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Abstract

In this paper we will present recent work on a new unit-level small area methodology that can

be used with continuous and discrete outcomes. The proposed method is based on constructing a

model-based estimator of the distribution function by using a nested-error regression model for the

quantiles of the target outcome. A general set of domain-specific parameters that extends beyond

averages is then estimated by sampling from the estimated distribution function. For fitting the

model we exploit the link between the Asymmetric Laplace Distribution and maximum likelihood

estimation for quantile regression. The specification of the distribution of the random effects is

considered in some detail by exploring the use of parametric and non-parametric alternatives. The use

of the proposed methodology with discrete (count) outcomes requires appropriate transformations,

in particular jittering. For the case of discrete outcomes the methodology relaxes the restrictive

assumptions of the Poisson generalised linear mixed model and allows for what is potentially a

more flexible mean-variance relationship. Mean Squared Error estimation is discussed. Extensive

model-based simulations are used for comparing the proposed methodology to alternative unit-level

methodologies for estimating a broad range of complex parameters.

Key words: Asymmetric Laplace Distribution; Generalized linear mixed model; Jittering; Non-parametric

estimation; Small area estimation.

1 Introduction

The use of unit-level models is now considered to be standard practice in small area estimation. An im-

portant application of unit-level small area models is in estimating non-linear parameters. The seminal

paper by Molina and Rao (2010) proposes the use of Empirical Best Prediction (EBP) under a nested

error regression model for estimating income related indicators for example the incidence of poverty and
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the poverty gap in small areas. The Molina and Rao (2010) methodology is implemented by assuming

normality for the unit-level residuals and the domain random effects of the model that is fitted on the

logarithmically transformed outcome. What if the model assumptions do not hold even after transforma-

tion?

In this paper we will present recent work on a new unit-level small area methodology that can be

used with continuous and discrete, in particular count, outcomes Weidenhammer et al. (2014), Tzavidis

et al. (2015), Tzavidis and Schmid (2015). The proposed method is based on constructing a model-based

estimator of the distribution function by using a nested-error regression model for the quantiles of the

target outcome. A general set of domain-specific parameters that extends beyond averages is then esti-

mated by sampling from the estimated empirical distribution function. For fitting the model we exploit

the link between the Asymmetric Laplace Distribution and maximum likelihood estimation for quantile

regression. The specification of the distribution of the random effects is considered in some detail by

exploring the use of parametric and non-parametric alternatives. The use of the proposed methodology

with discrete (count) outcomes requires appropriate transformations, in particular jittering. For the case

of discrete outcomes the methodology relaxes the restrictive assumptions of the Poisson generalised lin-

ear mixed model and allows for what is potentially a more flexible mean-variance relationship that can

also capture the presence of over-dispersion.

The paper is structured as follows. In Section 2 we review linear mixed models. Section 3 presents

linear quantile mixed effects regression following Geraci and Bottai (2007) and Section 4 presents an

extension of the linear model to the case of count outcomes by using jittering following Machado and

Silva (2005). Using the models presented in Sections 3 and 4 Section 5 proposes novel methodology for

domain prediction, hereafter referred to as Microsimulation via Quantiles (MvQ). Bootstrap-based Mean

Squared Error (MSE) estimation is studied in Section 6 using a modified version of the semi-parametric

bootstrap proposed by Carpenter et al. (2003) and a modified version of the wild bootstrap proposed by

Feng et al. (2011). In Section 7 we empirically evaluate the proposed methodology separately for count

and continuous outcomes by using a Monte-Carlo simulation under a range of scenarios for linear and

non-linear target parameters. We conclude the paper by summarising our main findings and by providing

some ideas for further research.

2 The Linear Mixed Model

Linear mixed models are in common use in statistics. One main application is longitudinal data, where

D objects are each observed at different times. Another one is the Small Area Estimation (SAE), where

D areas have each a within sample size of ni, i = 1, 2, . . . , D of individuals or units. Both have in

common that dependencies within observations, may they come from the same object or the same area,
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are captured in a random effect Vi. This leads to the linear mixed model,

Yij = xTijβ + Vi + εij , i = 1, 2, . . . , D; j = 1, 2, . . . ni, (1)

where Yij is the observation and xij is a p-dimensional vector of independent variables of the time or

individual j in object or area i, β = (β1, β2, . . . , βp)
T is the unknown p-dimensional parameter vector,

Vi is the random effect, and εij is the individual error. Since the paper focuses mainly on SAE, we will

name all properties in area and individual terms keeping in mind that they are exchangeable for other

applications of mixed models.

So far there are no distribution assumptions on the error terms Vi and εij but that they are centred, thus

E[Vi] = 0 and E[εij ] = 0, i = 1, 2, . . . , D; j = 1, 2, . . . ni,

and have each a finite variance

V ar(Vi) = σ2
V <∞ and V ar(εij) = σε <∞,

i = 1, 2, . . . , D; j = 1, 2, . . . ni.

Additionally they are independently distributed of each other. Thus Vi1 is independently distributed from

Vi2for all i1 6= i2, εi1j1 is independently distributed from εi2j2 for all (i1, j1) 6= (i2, j2), and Vi1 is

independently distributed from εi1j for all i1, i2 = 1, 2, . . . , D and j = 1, 2, . . . ni1 . The sample size in

area i is ni leading to an overall sample size of

n =

D∑
i=1

ni. (2)

Of common use is a normal assumption on the random effect

Vi
iid∼ N(0, σ2

V ), i = 1, 2, . . . , D.

Other distributions are possible but have not been as widely-used. A normal assumption on the individual

error terms is also in common use, especially in the SAE approach:

εij
iid∼ N(0, σ2

ε), i = 1, 2, . . . , D; j = 1, 2, . . . ni.

We can rewrite model (1) in matrix form as follows

Y = Xβ + ZV + ε, (3)
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where Y = (Y1,1, Y1,2, . . . , Y1,n1 , Y2,1, . . . , YD,nD)T is the vector of the observations, the matrix

X :=
(
xT1,1, x

T
1,2, · · · , xT1,n1

, xT2,1, · · · , xTD,nD
)T

(4)

is the design matrix, β = (β1, β2, . . . , βp)
T is the unknown p-dimensional parameter vector, the matrix

Z :=


1n1

1n2

. . .

1nD

 , (5)

where 1ni ia an ni-dimensional vector of ones, is the design matrix for the random vector V = (V1, V2, . . . , VD)T ,

and ε = (ε1,1, ε1,2, . . . , ε1,n1 , ε2,1, . . . , εD,nD)T is the vector of the individual errors. The assumption of

normal distributions of the random effect and the individual errors can now be rewritten as

V ∼ N
(
0D, σ

2
V ID

)
and ε ∼ N

(
0n, σ

2
εID

)
.

This and the independence of V and ε leads to a normal distribution for the observation vector

Y ∼ N (Xβ,Σ) (6)

with Σ := σ2
εIn +σ2

V ZZ
T . With the assumption of known variances σ2

V and σ2
ε this leads directly to the

best linear unbiased estimator (BLUE) by the Gauß-Markov Theorem

β̂(Y ) =
(
XTΣ−1X

)−1
XTΣ−1Y (7)

and the best linear unbiased predictor for the random effect

V̂ (Y ) = σ2
V Z

TΣ−1
(
Y −Xβ̂(Y )

)
. (8)

This leads to the best linear unbiased estimator for Yij given xij as follows

Ŷij = xTij β̂ + V̂i, (9)

where β̂ = β̂(Y ) from Equation 7 and V̂i is the ith entry of V̂ from Equation 8.

Normally the variance parameters are not known and need to be estimated first. This leads to the empiri-

cal best linear unbiased estimator and predictor (EBLUE & EBLUP), where the variance parameters are

replaced in Equations 7 and 8 by their estimators σ̂2
V and σ̂2

ε (Rao (2003), Chapter 6.2.3). This approach

is a two-stage method, where the variance parameters are estimated first and then set into the BLUE and
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BLUP equations 7 and 8.

Another way of dealing with unknown variance parameters is a maximum likelihood approach. From

(6) follows directly the density and thus the log-likelihood density of the observation Y . The unknown

parameters are θ = (σV , σε, β
T )T . By differentiation of the log-likelihood density and setting this

derivative to zero the maximum likelihood estimator θ̂ = (σ̂V , σ̂ε, β̂
T )T can be derived. In a last step

the BLUP for V is obtained as in Equation 8 by replacing the variance components σV and σε by their

estimates σ̂V and σ̂ε. In the end the best linear unbiased estimator for Yij given xij is given as in (9).

This maximum likelihood approach is also a two-stage method and is similar to the one we are going to

employ for the quantile estimator in mixed models.

3 The Linear Quantile Mixed Model for Continuous Outcomes

One may be interested in estimating target parameters beyond the mean, e.g. the median or quantiles of

the target distributions. For quantile estimation in linear mixed models the idea of quantile regression in

linear models needs to be adapted.

3.1 The Model

Similar like the quantile model (Koenker and Bassett, 1978) without random effects for a fixed τ ∈ (0, 1)

the linear quantile mixed model (Geraci and Bottai, 2007) is defined as follows

QYij |xij (τ) = xTijβτ + Vτ,i, i = 1, 2, . . . , D; j = 1, 2, . . . ni, (10)

whereQYij |xij (τ) stands for the τ -quantile of Yij given xij . Thus the linear quantile model was extended

by adding the random effect Vτ,i. This linear quantile mixed model (10) only needs to be employed

whenever the distribution term of the error term in the linear mixed model (1) in unknown. For a known

error distribution with distribution function Fε the τ -quantile of Yij given xij is then

QYij |xij (τ) = xTijβ + Vi + F−1
ε (τ), i = 1, 2, . . . , D; j = 1, 2, . . . ni,

where β is the same parameter vector as in the linear mixed model (1). In practice one may assume that

the distribution of ε is unknown giving more flexibility to the model. This is how we proceed in the

following.

In contrast to the linear mixed model (1) the random effect Vτ,i carries now τ in a footnote implying

that for different τ the random effect may be different. A further discussion about this approach can be

found in Weidenhammer (2016). For reasons of simplification we will drop the τ in the subscript in the
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following keeping in mind the dependence to τ . In matrix form (10) can be rewritten as

QY |X(τ) = Xβτ + ZV, (11)

where X and Z are the same matrices as defined in (4) and (5), respectively. We can state the equivalence

of model (10) to

Yij = xTijβτ + Vi + ετ,ij , i = 1, 2, . . . , D; j = 1, 2, . . . ni (12)

with

ετ,ij
iid∼ ALD(0, σ, τ), i = 1, 2, . . . , D; j = 1, 2, . . . ni.

In matrix form this model can be rewritten as

Y = Xβτ + ZV + ετ , (13)

where X and Z are the same matrices as defined in (4) and (5), respectively. The error term ετ is the

vector of the individual error terms ετ,ij in (12). Its distribution is an n-dimensional asymmetric Laplace

distribution as discussed in (Geraci and Bottai (2007))

ετ
iid∼ ALDn(0n, σ, τ).

Hence the asymmetric Laplace distribution serves also as the distribution of the individual error term ετ,ij

here. For reasons of simplification we will drop the τ in the subscript of the error term in the following

keeping in mind that its distribution is dependent on τ . As in the linear quantile model of Koenker and

Bassett (1978) we assume that the scale parameter σ is unknown. Thus it gives a measure of the variance

of the individual error term in the linear mixed model (1) whose distribution is assumed to be unknown.

Whenever we mention the linear quantile mixed model in the further investigation we mean the latter

model (12). Due to the equivalence of the two models this choice is a matter of taste. We prefer model

(12) because it has a regular appearance in linear modelling with error terms on the right hand side and

the observations on the left hand side. On the other hand model (10) carries the error distribution within

the quantile expression on the left hand side and there is no direct exposure of the observation Yij in this

model.

The dependence of the random effects on τ is discussed in detail in Weidenhammer (2016). Follow-

ing Weidenhammer (2016) we use a random effect which depends on τ . This makes the model more

flexible in terms of the distribution of Y within the areas, which cannot be explained by the independent

data X. Nevertheless the footnote on Vτ will be dropped in the future appearances for reasons of clarity

keeping in mind the dependence on the choice of τ .
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3.2 The Quantile Estimation in Linear Mixed Models

For the quantile estimator in the linear mixed model we need an estimator for the parameter βτ and a

predictor for the random vector V leading to the quantile estimator for a fixed τ ∈ (0, 1)

Q̂Yij |xij (τ) = xTij β̂τ + V̂i, i = 1, 2, . . . , D; j = 1, 2, . . . ni. (14)

This estimation is fulfilled in two steps, which will be described in the following Sections 3.2.1 and 3.2.2.

3.2.1 Step 1: Maximum Likelihood Estimation

From the linear quantile mixed model (13) we know the conditional distribution of Y given V

Y |V ∼ ALDn (Xβτ + ZV, σ, τ) .

Thus the joint distribution of the observation vector Y and the random effect vector V is given as

(Y, V ) ∼ ALDn (Xβτ + ZV, σ, τ)×ND

(
0D, σ

2
V ID

)
.

It follows that the density of the joint distribution is given as

f(Y,V )(y, v) = fALDn(Xβτ+ZV,σ,τ)(y|v) · fND(0D,σ
2
V ID)(v).

This can be simplified as in (Weidenhammer (2016)) to the joint distribution

f(Y,V )(y, v) =
D∏
i=1

 ni∏
j=1

fALD(xTijβτ+vi,σ,τ)(yij |vi)

 fN(0,σ2
V )(vi). (15)

The density and thus the distribution of the observation vector Y is then given as the marginal density of

the joint density in (15)

fY (y) =

∫
RD

D∏
i=1

 ni∏
j=1

fALD(xTijβτ+vi,σ,τ)(yij |vi)

 fN(0,σ2
V )(vi)dv

(?)
=

D∏
i=1

∫
R

 ni∏
j=1

fALD(xTijβτ+vi,σ,τ)(yij |vi)

 fN(0,σ2
V )(vi)dvi, (16)

where (?) follows by application of the Theorem of Fubini. A closed form solution of this integral is

not calculable. Thus (16) is the simplified expression of the density of the observation Y . The unknown

parameters in this density are σV , σ, and βτ . From the density in Equation 16 we can derive the log-
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likelihood density `(θ|y) and find the maximum likelihood estimator

θ̂ := argmaxθ∈Θ`(θ|y).

for θ = (σV , σ, β
T
τ )T ∈ Θ := R+ × R+ × Rp as the roots of the equations

∂

∂θ
`(θ|y) = 0p+2. (17)

Since there is no analytical solution to (17), numerical approaches are needed. Geraci and Bottai (2007)

first introduced an EM algorithm and later Geraci and Bottai (2014) made use of a Gaussian quadrature.

The latter procedure is faster and more stable than the EM algorithm. The user is able to assume different

distributions on the random effect and the number of knots in the Gaussian quadrature. As a result the

maximum likelihood estimator θ̂ = (σ̂V , σ̂, β̂
T
τ )T can be calculated.

The existence and consistency of this maximum likelihood estimation is proven in Weidenhammer

(2016).

3.2.2 Step 2: Prediction of Random Effect

In a second step a prediction for the random effect is calculated using the maximum likelihood estimator

θ̂ = (σ̂V , σ̂, β̂
T
τ )T from Step 1 introduced in Section 3.2.1. As in linear mixed models (1) Geraci and

Bottai (2014) stated that the predictor for the random effect can be written in the linear quantile mixed

model (12) as

V̂ (Y ) = σ̂2
V Z

T Σ̂−1
(
Y −Xβ̂τ − Ê [ε]

)
(18)

with the estimated covariance matrix of Y

Σ̂ = σ̂2
V ZZ

T + V̂ ar(ε)

and the estimated expected value and variance of ε are

Ê [ε] =
σ̂(1− 2τ)

τ(1− τ)
1n and

V̂ ar(ε) =
σ̂2(1− 2τ + 2τ2)

τ2(1− τ)2
In.

These are the expected value and the variance of an n-dimensional asymmetric Laplace distribution with

parameters µ = 0, σ̂, and τ (Weidenhammer (2016)). Note that the estimated covariance matrix can also

be rewritten as Σ̂ = σ̂2
V ZZ

T + V̂ ar(ε1,1)In with V̂ ar(ε1,1) = σ̂2(1−2τ+2τ2)
τ2(1−τ)2

.

As a result the quantile estimator given in 14 can be calculated by inserting β̂τ from the maximum

likelihood estimation in Step 1 and V̂i given in Equation 18.
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4 Linear Quantile Mixed Models for Count Outcomes

The quantiles of count data must be integers due to the fact that counts themselves are integers. Since the

linear quantile mixed model (12) is a model for continuous data, it is not directly applicable on counts.

The generalized linear mixed model for a discrete random variable is Yij given xij is given as

exp(xTijβ + Vi), i = 1, 2, . . . , D; j = 1, 2, . . . , ni (19)

with

Vi
iid∼ N(0, σ2

V ).

This mean model needs to be improved in order to estimate quantiles of Yij given xij for a fixed τ ∈

(0, 1), QYij |xij (τ). This will be fulfilled by jittering the data as discussed in the following Section 4.1.

The main idea is the same as for count data in linear models, where Machado and Silva (2005) already

showed the consistency of the quantiles of counts. Here, the consistency of quantile estimators in linear

mixed models as proved in Weidenhammer (2016) implies the consistency of the quantiles of counts.

4.1 Jittering the Count Data

The observations Yij (i = 1, 2, . . . , D; j = 1, 2, . . . , n) are discrete and in linear models Machado and

Silva (2005) had the idea of jittering in order to get continuous data. This method also works in the linear

mixed model. By adding a standard uniform random variable Uij independent from Yij , xij , and Vi we

get a continuous observation Zij :

Zij := Yij + Uij . (20)

On this continuous random variable Zij we can apply the linear quantile mixed model 12.

Theorem:

For a fixed τ ∈ (0, 1) the quantile of Zij as defined in (20) is said to be

QZij |xij (τ) = exp(xTijβ + Vi) + τ.

Proof. Let τ ∈ (0, 1) be fixed. For a continuous random variable Yij + U(−τ, 1 − τ), where the mean

model (19) holds for Yij the τ -quantile is said to be

QYij+U(−τ,1−τ)|xij (τ) = exp(xTijβ + Vi)

⇐⇒ QYij+U(−τ,1−τ)+τ |xij (τ) = exp(xTijβ + Vi) + τ

⇐⇒ QYij+U(0,1)|xij (τ) = exp(xTijβ + Vi) + τ.
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4.2 Transformation of the Jittered Data

In order to be able to apply the quantile estimation approach of linear quantile mixed models 12 there is

need to transform the jittered data Zij . This is similar to the approach in the linear model discussed in

Machado and Silva (2005) and is for a fixed τ ∈ (0, 1) fulfilled as follows

T (Zij , τ) :=


log(ζ), Zij ≤ τ

log(Zij − τ), Zij > τ

with a small value ζ. This transformation is almost a continuous function and log(ζ) is just the function

value for negative values for (Zij − τ since the logarithm is not defined for negative values. Therefore it

follows for the transformed jittered data

T−1(Zij , τ) ≈ exp(Zij) + τ

and therefore we can state the following corollary.

Corollary:

The quantile of the transformed jittered data is given as

QT (Zij ,τ)|xij (τ) = xTijβτ + Vi.

Proof. The transformation T is almost continuous and thus it holds that

QT (Zij ,τ)|xij (τ) = T
(
QZij |xij (τ)

)
.

In Theorem 4.1 was shown that

QZij |xij (τ) = exp(xTijβ + Vi) + τ,

which implies that

QT (Zij ,τ)|xij (τ) = T
(
exp(xTijβ + Vi) + τ, τ

)
= exp(xTijβ + Vi).
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4.3 Applying Quantile Estimation in the Linear Mixed Model on the Transformed Jit-

tered Data

The transformed jittered data

Y ?
ij := T (Zij , τ)

is now continuous and we can now apply the quantile estimation in linear mixed models as introduced in

Section 3.2. There we estimate βτ and predict V . In order to average out the error, which is based in the

jittering, we apply an averaged jittering. That means we jitter our dataM times and repeat the estimation

of βτ and V in each step. In the end we take the averaged estimators

β̂τ =
1

M

M∑
m=1

β̂τ,m and V̂ =
1

M

M∑
m=1

V̂m.

This leads to the quantile estimator of Y ?
ij

Q̂Y ?ij |xij (τ) = xTij β̂τ + V̂i, i = 1, 2, . . . , D; j = 1, 2, . . . , ni. (21)

4.4 Back-Transformation and Count Quantile

From the τ -quantile of Y ?
ij we can calculate the τ -quantile of the observed counts Yij by the following

theorem.

Theorem:

For a fixed τ ∈ (0, 1) the estimator for the τ -quantile of the observed counts Yij given xij is given by

Q̂Yij |xij (τ) = dT−1(Q̂Zij |xij (τ)− 1e

= dexp(xTij β̂τ + V̂i) + τ − 1e

for i = 1, 2, . . . , D and j = 1, 2, . . . , ni.

Proof. Following the ideas of Machado and Silva (2005) the transformation T is almost continuous and

bijective and thus it hold that

Q̂Zij |xij (τ) = T−1
(
Q̂Y ?ij |xij (τ)

)
.

Because of Yij = Zij + Uij with Uij ∼ U(0, 1) it also holds that

Yij − 1 ≤ Zij − 1 ≤ Yij .

Because the quantile function is nondecreasing this implies

Q̂Yij |xij (τ)− 1 ≤ Q̂Zij |xij (τ)− 1 ≤ Q̂Yij |xij (τ).
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The result now follows because Q̂Yij |xij (τ) is an integer.

We discussed that the idea of jittering count data also works in linear mixed models. Thus one is able

to estimate quantiles of count data by applying the quantile estimation in linear mixed models described

in Section 3.2. This method works on continuous data, which is why the count data needed to be made

continuous by the jittering and transformed in order to have a linear quantile mixed model as in (12).

After the estimation a back-transformation of the quantile estimators of the transformed jittered data

gives the quantiles of the counts. Additional details are provided in Weidenhammer (2016).

5 Quantile Nested Error Regression Model for Domain Prediction

In practice there are parameters of interest in one area or overall observations, which are beyond mean

estimation. In the linear mixed model (1) the predictor of Y given x as given in (9) is a predictor for the

mean for the jth unit in area i. The area mean ˆ̄Yi can then be given as the averaged means

ˆ̄Yi =
1

Ni

Ni∑
j=1

Ŷij

or for the samples units (j ∈ Sn) and the unsampled units (j ∈ Rn)

ˆ̄Yi =
1

Ni

∑
j∈Sn

Yij +
∑
j∈Rn

Ŷij

 .

Thus the mean of an area is the mean of all mean predictors. Similar the overall mean can be given as

ˆ̄Y =
1

N

D∑
i=1

Ni∑
j=1

Ŷij .

This is totally different in quantile estimation. Equation 14 gives the conditional τ -quantile for the jth

unit in area i, from which one cannot derive the τ -quantile of the whole area Q̂Yi|xi(τ) nor the overall

τ -quantile Q̂Y |x(τ). The mean of quantiles is no quantile

Q̂Yi|xi(τ) 6= 1

Ni

Ni∑
j=1

Q̂Yij |xij (τ).

Nevertheless there is a way of estimating area quantiles and more parameters of interest, which is called

Microsimulation via Quantiles (MvQ) (Weidenhammer, 2016).
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5.1 The Idea of Microsimulation via Quantiles

Between quantiles and the distribution of a random variable Y exists a natural relationship. The distri-

bution function FY can be rewritten as

FY (y) = min {τ |QY (τ) ≥ y} .

Thus the empirical distribution function can be rewritten as

F̂Y (y) = min
{
τ |Q̂Y (τ) ≥ y

}
,

where Q̂Y (τ) are the empirical quantiles.

In linear mixed models the quantiles can be estimated as given in (14). This estimation is fulfilled on a

fixed τ . Let us now estimate quantile estimators on a increasing grid of τ ’s TK := (τ1, τ2, . . . , τK)T with

τk < τk+1 for all k = 1, 2, . . .K. This leads to an empirical distribution function of Yij , the outcome for

the jth unit in area i as follows

F̂Yij |xij (y) = min
{
τk|Q̂Yij |xij (τk) ≥ y, k = 1, 2, . . . ,K

}
, (22)

which is also dependent on the choice of the grid TK . Thus we are able to estimate the whole distribution

of the jth unit in area i by (22). This even gives us the distribution of Y within one area or the over all

distribution, from which we are able to estimate every parameter of interest by Monte Carlo simulation.

5.2 The Implementation of Microsimulation via Quantiles

For a given grid of τ , TK = (τ1, τ2, . . . , τK), e.g. T99 = (.01, .02, . . . , .99), we estimate the quantiles as

described in Section 3.2. This gives us an N ×K-dimensional matrix


Q̂y11|x11(τ1) Q̂y11|x11(τ2) . . . Q̂y11|x11(τK)

Q̂y12|x12(τ1) Q̂y12|x12(τ2) . . . Q̂y12|x12(τK)
...

...
...

Q̂yDND |xDND
(τ1) Q̂yDND |xDND

(τ2) . . . Q̂yDND |xDND
(τK)

 .

Each row of this matrix gives us an estimation of the distribution function of Yij given xij as given in

(22). From each F̂yij we draw a Monte Carlo sample of size MC

ỹij = (ỹ
(1)
ij , ỹ

(2)
ij , . . . , ỹ

(MC)
ij )T . (23)
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This represents a microsimulation of the outcome Yij of the jth unit in area i. For the whole area i the

Monte Carlo sample

ỹi = (ỹ
(1)
i1 , ỹ

(2)
i1 , . . . , ỹ

(MC)
i1 , . . . , ỹ

(1)
iNi
, ỹ

(2)
iNi
, . . . , ỹ

(MC)
iNi

)T .

is a microsimulation of size Ni ·MC. This sample is just the combination of all microsimulations given

in (23) and gives an estimated distribution of the outcome of Y in area i. Similar to this approach one

could draw a microsimulation of all units ỹ and areas by glueing the samples given in (23) for all j and i

together.

From ỹi or ỹ we can estimate now every parameter of interest. This can be fulfilled by taking the

empirical version of this parameter from ỹi or ỹ. Say we want to know the area mean the estimator

would be

m̂eani = mean(ỹi)

and the τ -quantile estimator in area i is

Q̂Yi|xi(τ) = qτ (ỹi),

where qτ (ỹi) is defined as the empirical τ -quantile of the vector ỹi. In the same matter other parameters

can be estimated from the microsimulated data ỹ. This approach can also performed for linear models

by setting the quantile estimators of Koenker and Bassett (1978) in the empirical distribution function

FYi|xi .

Microsimulation via Quantiles (MvQ) provides good tools for estimating parameter, which are be-

yond the mean like quantiles. Since there is the empirical distribution function estimated, we get the

distribution of the observation Y and may get any parameter of interest from that. This can be easily

fulfilled by a Monte Carlo simulation. Then even parameters like the Gini coefficient or poverty rates

are possible. Furthermore the MvQ method can be combined with the jittering introduced in Section

4. Hence parameters of interest of count data may also be estimated. Therefore the quantile estima-

tors of the count data, which can be estimated as described before serve as the inverse of the empirical

distribution function. From there everything else can be obtained by a Monte Carlo simulation.

6 Mean squared error estimation for the MvQ

Molina and Rao (2010) have already mentioned that mean squared error estimation (MSE) is a difficult

problem in the case of non-linear indicators and analytic solutions are hard to obtain. In this section we

introduce two bootstrap procedures for estimating the MSE of the proposed MvQ approach we presented

in Section 5. In particular, the first bootstrap scheme generates bootstrap populations in the case of con-

14



tinuous outcomes. In contrast, the second approach can be applied for count outcomes and incorporates

the additional uncertainty due to the jittering.

MSE estimation for Continuous Outcomes:

The steps of the bootstrap are as follows:

1. We select τ at random by using a uniform distribution U(0, 1).

2. For given σ̂V estimated with the original sample generate V ∗i from N(0, σ̂V ). An alternative is

to generate V ∗i non-parametrically but by using centering and rescaling to adjust for shrinkage

following Carpenter et al. (2003).

3. ε∗τ,ij are re-sampled from the empirical distribution of residuals appropriately centered and rescaled

(Carpenter et al., 2003). An alternative option is to use a wild bootstrap (Feng et al., 2011) in the

case of quantile mixed models to accommodate the non-id case.

4. For given β̂τ estimated with the original sample, V ∗i and ε∗τ,ij generate the bootstrap population

according to model 13 by

Y ∗ = Xβ̂τ + ZV ∗ + ε∗τ . (24)

5. Construct B bootstrap populations.

6. For each population b compute the population target indicators, z∗bi .

7. From each bootstrap population select a bootstrap sample according to the sampling scheme of the

original sample.

8. Implement the MvQ presented in Section 5 with the bootstrap sample, get ẑ∗bi

M̂SE(ẑi) = B−1
B∑
b=1

(ẑ∗bi − z∗bi )2.

MSE estimation for Count Outcomes:

The steps of the bootstrap are as follows:

1. For given σ̂V estimated with the original sample generate V ∗i from N(0, σ̂V ) at τ = 0.5. An

alternative is to generate V ∗i non-parametrically but by using centering and rescaling to adjust for

shrinkage following Carpenter et al. (2003). Note that it is also possible to use a quantile τ that is

randomly selected from a uniform distribution U(0, 1).

2. Calculate the linear predictor η∗ij by

η∗ij = xTij β̂τ + V ∗i .
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3. Match η∗ij and η̂t = xTt β̂τ + V̂i (t ∈ N) by

min
t∈N

∣∣η∗ij − η̂t∣∣
and define t∗ as the corresponding index.

4. Select

Y ∗ij ∼ F̂Yt∗ (y),

where F̂Yt∗ (y) is defined in 22.

5. Construct B bootstrap populations.

6. For each population b compute the population target indicators, z∗bi .

7. From each bootstrap population select a bootstrap sample according to the sampling scheme of the

original sample.

8. Implement the MvQ for count data presented in Section 4 and 5 with the bootstrap sample, get ẑ∗bi

M̂SE(ẑi) = B−1
B∑
b=1

(ẑ∗bi − z∗bi )2.

The properties of both bootstrap schemes for the count and continuous data we describe in this section

are empirically evaluated in Section 7.

7 Model-based evaluations

In this section, we present results from Monte-Carlo simulations that we carried out for assessing the per-

formance of the proposed MvQ approach from Section 5. This estimator is compared against alternative

methodology like the empirical best prediction (EBP) approach introduced by Molina and Rao (2010)

for continuous outcomes in Section 7.1. We further evaluate the performance of the MSE estimators for

continuous and count outcomes discussed in Section 6.

7.1 Continuous Outcomes

We generated population data for D = 50 small areas with Ni = 200 using a nested error regression

model as follows

Yij = 4500− 400xij + Vi + εij . (25)
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The covariates were generated from a normal-distribution with xij ∼ N(µi, 3
2) with µi ∼ U(−3, 3) and

the random effects were generated by Vi ∼ N(0, 5002). The unit level errors εij under three different

settings. In particular, we focus on

• Normality: εij ∼ N(0, 10002)

• Contamination: εij ∼ 0.98N(0, 10002) + 0.02N(0, 60002)

• Heteroscedasticity: εij = (1 + 0.1xij)eij with eij ∼ N(0, 10002).

Note that additional simulations results are available from the authors on request. The studies cover,

for instance, scenarios where the unit level errors are generated by Pareto, log-normal or extreme value

distributions to mimic characteristics of income data.

The samples were selected from the population by simple random sampling without replacement

within each area leading to a sample size of n = 921 (min = 8, mean = 18.4, max = 29). The

population and sample sizes were held fixed for all areas. Each setting was repeated independently

R = 100 times. Three estimators of the small area population indicators are evaluated. These are the

EBP approach of Molina and Rao (2010), the proposed MvQ estimator introduced in Section 5 and the

direct estimator which only relies on sample information from the particular small area. We focus here

on non-linear indicators; in particular, the Gini coefficient (gini), the head count ratio (hcr), poverty gap

(pgap) and the 25%, 50% and 90% quantiles. For a detailed definition of the indicators we refer to Foster

et al. (1984).

The following quality measures, over Monte-Carlo simulations R, are used to evaluate the perfor-

mance of an estimator of the target indicator in area i, κ̂i,

• Absolute bias

Bias(κ̂i) =
1

R

R∑
r=1

κ̂i,r − κi,r.

• Relative bias [%]:

RB(κ̂i) =
1

R

R∑
r=1

κ̂i,r − κi,r
κi,r

· 100

• Root mean squared error:

RMSE(κ̂i) =

√√√√ 1

R

R∑
r=1

(κ̂i,r − κi,r)2,

κ̂ is a generic notation used to denote an estimator of the small area target parameter and κ is the corre-

sponding true value. Note that we report relative bias for the 25%, 50% and 90% quantiles and absolute

bias for the indicators Gini coefficient, head count ratio and poverty gap.
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Figure 1: Estimated and true (underlying) area distribution: Normality
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Figure 2: Estimated and true (underlying) area distribution: Contamination

18



Before discussing the performance of the MvQ compared to the competitors, we have a closer look

to the estimated area distributions based on the MvQ approach. In particular, Figures 1 and 2 show

the true (black) and estimated (red) area distributions for four small areas of a particular Monte-Carlo

simulation run. It can be observed that the MvQ approach can construct the underlying (true) distribution

for different area sample sizes.

Table 1: Mean values of RMSE and bias of predictors over small areas.

Normality

Indicator Estimator hcr pgap gini 25% 50% 90%

RMSE Direct 0.0801 0.0363 0.0403 487.1 448.1 599.1
MvQ 0.0375 0.0180 0.0150 236.0 231.1 278.9
EBP 0.0364 0.0170 0.0146 232.7 225.5 254.7

Bias Direct -0.0008 -0.0009 -0.0116 2.6376 0.1536 -3.4458
MvQ -0.0050 -0.0036 0.0003 0.8086 1.2682 1.7924
EBP -0.0013 -0.0005 -0.0007 0.7607 0.3283 0.0577

Contamination

hcr pgap gini 25% 50% 90%

RMSE Direct 0.0815 0.0560 0.0652 490.9 453.3 638.5
MvQ 0.0451 0.0248 0.0228 293.2 283.0 405.1
EBP 0.0499 0.0267 0.0282 320.2 280.7 394.1

Bias Direct -0.0016 -0.0003 -0.0086 2.7866 0.2005 -2.8206
MvQ 0.0048 -0.0041 0.0032 -0.6070 1.6448 4.2329
EBP 0.0195 0.0067 0.0130 -2.9022 0.6553 3.7867

Heteroscedasticity

hcr pgap gini 25% 50% 90%

RMSE Direct 0.0824 0.0486 0.0499 542.4 453.7 483.5
MvQ 0.0370 0.0237 0.0218 254.6 238.2 282.8
EBP 0.0380 0.0256 0.0228 271.4 272.3 304.1

Bias Direct -0.0016 -0.0012 -0.0105 2.3455 -0.1863 -3.0831
MvQ -0.0042 -0.0079 -0.0031 1.0262 1.1119 1.4098
EBP 0.0024 -0.0124 -0.0011 -1.3808 -2.7965 1.7127

Table 1 reports the average bias (over areas) and the average RMSE (over areas) of the small area

estimators for different target indicators. More detailed results regarding the performance are available

from the authors on request. As expected the EBP approaches leads to more efficient results (in terms of

RMSE) compared to the other estimators in the case of normality. In contrast, the MvQ approach doesn’t

rely on normality for the unit level errors and lead to more efficient results compared to the EBP for most

of the indicators in the scenarios with contamination and heteroscedasticity. We now turn to the bias

results in Table 1. Although the biases are small, we notice that the EBP has a smaller bias compared to

the direct estimator and the MvQ approach under normality. On the other hand the MvQ has a slightly

smaller bias in the case of contamination for the poverty and inequality indicators.

MSE estimation for continuous outcomes for the MvQ approach is implemented with the bootstrap
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approaches discussed in Section 6 with B = 100 bootstrap replicates. MSE results for the 25% and

90% quantiles are excluded but are available from the authors on request. Table 2 presents the results

for the MSE estimators and shows the mean values of their area-specific relative bias (RB) and relative

RMSE (RRMSE). Note that the empirical MSE (over Monte-Carlo replications) is treated as the true

MSE. We denote by Semi the semi-parametric bootstrap of Carpenter et al. (2003) where the residuals

are re-sampled from the empirical distributions. Wild labels the wild bootstrap for quantile mixed models

following the ideas of Feng et al. (2011).

We observe that both bootstrap methods work well for the scenario under normality. Under contam-

ination and heteroscedasticity, the Wild bootstrap method lead a slightly smaller bias compared the to

Semi bootstrap at the price of a higher variability in terms of RRMSE. More detailed results are available

from the authors on request.

Table 2: Performance of MSE estimators in model-based simulations: Mean values of relative RMSE
(RRMSE) and relative bias (RB) over small areas.

Normality

Indicator MSE hcr pgap gini 50%

RRMSE Semi 33.87 51.49 35.63 14.71
Wild 36.22 53.87 38.53 17.13

RB Semi 6.49 14.02 14.87 10.97
Wild 8.43 16.59 16.89 11.81

Contamination

MSE hcr pgap gini 50%

RRMSE Semi 35.09 47.61 38.51 15.66
Wild 35.77 45.20 35.07 15.77

RB Semi -15.53 -24.05 -29.43 -12.79
Wild -6.17 -7.85 -8.97 -5.63

Heteroscedasticity

MSE hcr pgap gini 50%

RRMSE Semi 36.41 44.23 32.53 12.92
Wild 38.79 55.90 45.61 17.37

RB Semi 11.46 -12.29 -18.39 7.35
Wild 5.30 5.60 5.87 7.36

7.2 Discrete Outcomes

As in Section 7.1 we generated population data for D = 50 small areas with Ni = 200 following the

generalized linear mixed model 19

ηij = exp(0.8 + 2xij + Vi), (26)
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Figure 3: Estimated (green) and true (observed, blue) area distribution: Poisson.

where the covariates were generated from an uniform distribution with xij ∼ U(0, 1) and the random

effects were generated by Vi ∼ N(0, 0.32). We investigate two different types of distributions:

• Poisson: Yij |Vi ∼ Pois(ηij)

• Negative binomial: Yij |Vi ∼ NB(ηij , s) and Var(Yij |Vi) = ηij +
η2ij
s , where s denotes the scale

parameter s = 1, 2, 3, 5.

According to the continuous case in Section 7.1, the samples were selected from the population by simple

random sampling without replacement within each area leading to a sample size of n = 921 (min = 8,

mean = 18.4, max = 29). The population and sample sizes were held fixed for all areas. Each setting

was repeated independently R = 200 times.

Three estimators of the small area population indicators are evaluated. These are the Poisson predic-

tor based on a generalized linear mixed model (Glmer), the proposed MvQ estimator for count outcomes

introduced in Section 5 and the direct estimator. Note that we focus here on only on the domain means.

Additional target parameters like the median or quantiles are available from the authors on request. We

used the same quality measures to evaluate the performance of the estimators like in Section 7.1.

Before assessing the performance of the MvQ for count outcomes compared to the competitors, we

have a closer look to the estimated area distributions based on the MvQ approach. Figures 3 and 4 show

the true (blue) and estimated (green) area distributions for four small areas of a particular Monte-Carlo

simulation run for two scenarios. It can be observed that the MvQ approach rebuilds the true (observed)

distribution for different area sample sizes.

Figure 5 and 6 present the relative bias and the RMSE of the small area estimators for domain means.

As expected the Glmer approaches leads to more efficient results (in terms of RMSE) compared to the

direct estimator and the MvQ approach in the case of the Poisson scenario. In contrast, the MvQ approach
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Figure 4: Estimated (green) and true (observed, blue) area distribution: Negative binomial (s=2).
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Figure 5: Relative bias of the predictors for the estimation of domain averages.

doesn’t rely on the Poisson assumption and is able to adapt on different distributions. This leads to more

efficient results compared to the Glmer approach in the context of more skewed distributions (NB size

2 and NB size 1). We now turn to the bias results in Figure 5. Although the biases are small, we notice

that the direct estimator and the Glmer approach have a smaller bias compared to the MvQ approach in

most of the settings.

MSE estimation for count outcomes for the MvQ approach is implemented with the bootstrap ap-

proach discussed in Section 6 with B = 100 bootstrap replicates. MSE results for the negative binomial

distribution with s = 1 and s = 3 as well as further evaluations for different target parameters, like the

median or other quantiles, are excluded but are available from the authors on request. Table 3 reports

the empirical RMSE (over Monte-Carlo replications) and the estimated RMSE. We observe that the pro-

posed bootstrap approach works quite well in these particular scenarios and is able to track the empirical
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Figure 6: RMSE of the predictors for the estimation of domain averages.

RMSE.

Table 3: Performance of MSE estimators in model-based simulations over small areas.
Poisson

RMSE Min. 1st Qu. Median Mean 3rd Qu. Max.

empirical 0.581 0.662 0.782 0.802 0.923 1.201
estimated 0.618 0.691 0.788 0.827 0.944 1.178

NB s = 5

RMSE Min. 1st Qu. Median Mean 3rd Qu. Max.

empirical 0.843 0.986 1.110 1.139 1.314 1.476
estimated 0.908 0.992 1.130 1.157 1.293 1.545

NB s = 2

RMSE Min. 1st Qu. Median Mean 3rd Qu. Max.

empirical 1.158 1.278 1.401 1.442 1.621 1.865
estimated 1.189 1.291 1.438 1.465 1.616 1.852

8 Concluding remarks

The paper proposes a new approach for small area estimation. The method is based on constructing a

model-based estimator of the distribution function. The gains offered by the proposed methodology are

twofold. First, a general set of domain target parameters that extends beyond domain averages can be

estimated from the distribution function. Second, the methodology allows for modelling continuous and

count outcomes. In particular, the approach allows for more flexible mean-variance relationships in the

case of count outcomes and it does not rely on normality of the error term in the case of continuous

outcomes. MSE estimation is performed by using different bootstrap schemes. The results from the
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model-based simulations indicate that the proposed methodology is a promising alternative to existing

unit-level methodologies.

Currently, estimation relies on the normality assumption of the random effects. We are currently

investigating alternative specifications of the distribution of the random effects by exploring parametric

and non-parametric alternatives. This provides one avenue for future research. Another line for fur-

ther work could be to investigate the impact of a constrained fitting of the quantiles for constructing the

distribution function. Although the implementation of the proposed methodology is facilitated by the

availability of a computationally efficient algorithm using C++ in R, its application in practice is chal-

lenging. Developing and providing an easy-applicable R package including the proposed methodology

offers an additional avenue for future research.
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