values are present simultaneously across a range of time-scales. 
Let Σ​ be a covariance matrix whose diagonal elements Σ​i,i are equal to the maximum asympotic variance of  
ρDCCA(ni) in the range H, G ∈​ [0.5, 1] (max{Σ​(H, G)i,i | H, G ∈​ (0.5, 1)}) and whose off-diagonal elements Σ​i,j pre-
serve the maximum correlation between ρDCCA(ni) and ρDCCA(nj) for H, G ∈​ (0.5, 1):

ρ ρΣ = Σ Σ ∈ . n nmax (corr( ( ), ( ))) (14)i j i i j j H G DCCA i DCCA j, , , , (0 5,1)

Then the probability that the ρDCCA coefficients exceed a certain level simultaneously may be bounded according 
to:

> ∧ … ∧ > < > ∧ … ∧ >Σ Σ~ ~x a x a x a x aPr ( ) Pr ( ) (15)x H G r x r(0, ( , ) ) 1 (0, ) 1 

For a given test level α and T, ni we use Equations (10) and (15) to find a such that in the asymptotic limit of T, ni:

ρ ρ α> ∧ … ∧ > <n a n aPr( ( ) ( )) ) /2 (16)DCCA DCCA r1

These bounds allow us to specify the rejection region, which corresponds to cases in which all DCCA coefficients 
display large positive (or negative) values. (see Fig. 1 bottom right with turquoise shading). In the second step of 
the test if the cross-correlations over the time-scales considered are non-spurious, we check that the exponent λ 
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estimated using DCCA is larger than 0.5. Note that this is already guaranteed if the range of time-scales is large 
enough, since we have at least one of H, G >​ 0.5 and both H, G ≥​ 0.5. This implies that ρDCCA(n) ~ 0 for large n. In 
practice, however, we check this condition for robustness. Indeed, if λ. < < +0 5 H G

2
 we also have ρDCCA(n) ~ 0. 

In these cases we may encounter λ close to 0.5.
Interestingly, PLCC-test can be extended to yield a method for calculating p-values for conventional 

cross-correlation between pairs of power-law auto-correlated time-series, potentially contaminated by 
non-stationary trends (see supplement, Section 3). In practice, this additional test serves to robustly assess 
cross-correlation in the presence of non-stationarity, no matter whether power-law or not.

Simulations
In this section we present simulations which test the validity of our theory and method. For the generation of 
fractional Gaussian noise we use the implementation of12.

Illustration of DCCA and the DCCA correlation coefficient.  Here we present the steps necessary to 
reproduce Fig. 1, which illustrates the weaknesses of the naïve power-law approach and the advantages of the 
statistical approach.

We generate 3 time series (fractional Gaussian noise, H =​ 0.9) with length T =​ 1000 (top panel of Fig. 1). 
The first two are dependent with correlation ρ =​ 0.3 and the third is independent from the remainder. We then 
compute DCCA coefficients over the range n =​ 20, …​, 150 (bottom left panel of Fig. 1). We find for this example 
that the coefficients between independent time-series and dependent time-series scale-log-linearly. On the other 
hand, we find that the magnitude of the ρDCCA coefficients (bottom-right of Fig. 1) reflects the degree of corre-
lation; this observation may be completely formalized, allowing us to set the 0.01 test-level (turquoise region in 
Fig. 1). The ρDCCA coefficients in red correspond to independent long-range dependent time-series superimposed 
with correlated Gaussian white noise—correlation is visible at short but not long-time scales.

Simulation (i).  The aim of this simulation is to test the accuracy and power of the theory and method in 
the case when the time-series are fractional Gaussian noises, as we asssume in the first step of our theoretical 
derivation.

We simulate 100,000 pairs of independent fractional Gaussian noise of length T =​ 40,000 with G =​ 0.7, 
H =​ 0.8. We then measure ρDCCA(n) settting n =​ 400, 800, 1600, 3200. The reason we consider small n is that the 
theory requires T/n →​ ∞​. We compute quantiles of the simulated samples and compare to the asymptotic limit of 
Equation (10) (bottom-left, top-right and bottom-right of Fig. 2). For each value of ρ =​ 0.005, 0.01, …​, 0.2 we 
simulate 330 pairs of correlated fractional Gaussian noises subject to a correlation of ρ and compute the 
test-power (Pr (reject )0 1  ). ρDCCA(n) is calculated for n log-spaced values between 20 and 3000 and PLCC-test 
is applied at the 0.05 level. We observe good agreement with the theoretical result (in red in the bottom right and 
dotted-blue in the top-right of Fig. 2). The theoretical and simulated covariance of the ρDCCA(n) coefficients are 
almost identical (bottom-left of Fig. 2; test-power is sufficient for usefulness of the test in practice.

Simulation (ii).  The aim of this simulation is to test the theoretical result for non-Gaussian time-series.
We generate 10,000 pairs of respectively fractional Gaussian noise and fractional non-Gaussian noise, subject 

to Hurst exponents H =​ 0.7, G =​ 0.8 for each length of the time-series T =​ 5000, 10000, 20000, 40000. We then 
measure ρDCCA(n) for n log-spaced between 60 and 500 and compare the theoretical 0.05 test-level with the 0.05 
level estimated from the samples. The results are displayed in Fig. 3. The right hand panels display the sample 
time-series and the left hand panel displays the agreement with theory, with the 5% and 95% quantiles estimated 
by 1000 bootstrap iterations. We observe comparable agreement for Gaussian and non-Gaussian time-series alike.

Simulation (iii).  The aim of this simulation is to test the theory and method in the case in which there are 
short-range cross-correlations but not power-law cross-correlations between the pair of times-series.

We generate 10,000 pairs of long range dependent time-series with short range interdependencies (and no 
long range interdependencies) by superimposing pairs of independent fractional Gaussian noises (T =​ 5000, 
10000, 20000, 40000, H =​ 0) with a bivariate Gaussian white noise with standard deviation 2 and correlation 
ρ =​ 0.6 filtered above 2/5ths of the sampling rate with a Butterworth filter of order 4. We compute ρDCCA(n) coef-
ficients for n log-spaced between 20 and ⌊ ⌋T /10  and apply PLCC-test. As a baseline we do not consider PLCC-test 
but apply a multiple testing correction to PLCC-test applied univariately to each of the ρDCCA(n) coefficients. The 
results are displayed in Fig. 4. The left hand panel displays the agreement over iteration with the desired test-level 
with 5% and 95% quantiles estimated by 1000 bootstrap iterations. The right hand panel displays a sample scatter 
plot of the two simulated time-series against one another. While the baseline is highly sensitive to the short-range 
correlation, we observe that PLCC-test is robust to short-range correlation.

Simulation (iv).  The aim of the final simulation is to test how well the theory and method generalize to 
non-linear time-series. Although the theory explicitly assumes linearity of the pair of processes, this condition 
is not strict.

We consider the non-linear Kuramoto model23. Which models synchronization in a population of coupled 
oscillators by considering only the unwrapped phase of each oscillator. The phase of each oscillator in the popu-
lation, φi, is modeled as:

∑
φ

ξ ω φ φ
∂
∂
= + + −

≠t
D t K

N
t t( ) cos( ( ) ( ))

(17)
i

i
j i

i j0
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ξi(t) is an uncorrelated noise process and cos(φi(t) −​ φj(t)) models coupling between neurons i and j. The param-
eter D controls the noise strength, κ controls the strength of synchrony between the oscillators φi and ω0 denotes 
the basic oscillatory frequency of the ensemble. In order to measure the joint behaviour of all N oscillators one 
considers the mean field of the ensemble24, viz.:

∑ φ=
=

Z t
N

i t( ) 1 exp( ( ))
(18)j

N

j
1

Figure 2.  Accuracy and test-power for fractional Gaussian noise. Bottom-left: asymptotic covariance 
estimated by theory and comparison to covariance estimated for simulated fractional Gaussian noise; each 
square denotes an entry of the covariance matrices. Top-right: accuracy of theoretical cdf in comparison to 
simulated fractional Gaussian noise. Bottom-right: accuracy of theoretical cdf in comparison to simulated 
fractional Gaussian noise in the tail of the distribution. Top-left test-power as a function of correlation between 
components of the bivariate fractional Gaussian noise.

Figure 3.  Accuracy of test for non-Gaussianity. Top right: fractional non-Gaussian noise. Bottom-right: 
fractional Gaussian noise subject to the same exponent as the fractional non-Gaussian (super-Gaussian) noise 
(above). Left: agreement of simulated samples with theory at the 0.05 test-level for both models.
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when D is small in comparison to K, the oscillators synchronize, which leads to Z(t) ≈​ 1. When D is large in com-
parison to K, the oscillators fall out of synchronization which leads to Z(t) ≈​ 0. Close to the boundary between the 
synchronous and asynchronous regimes, Z(t) displays fluctuations on all time-scales25.

We simulate pairs of independent samples from the Kuramoto model (Equation (17) setting N =​ 80, dt =​ .0.01, 
K =​ 0.1, D =​ 12, ω0 =​ 40. In the first step we determine the Hurst exponent of Z(t) (Equation (18)) 1applying 
DFA to log-spaced time-scales between n =​ 1000 and n =​ 3000. The reason we analyse only a narrow-range of 
time-scales is because the model is not strictly scale-free over a larger range of magnitudes (see bottom-right 
panel of Fig. 5, where we see that scaling is not exactly log-log linear), so that the theory will not provide a good 
approximation to the Kuramoto model when analysing a large range of n. Over the short-range of magnitudes 

Figure 4.  Robustness of test-statistic to short-range correlation. Right: correlation between short-range 
dependent time-series. Left: type I error rate estimated from pairs of simulated long range dependent time-
series with short range interdependency. The desired test-level is set at 0.05. We compare the proposed method 
(red) with a Bonferroni multiple testing correction for tests on the individual ρDCCA coefficients (blue).

Figure 5.  Comparison between theory, fractional Gaussian noise and Kuramoto model (non-linear, non-
Gaussian). Top: mean field of Kuramoto model (above) in comparison to fractional Gaussian noise subject 
to the same Hurst exponent. Bottom left: empirical quantiles of ρDCCA coefficients of fractional Gaussian 
noise (blue) and the amplitude of the Kuramoto mean field (red) with 3 bootstrapped standard deviations as 
confidence. Agreement is best in the tails of the distribution. Bottom right: DFA coefficients of the amplitude 
of the Kuramoto mean-field and fractional Gaussian noise. We hypothesize that the slight deviation for precise 
scaling at higher scales explains the difference between the theory and the Kuramoto-simulated data.
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studied the mean field autocorrelations are approximately log-log linear (Fig. 5, bottom-right). We then simulate 
pairs of fractional Gaussian noises subject to the same Hurst exponent and estimate ρDCCA(n) coefficients for both 
models at the same time-scales and compare to the theory of Equation (10). The results are displayed in Fig. 5. We 
see that agreement holds to within bootstrap estimated confidence (1000 iterations) and improved agreement in 
the tails of the distribution, which is most crucial for hypothesis testing.

Data Analysis
Financial Data.  The Dow Jones index data was downloaded from https://research.stlouisfed.org/fred2/ and 
extends between 2005-08-26 and 2015-08-27. Days on which no trading occurred were discarded and absolute 
returns were calculated as the absolute value of the difference between the index on subsequent trading days.

EEG Data.  The experimental protocol was approved by the Institutional Review Board of the Charité, Berlin. 
EEG recordings were obtained at rest with the subject seated comfortably in a chair in the eyes open condi-
tion. Recordings were made for three sessions of 5 minutes each, with the data set thus comprising altogether 
roughly 15 minutes of data. EEG data were recorded with 96 Ag/AgCl electrodes, using BrainAmp amplifiers 
and BrainVision Recorder software (Brain Products GmbH, Munich, Germany). The signals were recorded 
in the 0.016–250 Hz frequency range at a 1000 Hz sampling frequency and subsequently downsampled to 
200 Hz. Outlier channels were rejected. The data were then re-referenced according to the common average. 
In order to obtain components with high signal to noise ratio in the alpha range, we applied Spatio-Spectral 
Decomposition (SSD)26, taking the 1st 10 components in the alpha (8–12 Hz) and beta (18–22 Hz) ranges for the 
subsequent analysis, each filtered forwards and backwards using Butterworth filters of order 2. Amplitude enve-
lopes were calculated using the MATLAB implementation of the Hilbert transform/analytic signal computation 
(amp =​ abs(hilbert(x)).

Spurious Power-Law Cross-Correlations between the Dow Jones Index and EEG Data.  In the 
first step of our data analysis we provide a striking real-world demonstration of the possibility of apparent but 
spurious power-law cross-correlations between electroencephalographic (EEG) neural activity, measured over a 
few minutes, and the Dow Jones index (between the years 2005 and 2015, Fig. 2). The motivation of this example 
is not to reflect a real life data-analysis situation, where clearly the pairs of time-series measured would have the 
same length, but rather to emphasize the dangers of not applying proper statistical methods to empirical data. 
Using the standard DCCA approach one observes apparent power-law cross-correlations which are, however, 
discarded after statistical testing with PLCC-test. We deliberately chose brain activity of an arbitrary individual 
and the Dow Jones index as these are two very distinct processes which cannot relate to one another.

We compute DCCA coefficients and DCCA correlation coefficients (n ∈​ [1000, 25000] between the ampli-
tude envelopes of 10 sources extracted in the alpha range with Spatial-Spectral Decomposition (SSD)26 from the 
experimental EEG data and the absolute daily differences in the Dow Jones index. The neural times-series are 
down-sampled to the same T as the financial data. We find that of 10 correlations measured between the EEG data 
and the Dow Jones, 7 display both negative and positive correlations over the time-scales considered, for which 
the possibility of power-law correlation may be excluded. However for the three remaining pairs, DCCA analysis 
yields apparent, and as we know, spurious scaling behaviour (top-left of Fig. 6). These pairs each yield DCCA 
estimates of γ >​ 0.5, suggesting long-range dependent or even random walk behaviour (1.48, 1.32, 1.02). Only 
after applying PLCC-test do we find that these power-law correlations may be excluded as spurious, as expected 
a priori. In particular, application of the PLCC-test with α =​ 0.05 (Bonferroni corrected) shows that these cor-
relations are not significant: DCCA correlation coefficients must lie outside the green region for all time-scales.

Novel and Significant Power-Law Cross-Correlations between Alpha and Beta Range 
EEG.  In the next step of our analysis we show that PLCC-test indeed allows for detection of novel power-law 
cross-correlations, by considering time-series originating from distinct brain regions and frequencies in the EEG 
of a given subject. It has been shown that neuronal activity in the human brain relates to critical dynamics, with 
persistent power-law correlations extending over multiple time scales27,28. While many cortical areas exhibit this 
pattern, it is unknown whether it generalizes to a further level, whereby univariate time courses display not 
only power-law correlations, but also power-law cross-correlations. Here we provide the first evidence for such 
power-law cross correlations in the amplitude dynamics of distributed alpha and beta neuronal oscillations.

We follow the preprocessing steps outlined at the beginning of this section to obtain source activities using 
SSD. All of our subsequent analysis focuses on the amplitude envelopes (extracted by the Hilbert transform) of 
these source activities. Using SSD the multivariate data is decomposed as x(t) ≈​ Ws(t), where 
= … Τt s t s ts( ) [ ( ) ( )]n1 . We compute separate decompositions x(t) ≈​ Walphasalpha(t) and x(t) ≈​ Wbetasbeta(t) in the 

alpha (8–12 Hz) and beta (18–22 Hz) ranges respectively and take the first 10 components, after sorting the com-
ponents for the signal-to-noise ratio in the corresponding frequency ranges. We then apply the Butterworth filters 
to the sources in the alpha and beta ranges so that they have non-overlapping frequency content. We compute 
DCCA coefficients and correlation coefficients (n ∈​ [1000, 25000]) between amplitude envelopes in the alpha 
frequency range and 10 additional sources of the same subject in the beta range (18–22 Hz). We calculate DCCA 
coefficients and DCCA correlation coefficients for all pairs (n =​ 100) of alpha and beta sources.

Several pairs of sources display pronounced DCCA correlation coefficients. Here the testing procedure 
confirms that 19 of 100 pairs tested display significant power-law cross-correlations at the α =​ 0.01 test-level 
(Bonferroni corrected). This constitutes further evidence for the notion that when many time scales are consid-
ered jointly, the brain activity may be succinctly described through few parameters driving its coarse-grained 
dynamics. This finding allows us to hypothesize that such homogeneity in the behavior of neuronal oscillations 

https://research.stlouisfed.org/fred2/
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across many time scales and spatial locations may be due to global modulation of cortical excitability due to 
varying levels of the subject’s state of arousal.

Conclusion
While spurious power-law cross-correlations such as those observed in the brain vs. the Dow Jones index are easy 
to discard on the basis of simple logical considerations, detection of physically plausible cross-correlations should 
be based on the adequate application of robust statistical procedures.

We have proposed a versatile framework for arriving at the statistical tests for testing for power-law 
cross-correlation, providing an essential basis for future scientific analysis of complex multivariate dynamical 
systems. Our methodology should prove particularly useful in the study of noisy physical systems and cases in 
which weak power-law cross-correlation may be present.

Further work will aim at applying a similar approach to alternative estimators of power-law cross-correlation, 
such as height cross-correlation analysis16, detrending moving- average cross-correlation analysis17 and averaged 
periodogram estimation14.
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