
 1 

  

 

 

Activation and molecular recognition of the GPCR rhodopsin –  

Insights from time-resolved fluorescence depolarization and single molecule 

experiments 

 

Tai-Yang Kim, Thomas Schlieter, Sebastian Haase, and Ulrike Alexiev 

 

Physics Department, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany 

 

 

 

 

Correspondence:  Dr. Ulrike Alexiev, Physics Department, Freie Universität Berlin, 

Arnimallee 14, D-14195 Berlin, Germany, Phone: +49-30-838-55157,    

Fax: +49-30-838-56150, email: alexiev@physik.fu-berlin.de 

 

 

 

 

Keywords:  

 

GPCR, visual phototransduction, rhodopsin, GPCR helix 8, protein dynamics, time-resolved 

fluorescence depolarization, fluorescence anisotropy, surface potential, single particle 

tracking  

 

 

 

 

 

 

 

 

 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/199415141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

Abstract 

 

 

The cytoplasmic surface of the G-protein coupled receptor (GPCR) rhodopsin is a key 

element in membrane receptor activation, molecular recognition by signaling molecules, and 

receptor deactivation. Understanding of the coupling between conformational changes in the 

intramembrane domain and the membrane-exposed surface of the photoreceptor rhodopsin is 

crucial for the elucidation of molecular mechanism in GPCR activation.  As little is known 

about protein dynamics, particularly the conformational dynamics of the cytoplasmic surface 

elements on the nanoseconds timescale, we utilized time-resolved fluorescence anisotropy 

experiments and site-directed fluorescence labeling to provide information on both, 

conformational space and motion. We summarize our recent advances in understanding 

rhodopsin dynamics and function using time-resolved fluorescence depolarization and single 

molecule fluorescence experiments, with particular focus on the amphipathic helix 8, lying 

parallel to the cytoplasmic membrane surface and connecting transmembrane helix 7 with the 

long C-terminal tail.  
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Introduction 

 

Rhodopsin is the photoreceptor involved in the signaling process that eventually converts a 

photon into a visual response in vertebrates (Sakmar 2002). Specifically, bovine rhodopsin 

consists of a polypeptide chain of 348 amino acids known as opsin, folded into a seven 

transmembrane (TM) -helical motif, the main structural GPCR signature, interconnected by 

hydrophilic extramembraneous loops (Fig.1). The visual receptor rhodopsin was the first 

GPCR with a known X-ray crystal structure (Palczewski et al. 2000; Li et al. 2004). The 

receptor binding site contains the chromophore 11-cis-retinal covalently bound to K296 in 

TM helix 7 via a protonated Schiff base linkage, having E113 in TM helix 3 as its primary 

counter-ion (Sakmar et al. 1989). This salt-bridge maintains the inactive conformation of the 

rhodopsin dark state. GPCRs share highly conserved residues (80–100%), such as the 

sequence motifs D(E)RY in TM helix 3 and NPxxY in TM helix 7, and a stabilizing Cys–Cys 

disulfide bond (Fig.1), which all play important functional roles (Ballesteros et al. 2001; 

Rader et al. 2004). Thus, the large rhodopsin-like GPCR subfamily A is thought to operate 

through similar conserved activation mechanisms (Smith 2010; Deupi and Kobilka, 2010).  

 

The retinal molecule in rhodopsin acts as an inverse agonist until photoactivation of the 

receptor by light absorption induces its isomerization to its all-trans configuration. Photo-

activation results in retinal isomerization from 11-cis to all-trans on the femtosecond time 

scale and deprotonation of the nitrogen in the SB group in the metarhodopsin-I (MetaI) to 

metarhodopsin-II (MetaII) transition with internal proton transfer to E113 (Jager et al. 1994; 

Kukura et al. 2005; Ludeke et al. 2005; Okada et al. 2004). Proton transfer to E113 

corresponds to binding of a cationic part of diffusible ligands to other rhodopsin-like receptors 

(Elling et al. 1999). These events initiate conformational and H-bonding changes in the 

receptor and proton uptake by rhodopsin that result within milliseconds in the formation of 

the active photoproduct MetaII, which is capable to interact via its extramembraneous 

cytoplasmic loops with the signaling protein transducin (GT), a member of the G-protein 

superfamily (Fig. 1) (Sakmar 2002). The cytoplasmic TM helix 3/TM helix 6 network (Fig. 1 

and 3), including glutamic acid in position 134 (E134) of the conserved E(D)RY motif at the 

cytoplasmic end of TM helix 3, is supposed to be involved in proton uptake. The ERY motif 

was shown to act as an autonomous protonation switch depending on lipid interaction 

(Madathil and Fahmy 2009). Protonation of E134 in MetaII has been recently confirmed by 

FTIR spectroscopy (Vogel et al. 2008). The active state MetaII is formed through a complex 
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cycle of a series of intermediates, including bathorhodopsin, lumirhodopsin, and MetaI, which 

are formed after retinal isomerization on the picosecond to millisecond time scale (Fig. 1C). 

These photointermediates are mainly distinguished by the spectroscopic properties 

(absorption maximum (λmax)) of their retinal absorption band. As a measure for the 

equilibrium between MetaII and its inactive precursor MetaI, the accompanying large spectral 

shift of λmax(MetaI) = 480 nm to λmax(MetaII) = 380 nm (Fig. 1E), indicative for the 

deprotonation of the retinal Schiff base linkage, is often used in spectroscopic studies 

(Kirchberg et al. 2010; Mahalingam et al 2008). The rhodopsin activation process leads to 

large-scale conformational changes in the protein (Farrens et al. 1996; Hubbell et al. 2003; 

Kim et al. 2009; Kirchberg et al. 2010; Knierim et al. 2008; Lehmann et al. 2007; Park et al. 

2008; Scheerer et al. 2008), which involve helix motions and eventually trigger a cascade of 

biochemical reactions known as the visual phototransduction cascade (Arshavsky et al. 2002). 

Molecular recognition of GT by MetaII induces subunit dissociation of the heterotrimeric G-

protein, amplifying the light signal (Fig.1D). The enzymatic cascade of phototransduction can 

be viewed as a highly complex system of interacting functional cycles consisting of the 

rhodopsin (receptor) cycle, transducin (G-protein) cycle, phosphodiesterase (PDE) (effector) 

cycle, cyclic guanosine monophosphate (cGMP) and Ca
2+

 (second messenger) cycle as well 

as the proteins/cycles involved in deactivation (rhodopsin kinase and arrestin) and 

regeneration (retinoid cycle) of rhodopsin (Fig.1D) .   

 

The macromolecules involved in phototransduction are embedded or attached to the surface 

of the disk membranes or plasma membrane of rod outer segments (ROS). These segments, 

which are highly differentiated neurons acting as photoreceptor cells, contain up to 1000-2000 

distinct disk-like organelles (disk) enclosed by the plasma membrane (Fig.1A). The main 

protein (~90%) of the bilayered disk membranes is rhodopsin. About half of the disk 

membrane area is covered with rhodopsin resulting in a high protein to lipid ratio (1: 67 for 

bovine rhodopsin (Daemen and Bonting 1969)). The average number of rhodopsin molecules 

per disk is in the order of 10
4
-10

5
, while the concentration of the G-protein transducin in the 

ROS is  ~500 µM (Pugh and Lamb 2000). A single photon can activate up to ~3000 

transducin molecules through the catalytic activity of the light-activated rhodopsin (MetaII) 

molecule and a single PDE molecule might activate a maximum of ~2000 cGMP molecules 

resulting in amplification factors of more then six orders of magnitude. Eventually, cGMP 

mediated ion channel closure results in hyperpolarization of the plasma membrane leading to 

the nerve impulse enabling vision. 
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Understanding of how retinal isomerization in rhodopsin and binding of diffusible ligands in 

other GPCR is coupled to receptor activation requires investigation of the following 

questions: (1) How does the conformational change in the ligand binding pocket propagate to 

and manifest itself at the cytoplasmic face of the receptor? (2) What are the electrostatic 

changes, either vertical or horizontal to the membrane normal, associated with these 

conformational changes? (3) How does packing of the receptor in the membrane and its 

lateral diffusion affect signal transduction? In this review, we provide an update on recent 

advances in understanding rhodopsin dynamics and function, with particular focus on the 

amphipathic helix 8, lying parallel to the cytoplasmic membrane surface and connecting TM 

helix 7 with the long C-terminal tail. 

 

 

 

Protein dynamics at the cytoplasmic face of rhodopsin 

 

 

Time-resolved fluorescence anisotropy as a tool to probe protein dynamics 

Protein motions, particularly their conformational dynamics, regulate and often constitute 

protein function. Dynamics and conformational changes in proteins occur on a wide range of 

time scales, from subpicoseconds to seconds or even longer. A large variety of experimental 

and theoretical techniques aim at probing internal dynamics of proteins, with a particular 

focus on the picosecond to microsecond time scale. For retinal proteins, such as visual 

rhodopsin, bacteriorhodospin, and sensory rhodopsin, various techniques comprising X-ray 

studies and electron crystallography on trapped intermediates, as well as time-resolved EPR, 

different NMR-techniques, mutagenesis studies, FTIR and fluorescence spectroscopy 

including time-resolved fluorescence depolarisation and molecular dynamics (MD) 

simulations have provided much insight into conformational changes and internal dynamics of 

these proteins (e.g. Alexiev et al. 2003; Brown et al. 2002; Cai et al. 1999; Crocker et al. 

2006; Dunham and Farrens 1999; Dutta et al. 2010; Ernst et al. 2000; Farrens et al. 1996; 

Hubbell at al. 2003; Imamoto et al. 2000; Itoh et al. 2001; Kim et al. 2009; Kim et al. 2007; 

Klare et al. 2004; Klein-Seetharaman et al. 1999; Lehmann et al. 2007; Luecke et al. 1999; 

Oka et al. 1999; Radzwill et al. 2001; Sass et al. 2000; Schroder et al. 2005; Subramaniam and 

Henderson 2000; Vonck 2000, Ye et al. 2010, Ahuja et al.2009, Cordomi et al. 2008). 
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Fluorescence spectroscopy in combination with site-directed fluorescence labeling has 

become an established tool to investigate the dynamics and interactions of biomolecules. In 

particular, time-resolved fluorescence anisotropy experiments provide information on both, 

conformational space and motion of a fluorophore (Munro et al. 1979; Juszczak et al. 1997). 

Because this probed dynamics of the dye is affected by the motion of the protein segment to 

which it is covalently attached, the anisotropy decay curve yields information on global and 

local protein dynamics as well as on the protein structure and conformational changes. 

Fluorescence anisotropy decay measurements are uniquely suited to obtain direct information 

on the local dynamics of unordered interhelical loop domains on the picosecond and 

nanosecond timescale. The conformational flexibility and motion of interhelical 

extramembraneous loops are of particular interest as they play a key role in protein-protein 

interactions involved in GPCR and G-protein activation, GPCR phosphorylation and 

deactivation. We have successfully applied this approach to the retinal proteins visual 

rhodopsin and bacteriorhodopsin, where we assigned an anisotropy component to a surface 

loop motion (Alexiev et al. 2003; Mielke et al. 2002), which allowed for the identification of 

protein conformational changes (Alexiev et al. 2003; Kim et al. 2009; Kirchberg et al. 2010).  

 

The basic principle of fluorescence anisotropy relies on the excitation of the dye molecules in 

solution by a short (in our case 1.5 picosecond (full width half maximum)) polarized laser 

pulse resulting in photoselection of those dye molecules having their absorption transition 

dipole moments oriented along the direction of the electric field vector of the polarized 

exciting light (Fig. 2A inset). In Figure 2 B the transition dipole moment of the chromophore 

is indicated in the chemical structure of the dye fluorescein. After a period of time t, during 

which the dye has undergone rotational diffusion, the polarization of the emitted light is 

measured. Rotational diffusion changes the direction of transition dipole moments and the 

anisotropy measurement reveals the angular displacement of the chromophore that occurs 

between absorption and emission of a photon. The fluorescence anisotropy r(t) at time t after 

excitation of the fluorophore is defined as  
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where III(t) and I(t) are the measured parallel and perpendicular fluorescence intensities, 

respectively, with respect to the field vector of the exciting light pulse (Fig. 2A). The decay of 
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the time-resolved anisotropy is commonly described with an exponential decay model 

function yielding a decay time constant or rotational correlation time, which is determined 

by the rotational diffusion coefficient. The angular displacement is dependent on the rate and 

extent of rotational diffusion. A small fluorescent dye (~500 Da), which tumbles free in 

solution depolarizes very rapidly within the time scale of the fluorescence lifetime (Fig. 2B), 

e.g.  with a rotational correlation time of about 100-200 ps for fluorescein in aqueous solution 

(Alexiev et al. 2003). Larger molecules such as the purified rhodopsin molecule in detergent 

solution (~40000 Da) depolarize with slower time constants, in this case with a rotational 

correlation time of about 50 ns (Mielke et al. 2002). Thus, depolarization depends on the size 

and shape of the rotating molecule as well as on the viscosity of the solvent. For rhodopsin 

disk membrane fragments, the rotational correlation time due to the tumbling of the whole 

membrane is on the millisecond time scale and thus far out of the fluorescence lifetime scale 

(about 4-10 ns) of the fluorophores used (Alexiev et al. 2003). This leads to an incomplete 

depolarisation on the observation timescale defined by the fluorescence lifetime of the 

fluorophore (Fig. 2). 

When the fluorescent dye has been covalently attached to the protein (e.g. via a single 

cysteine residue (Alexiev et al. 2003, Moeller and Alexiev 2009)), the motional freedom of 

the dye, i.e. the extent of rotational diffusion, is restricted due to interactions with the 

surrounding protein constituents. In addition, rotational diffusion may occur not only because 

of the tumbling motion of the whole molecule but also because of the (faster) motion of the 

protein segment to which it is attached, in the case at hand to the cytoplasmic loop segments 

of rhodopsin. Thus, the orientational dynamics of the dye is also affected by the local 

flexibility of the protein. As a consequence, we will measure a time course of fluorescence 

depolarisation r(t) for the attached fluorescent dye that exhibits a multiexponential anisotropy 

decay - in contrast to the simplest case of isotropic rotational diffusion of the fluorophore free 

in solution, where the anisotropy shows a monoexponential decay to zero (Fig. 2B).  Figure 

2C shows as an example the anisotropy decay curve of the fluorophore fluorescein covalently 

attached to the cysteine residue in position 316 on the cytoplasmic surface of rhodopsin in 

disk membranes. Two anisotropy decay components and a final anisotropy r were observed. 

The fastest rotational correlation time is in the time range for the rotational diffusion of the 

fluorophore itself (1=0.2ns). The second decay time 2 describes the contribution of the 

cytoplasmic segment motion to the rotational diffusion of the dye and its value is about 3 ns. 

For comparison, a peptide with a size of about 10 amino acids would result in a rotational 

correlation time in the order of 1 ns (Alexiev et al. 2003). Further depolarisation on the 
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timescale of the fluorescence lifetime was not observed due to the size of the membrane and 

the resulting slow depolarisation in milliseconds. The amplitudes  of the decay components, 

which reflect the extent of the rotational diffusion for a given anisotropy decay component, 

can be used as a measure of the conformational space for that motion. In the simplest way, the 

amplitude of the loop component can be expressed as a relative value 2’= 2/(2+r), termed 

relative mobility in our experiments (Alexiev et al. 2003). A small amplitude  reflects a 

small conformational space and a high steric restriction by the surrounding protein 

constituents. 

 

To extract real structural information from the anisotropy curves is not straightforward, 

however. Several empirical models have been proposed to facilitate the interpretation 

(Kinosta et al. 1977; Szabo 1984; Wallach 1967; Lipari and Szabo 1980). Aiming at an 

atomistic description, a first-principle simulation approach in direct comparison to the 

experimental values allowed for an extraction of the individual contributions to the 

depolarization and for analyzing of the dye protein interactions at atomic detail (Schroder et al. 

2005).  Our empirical assignment of the experimental anisotropy decay components to the 

individual contributions leading to depolarization (Alexiev et al. 2003) was underscored by 

the results from the MD simulations (Schroder et al. 2005). A common model to describe 

restricted rotational diffusion is the “wobbling-in-a-cone” model (Kinosta et al. 1977). In this 

model, the transition dipole is assumed to diffuse freely inside a cone, fixed within the 

molecular frame. Extension of this model for the local flexibility of protein, in our case the 

loop dynamics, which affect cone orientation, and possibly cone angle (Fig. 2E), leads to the 

“cone-in-a-cone“ model (Schroder et al. 2005). Assuming that the local dye motion and the 

protein dynamics are uncoupled, the following equation was derived  

 

                                                                                                                                 (2) 

 

Here, r0 is the initial anisotropy, G describes the isotropic overall tumbling motion of the 

protein-dye complex. A1 and A2 are the parameter describing the degree of motional 

restriction of the dye and the flexible protein segment, respectively. A is related to the 

semicone angle  by                
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For isotropic diffusion with a monoexponential decay, the parameter A vanishes, while for 

non-isotropic diffusion, e.g. loop diffusion of rhodopsin restricted by the constituents of the 

protein surface, a small cone angle (high steric restriction) give rise to large values of A. 

Analysis of the dye and the protein motion in the simulations revealed which part and which 

motion of the protein is actually probed by the experiment. Furthermore, the simulations 

allowed to test whether the attachment of the fluorescent dye perturbs the protein dynamics or 

not, a prerequisite to perform these types of spectroscopic measurements. For the investigated 

cytoplasmic loop of the 7-helix transmembrane protein, the perturbation was quantified and 

found to be small (Schroder et al. 2005).  

 

Fluorescence pump-probe measurements, where processes  in the micro- and millisecond time 

domain (rhodopsin activation) are initiated by a nanosecond light pulse (pump flash) and 

monitored by time-resolved fluorescence depolarisation and lifetime measurements after a 

picosecond probe pulse, extend the dynamics experiments to the reaction coordinate of 

protein function (Kim et al. 2007). Dynamic information, as obtained from these experimental 

approaches, can not be obtained from x-crystallography because x-ray structures are 

inherently static, whereas proteins are inherently dynamic. When applied to protein-protein 

interactions, which underlie the majority of biologically important signalling events in the cell, 

the data obtained from the time-resolved fluorescence depolarisation and fluorescence pump-

probe measurements provide unique dynamic information about how the formation process of 

larger signalling complexes takes place. 

 

Nanoseconds diffusional dynamics of helix 8  

Since the first x-ray crystal structure of rhodopsin (Palczewski et al. 2000) resolved the forth 

cytoplasmic loop between TM helix 7 and the two palmitoylated cysteines 322 and 323 as a 

helical structure lying parallel to the membrane surface (Fig.1, 3), it was anticipated that this 

helix 8 (H8) plays an important role in the GPCR signalling process due to its amphipathic 

properties. Located at the start of the C-terminal tail of class A GPCRs, H8 might serve as a 

transmitter of signalling states or is itself involved in regulated C-terminal structures. Indeed, 

it was shown that H8 may act as a membrane dependent conformational switch (Krishna et al. 

2002). Coupling of H8 to the ligand binding pocket is mediated by the interhelical network 

(including TM helix 1, TM helix 2 and TM helix 7) that connects D83 (TM helix 2) to the 

conserved NPxxY motif in TM helix 7 preceding H8. In the dark (inactive) state of rhodopsin, 

residue F313 at the start of H8 is in contact with the NPxxY motif via residue Y306 (Fig. 4). 
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D83 in TM helix 2 connects, via a H-bonding network, the ligand binding pocket to the 

NPxxY(x)F motif (Fig. 1,3).  

To analyze the structural dynamics of H8 in the different states of the functional cycle of 

rhodopsin, we employed time-resolved fluorescence spectroscopy combined with site-specific 

fluorescence labeling of C316 in H8 (Fig. 2,3) (Alexiev et al. 2003; Kim et al. 2009; 

Kirchberg et al. 2010; Lehmann et al. 2007; Mielke et al. 2002). Residue 316 resides on the 

solvent exposed surface of H8 (Fig. 1B, 2D, 3B). A direct correlation of H8 conformational 

changes with the active receptor state MetaII was shown by FTIR/fluorescence cross-

correlation spectroscopy (Lehmann et al. 2007). The change in fluorescence intensity of 

certain fluorescence probes attached to H8 via C316 mirrors the equilibrium between the 

MetaI and MetaII state (Kim et al. 2009; Lehmann et al. 2007) and indicates environmental 

changes at the cytoplasmic surface of rhodopsin in the vicinity of H8, which are connected to 

the transition into the active receptor state (Fig. 4A). In combination with FTIR spectroscopy, 

the coupling between conformational and H-bonding changes in the intramembrane region 

around the retinal and the environment of H8 can be addressed (Lehmann et al. 2007). In 

particular, surface alterations around H8, monitored by intensity changes of the fluorescence 

reporter group at H8 (Fig. 4A), were shown to be highly correlated with H-bonding to Asp83 

proximal of retinal Schiff base and with MetaII specific 1643 cm
-1

 IR absorption changes, 

indicative of a partial loss of secondary structure of H8 upon MetaII formation (Lehmann et al. 

2007). These correlations were disrupted by limited C-terminal proteolysis but maintained 

upon binding of a GT -subunit derived peptide, which stabilizes the activated receptor state 

MetaII.  The results indicate that additional C-terminal tail contacts play a functionally crucial 

role in keeping H8 in a position in which its environment is strongly coupled to the retinal 

binding site near the Schiff base (Lehmann et al. 2007).  

 

To provide an in-depth characterization of the internal dynamics of H8 as a function of the 

ligand-binding pocket, i.e. in the absence and presence of retinal, after light activation in the 

Meta-II state, as well as after phosphorylation, we systematically analyzed the time-resolved 

anisotropy experiments (Alexiev et al. 2003, Kim et al. 2009, Kirchberg et al. 2010). Figure 5 

summarizes the contributions of H8 dynamics in the different states of rhodopsins functional 

cycle. 

Our experiments revealed that in the dark state of rhodopsin the restriction of H8-diffusional 

motion by the constituents of the protein surface is dependent on pH (Alexiev et al. 2003). As 

this pH dependence coincides with the pH-dependence of the MetaI/MetaII equilibrium (Fig. 
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4), we suggested an alkaline “unlock” of H8 in the dark state possibly preventing activation of 

rhodopsin (Alexiev et al. 2003). A high mobility of H8 in the dark state corresponds with a 

shift of the MetaI/MetaII equilibrium towards the inactive precursor state MetaI (Fig. 4B).  

Upon formation of MetaII, the active receptor state, the steric restriction and rotational 

correlation time of H8 diffusional motion increases, compatible with additional contacts 

mediated by the C-terminal tail as indicated from the FTIR experiments (Lehmann et al. 

2007). The Perrin plot shown in Figure 6 clearly demonstrates the slower rotational diffusion 

of H8 in MetaII over the temperature range between 0 and 37°C. As fluorescence 

depolarisation depends on size and shape of the moving segment as well as on solvent 

viscosity, slower H8 rotational diffusion indicates an increase in size, a shape change and/or 

an increase in solvent viscosity. Together with the results from FTIR measurements 

(Lehmann et al. 2007), it seems very likely that an increase in size, due to additional contacts 

with the long C-terminal tail, as well as a shape change based on partial loss of H8 secondary 

structure are responsible for the slower diffusion of H8 in MetaII. The former conclusion is 

also supported by the finding of a reduced accessibility of H8 from the solvent in MetaII 

(Mielke et al. 2002) when probed with a charged collisional quencher (I
-
). Thus, our results 

indicated that in the active MetaII state the cytoplasmic H8 is shielded (Kirchberg et al. 2010, 

Mielke et al. 2002) and kept in position by additional contacts from the long C-terminal tail 

(Lehmann et al. 2007), which folds back toward H8 (Fig. 3). This results is important as in the 

x-ray crystal structures (Okada et al. 2004; Palczewski et al. 2000; Park et al. 2008; Salom et 

al. 2006; Scheerer et al. 2008) the long C-terminal tail is resolved only in the dark state of 

rhodopsin (Fig. 3).  

Deactivation of rhodopsin is initiated by phosphorylation of serin and/or threonine residues at 

its C-terminal tail by rhodopsin kinase, followed by high-affinity binding of visual arrestin to 

phosphorylated light-activated rhodopsin (Gurevich and Benovic 1995; Kuhn 1982; Mendez 

et al. 2000). Upon light-activation of phosphorylated rhodopsin we observed only minor 

changes in H8 diffusional properties. Both, the slower rotational diffusion of H8 and the 

increased steric restriction of diffusion that are specific for active MetaII are nearly absent in 

phosphorylated MetaII (Kirchberg et al. 2010). This indicates that phosphorylation of the C-

terminal tail probably disrupts the MetaII-specific contacts between H8 and the C-terminus, 

which subsequently lead to a de-coupling between ligand binding pocket and H8 and to a 

destabilization of the active cytoplasmic MetaII conformation. Our interpretation agrees with 

experimental data and simulations (Gibson et al. 2000; Hamer et al. 2003) showing partial 

rhodopsin (MetaII) deactivation upon rhodopsin phosphorylation. Thus, phosphorylation of 
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the long C-terminal tail serves two functions, 1) allowing for high-affinity arrestin binding, 

and 2) decoupling of H8 from the intramolecular interactions with the ligand binding pocket 

and promoting H8 accessibility from the solvent. Decoupling of H8 dynamics might facilitate 

arrestin binding in a sense that it serves as a transmitter of the receptor signalling state to 

interacting arrestin molecules in an early encounter state.  

H8 structure and dynamics is also sensitive to the absence of the ligand retinal in the binding 

pocket, i.e. the opsin state. Both in functional rhodopsin micelles and in disk membrane 

fragments we observed an increase in H8 rotational diffusion upon retinal removal (Fig. 7; 

Kirchberg et al. 2010). The faster rotational correlation time of H8 can be explained by a 

smaller size of the diffusing entity including different shape or a decrease in solvent viscosity. 

In either case, H8 motion is directly coupled to the change in the ligand binding pocket 

(Kirchberg et al. 2010). While in detergent micelles the motion of H8 in the retinal-devoid 

state is less restricted than in the rhodopsin dark state, the opposite effect was observed for 

opsin membranes (Fig. 7). It seems that the membrane structural organization induces 

contacts between H8 and cytoplasmic surface constituents, probably the long C-terminal tail, 

which mimics the shielding of H8 and the reduced conformational space indicative of the 

active MetaII state. It is tempting to speculate that this structural arrangement contributes to 

the formation of an active opsin conformation at low pH values in membranes (Vogel et al. 

2007). The acid pH-induced active conformation of opsin was not observed in detergent 

micelles. These observations support also the interpretation of the opsin structure from 3D 

crystals being an activated receptor state (Park et al. 2008). 

  

Due to its amphipathic nature, H8 dynamics is also assumed to be important for the folding 

pathways of GPCRs. Knowledge about the molecular folding process of mammalian 

membrane proteins is critical. In humans, membrane proteins constitute about one-third of all 

proteins (Takeda et al. 2002).  Failure of a membrane protein to fold into its native three-

dimensional structure can impair cell functions and cause diseases (Sanders and Myers 2004), 

such as retinitis pigmentosa, where misfolding of rhodopsin has been implicated in 

contributing to disease.  We could show that H8 dynamics is highly sensitive to even the 

slightest conformational change in the protein core, i.e. the retinal binding pocket, upon 

unfolding with SDS (Dutta et al. 2010a; Dutta et al. 2010b). Structural changes that involve 

H8 in the folding process may have long ranging effects due to the conserved NPxxY(x)F 

motif in TM helix 7 preceding cytoplasmic H8. From the 7-helix transmembrane retinal 

protein bacteriorhodopsin a double mutant is known, which displays long-range effects 
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between the cytoplasmic end of TM helix 7 and the retinal binding pocket (Alexiev et al. 

2000; Heyne et al. 2000), supporting the idea that subtle changes at this C-terminal region 

may affect properties of the protein core. Exchanging the third cytoplasmic loop of 

bacteriorhodopsin with the third intracellular loop of the aminergic 2b-adrenergic receptor 

also leads to long-range effects from the cytoplasmic surface to the H-bonding networks in 

the extracellular part of the membrane protein (Jaakola et al. 2005), emphasizing the highly 

coupled intramolecular interactions that are capable of  “transducing” structural perturbations 

(e.g. signals) across the cellular membrane. Surface charge changes may also contribute. For 

example, we have shown that conformational changes of membrane surface elements in 

bacteriorhodopsin were dependent on surface charge changes (Alexiev et al. 2003; Alexiev et 

al. 1995). 

 

Electrostatics at the cytoplasmic face of rhodopsin  

 

Using the surface potential dependence of the proton concentration near a charged membrane 

surface, we evaluated the electrostatic changes upon rhodopsin activation and opsin formation 

by a pH-sensitive reporter group directly bound to the protein surface  (Moeller and Alexiev 

2009). This approach extends earlier experiments, where the partitioning of spin-labeled 

amphiphiles into the interfacial region of rhodopsin was used to extract information about 

rhodopsin surface electrostatics (Cafiso and Hubbell 1980; Hubbell 1990; Tsui et al. 1990). 

As the difference between surface pH and the pH value in the buffered bulk solution is related 

to the surface potential at a given salt concentration, the surface charge density can be 

calculated from the Gouy-Chapman equation (Moeller and Alexiev 2009). Summarizing our 

results (Moeller and Alexiev 2009), we find that the negative surface charge density in the 

dark state of rhodopsin is lowered to more positive values upon MetaII formation amounting 

to a total charge change of about three negative charges on the cytoplasmic surface including 

surrounding lipids. Comparison with experiments on solubilized rhodopsin in detergent 

micelles reveals the contribution of about two negatively charged lipids to the observed 

charge change, leaving about one charge as the net charge change in rhodopsin.  Thus, our 

results clearly demonstrate that the surface charge change upon rhodopsin activation 

combines contributions from negatively charged lipids and the protein itself.  One possibility 

to explain the net charge change of rhodopsins cytoplasmic surface is by the protonation of 

E134 in the second cytoplasmic loop. Several studies published in the past point to a 

protonation of this residue in MetaII (Fahmy et al. 2000; Arnis and Hofmann 1993; Arnis et al. 

1994; Mahalingam et al. 2008). In addition, theoretical acid-base equilibria calculations in 
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rhodopsin (Periole et al. 2004) as well as experimental evidence (Madathil and Fahmy 2009) 

shows that especially E134 is sensitive to its environment. Changing from a hydrophilic to a 

more hydrophophic environment leads to a change in the protonation state of E134 at 

physiological pH with a pKa shift from 5.3 to 8.0 (Periole et al. 2004), resulting in a positive 

charge change.  

Further information about surface properties can be extracted from the intrinsic pKa values (i.e. 

pKa in the absence of electric potential) of the bound pH-sensitive reporter group in the 

different states of rhodopsin. Both, in membrane suspension and in mixed rhodopsin/detergent 

micelles, an increase in the intrinsic pKa value of 0.2-0.3 units upon light-activation of 

rhodopsin was observed. Using a thermodynamic cycle for the binding of fluorescein to the 

cytoplasmic surface of rhodopsin one can calculate the cost of electrostatic free energy G 

for the pH-indicator dye to be transferred from solution to the surface of the protein. The 

observed increase in G is due to the electrostatic interactions of the pH-indicator dye with 

the protein backbone and other amino acid side chains and changes in the interaction with the 

aqueous environment. The further increase in G of about 1 kJ/mol upon light activation for 

both, the rhodopsin membrane suspension and rhodopsin micelles, suggests a specific surface 

change intimately connected with the protein surface properties in Meta II.  The change in 

protein surface properties results from structural changes inducing a change in the 

electrostatic interactions of the pH-indicator dye with the protein backbone and/or from a 

change of the properties of the aqueous environment at the protein/water interface. The 

reversal of the coupling free energy value back to the dark state level upon formation of the 

retinal devoid opsin state parallels the observation for the surface charge density changes 

(Moeller and Alexiev 2009). Both, the surface charge density of the opsin state and the 

coupling free energy change for the pH-indicator dye, provide further evidence that the 

cytoplasmic surface properties after Meta II decay almost resemble those of the dark state 

(Moeller and Alexiev 2009, Klein-Seetharaman et al. 1999). This observation is in line with 

fluorescence pump-probe experiments revealing H8 environmental changes along the 

rhodopsin reaction coordinate (Kim et al. 2009). These experiments show the existence of 

multiple conformational substates within the lifetime of MetaII and a reversal back to the dark 

state level upon opsin formation (Fig. 5). 
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Surface properties, H8 dynamics and signalling state of rhodopsin 

 

Combining rhodopsin surface properties (Moeller and Alexiev 2009; Kim et al. 2009; 

Lehmann et al. 2007) and H8 dynamics data (Alexiev et al. 2003; Kim et al. 2009; Kirchberg 

et al. 2010) the following picture emerges and is highlighted in Figure 5. Changes in surface 

properties, such as surface potential, global conformational changes and changed interactions 

with the aqueous environment at the cytoplasmic rhodopsin surface occur upon formation of 

the active receptor state MetaII. These changes are reversed upon formation of the retinal-

devoid opsin state. MetaII conformation consists of a sequence of conformational substates 

subsequently leading to the opsin state. While proton uptake from the aqueous bulk medium 

parallels MetaII formation in disk membranes, kinetics of slow transient proton exchange 

reactions between the cytoplasmic face of rhodopsin and the aqueous bulk phase seem to 

correlate with the appearance of a spectrally silent conformational substate of MetaII (Kim et 

al. 2009). The intrinsic motion of H8 and its steric restriction, i.e. the diffusional dynamics on 

the nanosecond timescale, is distinct for the inactive dark and the light-activated MetaII state 

of rhodopsin with medium dynamics and medium steric restriction in the dark state and slow 

dynamics and high steric restriction in MetaII (Fig.5A). These receptor state specific 

“dynamic signatures” of H8 are in line with results from a mutagenesis study, where an 

interplay of the ligand retinal with the conserved NPxxY(x)5,6F motif preceding H8 was 

shown, and which suggested that changes in the Y306-F313 interaction lead to a proper 

realigning of H8 after rhodopsin light-activation (Fritze et al. 2003). The slower dynamics of 

H8 and its higher motional restriction by the protein surface in the active receptor state MetaII 

as determined from our fluorescence anisotropy decay measurements qualitatively agrees with 

results from EPR measurements (Kusnetzov et al. 2006). These measurements show that upon 

light-activation the motion of the spinlabel attached to position C316 becomes more immobile, 

independent of the receptor environment (i.e. lipid bilayers or detergent micelles). This shift 

towards a more immobile state of the spinlabel compares to the observed increase in motional 

restriction of H8 in MetaII in our fluorescence anisotropy decay curves, which was also 

detected in both, the native disk membrane and detergent solubilized rhodopsin (Kim et al. 

2009, Kirchberg 2010). As fluorescence anisotropy decay measurements can distinguish 

between the different modes of motion, i.e. the reporter group and H8 motion, our data show 

that indeed H8 motion itself is sterically restricted and H8 becomes more immobile. 

The above discussed surface properties and their changes probably contribute to the different 

H8 rotational diffusion times observed in the dark and in the active MetaII state. Taken 
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together, our data suggest a strong coupling of H8 dynamics and accessibility, cytoplasmic 

surface properties and intramolecular interactions with the ligand binding pocket in the dark 

and in the active MetaII state. However, decoupling of H8 motion from intramolecular 

interactions is observed upon phosphorylation of the C-terminal tail (Kirchberg et al. 2010) 

and is thus connected to receptor deactivation. This seems to be reversed in the opsin state 

(Kirchberg et al. 2010). While surface properties of the opsin state, such as surface potential, 

are similar to those observed in the dark state, H8 rotational diffusion is not. Here again, H8 

dynamics is specific for the opsin state with fast motion compared to the dark state and the 

coupling to intramolecular interactions with the ligand binding pocket is restored (Kim et al. 

2009, Kirchberg et al. 2010). In conclusion, our findings strongly support the role of H8 as a 

transmitter of GPCR signalling states and its involvement in regulated C-terminal structures.  

 

 

Structural organization of Rh in the disk membrane and impact on signaling 

 

The different conformational dynamics of H8 in the opsin state, depending on whether the 

molecule resides in disk membranes or is solubilized in detergent micelles, and the impact of 

the membrane environment on formation of an active opsin conformation at low pH values 

suggest an influence of the packing properties of rhodopsin molecules on signalling. As 

rhodopsin is densily packed in the disk membrane, close interactions between the molecules 

are very likely. The important question is whether self-association of rhodopsin, as 

determined by various techniques, including crosslinking, fluorescence energy transfer and 

modelling (Botelho et al. 2006; Dell'Orco and Schmidt 2008; Kota et al. 2006; Mansoor et al. 

2006; Periole et al. 2007), is connected to the observed formation of oligomers in native rod 

disk membranes (Fotiadis et al. 2003). Formation of oligomers in disk membranes would have 

an enormous implication for phototransduction and visual signalling (Park et al. 2004; Park 

and Palczewski 2005; Chabre and Maire, 2005). The packing properties of rhodopsin in the 

disk membrane and the diffusional characteristics of molecules involved in amplification and 

of effector molecules will clearly affect the timing of events in the complex signal 

transduction cascade. Simulations of stochastic encounters between light-activated rhodopsin 

and GT reveal a clear dependence on rhodopsin packing and lateral diffusion of GT — a 

respective high lateral diffusion coefficient of GT seems to be sufficient to obtain the fast 

responses required, even at high concentrations of immobile rhodopsin molecules (Dell'Orco 

and Schmidt 2008). Single molecule studies can give direct information about how individual 
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molecules move and interact within the cellular context.  We performed a proof-of-principle-

experiment to show the feasibility of our single molecule spectroscopy approach to study the 

time-dependence of the light-triggered interaction between rhodopsin and transducin (Kim et 

al. 2009b). For this experiment we took advantage of the fact that a transducin derived peptide 

of the GT subunit C-terminus recognizes the activated receptor and stabilizes the Meta-II 

state (Kisselev et al. 1999). As the transducin derived peptide has supposedly no affinity to 

dark rhodopsin (Herrmann et al. 2004) but high affinity to light-activated rhodopsin (Kisselev 

et al. 1999) it allows for a clear cut discrimination between the different signalling states, the 

dark and MetaII state. In the classical biophysical approach, the binding of transducin to light-

activated rhodopsin was monitored by kinetic light-scattering experiments (Herrmann et al. 

2004). To study the interaction of individual molecules, we successfully implemented a time-

resolved TIRF (total internal reflection fluorescence) microscopy assay (Kim et al 2009b) to 

observe the activation and biomolecular interaction kinetics of rhodopsin at the single 

molecule level (Fig. 8). After a short flash of light to activate rhodopsin, the interaction 

processes were monitored by single particle tracking (Kim et al 2009b; Kirchberg et al. 2010). 

Fig. 8b shows an example of the single molecule binding assay. The number of spots in the 

image at a given time point, indicative of fluorescently labelled signaling molecules 

(designated pGT-F in Fig. 8b) which are bound to the membrane surface, were counted and 

plotted as a function of time after rhodopsin activation. Without rhodopsin membranes present 

(control) no light induced change of the signaling molecule density was observed. These 

experiments also allowed to follow the lateral mobility of single activated rhodopsin 

molecules. Our initial results on the lateral mobility of MetaII molecules suggest confined 

diffusion and heterogeneous behaviour of the activated rhodopsin in the native rod disk 

membrane, compatible with disk membrane inhomogeneity and a semi-ordered packing of 

rhodopsin at a time scale, which corresponds to the millisecond activation time scale of 

rhodopsin (Kim et al 2009b; Kirchberg et al. 2010). Fig. 8A shows a high-resolution image of 

a flat-spreaded disk from bovine ROS, where transducin peptide binding highlight the rim and 

the indentations of the disk. Using the inherent high spatial information in single particle 

tracking experiments with a resolution of about 20nm, we constructed these so called visits 

maps (Fig. 8A) that allow for an identification of hotspots or places of affine binding at the 

rhodopsin membrane (Kirchberg et al. 2010). Using the imaging approaches described above, 

it is now practicable to image and analyze quantitatively the mobility, interaction pattern with 

signaling and regulatory molecules, as well as the oligomerization state of rhodopsin with 

high spatial and temporal resolution. 
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Figure legends 

 

Figure 1 

 

Models of rhodopsin and the visual phototransduction cascade.  

(A) Schematic of a rod cell. A disk in the rod outer segment (ROS) is high lighted in red. (B) 

Molecular model of rhodopsin based on the x-ray structural model of the inactive dark state 

(pbd-file 1U19 (Okada et al., 2004)). Amino acids belonging to the different interhelical 

networks as described in the text are color coded in orange, magenta, blue and green. The 

chromophore retinal (Ret) is colored in black. Possible phosphorylation sites (serine 334, 

serine 338, serine 343) in the C-terminal (C-term) tail are shown as blue spheres. The cysteine 

316 in H8 (red colored), which is used as a binding site for the fluorescence label is marked 

by a red sphere. (C) Photochemical cycle of rhodopsin. (D) Model of the phototransduction 

cascade. Transducin (GT) and phosphodiesterase (PDE) activation result in cGMP mediated 

ion channel closure facilitating hyperpolarization of the plasma membrane and leading to the 

nerve impulse enabling vision. To terminate the signaling process, visual arrestin (Arr) binds 

to the cytosolic face of rhodopsin, thereby hindering G-protein binding and quenching 

metarhodopsin-II (MII) activity. Phosphorylation of rhodopsins’s serins and/or threonines at 

its C-terminal tail by rhodopsin kinase (RK) is a prerequisite for visual arrestin binding. (E) 

Absorption spectra of rhodopsin in its inactive dark (black) and active MetaII  (red) state. 

Further abbreviations used: Rho-rhodopsin, GTheterotrimeric G-protein transducin, 

PDE*-activated PDE, GTP-Guanosine-5'-triphosphate, GDP- guanosine-5'-diphosphate, 

GMP- guanosine-5'-monophosphate, cGMP-cyclic guanosine monophosphate, P-phosphate 

 

 

Figure 2 

 

Polarized time-resolved fluorescence decays.  

(A) Time courses of the fluorescence intensities III(t) (red) and I(t) (black) of fluorescein at 

37°C in buffer pH 7. The fluorescence lifetime was 3.8 ns. Inset: Scheme of measurement 

principle. (B) Corresponding fluorescence anisotropy decay. The inset shows the chemical 

structure of iodoacteamidofluorescein, the arrow indicates the transition dipole moment of the 

chromophore. (C) Fluorescence anisotropy decay of fluorescein covalently coupled to Cys316 

at the cytoplasmic surface of rhodospin disk membranes at 37°C, 150 mM NaCl, buffer pH 7. 

(D) Structural model of helix 8 (red) with fluorescein (green) covalently bound to Cys316. 

Surrounding transmembrane helices are shown in gray. (E) “Cone-in-a-cone” model. The 

schematic visualizes how protein dynamics is described by the protein segment cone (here H8, 

red)), within which the dye cone (green) freely diffuses (Alexiev et al. 2003; Schroder et al. 

2005). Color coding corresponds to the colors used in (C) and (D). 

 

 

 

Figure 3 

 

Close up of the molecular model of rhodopsin based on the x-ray structure of the inactive dark 

state (pbd-file 1U19 (Okada et al., 2004)). (A) Side view of the cytoplasmic part of rhodopsin. 

The amino acids belonging to the ERY and NPxxY motif and interacting residues as well as 

the hydrophobic residues of H8 are indicated. (B) Top view of the cytoplasmic surface. 

Possible phosphorylation sites (serine 334, serine 338, serine 343) in the C-terminal (C-ter) 

tail are shown as blue spheres. 
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Figure 4 

 

pH-dependence of H8 conformational dynamics. (A) The fluorescence intensity ratio of the 

covalently bound dye measured before and after rhodopsin light activation parallels the pH 

dependence of the MetaI/MetaII equilibrium. (B) H8 mobility changes expressed as semicone 

angles (eq.2,3) as a function of pH (data from Alexiev et al. 2003; Kim et al. 2009). 

 

 

Figure 5 

 

Schematic presentation of the role of H8 in the functional cycle of rhodopsin. Results from 

time-resolved fluorescence depolarization decay, fluorescence pump-probe, and surface 

potential measurements are combined (A) and the derived model is presented in (B). The 

proposed coupling between properties of the ligand binding pocket and H8 dynamics is 

indicated by a dotted red line in (B). 

 

 

Figure 6 

 

Perrin plot of H8 dynamics.  The rotational diffusion time constant of H8 in the inactive dark 

state (black) and in the MetaII state (red) at pH 6 are displayed (data from Alexiev et al 2003; 

Kim et al. 2009).  

 

 

Figure 7 

 

Fluorescence anisotropy decay of fluorescein covalently coupled to Cys316 at the cytoplasmic 

surface of opsin disk membranes at 37°C, 150 mM NaCl, buffer pH 7.5 and opsin micelles at 

20°C, 130 mM NaCl, buffer pH 7.5 (Kirchberg et al. 2010) in comparison to the respective 

anisotropy decay in the inactive dark state. The rotational correlation times of H8 are 

indicated. 

 

 

Figure 8 

 

Single molecule TIRF experiments of rhodopsin disk membranes. 

(A) “Transducin visits maps” highlight the interaction with rhodopsin disk membranes and 

were constructed from the single particle traces (Kirchberg et al. 2010). The shape and 

membrane structure of the disk is clearly visible. (B) Kinetic single molecule binding assay 

for signaling molecules, here with pGT-F (red trace), a fluorescently labeled transducin 

derived peptide, which stabilizes MetaII (Kim et al. 2009b). For comparison, the time trace of 

MetaII formation (A at 380nm) is shown. The schematic shows individual fluorescently 

labelled molecules (white dots) interacting with rhodopsin containing disk membranes. 
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