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Taste of a chemical compound present in food stimulates us to take in nutrients and

avoid poisons. However, the perception of taste greatly depends on the genetic as well

as evolutionary perspectives. The aim of this work was the development and validation

of a machine learning model based on molecular fingerprints to discriminate between

sweet and bitter taste of molecules. BitterSweetForest is the first open access model

based on KNIME workflow that provides platform for prediction of bitter and sweet

taste of chemical compounds using molecular fingerprints and Random Forest based

classifier. The constructed model yielded an accuracy of 95% and an AUC of 0.98 in

cross-validation. In independent test set, BitterSweetForest achieved an accuracy of

96% and an AUC of 0.98 for bitter and sweet taste prediction. The constructed model

was further applied to predict the bitter and sweet taste of natural compounds, approved

drugs as well as on an acute toxicity compound data set. BitterSweetForest suggests

70% of the natural product space, as bitter and 10% of the natural product space as

sweet with confidence score of 0.60 and above. 77% of the approved drug set was

predicted as bitter and 2% as sweet with a confidence score of 0.75 and above. Similarly,

75% of the total compounds from acute oral toxicity class were predicted only as bitter

with a minimum confidence score of 0.75, revealing toxic compounds are mostly bitter.

Furthermore, we applied a Bayesian based feature analysis method to discriminate the

most occurring chemical features between sweet and bitter compounds using the feature

space of a circular fingerprint.

Keywords: Random Forest, bitter prediction, sweetness prediction, fingerprints, KNIMEworkflow, taste prediction

INTRODUCTION

Taste plays an integral role in determining the quality of food irrespective of their nutritive value.
In human, taste can additionally contribute to the overall pleasure and satisfaction of a food or
drink. Within the five basic tastes, sweet taste enriches our capacity to identify the energy rich-
food (Morrison, 1979). Sweeteners are the compounds that interact with the sweet receptor and
evoke a characteristic response and enhance the perception of sweet taste (DuBois and Prakash,
2012). Sweetness has long been known as a property possessed by many substances other than
sugar, although their use as sweeteners have largely been confined to pharmacy or precluded
by toxicity (Lindseth et al., 2014). The first commercially developed sweetener dates from the
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discovery of saccharin in 1879 by C. Fahlberg and I. Remsem
(Dwaine, 1978). Artificial sweeteners are increasingly used as
an alternative to sugar (Bellisle, 2015). Advancing incidence
of obesity, diabetic and metabolic syndrome, coupled with
heightened consumer awareness, has led to a steady paradigm
shift toward the use of low calorie artificial sweeteners (Sharma
et al., 2016). The relative global market share of the major
sweeteners includes aspartame (29%), sucralose (28%), cyclamate
(16%), saccharin (13%), stevia (9%), acesulfame-K (5%), and
neotame (1%) (Tandel, 2011; Schiffman, 2012). It has been
found that over last three decades, the percentage of people
that use products containing sweeteners in the United States
(Tandel, 2011), has more than doubled (Schiffman, 2012). On
the other hand, bitter taste of a food is evolutionary linked to
guarding against consumption of poisons (Reed and Knaapila,
2010). Bitterness is exhibited mostly by alkaloids (Levit et al.,
2014). However, not all bitter compounds are toxic; many dietary
phytonutrients commonly found in fruits and vegetables, as
well as many clinical drugs and herbal based medicines elicit
characteristic response of bitter taste (Bahia et al., 2017). The
bitter tasting drugs are a major concern of compliance for
children (Levit et al., 2014). Sensory tasting of drug candidates by
human is not a trivial matter, since it requires ethical approval,
which is achievable only after a thorough toxicological study
(Levit et al., 2014; Bahia et al., 2017). Thus, efficient prediction
of compounds sweetness as well as bitterness is not only a great
interest of the nutrition industry and basic taste research but
also for the drug discovery process. This is a space where the
cheminformatic based in silico models can play a major role in
supporting and advancing the research related to taste chemistry
(Di Pizio and Niv, 2014). Even after the novel breakthrough in
the structure determination of the G-protein-coupled receptors
(GPCRs), the complete resolved structure of chemoreceptors
is still not available (Di Pizio and Niv, 2014). Thus the
computational models in general and ligand based computational
models in particular, are essential support for the research in this
area.

From the chemical point of view sweet and bitter compounds
have some common chemical features, they do not generally
dissociate or ionize in solution, on the other hand the compounds
which cause the sour and salt tastes tends to ionize (Schiffman
et al., 1995). Aside from this generalization, there are certain
chemical features which are overrepresented in bitter molecules
compared to sweet molecules and vice versa, which correspond
to the extreme taste of the compounds (Schiffman et al., 1995).
When attempts are made to relate sweetness or bitterness to the
structure of chemical compounds, the most valuable sets of data
arise when “relative” sweetness or bitterness scores are assigned to

Abbreviations: RF, Random Forest; ROC, receiver operating characteristic; AUC,

area under the curve; ATC, anatomical therapeutic chemical; R, Respiratory

system; G, Genito urinary system and sex hormones; D, Dermatologicals;

P, Antiparasitic products, insecticides and repellents; A, Alimentary tract

and metabolism; C, Cardiovascular System; M, Musculo-skeletal system; S,

Sensory Organs; J, Anti-infectives for systemic use; L, Antineoplastic and

immunomodulating agents; V, Various; B, Blood and blood forming organs; H,

Systemic hormonal, preparations, excluding sex hormones and insulins, unknown-

for ATC classification is not available.

closely related compounds (Reed and Knaapila, 2010). It is a well-
known fact that some changes in the chemical group in a sweet
compoundmay change the sweet taste of that compound to either
tasteless or bitter. For example, the sweet compound, saccharin,
tastes bitter when a chloride or a methyl group is introduced in
the meta position, while when the amino group is replaced by
a methyl, ethyl, or bromoethyl radical results in the loss of the
sweet taste, that is, the compound becomes tasteless (Schiffman
et al., 1995).

Several computational approaches have been developed to
predict either “sweetness” or “bitterness” of chemical (Huang
et al., 2016; Rojas et al., 2017). Such as Quantitative structure-
activity relationships (QSAR) based models are developed
to build mathematical relationships between the chemical
structures as defined by their molecular descriptors, and their
respective properties (Rojas et al., 2017). Recently machine
learning model based on physicochemical descriptors as well as
commercially available adsorption, distribution, metabolism, and
excretion (ADME/Tox) descriptors were developed to predict
bitterness of compounds (Dagan-Wiener et al., 2017). Machine
learning models using chemical based descriptors are widely
accepted and used to predict different activities from molecular
structures, such as biological activity (Lavecchia, 2015; Banerjee
et al., 2016), different toxicity endpoints (Livingstone, 1994;
Krewski et al., 2010). Many models for prediction of sweet and
bitter taste are published in literatures, numerous commercial
and web-server based models have also been available (Huang
et al., 2016). However, an analysis of discriminating chemical
features space between sweet and bitter molecules has not been
reported yet.

In this paper, we have developed a Random Forest (RF) based
model—BitterSweetForest for the computational prediction of
sweet and bitter taste of chemical compounds using molecular
fingerprints. In this study, we analyzed the relative frequency of
the features overrepresented in the bitter and sweet compounds.
The top features for each class (sweet/bitter) from the compound
dataset were obtained from the calculation of the Bayesian
probability for each feature represented in a compound
fingerprint. The model was trained on a training set consisting
of 961 compounds and evaluated with an independent test set
of unseen 241 compounds. The constructed model yielded an
accuracy of 95% and an AUC of 0.98 in cross-validation. In
independent test set, BitterSweetForest achieved an accuracy
of 96% and an AUC of 0.98 for both bitter and sweet taste
prediction. Finally, the constructed model was used to predict
the sweet/bitter taste of the compounds from SuperNatural
II database (Banerjee et al., 2015), the approved drugs from
DrugBank (Wishart et al., 2017) database and oral toxicity data
from ProTox (Drwal et al., 2014).

MATERIALS AND METHODS

Data Preparation
A total of 1,202 of chemical compounds consisting of both
artificial and natural sweeteners (517 chemical structures) as well
as bitter compounds (685 chemical structures) was extracted
from SuperSweet (Ahmed et al., 2011) and BitterDB databases
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(Wiener et al., 2012). All the data structures were standardized
using the Instant JChem software (version 6.2, Chemaxon)
using the followings steps: water molecules were removed,
molecules were aromatized, adjacent positive and negative
charges transformed into double/triple bonds, and explicit
hydrogen was added. InChIKeys were calculated using RDKit
(http://www.rdkit.org) nodes in KNIME (Berthold et al., 2008)
in order to identify and remove duplicates.

Molecular Representation
Structural features of the chemical compounds were represented
by means of binary fingerprints. Binary fingerprints are widely
used in molecular similarity searching methods and classification
tasks. Four different types of fingerprints were used in the model,
to evaluate individual performance of the fingerprints on the
external set. They are Morgan fingerprint (2,048 bits), atom
pair fingerprints (1,024 bits), torsion fingerprint (1,024 bits)
and Morgan Feat fingerprints (2,048 bits). All fingerprints were
calculated using RDKit node in KNIME (Berthold et al., 2008).

Model Construction
Random Forest algorithm is an ensemble learning approach,
that constructs a large number of decisions trees, and outputs
predictions that are collection of the votes of the individual trees.
A subset of the training dataset is chosen to grow individual
trees, with the remaining samples used to estimate the optimal
fit. Trees are grown by splitting the training set (subset) at each
node according to the value of the random variable sampled
independently from a subset of variables. The number of trees
in our RF model was set to 1,000, with greater value showing
no further improvement. RF model was implemented using
the Tree Ensemble Learner and Predictor nodes in KNIME
(Berthold et al., 2008). The split criterion Gini index is used,
which has previously been proven to be a good choice (Breiman,
2001). Additionally, a square root function was used for attribute
sampling and different sets of attributes were chosen for all the
trees. The total data was divided into 80% training data and 20%
as validation set.

Model Performance
The total dataset consisted of 1,202 molecules, out of which 517
molecules were sweet and 685 molecules were bitter in taste.
Data sets were randomly divided into 80% training set and 20%
test set, ensuring the original distribution of the different classes
(bitter and sweet). The training set included 961 molecules (416
sweet molecules and 545 bitter molecules) and the test set was
comprised of the remaining 241 molecules (102 sweet molecules
and 139 bittermolecules). Themodels using different fingerprints
were trained on the training data and models parameters were
tuned accordingly and then the models were evaluated on leave
one-out cross validation (LOO) to avoid over fitting.

BitterSweetForest predicts new compounds (taste class) as
continuous real-valued numbers in the range between 0 and
1, which describes the probability of the corresponding classes.
However, the expected values recorded for each compound are
binary (S = Sweet, B = Bitter). The quality of the model
was evaluated for both the classes and cross-validation and

external validation sets by means of sensitivity/recall, specificity,
precision, accuracy, f-measure, Receiver Operating Curve- Area
Under Curve (ROC-AUC), and Cohen’s kappa (Gwet, 2008).

Accuracy describes how well the machine learning method
correctly identifies the samples of the dataset.

Accuracy =
6 True positives+ 6 True Negatives

6 Positives+ 6 Negatives

Sensitivity describes the true positive rate i.e., the numbers of
positive compounds were correctly identified as positive.

Sensitivity =
6 True Positives

6 True Positives+ 6 False Positives

Specificity is defined as the true negative rate i.e., the numbers of
negative compounds were correctly identified as negative.

Specificity =
6 True Negatives

6 True Negatives+ 6 False Positives

Precision is defined as the number of true positives divided by the
number of true positives and false positives. It is also called the
Positive Predicted Value (PPV).

Precision =
6 True Positives

6 True Postitives+ 6 False Positives

Recall is defined as the number of true positives divided by the
number of true positives and the number of false negatives, also
called sensitivity or the true positive data.

F-measure is the weighted average of precision and recall.

F-measure = 2 ∗
Precision ∗ Recall

Precision+ Recall

A receiver operating characteristic (ROC)-curve is the plotting
of the true positive rate against the false positive at various
discrimination thresholds and is commonly used in binary
classification. On the unit ROC space, a perfect prediction would
yield an AUC of 1.0 and random results will be in points along
with the diagonal with an AUC value of 0.5. The area under the
curve (AUC) was used to measure the performance of the model
both on cross-validation and external validation set (van Erkel
and Pattynama, 1998).

Cohen’s kappa is usually described as the amount of agreement
correct by the agreement expected by chance. Cohen’s Kappa is
always less than or equal to 1. According to the scheme provided
by Landis and Koch (Gwet, 2008) a value of < 0 indicates no
agreement, and 1 as almost perfect.

RESULTS

In this study, we constructed a RF-based classifier:
BitterSweetForest for the prediction of compounds tasting
sweet or bitter. Initially, the model was trained based on four
different fingerprints (Morgan, Morgan-feat, atom pair and
torsion fingerprints), out of which the model based on Morgan
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fingerprint performed slightly better compared to the other
three, as shown in Supplementary Table 1. The performance of
the model was validated in leave-one-out cross validation and on
an independent test set.

The BitterSweetForest for the prediction of sweet compounds
has an accuracy of 0.95 and AUC of 0.98 on cross-validation
and an accuracy of 96.69 and AUC of 0.98 shown in Table 1.
The Cohen’s kappa of the model is above 0.80 in both the
sets, indicating the model as almost perfect. When compared
to the published top performing models based on kNN (Rojas
et al., 2017) and QSTR (Rojas et al., 2017) based methods,
BitterSweetForest performs slightly better in terms of NER,
Sensitivity and specificity both on training and test set as shown
in Table 3.

Similarly, the BitterSweetForest for the prediction of bitter
compounds has an accuracy of 0.95 and AUC of 0.97 on
cross-validation and an accuracy of 96.69 and AUC of 0.98
as provided in Table 2. The Cohen’s kappa of the model is
above 0.80 in both the sets, indicating the model as almost
perfect. When compared to the published top performing
models, BitterSweetForest outperforms Bitter X (Huang et al.,
2016) in terms of accuracy, achieving 7% more accuracy on
training set and almost 5% more on test set, see Table 4. When
compared to the BitterPredict (Dagan-Wiener et al., 2017),
BitterSweetForest achieved 6% more in terms of sensitivity
on training set and 20% more sensitivity on the test set
as shown in Table 4. Thus, indicating that feature encoded
molecular fingerprints can be used as optimal descriptors
for the prediction of sweet and bitter taste of compounds.
BitterSweetForest has achieved good performance in various
parameters used in this study to evaluate the quality of
the model and its prediction as shown in Tables 1, 2.
Additionally, an external data set including sweet and tasteless
compounds, as well as bitter and tasteless compounds was
validated. The predicted performances of the model for
both the classes were good with an AUC value of 0.85
and 0.90 respectively. This was done to make sure that
the model is able to differentiate between sweet, bitter and
tasteless compounds using the features. The model was not
trained on tasteless compounds; this suggests that the features
learned in the model are very specific to sweet and bitter
compounds.

Chemical Features of Sweet and Bitter
Tasting Compounds
Sweet and bitter taste properties are found in most classes
of chemical compounds and a close relationship is found in
many structural categories (Reed and Knaapila, 2010). A single
compound can have both sweet and bitter features, and small
structural modifications can result in change in the ratio of sweet
and bitter taste intensities (Schiffman et al., 1995). On the other
hand, some evidences suggest that sweet and bitter compounds
have properties which are rather independent (Cardello, 1981).
However, often most of the sweet compounds tend to taste bitter
at different concentration e.g., aspartame, glucose, lacitol, malitol
(Schiffman et al., 1995).

In order to understand which features, contribute most
to the change in the expected class in the BitterSweetForest
classifier, we analyzed the relative frequency of each features
of the Morgan fingerprint in the respective sweet and bitter
class.

One of the main purposes of this study was to analyze
the important and frequent features in sweet and bitter
compounds. The percentage of occurrences of each feature
from Morgan fingerprint (2,048 bits) in sweet and bitter
compounds was calculated. The relative frequency of important
features for a class (e.g., sweet) were calculated taking not
only the feature position and occurrence within the sweet
class into account but also the relative feature frequency of
that particular feature in the bitter class and vice versa. The
average relative frequency for each class were calculated, a

TABLE 3 | Comparison with top two methods predicting sweet taste of molecules.

Methods Set Positive Negative NER (%) Sensitivity Specificity

KNN (2016) Training – – 90.00 – –

Test – – 0.92 – –

QSTR (2017) Training 327 161 83.00 0.77 0.89

Test 108 53 85.0 0.79 0.91

BitterSweet

Forest

Training 416 548 93.50 0.97 0.90

Test 102 139 94.00 0.97 0.91

*NER, Ratio of correctly classified molecules to the total number of molecules.

TABLE 1 | Cross-validation and external set validation results for sweet prediction.

Positives Negatives Accuracy (%) ROC-AUC Sensitivity Specificity Cohen’s Kappa F-measure

Cross-validation 416 545 95.00 0.98 0.90 0.97 0.82 0.94

External validation 102 139 96.69 0.98 0.91 0.97 0.92 0.92

TABLE 2 | Cross-validation and external set validation results for bitter prediction.

Positives Negatives Accuracy (%) ROC-AUC Sensitivity Specificity Cohen’s Kappa F-measure

Cross-validation 545 416 95.00 0.97 0.97 0.90 0.82 0.96

External validation 139 102 96.69 0.98 0.97 0.91 0.92 0.95

Frontiers in Chemistry | www.frontiersin.org 4 April 2018 | Volume 6 | Article 93

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Banerjee and Preissner BitterSweetForest

TABLE 4 | Comparison with top two methods predicting bitter taste of molecules.

Methods Set Positives Negatives Accuracy (%) Sensitivity Specificity AUC

Bitter X (2016) Training 431 431 88.00 – – –

Test 108 108 91.00 0.90 0.91 0.94

BitterPredict

(2017)

Training 484 1,343 93.00 0.91 0.94 –

Test 207 574 83.00 0.77 0.86 –

BitterSweet

Forest

Training 545 416 95.00 0.97 0.90 0.97

Test 139 102 96.69 0.97 0.91 0.98

feature was only considered active for a class, if it’s presence in
one class is higher than the average relative frequency of that
class as well as lower than the average relative frequency of
the other class. The top features for each class were calculated
using class-specific weighted bits/feature patterns in the
fingerprints.

The Bayesian based Feature detection applied in the study,
calculates the probability of any compound containing a feature
(F) from the Morgan -feature space belongs to a specific class
(e.g., Sweet or bitter), given that total number of the compounds
containing the feature (F) and the number of compounds of
feature (F) belong to that class. The dissimilarity (uncommon
feature score between two classes) between the two features
is calculated by the 1- Pearson correlation coefficient of their
individual class specific scores (Bender et al., 2006).

The top 10 most occurring features in respective classes and
their relative frequency in each class are shown in (Figures 1, 2).
The top 10 features of the sweet compounds tend to be more
independent from the bitter compounds (Figure 1). On the
other hand, the some of the sweet molecules seems to exhibit
similar features when compared to bitter molecules (Figure 2).
It is noticeable that the first three features of the bitter class
are more dominant in the bitter molecules; remaining seven
features are not strongly independent from the sweet class. The
relationship between sweetness and bitterness of compounds are
not uniformly linear, however it can be said that bitterness of
some sweet compounds can increase or decrease in intensity as
a function based on the presence of bitter-related features in
them. From the prediction of the BitterSweetForest classifier and
features assessment, it can be inferred that increases in bitterness
of sweet-tasting compounds are bitter specific feature dependent.
More details on the structures of the top features present in
both the classes are provided in the Supplementary Figures 1,
2. Additionally, the relative frequency distribution of all 2,048
features in both classes was also computed (Figures 3, 4). It is
observed that the indexes containing the frequent features in
sweet and bitter compounds are different signifying that the some
chemical features are class specific.

Application of the Model
Application of a model is as important as its development.
The number of new chemicals discovered every year has
been increasing over last few years with the development

in synthetic chemistry research (Karaman, 2013; Bahia et al.,
2017). With the increase of overall chemical space opens a
platform for discoveries of new taste molecules. In this study,
BitterSweetForest Classifier was applied on the three largest
datasets. Firstly, on natural products, this was to predict and
suggest some novel sweet/bitter molecules for the community.
Secondly, on approved drug dataset, to understand if bitterness
is an important quality for medicinal application. Similarly, to
check which therapeutic class tends to bemostly bitter in the drug
chemical space. Finally, on the oral toxicity dataset, to analyze
if toxic compounds in general tend to be bitter in taste. In the
following sections, each of the applications is described in detail.
Furthermore, taking an example compound “aspartame” which
is predicted as sweet with a confidence score of 0.94, using the
KNIME workflow is provided in the Supplementary Material.

Prediction of Sweet or Bitter Taste of the Natural

Compounds
In order to predict the sweet or bitter taste of the natural
compounds, 325,508 compounds from SuperNatural II Database
(Banerjee et al., 2015) were extracted. The Morgan fingerprint
of the compounds were created using Rdkit KNIME node
(Berthold et al., 2008). BitterSweetForest classifier was applied
to predict sweetness as well as the bitterness of the compounds.
Almost 200,000 compounds were predicted to bitter and 25,916
compounds predicted to be sweet, with a confidence score of
above 0.60 (where 1 means maximum). To further screen the
compounds, we applied a threshold for confidence scores of
0.95, which resulted in 197 sweet predicted compounds and
3,865 compounds as bitter. The assessment of the applicability
domain (AD) of the model was done using the similarity values
between the natural product compounds and training set of
the model. The pair-wise Tanimoto similarity was calculated
using the Morgan fingerprints. The predicted compounds SNID
(supernatural ID) and predicted class, confidence scores are
provided in the Supplementary Material.

Prediction of Sweet or Bitter Taste of Approved Drugs
A total of 1,925 approved small molecule drugs were collected
from DrugBank database (Wishart et al., 2017). After
standardization and comparing with the dataset set of the
model, almost 1,600 compounds were found to be within
the applicability domain. Almost 77% of the total DrugBank
(Wishart et al., 2017) approved dataset could be predicted using
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FIGURE 1 | The distribution of top 10 most occuring frequent features in the sweet compounds and their relative occurences in the bitter class.

FIGURE 2 | The distribution of top 10 most occuring frequent features in the bitter compounds and their relative occurences in the sweet class.

the BitterSweetForest classifier, with a confidence score of above
0.75. Out of the compounds predicted above the threshold
of confidence score of 0.75, 98% of the drugs were predicted
as bitter and 2% as sweet. This is interesting as bitterness
is often connected to drugs when administrated orally. We
further analyzed the Anatomical Therapeutic Chemical (ATC)

(Nickel et al., 2014) classification of drugs (Figure 5); it was
that 95% of the total drugs under the classification of Nervous
System (N) were found to be bitter, not a single drug from
this class was predicted as sweet above the threshold of 0.75.
The second highest predicted class of drugs is Respiratory
system (R) with a total of 89% of the drugs predicted as
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FIGURE 3 | Graphical representation of the relative frequency distribution of each feature index in the sweet class (green) and bitter class (red) for Morgan fingerprints

(2,048 bits).

FIGURE 4 | Top 20 most occurring features and their respective index position in both sweet and bitter molecules. It can be inferred from the figure that the top

occurring features between sweet and bitter compounds used in this model are highly independent as individual index position in the fingerprints (bits set to 1) differs.

bitter. The third predicted class of drug is Genito urinary
system and sex hormones (G) with 86.7% predicted as bitter.
There was no ATC classification available for almost 231
drugs predicted as bitter. On the other hand, only 4.1% of
the total drugs from ATC class various (V) were predicted as
sweet with a confidence score of above 0.75. The DrugBank
ID as well as the predicted taste class along with confidence
scores for the prediction is provided in the Supplementary
Material.

Prediction of Sweet or Bitter Taste of the Compounds

Present Is Oral Toxicity Dataset
Bitterness is directly proportional in relationship with our food
intake: “bitter is bad”! Many poisons are known to taste bitter,
a taste quality evoking a classic rejection response (Reed and
Knaapila, 2010). These types of taste based rejection as well as
acceptance of food are assumed to be inborn and unlearned, as
it found to be apparent in human infants as well as non-human
primates and in rodents (Rev, 2015).
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FIGURE 5 | Percentage of approved drugs predicted as bitter and their

corresponding Anatomical Therapeutic Chemical (ATC) class.

The ProTox (Drwal et al., 2014), prediction server for oral
toxicities of small molecules, was used in this study. The idea
is “by evolution we know that substances which are toxic tend
to be bitter.” However, the other way around may not be true,
not all bitter substances are toxic; such as drugs are bitter
compounds having health benefits. The classification of toxicity
classes in Protox is based on the globally harmonized system of
classification of labeling of chemicals. Toxicity class 1 is defined
as fatal and toxicity class 6 as non-toxic. The prediction based
on BitterSweetForest classifier, with a confidence score of 0.75
an above, for the compounds with their respective classes are
given in Table 5. The prediction results suggest almost all the
five toxic classes; have more bitter compounds and less sweet
compounds, within the selected threshold. However, in toxicity
class 1, which is considered as most toxic class, almost 75% of
the total compounds were predicted as bitter compounds with a
confidence score of 0.75 and above. Taken together, this suggests
that acute oral toxic compounds tend to contain most of the
features of bitter compounds and hence predicted as bitter in the
study.

DISCUSSION

The classification performance for both sweet and bitter taste,
by the proposed BitterSweetForest classifier achieved good
performance both on cross-validation and on independent
test set. Developing in silico approaches for the prediction
of sweetness as well as bitterness of compounds has become
a research focus in recent years (Di Pizio and Niv, 2014).
Molecular fingerprints methods have been successfully applied in
the computational prediction of bioactivities as well as toxicities,
and have achieved good performance (Kurczab et al., 2011;
Drwal et al., 2014, 2015; Lavecchia, 2015; Banerjee et al., 2016).
Human testing of taste of chemicals is not only restricted from
the regulation point of view, however is also limited due to
ethical and toxicological issue. There is a greater need for the

development of computational models for the prediction of
tastes in general, to facilitate the taste chemical basic research.
Recently, various computational classification models have been
developed to predict the taste of chemical compounds, including
QSTR based model (Rojas et al., 2017), Bitter X (Huang
et al., 2016), BitterPredict (Dagan-Wiener et al., 2017). For
comparison, the detailed classification accuracies, sensitivities,
specificities as well as AUC values of these recently reported
models were summarized in Tables 3, 4. Certainly, an intensive
comparison of the results from the BitterSweetForest classifier
with previously reported study is not completely feasible, because
of the application of different sets of training sets used, number
of molecular descriptors, and validation approach. However,
a simple comparison could provide some basic information
about the accuracy strength of the various prediction methods.
Upon careful, comparison of the predictive performance of
these computational models displayed in the Tables 3, 4, it
was found that the prediction accuracies of the cross-validation
and external validation of the BitterSweetForest classifier based
on RF algorithm and Morgan fingerprints, established in this
study was comparatively better than that of the other cited
methods. The study suggests that the BitterSweetForest could
give reasonable predictive performances in several evaluations
parameters, and can be used for prediction of both sweet and
bitter taste., The other advantage of this study is the analysis
and identification of the most frequent features present in bitter
and sweet compounds. The study reveals that some of the
features of sweet compounds and bitter compounds are not
completely independent from each other, and some features
tends to be more class specific. However, if the presence of single
feature in chemical compounds is alone responsible for a certain
activity (i.e., is sweetness), this feature should be found in all
the structures of sweet compounds and no bitter compounds
should contain this feature and vice versa. The extension to
this case increasing more number of features is not so simple.
Let’s say, if two features were essential for sweet taste, it would
still be true that every sweet compound should contain both
features, but up to half of the bitter compound might contain
one of the two features and half the other feature. Although, such
distinction between the sweet and bitter compounds cannot be
as absolute as in the simple case of a single feature, each feature
would be as twice as common in the sweet compounds as in the
bitter compounds. Therefore, more analysis of these features with
respective class of molecule will be needed in future. In general, it
was observed that chemical environment of the features present
in bitter compounds are more diverse. This could be because of
the fact due to presence of multiple bitter receptors. On the other
hand, sweet molecules have relatively very less diverse chemical
environment in their features (Birch et al., 1981) as shown in
Supplementary Figures 1, 2. Additionally, some of the sweet
compounds as well as bitter compounds tend to exhibit features
that are common between them.

Furthermore, the BitterSweetForest was applied for the
prediction of natural compounds from the SuperNatural II
(Banerjee et al., 2015) database containing 325,508 natural
products. The classifier was further applied to predict the
approved drug dataset from DrugBank (Wishart et al., 2017)
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TABLE 5 | BitterSweetForest prediction of the oral toxicity compounds.

Toxicity class Lethal dose (LD50 = X) in mg/kg Total number of molecules per class Predicted bitter molecules Predicted sweet molecules

1 (fatal) X ≤ 5 510 384 0

2 (fatal) 5 < X ≤ 50 1,779 1,392 5

3 (toxic) 50 < X ≤ 300 6,918 5,579 3

4 (harmful) 300 < X ≤ 2,000 21,884 17,340 24

5 (may be harmful) 2,000 < X ≤ 5,000 6,740 5,413 26

database and the oral toxicity dataset from the Protox (Drwal
et al., 2014) dataset. It is generally observed that most of the
chemical from all the three sets (SuperNaturall II; DrugBank
as well as ProTox) tends to exhibit more percentage of bitter
features with a confidence score of 0.75 and above. It could also
be the fact that considering such a strict threshold, most of the
predicted sweet compounds on the three sets did not qualify
on the final result set. The threshold of 0.75 was considered
mostly to reduce the noise and false prediction that could
arise to due to applicability domain. The applicability domain
of the datasets was accessed by computing pair-wise similarity
with the training set molecules, using Morgan fingerprint. It is
observed in the study, that most of the highly predicted drugs
as bitter compounds belong to the ATC class N, R, D. The toxic
compounds were predicted mostly as bitter compounds by the
BitterSweetForest classifier.

Overall, the simplicity and consistent robust performance of
the BitterSweetForest classification model will make it a helpful
tool in assisting scientists to propose sweet as well as bitter
compounds either by synthesis or by virtual screening of very
large chemical libraries. The predictive performance of the model
is comparatively and significantly better than themodels reported
previously. The cost associated in training the model was very
low, adding further to the usability of the BitterSweetForest
classifier. Most of the previously reported classification models
either are available only as web-server or built on descriptors
based on commercial software, which can limit the use by the
community who would like to patent their novel structures
and therefore, may not like to release their structure on public
webservers. Hence, BitterSweetForest model was constructed
using an open source KNIME as a simple workflow, which
will enable the community to use the model locally. Only basic
computational skills are required for using this workflow. In
the future, we would like to relate the mechanism of action
between the receptors (bitter and sweet) and their respective
features. Also, it will be beneficial to analyze the presence of toxic
fragments in both bitter and sweet compounds. It is also planned
to compute the features dependence and their activity profiles
for both bitter and sweet compounds from the discriminative
chemical features identified in this study.

CONCLUSIONS

In this study, a binary combined prediction model for bitter
and sweet taste of small compounds is constructed. The

constructed model yielded accuracy of 95% and AUC of
0.98 in cross-validation. In independent test, BitterSweetForest
achieved accuracy of 96% and AUC of 0.98 for bitter and
sweet taste prediction. The top frequent occurring features
were analyzed for both the classes. Additionally, the feature
distribution for each bit position from Morgan fingerprint
consisting of 2,048 bits, in respective classes was computed.
BitterSweetForest to best of our knowledge is the first freely
available KNIME based workflow platform for the community
and will be useful resource for basic taste chemistry related
research as well as new sweet and bitter tasting compounds
discoveries in the industry. Furthermore, the prediction model
was applied to predict both sweet and bitter tasting compounds
from natural products (Banerjee et al., 2015). The approved
drug set from the DrugBank (Wishart et al., 2017) dataset
was also predicted and it was found that most of the drugs
tend to taste bitter. The prediction on oral toxicity dataset
from ProTox (Drwal et al., 2014), reveals that most toxic
compounds are bitter in taste. From this study, it could be
inferred that drugs as well as toxic compounds do exhibit
bitter specific features. This will be indeed interesting to
explore, if quantification of bitterness can be used to define
both therapeutic as well as toxic endpoints in a chemical
structure.

The KNIME workflow for BitterSweetForest classifier will be
made available for download via the link http://bioinformatics.
charite.de/sweet/.
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