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Abstract. Infrared spectroscopy has been used in the past to probe the dynamics of internal proton 

transfer reactions taking place during the functional mechanism of proteins, but has remained 

mostly silent to protonation changes in the aqueous medium. Here, by selectively monitoring 

vibrational changes of buffer molecules with a temporal resolution of 6 µs, we have traced proton 

release and uptake events in the light-driven proton-pump bacteriorhodopsin and correlate these to 

other molecular processes within the protein. We demonstrate that two distinct chemical entities 

contribute to the temporal evolution and spectral shape of the continuum band, an unusually broad 

band extending from 2300 to well below 1700 cm-1. The first contribution corresponds to 

deprotonation of the proton release complex (PRC), a complex in the extracellular domain of 

bacteriorhodopsin where an excess proton is shared by a cluster of internal water molecules and/or 

ionic E194/E204 carboxylic groups. We assign the second component of the continuum band to the 

proton uptake complex (PUC), a cluster with an excess proton reminiscent to the PRC but located in 

the cytoplasmic domain and possibly stabilized by D38. Our findings refine the current interpretation 

of the continuum band, and call for a reevaluation of the last proton transfer steps in 

bacteriorhodopsin. 

 

Keywords. time-resolved infrared spectroscopy; proton release and uptake, protonated water 

clusters; proton pumping; continuum band 

 

Significance Statement. The vectorial transport of protons across membranes by pumps is central to 

cellular bioenergetics. A persistent problem in their study is the technical unfeasibility to 

simultaneously resolve the dynamics of all the relevant proton transfer steps by the same method, 

i.e., those within the protein as well as those involving protonation changes of the aqueous medium, 

currently relying on complementary methods to map both. Here, we solved this limitation and 

monitored both internal and external protonation changes during the proton-pump mechanism of 

bacteriorhodopsin by time-resolved infrared spectroscopy. Our findings reveal inconsistencies with 

the proton uptake mechanism accepted for the last 25 years, highlighting the need of simultaneous 

and comprehensive monitoring protonation changes to resolve the molecular mechanism of ion 

pumps. 
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\body 

Proton transfers are one of the most ubiquitous chemical reactions in living organisms. Central to 

cellular bioenergetics are vectorial proton transfer reactions, conducted by light- and redox-driven 

proton pumping membrane proteins (1, 2). Among the techniques sensitive to the protonation state 

of chemical groups in proteins, infrared (IR) difference spectroscopy is well-suited for tracing 

intra-protein proton transfer reactions due to its intrinsic high temporal resolution, straightforward 

applicability to membrane proteins, and exquisite sensitivity (3-7). However, IR difference 

spectroscopy has not yet been able to monitor the dynamics of proton release from proteins into the 

surrounding aqueous phase, resulting in the need of complementary techniques to provide a 

comprehensive picture of vectorial proton transport. 

Protonation changes in the surrounding aqueous medium have been mostly probed in the visible 

range using pH-indicating dyes. These experiments require diluted and very weakly buffered protein 

solutions (8-11), in contrast to the well-buffered and highly concentrated samples used in IR 

spectroscopy (4, 12). It was soon realized that under low concentration of mobile buffers the 

released protons remain temporally trapped along the membrane surface, being detected by dye 

molecules in the bulk phase with a delay of 0.5-1 ms (8, 9, 13, 14). Dyes covalently attached to the 

protein surface do show a fast response to proton release (10, 15-17), but complications arise 

because covalently attached dyes respond also to polarity changes at the protein surface (10, 15). 

Furthermore, their response time may depend on the distance to the proton release site (16, 17). 

Kinetic differences for proton detection have been observed even for dyes covalently bound to 

neighboring sites (15). As a final drawback, proton release/uptake kinetics may be altered whenever 

genetic engineering is needed to introduce a site for selective labeling (15, 17). 

It is known for more than 30 years that mobile buffer molecules accelerate the migration of 

protons from the surface to the bulk phase (9, 14) by collisional proton transfer (18, 19). Their 

chemical functionality as “proton shuttles” renders buffer molecules ideal probes for detecting 

proton release/uptake events by vibrational spectroscopy. A further advantage of buffer molecules 

over pH-indicating dyes is their high solubility and compatibility with biological samples at even 

molar concentrations, especially for the so-called Good’s buffers (20). A high buffer concentration 

ensures a well-controlled pH value during the entire length of the experiment and, more importantly, 

a fast response of the buffer to pH changes (e.g., proton release/uptake from proteins). As a 

drawback, extinction coefficients are typically 100 times smaller in the IR than in the visible range, 

which makes the use of buffer molecules as pH-sensitive probes technically more challenging than of 

pH-sensitive dyes.  

Berthomieu and Hienerwadel reported on the use of buffer molecules to detect light-induced 

release of protons from photosystem II under steady-state conditions by FT-IR difference 

spectroscopy (21). Experiments at the same pH using two different buffer molecules (e.g., phosphate 

vs Tris buffer) were used to cancel overlapping protein contributions and to resolve buffer-only 

spectral changes (21). This methodology was recently improved by performing experiments with 
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natural and perdeuterated buffer molecules (22, 23). Further examples in the literature on the use of 

buffers as vibrational pH probes are scarce (21-26), and in all cases limited to steady-state 

experiments, unable of providing information on protonation dynamics.  

A relevant example to test the potential of buffer molecules to probe the dynamics of proton 

release and uptake events is the light-driven proton-pump bacteriorhodopsin, BR (27). This 

well-known transmembrane protein powers halophilic archaebacteria under low oxygen tension 

(28). Its photocyclic reaction, triggered by photoisomerization of the retinal from all-trans to 13-cis, 

comprises a series of quasi-stable states, denoted as K, L, M, N and O intermediates (29, 30), whose 

interconversion and decay to the initial dark state is, under most experimental conditions (30, 31), 

adequately described by a sequential model including back-reactions (Fig. 1a). Compelling evidence 

has been presented for the existence of at least two M (32, 33) and two N intermediates (34, 35).  

Specific molecular events occur during the transition between intermediates (7, 36), such as 

proton transfer reactions (Fig. 1a,b). The widely accepted proton pumping mechanism of BR involves 

a minimum of five proton transfer reactions (Fig. 1b), leading to the net transport of one proton from 

the CP to the EC side per photocycle (7, 37).  

Gerwert and coworkers showed that the PRC, the elusive group releasing a proton to the EC 

medium (Fig. 1b), was characterized by an unusually broad band extending from 2300 cm-1 to well 

below 1700 cm-1 (Fig. 1c), known as the continuum band (38, 39). This broadband feature was 

assigned to a protonated water cluster (39) or, more generally speaking, to a local area network 

(LAN) of H-bonded internal water molecules sharing an excess proton (40, 41). Indeed, similar 

continua in the 2300-1700 cm-1 region are predicted and observed when an excess proton is shared 

by a cluster of water molecules (42-44). However, a LAN where a proton is shared by the ionic side 

chains of E194 and E204 can also reproduce the continuum band (45), leading to a still open dispute 

about the precise chemical nature of the PRC (46). As a recent twist, Gerwert and coworkers 

proposed that E194 is the actual terminal proton release group (47). If correct, the rise of the 

continuum band should precede the release of protons to the EC surface, a prediction that remains 

untested.  

Late intermediates in the photocycle of BR (from M to O, see Fig. 1a) decay in an equilibrated 

mixture to the initial dark state (31, 48), a situation that considerably complicates studying late 

proton transfer events and, consequently, the proton uptake process. Established already in 1975 

(49, 50), proton uptake was initially assigned either to the decay of the M or to the decay of the O 

intermediate (9, 51). Fifteen years later it was reassigned to the N-to-O transition when it was shown 

that D96 reprotonates in the N-to-O transition in a pH-dependent manner (35, 52, 53). Later results 

indicated that the reprotonation of D96 from the external medium might be assisted by several 

charged residues at the CP surface acting as a proton antenna (54, 55) with a prominent role for D38 

(55).  

In the present work we have traced the dynamics of proton release and uptake during the 

photocycle of BR by time-resolved step-scan FT-IR spectroscopy. As a pH-sensitive vibrational probe 
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we used 2-(N-morpholino)ethanesulfonic acid, MES, and its perdeuterated form, MESd12 (23). We 

exploited this technical achievement to scrutinize the current models of proton pumping by BR, in 

particular the proton release and uptake steps.  

 

Results and Discussion 

We prepared films of purple membranes (PMs), hydrated at 99% relative humidity. A 

representative absorption spectrum is shown in Fig. 2, from where we quantified the molar ratio of 

water/MES/BR molecules in the hydrated film to be 1570/18.1/1, using the experimentally obtained 

molar IR absorption spectra of BR in PMs, MES and liquid water (Fig. 2, and Experimental Section). 

The above spectral decomposition also provides the molar ratio of the basic and acidic forms of MES, 

from where the pH of the hydrated film was derived to be 6.25 (close to the pH of 6.30 of the mother 

solution). Figure S1 (see SI Appendix) provides a representative absorption spectrum of a film 

containing MESd12. 

The hydration level attained in our experiments, 1,600 water molecules per BR or 0.8 g water/g 

(protein + lipid) when considering the composition of the purple membrane (56), is comparable to 

the average composition found in cells, 2.3 g water / g biomolecules (57). These conditions are also 

close to those used in molecular dynamics simulations: 12,000-6,000 water molecules per BR 

molecule and 1.5-0.9 g water/g (protein + lipids) (58, 59). In contrast, experiments carried out in 

solution using pH-sensitive dyes commonly contained 5106 water molecules per BR, or 3,000 g 

water/g (protein + lipids) (9, 10, 17, 60).  

The formal concentration of MES in the hydrated films, 600 mM (90 water molecules per buffer 

molecule), is 104-fold higher than commonly used for pH-indicator dyes (9, 10, 17, 60). At this buffer 

concentration and pH, any excess proton at the surface of BR is expected to protonate the basic form 

of MES with a pseudo first-order time constant of 100 ns, which is calculated on the basis of the 

second-order rate constant of 1.8107 M-1 s-1 for MES protonation (14). This response time, even if 

approximate, is sufficiently fast to ensure that the kinetics for proton release in BR can be traced 

without any significant delay. 

Internal protonation changes. The photoreaction of BR was triggered by a 10 ns laser pulse of 532 

nm, and time-resolved step-scan FT-IR spectroscopy was used to record transient absorption changes 

in the range of 2200-850 cm-1 (Fig. 1c). Kinetics for the protonation changes of internal groups, 

involved in proton transfer reactions in the photocycle of BR, can be retrieved from such data as 

shown before (48, 61) and briefly described below.  

The rise of the positive band at 1762 cm-1 reports on protonation of D85 (Fig. 1d). A shift of the 

carboxylic C=O stretching frequency from 1762 to 1755 cm-1 occurs in the M-to-N transition (62). 

Deprotonation of D85 is indicated by the decay of the positive band at 1755 cm-1 (29, 61). D96 is 

protonated in the dark state of BR, with its carboxylic C=O vibration absorbing at 1742 cm-1 (63). 

The negative band at 1739-1745 cm-1 in Fig. 1d is mainly caused by transient H-bonding changes of 
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D96, which shifts the C=O vibration to 1748 cm-1 in the L intermediate (64) and to 1736 cm-1 in the M 

intermediate (63). Deprotonation and reprotonation of D96 contributes to the kinetics of the 

negative band at 1742 cm-1 in the milliseconds (Fig. 1d) although its contribution is low at pH 6.25 

because the apparent pKa of D96 in the N intermediate is 7.1 (34, 65). Consequently, at pH 6.25 the 

fraction of the N intermediate with deprotonated D96 (N1 substate) is expected to be only around 

12%. Protonation of D212 from D85 gives a positive band at 1713 cm-1, although observable only at 

pH 4 (66). Remaining spectral changes in the carboxylic region are mostly attributable to H-bonding 

changes of D115 (Fig. 1d), with its carboxylic C=O vibration absorbing at 1733 cm-1 in the dark-state 

(63). The occurrence of the very broad negative continuum band at frequencies above 1770 cm-1 in 

Fig. 1d is assigned to the deprotonation of the PRC (39) and decays upon dark-state recovery (38). 

The positive band at 1187 cm-1 (Fig. 1c, arrow) can be used to monitor the deprotonation and 

reprotonation of the Schiff base in the 13-cis conformation of the retinal and, among other bands, 

can be used as a reporter for the formation and decay of the K, L and N intermediates (67).  

Transient protonation changes of MES buffer. Among other IR features, protonation of MES buffer 

is characterized by a negative narrow band at 1112 cm-1 (23), with a moderate change in extinction 

coefficient of  = 210 M-1 cm-1 (see SI Appendix, Fig. S2). A small negative band is indeed observed 

at 1112 cm-1 in the light-induced IR difference spectrum of BR 370 μs after photoexcitation (Fig. 3a, 

blue), a time when a proton is released from the protein to the medium (7). In experiments where 

deuterated MESd12 was used (Fig. 3a, red) the negative band at 1112 cm-1 disappears and a positive 

band at 1115 cm-1 appears (Fig. 3a), the latter characteristic for protonation of MESd12 (SI Appendix, 

Fig. S2, and ref. (23)). Spectral changes associated with protonation of MES during the photocycle of 

BR become fully accessible by calculating the double difference spectrum between experiments 

done in MES and in MESd12, after appropriate scaling to cancel the spectral response of the protein 

(Fig. 3b, red spectrum).  

The resulting absorption changes in the double difference spectra, 2.510-4 for the most intense 

band at 1113 cm-1 (Fig. 3b, red spectrum), are 20 to 100 times smaller than typically measured with 

pH-indicating dyes in the visible (9, 10, 15, 60). Nevertheless, most of the bands in the double 

difference spectrum are clearly resolved despite their low intensity. Most importantly, the resulting 

spectral changes are identical to the double difference spectrum between protonation of MES and 

MESd12 induced by pH changes in the solution (Fig. 3b green spectrum), with band positions within 1 

cm-1 agreement for nearly all bands. Given the sensitivity of molecular vibrations to their environment, 

this observation supports the expectation that MES molecules protonate and deprotonate in the 

aqueous phase, and not at the protein surface or its interior.  

We monitored the protonation changes of MES, reporting on proton release and uptake from BR, 

from the area of the most intense negative band at 1113 cm-1 in the double difference spectra, as 

well as from the joint area of the most intense positive bands at 1093 and 1082 cm-1 (Fig. 3c, light 

blue and orange traces, respectively). Both kinetic traces are very similar as expected, although 

monitoring the area of the 1113 cm-1 band clearly gives superior signal-to-noise ratio (Fig. 3c, 
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compare light blue and orange traces) due to its higher intensity (SI Appendix, Fig. S2). Monitoring 

the area of the 1113 cm-1 band is also more robust to scaling errors in the subtraction of protein 

bands, as these contribute less than a 15% to the total area (SI Appendix, Fig. S3b).  

Kinetics of proton release and uptake. Figure 4a reproduces the temporal evolution of the 

MES-minus-MESd12 band at 1113 cm-1 during the photocycle of BR. Our kinetic analysis was based on 

reconstructing the lifetime distributions using the maximum entropy method (68), with the benefit 

that the number of exponentials is not presumed a priori, as in traditional fitting approaches. Note 

that positive bands report on MES protonation (proton release by the protein) and negative bands on 

MES deprotonation (proton uptake by the protein). This convention is kept throughout the entire 

manuscript.   

Proton release. The release of the protons to the medium detected by covalently attached dyes 

has been previously reported to be mono-exponential, with   75 μs (16, 17, 38). In good 

agreement, the analysis of the kinetics for MES protonation revealed one component for proton 

release with a mean time constant of 80  4 μs (Fig. 4b, dashed red trace). [Confidence intervals are 

given here and elsewhere as plus/minus two standard deviations from Monte Carlo simulations (see 

Experimental Section)]. However, this component was broad and slightly asymmetric suggesting the 

presence of unresolved subcomponents. Indeed, increasing the resolution of the reconstructed 

lifetime distribution leads to the resolution of two statistically significant components for proton 

release with  = 52  10 μs and 150  40 μs (Fig. 4b, red trace, and Fig. S4 in SI Appendix), and 

relative amplitudes of 67  12% and 33  12%, respectively. 

We further confirmed that proton release is bi-exponential by reanalyzing transient absorption 

changes in solution from fluorescein covalently attached to K129 (see SI Appendix, Fig. S5, and ref. 

(10)) an amino acid located in the EC surface (Fig. 1b). Two components for proton release are clearly 

resolved in the corresponding lifetime distribution (Fig. 4b Insert, blue trace), with  = 59  3 μs (75  

4%) and 200  20 μs (25  4%). These results are in good agreement with those determined by MES 

(vide supra), in particular when taking into account the slight differences in temperature and pH 

between both experiments (see Fig. 4 legend).  

Proton uptake. The analysis of the protonation kinetics of MES shows that proton uptake kinetics 

in BR proceeds mostly in a mono-exponential fashion. The main decay component is resolved at  = 

4.3  0.4 ms (Fig. 4b, red trace). This time constant agrees with the last time constant of the 

photocycle obtained by global exponential fitting ( = 4.4  0.1 ms, vide infra), when an equilibrated 

mixture of the M, N and O intermediates decays to the dark state.  

The lifetime distribution corresponding to protonation changes of MES also resolved a negative 

band at  = 8  4 μs (Fig. 4b), i.e., a very early uptake of protons by BR. We can reasonably discard 

that such component is an artifact caused by the limited time-resolution of our FT-IR experiments 

because a similar negative component at  = 10  2 μs is also resolved when analyzing 

nanosecond-resolution fluorescein experiments (Fig. 4b, insert). Indeed, a fast response of 
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covalently-attached fluorescein has been observed before (38, 69), but tentatively assigned to 

polarity changes, an unlikely interpretation in view of its detection by MES. Thus, we conclude that 

some uptake of protons occur in the photocycle of BR as early as in few microseconds. 

Protonation of D85 versus proton release. Although protonation of D85 and proton release take 

place at spatially distinct sites, the two reactions appear as simultaneous events under most 

conditions (36), the first triggering the latter by a domino effect involving fast H-bonding 

rearrangements and reorientation of R82 (70). Now, that it is possible to monitor both events in a 

single experiment, we resolved a small but clear temporal delay between protonation of D85 and 

proton release (Fig. 5a). For further insights we compared their lifetime distributions (Fig. 5b), 

displayed such that positive bands correspond to D85 protonation (blue) and to proton release (red). 

Protonation of D85 occurs in three phases (17, 60) with  = 4  1 μs (10  6%), 38  3 μs (55  6%) 

and 115  10 μs (35  6%). The time constants of the second and third components are slightly faster 

than for proton release: 38  3 μs vs 52  10 μs and 115  10 μs vs 150  40 μs, but the deviations 

are modest when considering the statistical uncertainty (Fig. 5b). The most notable difference is that 

the first step for protonation of D85 (4  1 μs) is not associated to a proton release event, but rather 

with a proton uptake event (8  4 μs).  

Kinetics of the continuum band versus proton release. If the continuum band is a spectral 

signature of the group releasing a proton to the EC medium, then its rise should display identical 

kinetics to proton release. But a meaningful kinetic comparison has not been possible yet (38). 

We analyzed the temporal evolution of the continuum band by integrating the absorption changes 

from 1950 to 1800 cm-1 (Fig. 6a, black crossed dots). A significant net contribution to this area from 

temperature changes of water molecules during the photocycle was discarded by control 

experiments using the E204Q mutant (see SI Appendix, Fig. S6b), a variant that lacks absorption 

changes in this frequency range (38). The corresponding lifetime distribution of the continuum band 

shows two rising components with  = 42  3 μs and 150  6 μs and relative amplitudes of 63  4% 

and 37  4% (Fig. 6b, red trace). These two components are basically indistinguishable at our current 

statistical uncertainty from those of proton release detected by MES, with  = 52  10 μs (67  12%) 

and 150  40 μs (33  12%). These results are fully consistent with the PRC being the terminal group 

releasing a proton to the EC medium (39). 

The lifetime distribution of the continuum band shows an additional rise with  = 1.5  0.1 ms, not 

associated to any proton release/uptake event (Fig. 6b, compare red and blue traces). The presence 

of this kinetic component has been noticed before (38). Initially, it was assigned to a LAN of water 

molecules assisting the proton transfer from D96 to the SB (38), but such a neutral LAN was later 

shown to generate a very broad absorption band above 2550 cm-1, instead (71, 72). Its time 

evolution clearly differs from the M intermediate (compare Fig, 5a and Fig. 6a), and to less extent 

from the O intermediate (Fig. 6d), being most similar to that of the N intermediate (Fig. 6c). Because 

of the minor accumulation of the N1 intermediate at pH 6.25, it is reasonable to associate the rise of 
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the second component of the continuum band to the formation of the N2 intermediate (65). The 

accumulation of the N2 intermediate decreases with increasing pH (34, 65). Likewise, the amplitude 

of the continuum band rising with   1.5 ms has been shown to decrease as the pH increases (73). 

It is finally noted that both phases of the continuum band recover with  = 4.5  0.1 ms (Fig 6b). 

This time constant is in a closely agreement with the time constant for proton uptake, 4.3  0.4 ms 

(Fig 4b), as well as with the recovery of the dark state:  = 4.4  0.1 ms (Fig. 7a).  

Two spectrally distinct chemical groups contribute to the continuum band. To obtain the spectral 

features associated to the two kinetic components of the continuum band we performed global 

exponential fitting of the time-resolved FT-IR spectra. The derived amplitude spectra (Fig. 7a), or 

decay associated spectra (DAS), provide the spectral changes taking place with a specific time 

constant (74). The components DAS-2 and DAS-3, with  = 44 and 127 μs, respectively, correlate with 

the release of a proton from the protein and its acceptance by the MES buffer in the medium. Both 

spectra display a continuum band with a similar shape (Fig. 7a): the absorption changes rise in 

intensity from 2200 cm-1 to 2000 cm-1 and remain constant from 2000 cm-1 to 1800 cm-1. DAS-5 with 

 = 1.6 ms, shows a clear continuum band (Fig. 7a), even though no proton is released or taken up 

with this time constant (Fig. 6a,b). The continuum band from DAS-5 continuously rises in intensity 

from 2200 to 1800 cm-1 (Fig. 7a), spectrally differing from the continuum band characteristic for 

DAS-2 and DAS-3 (Fig. 7a). The above commented spectral differences between the continuum bands 

of DAS-2 and DAS-5 are highly reproducible (Fig. 7b). We conclude that the continuum band 

observed in the DAS-5 has a molecular origin other than the PRC. Thus, the negative rise of the 

continuum band with  = 1.5 ms presumably represents the deprotonation of a newly described 

protonated LAN, to which we will refer as the proton uptake complex (PUC) for reasons which will be 

justified below. 

The proton uptake complex (PUC) and reprotonation of D96. To figure out the functional role of 

the PUC in the proton-pumping mechanism of BR, we studied in detail the spectrum of DAS-5 (Fig. 

7a). The negative band at 1187 cm-1, characteristic for the C-C stretch of protonated 13-cis retinal, is 

a hallmark for the reprotonation of the SB of 13-cis retinal, i.e., for the formation of the N 

intermediate from the M intermediate (29, 67). The pH of the sample is 0.85 units below the 

apparent pKa of D96 in the N intermediate, favoring accumulation of the N2 substate, with 

reprotonated D96 (34, 65). Consistently, a positive band at 1742 cm-1 from the deprotonation of D96 

is hardly observable in DAS-5 (Fig. 7a) even when performing step-scan experiments at an increased 

resolution of 4 cm-1 (SI Appendix, Fig. S7). Incidentally, DAS-5 also shows retinal bands at 1506 and 

1170 cm-1 characteristic for the formation of the O intermediate (53, 75), consistent with the known 

equilibration of the N and O intermediates (76). In summary, DAS-5 represents the spectral 

differences associated to the net formation of the N2 and O intermediates from the M intermediate.  

But how to conceive the formation of the N2 intermediate with   1.5 ms with a reprotonated 

D96, when proton uptake from the medium occurs with   4.5 ms? And, if the continuum band with 

  1.5 ms reports on the deprotonation of a protonated LAN (the PUC), where is the corresponding 
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proton transferred to? To answer these two questions we propose that ionic D96 gets a proton in the 

N1-to-N2 transition from the PUC, not from the CP medium as currently accepted. Finally, the PUC is 

reprotonated in the N2-to-O transition, taking a proton from the CP medium (Fig. 7c).  

 

General Discussion and Conclusions 

The use of buffer molecules (weak acids) to trace protonation changes in the aqueous medium 

during the functional mechanism of proteins solves some of the drawbacks present in the use of 

pH-indicating dyes (see Introduction). In particular, buffer molecules can theoretically respond to 

protonation changes in the medium in sub-microseconds (14), thanks to their high concentration 

under experimental conditions typical for IR spectroscopy. Although we have not been able to test 

this last prediction experimentally, we can conclude that buffer molecules can respond to 

protonation changes in at least 8 s (Fig. 4b). Because pH-indicating dyes are weak acids, they are 

able to shuttle protons from the surface to the bulk (8). However, their typical high extinction 

coefficient in the visible often restricts their concentration to <100 M (8-11), while their low 

concentration makes them inefficient accelerators for proton migration in practice.  

The dynamics of proton release and uptake in bacteriorhodopsin are apparently more complex 

than previously described: proton release cannot be described by a single exponential time course as 

reported before (16, 17, 38), but proceeds in at least two phases with time constants of  = 50 s and 

150 s (Fig. 4b). Proton release lags protonation of D85 (Fig. 5) supporting photocycle models that 

place proton release during the transition between two M intermediates (37, 77).  

Although proton uptake is predominantly mono-exponential,   4.5 ms, we resolved a very early 

proton uptake event taking place before 10 s (Fig. 4b). It is conceived that this early proton uptake 

arises from Bohr protons. Nanosecond IR experiments (78, 79) at different pH values will be required 

in the future to characterize the exact timing of this early proton uptake process, as well as to 

understand its potential role in the photocycle and to assign the residue/s responsible for it. 

Despite the current consensus that the continuum band in BR arises from the deprotonation of the 

proton release complex (PRC), it was yet to be experimentally confirmed whether proton release to 

the external medium tallies the rise of the continuum band. Due to the strict comparison of the 

kinetics of proton release (probed by MES buffer molecules) with the kinetics of the continuum band 

we have shown here that both processes proceed simultaneously, indeed (Fig. 6). It has been 

recently proposed that the PRC protonates E194, with the latter residue being the actual terminal 

proton release group (47). From the discrepancy between the faster component for proton release 

(52  10 μs) and the faster rise of the continuum band (42  3 μs), we can state that any intermediary 

proton acceptor/donor group in between the PRC and the external medium can hold the proton for 

less than 10  10 μs. Given their kinetic similarity we can reasonably exclude that a metastable 

proton accepting group exists in between the PRC and the external medium. 
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Comparison of the dynamics of the continuum band with proton release/uptake detected by 

buffer molecules indicates that the continuum band consists of two independent kinetic (Fig. 6) and 

spectral (Fig. 7a,b) contributions. As elaborated above, the first contribution to the continuum band 

corresponds to deprotonation of the PRC, as shown by site-directed mutagenesis studies (39) and 

further confirmed herein by its temporal coincidence with proton release (Fig. 6a,b). Spectral 

calculations reproduce the continuum absorption between 2300 and 1800 cm-1 when, independently 

of molecular details, the PRC consists of a protonated LAN (41, 45, 46). Thus, the assignment of the 

continuum band to a protonated LAN at the PRC is well-supported by experiments and simulations.  

We have resolved a second continuum band contributing to the 2300-1800 cm-1 range whose 

kinetics does not correlate with proton release (Fig. 6c). We have tentatively assigned the second 

component of the continuum band to a protonated LAN, given its spectral similarity with the 

continuum band from the PRC (Fig. 7). Further support for this assignment comes from the results 

that indicate the existence of an intermediary group/complex that can act as a proton donor for D96 

and as a proton acceptor from the CP medium (Fig. 6 and 7): the proton uptake complex (PUC). The 

kinetics of the second contribution of the continuum band fits the expected kinetics for the PUC, 

consistent with its assignment to a protonated LAN. In analogy to the PRC, the protonated LAN of the 

PUC may involve water molecules and/or several amino acid side chains sharing a proton. 

Neutral LANs also exist in BR, and their spectral contributions during the photocycle should be 

discussed. The pentagonal cluster (protonated SB, the charged groups D85, D212 and R82, and three 

water molecules) has been studied in detail by IR difference spectroscopy (80). It shows notably 

broad negative bands from strongly H-bonded O-H and N-H stretches, but these are centered at  

2800 cm-1 and display a negligible contribution at frequencies below 2600 cm-1 (81, 82). A chain of 

neutral water molecules formed between the SB and D96 in the M intermediate has been associated 

to a broad positive band in the 2750-2550 cm-1 region (71, 72). However, none of these two neutral 

LANs contribute significantly to the 2300-1800 cm-1 region, which seems restricted to protonated 

LANs.  

We anticipate that the identification of the groups comprising the PUC will require further work. 

Reasonable candidate residues are those that may alter the N1/N2 equilibrium when mutated (34), or 

the proton uptake kinetics (55). Among the latter, the most evident candidate is D38. Consequently, 

we performed preliminary time-resolved IR experiments on D38R using a tunable quantum cascade 

laser as an IR monochromatic source (79, 83), covering the spectral range from 1800 to 1700 cm-1. 

Remarkably, the kinetics of the continuum band for the D38R variant lacks the millisecond negative 

rise present in WT (SI Appendix, Fig. S8), indicating that the PUC might, indeed, be disrupted upon 

mutation of D38. More detailed studies will be needed, though, as D38R also shows altered kinetics 

for the late intermediates of the photocycle (M, N and O) (55), which by itself could explain the 

apparent absence of the continuum band from the PUC. 

In the current view of the proton transfer reactions in BR, D96 is reprotonated from the CP 

medium (Fig. 1c), either in the N-to-O transition (77) or in the N1-to-N2 transition (37). Instead, we 
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suggest that D96 accepts a proton from the PUC in the N1-to-N2 transition, and the PUC is 

reprotonated from the CP medium in the N2-to-O transition (Fig. 7d). A piece of evidence is provided 

by the observation that proton uptake from the CP medium (  4.5 ms) considerably lags the 

formation of the N2 intermediate, which takes place with   1.5 ms (Fig. 4b, 6c and 7a). On the other 

hand, the PUC deprotonates with   1.5 ms and reprotonates with   4.5 ms (Fig. 6b and 7a). Thus, 

our results refine the last steps of the proton pumping mechanism of BR.  

The newly introduced PUC also provides a rationale for why a continuum band is observed under 

conditions that prevent deprotonation of the PRC (low pH or exchange of critical residues), although 

with reduced intensity and delayed kinetics (39, 73). The continuum band disappears completely in 

the E194Q and E204Q variants (38, 39), implying that these mutations impair not only the PRC but 

also the PUC. E194Q and E204Q variants do not only lack normal proton release but show notable 

alterations in the late steps of the photocycle as well (66, 84), possibly explaining why these two 

mutations disturb the distant PUC. 

We note that our findings might also contribute to reveal the chemical nature of the PRC, an issue 

still not settled (46). To scrutinize different potential arrangements of the PRC, simulated vibrational 

spectra of the PRC have been compared to the experimental difference spectrum of the continuum 

band (41, 45, 46), extracted at 300-400 s after photoexcitation (see Fig. 2 in ref. (39) for an 

example). However, at 300-400 s not only the PRC but also the PUC contributes to the measured 

continuum band (see Fig. 6a). We have obtained the spectral signature of the continuum band 

associated to proton release by global exponential analysis (DAS-2, Fig 7b). This is the experimental 

spectrum that should be ideally used in future comparisons with spectral calculations of the PRC.  

In closing, we have demonstrated here that the time course of proton release and uptake 

accompanying the photocycle of BR can be monitored by recording time-resolved vibrational 

changes of natural and perdeuterated buffer molecules, which work as pH-sensitive vibrational 

probes. As proton transfer reactions often play a critical role in protein function, similar experiments 

could be applicable to other proteins. 

 

Experimental Section. 

Preparation of hydrated films of bacteriorhodopsin. Purple membranes (PMs) containing either 

wild-type BR, E204Q, or D38R were obtained from Halobacterium salinarum (85-87). The PMs were 

washed by centrifugation and resuspended in 3 mM MES, 2 mM NaCl at pH 6.3. Around 10-20 L of 

this solution was placed on top of a BaF2 window and dried under ambient humidity, followed by 

rehydration in an atmosphere of 99% relative humidity, as previously described (12, 88). Equivalent 

films were prepared using MESd12 (Cambridge Isotope Laboratories Inc.) as a buffer, a molecule 

where all the hydrogens of MES unchangeable in water are substituted by deuterium atoms. The 

final molar ratio of protein, buffer and water was determined by fitting molar absorption spectra to 

the experimental absorption spectrum of the hydrated film (Fig. 2, and Fig. S1 in SI Appendix). We 
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also determined spectroscopically the pH in the hydrated film by applying the Henderson–

Hasselbalch equation, using the pKa for MES (6.06 at an ionic strength of 0.5 M and 25 oC 

(http://www.reachdevices.com/Protein/BiologicalBuffers.htm)) and the ratio between acidic and 

basic forms determined by IR absorption spectroscopy. The ionic strength of the film was calculated 

to be close to 1 M, minimizing complications from pH differences between the BR surface and the 

medium pH, that can be as high as 1.7 units at 10 mM and still near 1 unit at 100 mM (60), but only 

0.2 units at 1 M ionic strength (90). 

Step-scan FT-IR spectroscopy. We performed time-resolved step-scan FT-IR spectroscopy 

essentially as described before (12). Light-adapted BR films containing either the buffer MES or 

MESd12, were excited by a 10 ns laser pulse (532 nm, 2 mJ/cm2, 10 Hz) and time-resolved spectra 

were obtained at 6.25 μs temporal and 8 cm-1 spectral resolution. Some additional experiments were 

performed at 4 cm-1 spectral resolution as indicated. In each experiment, about 300-500 

photoreactions were averaged at each optical retardation of the interferogram. 

Maximum entropy lifetime distributions. Maximum entropy lifetime distributions were obtained 

from experimental time-traces as described before (91). Briefly, a maximum entropy solution vector, 

h, was obtained minimizing the function Q(h) = 2(h) - S(h), where S is the generalized 

Shannon-related entropy for solutions without sign-restriction (quantifying the simplicity of a 

solution), 2 is the chi-square function (measuring the agreement between the experimental and the 

predicted data), and  is a scalar which balances both terms, known as the regularization parameter. 

Lifetime distributions of increased detail are obtained as the value of  is reduced, given more 

weight to the description of the data over the simplicity of the solution. The optimum value for 

log10() was determined automatically using the L-curve method (92, 93). The maximum entropy 

lifetime distribution obtained in his way lacked enough detail for proton release/uptake measured 

with MES, and in this particular case the regularization value was chosen as that giving a lifetime 

distribution with the maximum number of statistically significant components (SI Appendix, Fig. S4). 

The position and area of components resolved in the lifetime distributions were characterized by 

their 0th (area) and 1st (mean) moments, and Monte Carlo simulations by resampling the residuals 

hundred times were used to estimate their confidence interval. Only bands with an area different 

from zero at a 96% confidence were considered to be genuine components.  

 Kinetics of the continuum band. The kinetics of the continuum band was obtained by integrating 

the absorption changes from 1950 to 1800 cm-1. The baseline of the time-resolved data showed 

oscillations of period  1 ms (see SI Appendix, Fig. S5), whose origin has been described before (94), 

hampering the analysis of the kinetics of the continuum band. We removed these oscillations by 

processing the spectra by SVD, discarding only 2 of the 147 SVD components (those concentrating 

the oscillation). Further details of this processing approach will be presented elsewhere. 

Absorption coefficients of MES determined by attenuated total reflection FT-IR spectroscopy. 

We prepared duplicate aqueous (H2O) solutions of MES and perdeuterated MESd12 at 50 mM and at 

90 mM, with the pH value adjusted to 3.6 (adding HCl) and 8.5 (adding NaOH). The infrared 
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absorption spectrum was recorded at 25 oC and 4 cm-1 spectral resolution in a diamond attenuated 

total reflection (ATR) accessory with 9 reflections (5 of them facing the sample). We subtracted the 

absorption of water at the corresponding pH value to obtain the absorption spectrum of fully ionic 

and fully zwitterionic MES and MESd12 (SI Appendix, Fig. S2a). After accounting for the concentration 

of MES and the calculated effective penetration depth in the ATR experiment (vide infra), the 

difference molar absorption coefficient spectra were determined for protonation of MES and for 

protonation of MESd12, and the double difference molar absorption coefficient for protonation of 

MES-minus-protonation of MESd12 (SI Appendix, Fig. S2b). The latter was mathematically converted 

to 8 cm-1 resolution in the Fourier domain prior to its comparison with the time-resolved double 

difference IR spectra between BR/MES and BR/MESd12 (Fig. 3b). We determined the effective 

penetration depth as a function of the wavenumber, dpeff(), experimentally (SI Appendix, Fig. S9). 

Briefly, the absorbance of liquid water (MilliQ quality, pH 7, 25 oC) was recorded with the ATR setup 

(four replicates on different days), and the dpeff() was calculated from the concentration of water 

(55.34 M at 25 oC) and its published molar absorption coefficient (95).  

Molar absorption coefficient of bacteriorhodopsin determined by transmission FT-IR 

spectroscopy. We measured the UV/Vis and IR absorption of a hydrated film of BR in PMs in the 

absence of buffer, previously adjusting the solution to pH 7 (SI Appendix, Fig. S9). An iris with a 

diameter less than 4 mm (smaller than the probing light) was placed in front of the BaF2 window to 

ensure that both the UV/Vis and the infrared radiation illuminated the same area. The sandwiched 

sample was placed normal to the light beam. Prior to the measurements the BR film was illuminated 

with a LED emitting maximally at 530 nm for 1 min for light-adaptation. We estimated the IR molar 

absorption coefficient of light-adapted BR in the membrane plane from the extinction coefficient of 

the retinal chromophore: x-y(570 nm) = 82,000 M-1cm-1 for. This last value was estimated from the 

known isotropic extinction coefficient of BR determined in solution, iso(570 nm) = 62,700 M-1 cm-1 

(96), the angle of the electronic transition moment of the retinal to the membrane normal,  = 69o 

(97), and the relations for axially oriented samples: ε𝑖𝑠𝑜 = (𝜀𝑧 + 2𝜀𝑥−𝑦)/3 and 

(𝜀𝑧 − 𝜀𝑥−𝑦) (𝜀𝑧 + 2𝜀𝑥−𝑦)⁄ = 0.5(3𝑐𝑜𝑠2𝜃 − 1) (97). 

. 
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Figure Legends 

Figure 1. Proton transfer reactions during the photoreaction of BR. (a) Basic photocycle scheme, 

and (b) proton transfer steps overlaid with the dark-state structure (pdb 1c3w, ref. (98)): i) from the 

protonated Schiff base (SB) of the retinal chromophore to ionic D85; ii) from the proton release 

complex (PRC) to the extracellular (EC) medium; iii) from D96 to the retinal SB; iv) from the 

cytoplasmic (CP) medium to ionic D96; and finally v) from D85 to the PRC via D212 (66, 84), (c) 

Time-resolved step-scan FT-IR difference spectra after 10 ns laser pulse excitation. (d) Expanded 

absorption changes in the 2000-1700 cm1 the region, with contributions from the C=O stretch of 

D85, D96 and D115, as well as from the continuum band, assigned to the PRC. 

Figure 2. Spectral decomposition of the chemical components in a hydrated film of BR in PMs. 

FT-IR absorption spectrum of the film (top, black trace) and of its second derivative (bottom, black 

trace). Fitted spectra (dashed red traces) were obtained by adding the molar absorption spectra of 

water (light blue traces), BR in PMs (light purple traces), and the acidic and basic forms of MES (red 

and blue traces) after appropriate scaling. The scaling factors needed for a successful fit of the 

experimental spectra provided the moles per unit area for the different chemical species. Minor 

absorption from the BaF2 windows was subtracted. 

Figure 3. Detection of proton release and uptake kinetics in the photocycle of BR from protonation 

changes of the MES buffer. (a) FT-IR difference spectrum taken at 370 s after photoexcitation of BR, 

using either MES (blue spectrum) or MESd12 (red spectrum) as buffer. (b) Subtraction of the spectra 

in (a) cancels protein signals (red spectrum). The scaling factor of 1.04 used in (b) was determined 

with objectivity thanks to the broad spectral range covered by FT-IR spectroscopy (see SI Appendix, 

Fig. S3a). The resulting spectrum is identical to pH-induced differences of MES minus MESd12 in 

solution (green spectrum). (c) Dynamics of protonation changes of MES using the area of different 

bands as indicated. These two areas were measured with an internal baseline (see the shaded blue 

and orange band areas in (b)), making the obtained kinetic traces insensitive to drifts in the spectral 

zero line (61).  

Figure 4. Lifetime distribution analysis of proton release and uptake in the photocycle of BR (25 oC, 

pH 6.25 and 1 M NaCl). (a) Kinetics (open gray circles) and fit (continuous line) for protonation 

changes of MES monitored by the area of the band at 1113 cm-1 in the BR/MES-minus-BR/MESd12 

double difference spectra. The residual between the data and the fit is shown as a gray continuous 

line. (b) Lifetime distributions for protonation changes of MES (continuous and dashed red traces). 

Positive bands correspond to proton release and negative bands to proton uptake. (Inset) Lifetime 

distribution for protonation kinetics detected by the absorption changes of fluorescein (22 oC, pH 7.5 

and 400 mM NaCl) at 489 nm (blue trace). The lifetime distribution for protonation kinetics detected 

by MES is also depicted (red trace) for comparison. Bands marked with an asterisk are statistically 

insignificant at a 96% confidence interval. 
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Figure 5. Comparison of (a) the kinetics and (b) the lifetime distribution for protonation changes of 

D85 (blue trace) and proton release/uptake (red trace), after appropriate scaling. The kinetics of the 

C=O stretching of protonated D85 was monitored from the area between 1771 and 1750 cm-1, using 

an internal baseline that minimizes cross-contributions from nearby bands (61). 

Figure 6. Lifetime distribution analysis of the rise and decay of the continuum band. (a) The 

kinetics of the continuum band, monitored by the area between 1950 and 1800 cm-1 (gray circles), 

fitted by the maximum entropy method (continuous blue trace), and decomposed into two kinetic 

components: the proton release complex, PRC (blue dashed lines), and the proton uptake complex, 

PUC (green dashed lines). (b) Lifetime distribution for the continuum band (blue trace). The kinetics 

and lifetime distribution for proton release and uptake (measured with MES) are shown, after 

scaling, for comparison purposes (red traces in (a) and (b)). (c) The time-evolution of the N 

intermediate was traced using the absorption changes of the positive retinal C-C stretching band at 

1187 cm1 (29, 67), after band narrowing by Fourier self-deconvolution (99) to reduce contributions 

from negative overlapping bands (black trace), and compared with the expected kinetics for the PUC 

(green dashed trace). (d) The time-evolution of the O intermediate was probed with the positive 

band at 1505 cm-1 (black trace), coming from the in phase C=C stretching of the retinal (75), and 

compared with the expected kinetics for the PUC (green dashed trace). 

Figure 7. Spectral signatures for the PRC and the PUC, and revised model for proton transfer 

reactions in BR. (a) Decay associated spectra (DAS) obtained from global exponential fitting analysis 

of time-resolved FT-IR experiments at 8 cm-1 resolution using MES and MESd12 as buffer (blue and 

red continuous lines, respectively). The region between 2150 and 1800 cm-1 is 20-fold magnified 

(dashed lines). The DAS with  = 4.4 ms is scaled by 0.5 for displaying purposes. (b) DAS-2 and DAS-5 

for five independent experiments, including their average (back line). The asterisk marks a band 

originated from MESd12. (c) Extended photocycle scheme of BR, integrated into the dark-state 

structure (98). The precise chemical nature and location of the proton uptake complex (PUC) remains 

elusive, but its deprotonation is characterized by the continuum band from DAS-5 (see (b)). 
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