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Interacting mesoscopic capacitor out of equilibrium
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We consider the full nonequilibrium response of a mesoscopic capacitor in the large transparency limit,
exactly solving a model with electron-electron interactions appropriate for a cavity in the quantum Hall regime.
For a cavity coupled to the electron reservoir via an ideal point contact, we show that the response to any
time-dependent gate voltage Vg(t) is strictly linear in Vg. We analyze the charge and current response to a sudden
gate voltage shift and find that this response is not captured by a simple circuit analogy. In particular, in the
limit of strong interactions a sudden change in the gate voltage leads to the emission of a sequence of multiple
charge pulses, the width and separation of which are controlled by the charge-relaxation time τc = hCg/e

2 and
the time of flight τf . We also consider the effect of a finite reflection amplitude in the point contact, which leads
to nonlinear-in-gate-voltage corrections to the charge and current response.
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I. INTRODUCTION

The mesoscopic capacitor has played a central role in the
quest to achieve full control of scalable coherent quantum
systems [1–3]. A mesoscopic capacitor is an electron cavity
(quantum dot) coupled to a lead via a quantum point contact
and capacitively coupled to a metallic gate [4–6]. The interest
in this device stems from the absence of dc transport, which
makes the direct investigation and control of the coherent
dynamics of charge carriers possible. The first experimental
realization of this system by Gabelli et al. consisted of a
two-dimensional “cavity” in the quantum Hall regime [7,8],
the “lead” being the edge of a bulk two-dimensional electron
gas; see Fig. 1. Operated out of equilibrium and in the weak
tunneling limit, this system allows the triggered emission of
single electrons [9–11] and has paved the way to the realization
of quantum optics experiments with electrons [12–15], as well
as probing electron fractionalization [16,17] and relaxation
[18]. On-demand single-electron sources were also recently
realized relying on real-time switching of tunnel barriers
[19–24], “electron sound-wave surfing” [25–27], the gen-
eration of levitons [28–32], and superconducting turnstiles
[33,34].

The key fundamental questions related to the dynamics of
a mesoscopic capacitor are about the relaxation of its charge
Q following a change in the gate voltage Vg and the electronic
state subsequently emitted from the cavity. The linear response
is characterized by the “admittance” A(ω),

Q(ω) = A(ω)Vg(ω) + O
(
V 2

g

)
. (1)

In their seminal work, Büttiker and co-workers showed that
the low-frequency admittance of a mesoscopic capacitor has
the form of the admittance of a classical RC circuit [4–6],

A(ω) = C(1 + iωRqC) + O(ω2), (2)

with a charge relaxation resistance Rq = h/2e2 universally
equal to half of the resistance quantum [7], independent of
the transparency of the quantum point contact connecting
the cavity to the lead. The expansion (2) also applies
in the presence of interactions in the cavity [35–38] and the
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FIG. 1. Mesoscopic capacitor realized with a quantum cavity
coupled to the quantum Hall edge state of a bulk two-dimensional
electron gas through a quantum point contact. A capacitor plate with
geometrical capacitance Cg and voltage Vg controls the charge of
the cavity. The backscattering amplitude r of electrons at the cavity
entrance is controlled by the opening of the quantum point contact.

universality of the charge relaxation resistance Rq was shown
to have its roots in a Korringa-Shiba relation [39]. Deviations
from universality arise in non-Fermi liquid regimes [40–43],
or for the low-temperature limit of an Anderson impurity,
upon breaking the Kondo singlet by an applied magnetic field
[44–46]. An effective RC circuit also plays a central role in
the photon-charge interaction in novel quantum hybrid circuits
[47–52] and in energy transfer [53,54].

The circuit analogy (2) does not apply for a nonlinear
response to a gate voltage change or to fast (high-frequency)
drives. An important example is a large steplike change in
the gate voltage Vg(t) = Vgθ (t), θ (t) being the Heaviside
step function, which is relevant to achieve triggered emission
of quantized charge [11]. Such nonlinear high-frequency
response has been considered extensively for noninteracting
cavities [9,11,55–59], where the current response to a gate
voltage step at time t = 0 was found to be of the form of
simple exponential relaxation [9,55,57,59]

I (t) ∝ e−t/τRθ (t). (3)

For a cavity in the quantum Hall regime the relaxation time
τR = τf/(1 − |r|2), where τf is the time of flight around the

2469-9950/2017/96(8)/085429(13) 085429-1 ©2017 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/199415421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1103/PhysRevB.96.085429


LITINSKI, BROUWER, AND FILIPPONE PHYSICAL REVIEW B 96, 085429 (2017)

edge state of the cavity, see Fig. 1, and r is the reflection
amplitude of the point contact.

There have been relatively few studies of the out-of-
equilibrium behavior of the mesoscopic capacitor in the
presence of interactions. The dominant electron-electron in-
teractions in the cavity have the form of a charging energy
[60,61]

Hint = e2

2Cg
[N − Ng(t)]2 , (4)

in which N is the number of electrons in the cavity, Cg the geo-
metric capacitance, and Ng = CgVg(t)/e is the dimensionless
gate voltage [62]. The charging energy leads to an additional
time scale τc = 2πh̄Cg/e

2 for charge relaxation. The limit
1 − |r|2 � 1 of a cavity weakly coupled to the lead, such that
it can effectively be described by a single level, was addressed
in Refs. [63–68]. An important partial result for the opposite
limit of an almost transparent point contact was obtained by
Mora and Le Hur [37], who studied the linear response without
restriction on the frequency ω, for a cavity in the quantum
Hall regime. Their result for the admittance A(ω) for a fully
transparent point contact (r = 0),

A(ω) = Cg

(
1 − iωτc

1 − eiωτf

)−1

, (5)

features both time scales τf and τc, leading to a charge
relaxation behavior considerably more complicated than that
of Eq. (3), although the two time scales τf and τc still combine
into the universal charge relaxation resistance Rq = h/2e2 and
capacitance [4–6]

1

C
=

[
1

Cg
+ h

e2τf

]
(6)

upon expanding Eq. (5) to linear order in ω. The admittance (5)
also appears in the description of the coherent transmission of
electrons through interacting Mach-Zehnder interferometers
[69,70].

In this work, we report a study of the full out-of-
equilibrium behavior of the mesoscopic capacitor with a close-
to-transparent point contact, thus extending the calculation of
Ref. [37] to nonlinear response in the gate voltage Vg. As in
Ref. [37] we consider a cavity in the quantum Hall regime, so
that the time scale τf can be identified with the propagation
time along the cavity’s edge. A main result, spectacular in
its simplicity, is that for a fully transparent contact (r = 0)
the linear-response admittance (5) also describes the nonlinear
response, i.e., the correction terms in Eq. (1) vanish for an
ideal point contact connecting cavity and lead [71]. Further,
we analyze the charge evolution after a step change in the
gate voltage and show that initially, for times up to τf , Q(t)
relaxes exponentially with time τc, whereas at time t = τf the
capacitor abruptly enters a regime of exponentially damped
oscillations, the period and the exponential decay of which
are controlled by a complex function of τf and τc, which
does not correspond to any time scale extracted from low-
frequency circuit analogies. This behavior is not captured by
Eq. (3), derived in the noninteracting limit. We show that these
oscillations correspond to the emission of initially sharp charge

density pulses, which are damped and become increasingly
wider after every charge oscillation. Finally, we also consider
the effect of a small reflection amplitude r in the point contact,
where we do find that the charge Qr acquires nonlinear terms
in the gate voltage Vg,

Qr (t) = Q(t) − er̃

πC

∫
dt ′ A(t − t ′) sin[2πQ(t ′)/e], (7)

in which A(t) and Q(t) are the Fourier transform of the
admittance and charge for the case of a point contact with
perfect transparency, r = 0; see Eqs. (1) and (5). The parameter
r̃ involves both the (weak) backscattering amplitude r and
temperature T , and can be found in Eq. (41) below.

Our calculation employs the bosonization formalism
[72–74] to map interacting fermions to noninteracting bosons
[75–77]. For a transparent point contact, the bosononization
formalism allows one to derive exact results for the out-of-
equilibrium behavior of the interacting mesoscopic capacitor.
The only approximation is that the point contact’s transparency
remains perfect for all energies of interest. This is not a serious
limitation, since the latter energy range is independent of the
cavity size, whereas the typical energy scales h̄/τc and h̄/τf

for the capacitor’s response go to zero in the limit of a large
cavity size. Given the microscopic nature of our approach, we
describe the propagation of charge pulses within the cavity
edge, a study which is complementary to that of electron
waiting times of the cavity [78–80]. Moreover, our approach
avoids the mean-field approximation underlying scattering
theory approaches [4–6,9,11,55,57,59,81], and shows how
interactions trigger remarkable and novel coherence effects.

The remainder of this article is structured as follows. In
Sec. II, we introduce the specific model of an interacting
mesoscopic capacitor in the quantum Hall regime and describe
its formulation in the bosonization formalism. In Sec. III, we
solve the model for the case of a point contact with perfect
transparency and show that Eq. (5) also describes the nonlinear
response to a gate voltage Vg. In Sec. IV, we examine in
detail the charge response of the cavity to a step change of
the gate voltage and compare it to the “RC” [4–6,37] and
“RLC” [82,83] circuit analogies. In Sec. V, we consider
the propagation of charge pulses along the cavity edge and
show how these lead to the serial emission of multiple charge
density pulses from the cavity. In Sec. VI, we consider the
effect of a nonideal quantum point contact to first order
in the backscattering amplitude. We derive Eq. (7) and
investigate how backscattering affects the emission of charge
pulses. We conclude with a brief outlook in Sec. VII.

II. MODEL

We consider a mesoscopic capacitor consisting of a cavity
and the adjacent bulk two-dimensional electron gas in a large
perpendicular magnetic field, so that cavity and bulk are in
the quantum Hall regime. The system is shown schematically
in Fig. 2.

The relevant electronic degree of freedom is the one-
dimensional chiral edge state of the cavity and the bulk
two-dimensional electron gas, which can be described by a
single propagating chiral mode that propagates along the edge
of the bulk two-dimensional electron gas, passes through the

085429-2



INTERACTING MESOSCOPIC CAPACITOR OUT OF . . . PHYSICAL REVIEW B 96, 085429 (2017)

x = 0

x = L

x = −∞

x = ∞

2DEGCavity

FIG. 2. Schematic picture of the mesoscopic capacitor in the
quantum Hall regime. The coordinate x labels the electron position
along the one-dimensional chiral edge state shown in the figure. The
point of entrance into the cavity is labeled “x = 0”. The exit from the
cavity is at “x = L”, with L = vτf .

cavity, and continues along the edge of the bulk electron gas
[37,84]. For simplicity we assume that the propagation velocity
v along the chiral edge is constant. We use the coordinate x

to label the position along the edge, and choose x = 0 to be
the point of entrance into the cavity; see Fig. 2. The second
passage through the quantum point contact, upon exiting the
cavity, then is at x = L, with

L = vτf . (8)

Together with the interaction (4) this gives the Hamiltonian

H = −ih̄v

∫
dx ψ†(x)∂xψ(x) + e2

2Cg
[N − Ng(t)]2, (9)

where ψ†(x) and ψ(x) are the creation and annihilation
operators for an electron at the chiral edge and the particle
number

N =
∫ L

0
dx : ψ†(x)ψ(x) : . (10)

Backscattering at the cavity entrance, with reflection amplitude
r , is described by an additional term

Hr = −h̄rv[ψ†(L)ψ(0) + ψ†(0)ψ(L)]. (11)

The interacting Hamiltonian (9) can be brought to quadratic
form using the bosonization identities [74,85,86]

: ψ†(x)ψ(x) := ∂xφ(x)

2π
, ψ†(x) = 1√

2πa
eiφ(x), (12)

in which φ(x) is a real bosonic field obeying the Kac-Moody
relation [∂xφ(x),φ(x ′)] = 2πiδ(x − x ′) and a is a short-
distance cutoff. Applying Eq. (12), the number of particles
in the cavity N becomes linear in bosonic fields,

N = 1

2π
[φ(L) − φ(0)], (13)

and, hence, the charging term in (9) becomes quadratic in φ

[75]. This gives the bosonized Hamiltonian

H = h̄v

4π

∫ ∞

−∞
dx[∂xφ(x)]2 + e2

2Cg
(N − Ng)2, (14)

where N is expressed in terms of the bosonic field φ(x) as in
Eq. (13). The backscattering term Hr , which was quadratic in
the fermionic fields ψ(x), is no longer quadratic in the bosonic

formulation,

Hr = − h̄vr

πa
cos(2πN ). (15)

In the fully transparent limit, r = 0, and Eq. (14) is exactly
solvable for any drive Vg(t) = eNg(t)/Cg, as we will discuss
in the next section. The effects of finite backscattering will be
addressed to first order in perturbation theory in Hr in Sec. VI.

III. OPEN CAVITY

For a perfectly transparent contact of the mesoscopic
capacitor, the interacting system is described by Eq. (14). Since
this is a quadratic Hamiltonian, we can find an exact solution
for the field φ(x,t) for an arbitrary time-dependent voltage
Vg(t) = eNg(t)/Cg. The Heisenberg equation of motion for
the fields φ(x,t) reads

∂φ(x,t)

∂t
= −vF

∂φ(x,t)

∂x
− 2πs(x)

τc
[N (t) − Ng(t)], (16)

with τc = 2πh̄Cg/e
2 and

s(x) =
{

1 if 0 < x < L,

0 else. (17)

The field φ(0) at the entrance to the mesoscopic capacitor is
unaffected by the interaction term and the time-dependent gate
voltage Ng(t), so that all its correlation functions are those of a
free bosonic field in equilibrium. Using Eq. (16) the field φ(x)
for x > 0 and the charge field N can be expressed in terms
of the field φ(0) at the cavity entrance. Hereto, we first use a
direct solution of Eq. (16) for φ(x) at arbitrary x > 0 in terms
of φ(0) and N ,

φ(x,t) = φ(0,t − x/v)

− 2π

τc

∫ t

dt ′[N (t ′) − Ng(t ′)]s[x − v(t − t ′)],

(18)

and then use Eq. (13) in combination with Eq. (18) for x = L

to express N in terms of φ(0) (see Appendix A for details),

N (t) =
∫ t

dt ′A(t − t ′)
[Ng(t ′)

Cg
+ h̄

e2

∂φ(0,t ′)
∂t ′

]
, (19)

where A(t − t ′) is the Fourier transform of the admittance
(5) found previously by Mora and Le Hur [37]. Upon using
〈Q(t)〉 = e〈N (t)〉 and 〈φ(0,t)〉 = 0, Eq. (19) immediately
reproduces the Fourier transform of Eq. (5),

〈Q(t)〉 =
∫ t

dt ′A(t − t ′)Vg(t ′). (20)

Although Eq. (20) formally coincides with the result
previously obtained in Ref. [37] for the linear response to a gate
voltage change, the present derivation makes no assumption
regarding the magnitude of Vg(t) and, hence, shows that the
charge response of the open cavity is always linear in the gate
voltage Vg(t), no matter how strong or fast its variations are.

The reason that the linear behavior extends to arbitrary
strengths of the driving voltage is that in the absence
of backscattering in the point contact, the charge-density
(“plasmonic”) excitations of the chiral edge are noninteracting
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objects which couple linearly to the gate voltage Vg(t). In
our formalism, these two aspects are responsible for the
linear dependence of the field operator φ(x,t) on the gate
voltage Vg(t), as given explicitly by the Heisenberg equation
of motion (16) and its exact solution (18). Alternatively,
the reason for this linear behavior can be attributed to the
complete delocalization of the eigenmodes of the open-cavity
system. Thus any local perturbation couples to an infinity of
delocalized modes, and therefore even strong perturbations
turn into small, close-to-equilibrium perturbations on each
eigenstate. As we will discuss in Sec. VI, a finite backscattering
amplitude leads to state localization within the cavity and then
non linear corrections to the charge response; see Eq. (7). This
argument applies in the absence of interactions as well.

Equation (5) for the admittance A(ω) clearly shows the
existence of two time scales affecting the dynamics of the
mesoscopic capacitor: the time scale τc for charge relaxation
of the cavity and the time τf that charge density excitations
require to travel along the cavity edge. The low-frequency
expansion of Eq. (5) reproduces the RC form of Eq. (2) and
combines τc and τf in a single RC time

τRC = RqC = 1/2

1/τc + 1/τf
. (21)

If the large-cavity limit τf → ∞ is performed before the ω →
0 expansion in Eq. (5), the RC time crosses over to τc [37],
which differs from the RC time one obtains from Eq. (21) by
taking the limit τf → ∞ after taking the zero-frequency limit.
The separate roles of τc and τf emerge only in the nonadiabatic
setting, i.e., considering the response at finite frequency or the
response to sudden changes of the gate voltage.

To obtain the real-time response function A(t − t ′), the
Fourier transform of the admittance (5) has to be calculated,
which can be accomplished via standard complex contour
integration. All poles of A(ω) lie in the lower complex plane
and are given by

ωn = − i

τc
fn(τf/τc), n 
= 0, (22)

in which

fn(τf/τc) = 1 − τc

τf
Wn(τfe

τf/τc/τc) (23)

and Wn(z) is the nth branch of the Lambert W function (also
called product logarithm). This gives the following expression
for the admittance A(t):

A(t) = e2

h
θ (t)

∑
n
=0

τcfne
−fnt/τc

τc + τf − τffn

, (24)

where we suppressed the argument of the function fn defined
in Eq. (23) above. The charge and current response described
by this function will be investigated in detail in the next two
sections. In Appendix B, we summarize relevant properties of
these functions, in particular that fn = f ∗

−n and that, for any
fixed τf/τc, the real part of fn is positive and increases with
increasing n.

Slowest decaying contribution

τf = 4.0 τc

τf = 1.5 τc

τf = 0.5 τc

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

t/τc

Δ
Q

(t
)/

(C
g
Δ

V
g
)

FIG. 3. Change 
Q(t) of the cavity charge after a step change in
the gate voltage Vg(t) = θ (t)
Vg for a mesoscopic capacitor with a
fully transparent point contact (r = 0). Different curves correspond
to different interaction strengths, characterized by the ratio τf/τc. For
t < τf the charge evolution equals that of an RC circuit with RC time
hCg/e

2 (gray dotted line). At t = τf , damped oscillations abruptly
set in. The oscillation period and decay time of these oscillations
increase with increasing values of τf/τc. Asymptotically, for t → ∞,

Q approaches the value C
Vg, with the capacitance C given in
Eq. (6). The approach to the asymptotic value is well described by
the terms with n = ±1 in Eq. (25) (red dashed lines).

IV. RESPONSE TO A STEP VOLTAGE

We now investigate in detail the charge response to a sudden
modification of the gate voltage, Vg(t) = Vg(0) + 
Vgθ (t).
Substituting Eq. (24) into Eq. (20) we then find that the change

Q(t) = Q(t) − Q(0) of the charge on the cavity is, for t > 0,


Q(t) = C
Vg −
∑
n
=0

Cgτc
Vge
−fnt/τc

τc + τf − τffn

, (25)

where the first term is the equilibrium charge response to a
gate voltage change 
Vg, which involves the total capac-
itance C−1 = C−1

g + h/e2τf ; see Eq. (6). The contribution
h/e2τf to the inverse capacitance is usually understood as
a manifestation of the additional energy required by Pauli
exclusion principle to add electrons in the cavity [87]. Some
subtleties concerning the derivation of Eq. (25) are discussed
in Appendix C.

Figure 3 shows 
Q(t) for τf/τc = 0.5, 1.5, and 4. [Addi-
tional curves showing 
Q(t) in the regime of very strong/weak
interaction strength, τf/τc = 20 and 0.1, are shown in the next
section.] The figure reveals that the system response is quite
complex and that it cannot be described by the exponential
decay of a simple circuit analogy. For times t < τf , the
behavior of the open cavity reproduces exactly the response
of an RC circuit with resistance h/e2 and capacitance Cg.
The charge displays an exponential relaxation towards the
(incorrect) asymptotic value Cg
Vg with relaxation time τc,


Q(t) = Cg
Vg(1 − e−t/τc ) for t < τf . (26)

See the gray dotted line in Fig. 3. However, after time
t = τf , 
Q(t) changes abruptly, entering a regime of damped
oscillations. These oscillations persist longer if the ratio τf/τc

is larger, i.e., for increasing interaction strength. For large t

the oscillations are well approximated by the n = ±1 terms in
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FIG. 4. Relaxation time τR (left panel) and oscillation frequency
ωO (right panel), both normalized to the time of flight τf , for the exact
solution (solid curves), for the LRC circuit analogy (long dashes),
and for the RC circuit analogy (short dashes).

the summation (25),


Q(t) = C
Vg − 2Cg
Vgτce
−t/τR cos(ωOt + ϕ)

|τc + τf − τff1| , (27)

with the exponential relaxation time

τR = τc

Ref1
(28)

and the oscillation frequency

ωO = Im f1

τc
. (29)

The phase offset for the oscillations reads ϕ =
arctan[τfτcτRωO/(τfτR + τcτR − τfτc)]. In Fig. 3, we have also
included this asymptotic long-time behavior as the dashed
curves [88]. Asymptotically, for t � τR, 
Q(t) relaxes to the
equilibrium value C
Vg, the first term in Eq. (25).

The first kink at t = τf in Fig. 3 and the following
oscillations can be understood by inspection of the internal
charge dynamics of the cavity, which will be discussed in
detail in Sec. V. The sharpness of the first kink derives from
the sharp boundaries of the cavity, the existence of a unique
time of flight τf for a cavity in the quantum Hall regime, and
the infinitely fast switching of the step voltage at t = 0. In
Appendix D, we illustrate how the first kink is smeared by
considering a finite switching time for the step voltage, or by
relaxing the assumption of sharp boundaries, a situation which
could describe, for instance, nonuniform capacitive coupling
to the quantum point contact as well.

In the infinite cavity limit τf � τc damped oscillations do
not occur and the mesoscopic capacitor behaves as a classical
RC circuit with relaxation time τR = τc. However, the charge
evolution illustrated in Fig. 3 clearly shows that, for finite τf ,

Q(t) is not captured by the RC circuit analogy, which does
not allow for damped oscillations. For no time window, the
relaxation time (21) predicted for finite cavity sizes on the basis
of the small-frequency expansion appears as a characteristic
time scale of the true charge relaxation shown in Fig. 4.

Two recent works proposed that the charge dynamics of a
mesoscopic capacitor at higher frequencies matches that of an
“RLC” circuit [82,83]. It is instructive to compare our exact
solution with the predictions of a circuit of RLC type. On a

qualitative level there is good agreement: the step response
of the RLC analog displays damped oscillations towards
the asymptotic value Q(t → ∞) = CVg. Nevertheless, on a
quantitative level, the relaxation time in the RLC analog (see
Appendix E for details) τR,RLC = τf/3 and the oscillation
frequency ωO,RLC = (1/τf)

√
3(1 + 4 τf/τc) differ from the

relaxation time and oscillation period obtained from our exact
solution; see Eqs. (28) and (29).

Figure 4 summarizes the τf/τc dependence of the relaxation
time τR and the oscillation frequency ωO from the exact theory,
as well as of the relaxation time and oscillation frequency
from the circuit analogies. The disagreement between the exact
theory and the circuit analogies is particularly apparent in
the strongly interacting limit τf � τc and confirms that low-
frequency circuit analogies cannot be used to describe the
nonadiabatic behavior of the interacting mesoscopic capacitor.

V. CURRENT DYNAMICS

To understand the origin of the kink at t = τf in the time
dependence of the cavity charge 
Q(t), it is instructive to
consider the current j (x,t) in the chiral edge,

j (x,t) = ve

2π

∂〈φ(x,t)〉
∂x

. (30)

See Eq. (12). The current j (x,t) = 0 for x < 0. From the exact
solution (18), we find that

j (x,t) = −Q(t − x/v)

τc
+ e2

h
Vg(t − x/v) (31)

for 0 < x < L, i.e., inside the cavity, and

j (x,t) = Q(t + τf − x/v) − Q(t − x/v)

τc

− e2

h
[Vg(t + τf − x/v) − Vg(t − x/v)] (32)

for x > L, i.e., beyond the cavity. Alternatively, charge
conservation gives the equivalent expression

j (x,t) = −∂Q(t + τf − x/v)

∂t
(33)

for x > L. [That the two expressions are equivalent follows,
since equating Eqs. (32) and (33) reproduces the admittance
(5).] For a chiral edge, the current j (x,t) and the charge density
ρ(x,t) are proportional, j (x,t) = vρ(x,t).

The calculation of the current density profiles in response
to a gate voltage step Vg(t) = Vg(0) + θ (t)
Vg is easily
performed using the expressions for 
Q(t) derived in the
previous section. Figure 5 shows the charge 
Q(t) as well as
snapshots of the current/charge density inside and outside the
cavity taken at different times. We choose the ratio τf/τc = 20,
corresponding to the limit of strong interactions. In this limit
the different roles of the time scales τf and τc are very
pronounced. The charge evolution has a “spiked” behavior
with kinks at integer multiples of τf . Upon increasing time,
the features decrease in amplitude and become wider; see
the top panel in Fig. 5. Similar behavior was also derived
by Ngo Dinh et al. for the time evolution of a “phase counting
function” describing the visibility of the interference signal
in Mach-Zender interferometers with long-range Coulomb

085429-5



LITINSKI, BROUWER, AND FILIPPONE PHYSICAL REVIEW B 96, 085429 (2017)

L

Charge densityρ(x)

Cavity

Interfering pulses

L

(c) t/τf = 1.25

(b) t/τf = 0.75

(a) t/τf = 0.25

(f) t/τf = 100

(e) t/τf = 50
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0 0

FIG. 5. Time evolution of the current/charge density following a sudden gate voltage shift at time t = 0 for large interaction strength,
τf = 20τc. Top: charge response 
Q(t) as a function of time t . Bottom: series of snapshots of the current/charge density j (x,t) = vρ(x,t)
at different times. In the inset of panel (a), the real-space representation of the mesoscopic capacitor with the profiles of the emitted charge
pulses is given. The times at which the snapshots are taken are indicated by vertical dashed lines in the top panel. Notice that the scale changes
along the vertical axis in the different panels. At time t = 0, two charge pulses of width ∼vτc and opposite sign emerge from the point contact
(a),(b), one pulse entering the cavity and one pulse entering the chiral edge of the bulk two-dimensional electron gas. Both pulses have a net
charge approaching Cg
Vg. The pulse that is emitted into the cavity returns to the point contact at time t = τf . As that pulse leaves the cavity,
a second pulse-antipulse pair is generated (c), partially canceling the original charge pulse that leaves the cavity at t = τf . The resulting pulse
exiting the cavity is the sum of the dashed profiles. The repetition of this mechanism leads to the widening and lowering of successive pulses
[(d) and (e)] (notice the change of scale between snapshots). Finally, the asymptotic configuration is attained with a charge C
Vg uniformly
distributed along the cavity edge (f).

interactions [69,70]. This system can be described by a model
which is formally similar to the one considered here.

Snapshots (a) and (b) of the current/charge density are taken
at two successive times t < τf before the first kink. They show
that a current pulse is emitted from the cavity within a short
time τc after the gate voltage quench, whereas the cavity charge

Q approaches the value Cg
Vg set by the new value of the
gate voltage Vg on the same time scale. Importantly, the extra
charge in the cavity is not localized uniformly along the edge,
but constitutes a sharp charge density peak of width ∼vτc,
traveling along the chiral edge at velocity v. At this stage, the
time of flight τf plays no role yet and the evolution of the
system is fully described by the relaxation of a classical RC

circuit with RC-time τc.
At time t = τf , the finite size of the cavity becomes apparent

as the charge density pulse inside the cavity arrives at the
cavity exit. The charge that accumulated inside the cavity in
response to the gate voltage step now starts leaking out of the
cavity, causing a kink in the charge evolution and triggering a
second charge density pulse starting from the cavity entrance;
see snapshot (c). Again, the cavity charge 
Q approaches its

asymptotic value, only slightly smaller than Cg
Vg, and again
the extra charge is strongly localized, although the localization
profile is smoother than in panels (a) and (b). Following the
structure of Eq. (32) it is instructive to decompose the current
pulse leaving the cavity into two pulses of opposite sign, as
indicated by the dashed lines in Fig. 5.

This procedure repeats itself, and each new density wave
is wider than the previous iteration, see panels (d) and (e),
because charge takes a finite and increasingly longer time to
leak out of the cavity. Finally, equilibrium is attained when
the complex interplay between charge leaking and filling,
respectively controlled by τf and τc, leads to a uniform
configuration of the charge density within the cavity, as shown
in snapshot (f). It is this mechanism that leads to the emergence
of the quantum capacitance, such that the asymptotic value of
the cavity charge is 
Q(t → ∞) = C
Vg, where the total
capacitance C includes the contribution from the quantum
capacitance; see Eq. (6).

Whereas the above discussion clarifies the separate roles
of τf and τc in the mesoscopic capacitor in the extreme limit
τf � τc, we should point out that the available experiments
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(b) t/τf = 1.0
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FIG. 6. Same as Fig. 5, but for intermediate interaction strength,
τf/τc = 1.5.

are in the opposite regime τf < τc, which is well described
by self-consistent scattering theory approaches [9,55,57,59].
Figures 6 and 7 show the current response inside and outside
the cavity for two more values of the ratio τf/τc, corresponding
to interactions of intermediate strength, τf/τc = 1.5, and weak
interactions, τf/τc = 0.1. In the limit of weak interactions,
τf � τc, the width of the charge pulse exceeds the “cavity
size” L. Instead of a sequence of charge pulses, a single almost
flat pulse of width vτf is emitted from the cavity. In this limit,
the exponential relaxation time τR becomes of the order of τf ,
in rough agreement with the scattering theory predictions and
Eq. (3).

We conclude this section by stressing again that the most
remarkable interaction effects are most pronounced in the
τc � τf limit, that is, for small capacitances. In this limit, the
quantum point contact may contribute to the cavity capacitance
as well. This additional coupling may lead to the creation
of screening currents at the quantum point contact level and
the emitted current, the actual measurable quantity, would
have contributions which do not correspond to the inner
cavity charge dynamics, as is suggested by Eq. (33). These
contributions may be more or less important depending on
the precise design of the device, and their detailed study goes
beyond the scope of this paper focusing on the role of the
charging energy on the out-of-equilibrium dynamics of the
mesoscopic capacitor. Nevertheless, we show in Appendix D
how our macroscopic approach can be readily extended to
describe these more general situations in which the cavity does
not have sharp boundaries, and how interaction screening and
capacitive effects at the quantum point contact level may be
incorporated.

t/τf

ΔQ(t)/(CgΔVg)

Position x
L0

CΔVg

L

CΔVg

L

CΔVg

L

(a) t/τf = 0.5

(b) t/τf = 1.0

(c) t/τf = 1.5

τf/τc = 0.1(a) (b) (c)

FIG. 7. Same as Fig. 5, but for τf/τc = 0.1, corresponding to the
weakly interacting limit. In this limit, a single flat pulse of width vτf

is emitted from the cavity.

VI. BACKSCATTERING CORRECTIONS

We now consider the effect of a small backscattering
amplitude r in the contact, described by the Hamiltonian Hr

of Eq. (15). The main result of this section is that the inclusion
of backscattering leads to a truly nonlinear dependence of the
charge Q(t) on the gate voltage Vg(t).

Before discussing the nonequilibrium charge response
to a time-dependent gate voltage Vg(t), we recall that,
already in equilibrium, weak backscattering leads to Coulomb
oscillations in the equilibrium value of the charge as a function
of Vg [75],

Q(eq)
r = Q(eq) − er̃

π
sin(2πQ(eq)/e) , (34)

where Q(eq) = CVg is the cavity charge for an ideal point
contact and r̃ is a renormalized backscattering amplitude. The
Coulomb oscillations are illustrated in the top panel of Fig. 8.
They are precursors of the formation of charge plateaus in the
limit of a cavity with tunneling point contacts.

We now calculate the full time-dependent charge Qr (t) in
the presence of a time-dependent gate voltage Vg(t), to first
order in the backscattering amplitude r . To first order in the
backscattering amplitude r , the charge Qr in the presence of
backscattering can be calculated from the Kubo formula

Qr (t) = Q(t) + ie

h̄

∫ t

dt ′〈[Hr (t ′),N (t)]〉, (35)

where Q(t) is the cavity charge in the absence of backscattering
and the brackets [·,·] denote the commutator. Since the cavity
charge N is linear in the bosonic fields φ(x,t), see Eq. (13),
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FIG. 8. Charge 
Qr (t) in response to a gate voltage step 
Vg

for a nonideal point contact with weak backscattering amplitude
r . The charge Q(0) at time t = 0 is chosen to be integer valued.
Top: asymptotic value 
Qr (t → ∞) of the charge versus 
Vg. The
solid line gives the result 
Qr (t → ∞) = C
Vg; the dashed curve
includes the first-order-in-r correction to 
Qr (t → ∞) in Eq. (34).
Bottom: 
Qr (t) versus time t for τf/τc = 4 and C
Vg = 0.25e,
0.5e, 0.75e, and e—bottom to top curves (these four values of 
Vg

are also indicated in the top panel). Dashed curves are for an ideal
point contact and they are added for comparison; solid curves include
backscattering effects to first order in r; see Eq. (7). All curves that
include the backscattering correction are calculated for r̃ = 0.3.

and the Hamiltonian H in the absence of backscattering is
quadratic in the bosonic fields, the average in Eq. (35) can
be calculated using standard identities for operators with
Gaussian fluctuations, which gives

Qr (t) = Q(t) + 2ievr

a

∫ t

dt ′〈[N (t ′),N (t)]〉

× sin(2π〈N (t ′)〉)e−2π2(〈N(t ′)2〉−〈N(t ′)〉2). (36)

Again, upon using the Kubo formula, the average of the
commutator is seen to be proportional to the admittance
A(t − t ′) in the absence of backscattering,

− ie2

h̄
〈[N (t ′),N (t)]〉 = A(t − t ′) if t > t ′. (37)

It remains to calculate the variance of the bosonic field
appearing in the exponential factor. Since the nonequilibrium
term proportional to Vg affects the average 〈N (t)〉 but not the
fluctuations of the charge field, this factor can be obtained from
the fluctuation-dissipation theorem,

〈N (t ′)2〉 − 〈N (t ′)〉2 = − ih̄

2πe2

∫ ∞

−∞
dω e−|ω|a/v

× coth(h̄ω/2kBT )A(ω), (38)

FIG. 9. Renormalized backscattering amplitude r̃ as a function of
τf/τc at zero temperature. Inset: r̃/r as a function of temperature for
τf/τc = 0.5, 1.5, and 4, corresponding to the three values indicated
in the zero-temperature plot.

where the cutoff factor e−|ω|a/v is compatible with the short-
distance cutoff in Eq. (15) (see Appendix A for details). The
integral (38) is logarithmically divergent for small a,

〈N (t ′)2〉 − 〈N (t ′)〉2 = − 1

2π2

[
ln

a

vτf
+ F(T )

]
, (39)

where

F(T ) =
∫ ∞

0
dω

[
1 − cos(ωτf )

ω

− 2πh̄

e2
coth

(
h̄ω

2kBT

)
ImA(ω)

]
(40)

and the leading divergence is given by
∫ ∞

0 dy e−ya/vτf [1 −
cos(y)]/y = 1

2 ln[1 + (vτf/a)2] → − ln(a/vτf ). Combining
Eqs. (36)–(38) one obtains the result (7) advertised in the
Introduction. In the notation of Eq. (39) the expression for the
renormalized backscattering amplitude r̃ takes the simple form

r̃ = r
τc

τf + τc
eF(T ). (41)

The dependence of the renormalized backscattering amplitude
at zero temperature on the ratio τf/τc as well as the temperature
dependence for three characteristic values of τf/τc are shown
in Fig. 9.

In the presence of a finite backscattering amplitude
in the quantum point contact, the response to a sudden
gate voltage step becomes nonlinear in the gate voltage.
The nonlinearity enters through the factor proportional to
sin(2π〈N (t)〉) in Eq. (36) or, equivalently, the term propor-
tional to sin(2πQ(t)/e) in Eq. (7), since Q(t) is proportional
to Vg. In Fig. 8, the effects of the nonlinear corrections to the
charge dynamics at finite r̃ given by Eq. (7) are illustrated
and compared to the transparent limit (r̃ = 0). As discussed at
the beginning of this section, a finite backscattering amplitude
leads to oscillations of the equilibrium charge Q(eq) with the
gate voltage Vg, see Eq. (34), and, hence, also to oscillations of
the accumulated charge 
Qr (t → ∞) with the gate voltage
step 
Vg, as shown in the top panel of Fig. 8. Concerning the
approach to the asymptotic value, the evolution of the charge
is not dramatically affected by the first-order backscattering
correction, which essentially renormalizes relaxation times
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and periods of charge oscillations. However, the sign of these
renormalizations depends on the magnitude 
Vg of the voltage
step. In particular, we notice that backscattering leads to longer
charge relaxation times for quenches towards charge plateaus
[Q(t → ∞) an integer multiple of e], while the period of
charge oscillations increases for quenches towards charge
degeneracy points [Q(t → ∞) − e/2 an integer multiple of e].

VII. CONCLUSIONS

We studied the out-of-equilibrium behavior of the interact-
ing mesoscopic capacitor in the large transparency limit. Our
work contains the full nonequilibrium response up to first order
in the reflection amplitude r of the point contact connecting
the cavity to the reservoir, and is tailored to the experimentally
relevant case that the cavity is in the quantum Hall regime, so
that electrons spend a sharply defined time τf between entering
and exiting the cavity. Our most important result is that for
a fully transparent contact (reflection amplitude r = 0), the
charge and current response to a time-dependent change of the
gate voltage Vg is strictly linear. In particular, we showed that
the linear-response-in-Vg theory of Mora and Le Hur is valid
irrespective of the magnitude and degree of nonadiabaticity of
the gate-voltage changes 
Vg.

The high-frequency time-resolved response to a sudden
gate-voltage step 
Vg allows us to clearly disentangle the
two fundamental time scales in the problem. These are the
“charging time” τc = hCg/e

2, where Cg is the geometric
capacitance, and the time of flight τf . For times t < τf the
charge shows exponential relaxation with relaxation time τc.
For t > τf the charge oscillates with exponentially damped
oscillations. The oscillation period and relaxation time of these
oscillations can be parametrically larger than τf in the limit
of strong interactions. Such a scenario cannot be obtained
from simple quantum circuit analogies, although the circuit
analogies can capture the low-frequency dynamics correctly.
Instead, the oscillations are described by the serial emission of
increasingly wider charge density pulses.

To first order in the reflection amplitude r , we showed that
the charge response becomes nonlinear in the gate voltage. To
find the full nonequilibrium charge response beyond first order
in r and, in particular, in the weak tunneling limit remains an
open problem for the case of strong Coulomb interactions and
correlations.

This work paves the way towards the investigation of
real-time charge emission in interacting mesoscopic devices.
Our results show that a comprehensive understanding of in-
teraction effects unveils complex coherent dynamics triggered
by interactions. Moreover, charge wave emission in the fully
transparent regime has been recently reported in Ref. [17] and
called “edge magnetoplasmons.” Our work opens important
perspectives for the experimental study of the actual pulse
emitted from the cavity and how it is affected by Coulomb
interactions. Moreover, our approach can be readily extended
to situations with multiple chiral edges interacting with each
other, as discussed in Refs. [16,17,89], leading to qualitatively
analog physics. In the case of edges in the fractional quantum
Hall regime, a trivial normalization of the charge occurs in the
absence of backscattering, similar to the situation discussed in
Refs. [40,41].

We also stress that these characteristic pulses can be directly
observed with available technology by ongoing experiments.
Experiments in Refs. [17] and [22] showed the possibility to
measure the shape of the emitted wave packet by relying on
Hong-Ou-Mandel experiments or by real-time modulation of
tunnel barriers, respectively.

Our results are based on an exact model in which electrons
propagate in one dimension, subject to a charging interaction.
Such a model is appropriate for a cavity in the quantum Hall
regime, in which the electrons propagate along the chiral edge.
An important feature of this model is that there is a well-defined
time of flight τf for electrons in the cavity. It is the sharpness
of the time of flight that is responsible for the sharp features in
the charge response after integer multiples of τf . In contrast,
a cavity not in the quantum Hall regime typically has a broad
distribution of dwell times, and the sharp features discussed
here are not expected to appear there.

Most experiments with mesoscopic capacitors are per-
formed in the quantum Hall regime, because that way the
emitted charge pulse follows a one-dimensional trajectory and
can be more easily manipulated. Since both the time of flight
τf and the charging time τc scale proportional with the cavity’s
linear size L, there is no a priori reason why the ratio τf/τc

should be large or small in such experiments. Whereas the ratio
τf/τc can be made small by the addition of a screening gate, we
here have shown that the opposite regime τf/τc of relatively
strong interactions displays a very characteristic response to a
gate voltage quench.

We hope that these findings will stimulate experimental
efforts to also access the regime of strong interactions.
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APPENDIX A: SOLUTION FOR THE CHARGE FIELD N(t)
AND ITS CORRELATION FUNCTION

The charge field N (t) = [φ(L,t) − φ(0,t)]/2π can be
expressed in terms of the free field φ(0,t) by setting x = L

in Eq. (18), which gives

N (t) = 1

2π
[φ(0,t − τf) − φ(0,t)]

− 1

τc

∫ t

dt ′[N (t) − Ng(t ′)]s(L − v(t − t ′)). (A1)

Fourier transforming this equation to t gives

N (ω) = A(ω)

[Ng(ω)

Cg
− iωh̄φ(0,ω)

e2

]
, (A2)

with A(ω) given by Eq. (5). The inverse Fourier transform
yields Eq. (19) of the main text, which was first derived by
Mora and Le Hur for the linear response regime [37].

Equation (A2) can be used to express the fluctuations
of the charge field N (t) in terms of the fluctuations of
the free bosonic field φ(0,t). Using the well-known result
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FIG. 10. Real and imaginary part of the function fn = f ∗
−n

defined in Eq. (23). The real part is always positive and, for fixed
τf/τc, increases with n. The imaginary part has opposite signs for
positive and negative n and also increases in absolute value with n.

(see, e.g., Ref. [85]),

〈φ(0,ω)φ(0,ω′)〉 = 2π e−|ω|a/v

ω(eh̄ω/kBT − 1)
δ(ω + ω′), (A3)

where the short-distance cutoff a is the same as in Eq. (15),
one finds

〈N (ω)N (ω′)〉 − 〈N (ω)〉〈N (ω′)〉

= 2πωh̄2A(ω)A(−ω)e−a|ω|/v

e2(eh̄ω/kBT − 1)
δ(ω − ω′). (A4)

The result (38) of the main text follows upon using the identity

A(ω)A(−ω) = e2[A(ω) − A(−ω)]

2πih̄ω
. (A5)

APPENDIX B: LAMBERT W FUNCTIONS

The Lambert W function, also called product logarithm, is
the multivalued function z = Wn(c) solving the equation

zez = c. (B1)

The Lambert W function enters the real time representation
of the admittance in Eq. (24) through the functions fn defined
in Eq. (23). The real and imaginary parts of fn = f ∗

−n are
shown in Fig. 10. For fixed τf/τc, their absolute value increases
for increasing n. The real part is always positive. For large
values of the argument the nth branch Wn of the Lambert W

function can be well approximated as

Wn(c) = 2πin + ln c − ln[2πin + ln c − ln(2πin + ln c)].
(B2)

t/τc

Δ
Q

(t
)/

(C
g
Δ

V
g
)

τs = 0

τs = 2τc

τs = 4τc

τs = 6τc

FIG. 11. Charge response of an open cavity with τf = 4τc to step
voltages with different switching times τs.

APPENDIX C: EVALUATION OF THE STEP
RESPONSE IN EQ. (25)

In order to obtain the long-time asymptotic value Q(t →
∞) = Q(eq) = C
Vg in Eq. (25), we rely on the identity

∑
n
=0

e−(z−Wn(zez))t/τf

Wn(zez) + 1

∣∣∣∣
t→0+

= z

z + 1
. (C1)

The limit t → 0+ ensures the convergence of the sum and is a
manifestation of the fact that the time t in Eq. (24) is always
positive.

APPENDIX D: STEP RESPONSE WITH FINITE
SWITCHING TIME AND EXTENSION TO
NONUNIFORM CAPACITIVE COUPLING

In Fig. 3, we show the response of the open cavity to a step
voltage Vg(t) = Vgθ (t). Since this voltage is discontinuous at
t = 0, the step response has kinks at t = 0 and t = τf , where
the kink at τf is due to the first discontinuous charge density
pulse leaving the cavity (see Fig. 5).

In order to demonstrate that these kinks vanish as we
introduce a finite switching time τs , we show the step response
for a voltage

Vg(t) = Vg(0) = 
Vgθ (t)(1 − e−t/τs ). (D1)

The results in Fig. 11 show that the kinks indeed vanish if the
switching time is larger than the charge relaxation time. The
oscillations in the charge response persist as long as τs � τf .

Similar conclusions for the charge emitted from the meso-
scopic capacitor can be made if we relax the assumption of a
cavity with sharply defined boundaries, in which, for instance,
also the quantum point contact may lead to capacitive coupling
to both the cavity and the outer edge. In this case, screening
currents may be generated at the quantum point contact level,
which also lead to the kink smearing, but also to corrections to
Eqs. (32) and (33). The most general capacitive coupling that
also includes interactions between electrons inside and outside
of the cavity is obtained by replacing Eq. (4) with

Hint =
∫

dx dy U (x,y)ρ(x)ρ(y) −
∫

dx γ (x,t)ρ(x), (D2)
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in which ρ(x) =: ψ†(x)ψ(x) : is the electron density in the
chiral edge, U (x,y) encodes electron-electron interactions,
and γ (x,t) is the electrostatic time-dependent potential which
is applied on the edge state by metallic gate contacts. The
equation of motion (16) readily generalizes to

∂φ(x,t)

∂t
= −vF

∂φ(x,t)

∂x
−

∫
dy

U (x,y)

πh̄

∂φ(y,t)

∂y
+ γ (x,t)

h̄
,

(D3)
which has a solution analog to Eq. (18)

φ(x,t) = φ(0,t − x/v) +
∫ t

dt ′
[
γ (x − v(t − t ′),t)

h̄

−
∫

dy
U (x − v(t − t ′),y)

πh̄

∂φ(y,t ′)
∂y

]
. (D4)

The modifications to the results presented in the main text can
be appreciated by considering

U (x,y) = s(x)s(y)
e2

2Cg
+ f (x,y), (D5)

γ (x,t) = s(x)eVg(t) + g(x,t). (D6)

The function s(x) is given in Eq. (17) and Eq. (4) is recovered
by setting both f (x,y) and g(x,t) to zero in Eq. (D2). The
function f (x,y) can at the same time describe screening
effects, leading to sound velocity renormalization if f (x,y)
is short ranged, and capacitive coupling through the quantum
point contact if f (x,y) has a spatial long-range support
outside the spatial window 0 < x,y < L. The function g(x,t)
being nonzero outside this window describes electric potential
variations outside of the cavity, which may equally occur. The
presence of these terms leads to corrections to Eqs. (32) and
(33) of the form j ′(x,t) = j (x,t) + δj (x,t) in which

δj (x,t) = ev

2π

∂

∂x

∫ t

dt ′
[
g(x − v(t − t ′),t)

h̄

−
∫

dy
f (x − v(t − t ′),y)

πh̄

∂φ(y,t ′)
∂y

]
. (D7)

This contribution describes screening currents generated out
of the cavity, either by electric potential variations out of the
cavity (first term) or by capacitive coupling between electrons
inside and outside of the cavity through the quantum point
contact (second term). Beyond a smearing of the current
signal and the kinks in the charge dynamics of the cavity—
analogous to that occurring for the charge response with
finite switching times given in Fig. 3—both these currents
lead in general to corrections of Eq. (32) and (33), meaning
that the measured current may not fully correspond to the
internal charge dynamic of the cavity. The relevance of
this signal poisoning depends on the precise design of the
device and it can be readily described with the current
approach.

APPENDIX E: COMPARISON
WITH RLC CIRCUIT

The expansion of the admittance Eq. (5) to second order in
frequency matches the one of a classical RLC circuit


Q(ω)


Vg(ω)
= C

1 − iωRqC − LCω2

= C + RqC
2iω + (

C2L − C3R2
q

)
ω2 + O(ω3),

(E1)

with C given by Eq. (6), Rq = h/2e2, and [82,83]

L = CR2
q

τf + τc

3τc
. (E2)

Relying on the first line of Eq. (E1), before low-frequency
expansion, the charge evolution after a quench of Vg leads
to damped oscillations. The relaxation time τR,RLC and
oscillation frequency ωO,RLC are readily extracted from the
poles of Eq. (E1), which leads to the values mentioned in
Sec. IV of the main text.
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