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ABSTRACT

Carbon 1s photoelectron spectra of CO

molecules in gas phase were recorded in the ten-

der x-ray energy range, from 2.3 to 6.9 keV. The

intensity ratios of individual peaks from ν=0

to 3 within the vibrational progression of the

C 1s photoelectron spectrum were determined

at the various photon energies and are shown

to be strongly affected by the photoelectron re-

coil effect. The experimental vibrational inten-

sity ratios are compared with theoretical predic-

tions at different levels of accuracy. New devel-

opments of the recoil model, using generalized

Franck-Condon factors, rovibrational coupling,

Morse potential energy curves, and accurate an-

gular averaging are presented and applied to the

analysis of the experimental results.
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I. INTRODUCTION

The carbon monoxide molecule has been the

source for many new observations and physical

insights obtained by core-level x-ray ionization

or excitation. As a common diatomic molecule,

its neutral ground state has been characterized

with high precision, and its core-ionized states

have been investigated by numerous experimen-

tal and theoretical works. The carbon 1s pho-

toelectron spectrum of CO is characterized by

a clearly defined single vibrational progression

with levels up to ν=3 easily visible and it is thus

well suited for studying the interplay of the elec-

tronic transitions and changes in the molecular

geometry. In our recent paper [1], the inten-

sity ratios of the peaks (v = 1/v = 0) in the C

1s photoelectron spectrum were obtained over

an extended photoelectron kinetic energy range

from the C 1s ionization threshold up to 1200

eV. In the simplest approximation, once beyond

the resonance effects very close to the threshold,

the vibrational peak ratios in the photoelectron

spectra (referred to as the v-ratios from here

on) are expected to be independent of the elec-

tron kinetic energy. They are expected to be de-

termined by the Franck-Condon factors, which

reflect the changes in molecular geometry upon

core ionization; in this particular case the vibra-

tional progression arises from the contraction of

the C-O bond. The excitation arising from this

source is referred to as “Franck-Condon” exci-

tation.

A more careful inspection of the depen-

dence of the v-ratios on the photoelectron

kinetic energy reveals pronounced oscillations

hundreds of eV above the ionization threshold

and, at even higher energies where these oscilla-

tions dampen, the v-ratios continue to increase

steadily. We have demonstrated by theoreti-

cal modeling [1] that the oscillatory behaviour

of the v-ratios, observed also in several other

molecules [2–4], is caused by photoelectron scat-

tering on neighboring atoms. The outgoing elec-

tron wave from the emitter atom is scattered by

the molecular potential; the scattered wave then

interferes with the original one and, depend-

ing on the wavelength of the electron waves,

this interference leads to periodic suppression

or enhancement of the wave amplitude. The

oscillations in the v-ratio are a manifestation

of that interference pattern, persisting even af-

ter averaging over all electron emission direc-

tions, but the higher order interference terms

at shorter wavelengths (higher kinetic energy)

quickly dampen.

Another effect, superimposed on these oscilla-

tions, is a continuous increase of the v-ratio of

the intensity of the ν=1 peak over ν=0, R10.

This increase is caused by the photoelectron
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recoil effect, where some of the available en-

ergy is transferred into internal motion – vi-

brations and rotations – of the molecule [5–

8]. Upon photoionization, an electron is ejected

with a certain momentum, and the molecular

ion is left with a corresponding equal and op-

posite momentum, referred to as the “recoil”

momentum. Core-level electrons such as C 1s,

which do not participate in molecular bond for-

mation, can be viewed as essentially atomic,

bound to a single atomic nucleus. Crucially

then, the recoil momentum is initially attached

to that particular nucleus, as well as to the cen-

ter of mass of the entire molecule. Simple to-

tal momentum conservation then dictates how

this momentum is shared between the trans-

lational recoil of the entire molecule and the

excitations of the internal degrees of freedom.

Since increasing the photoelectron energy also

increases the recoil momentum, the momentum

and energy transferred to the internal motion

also increases. Quantum mechanically, this is

seen as an increase in the excitation probabili-

ties of higher vibrational levels, in addition to

the Franck-Condon excitations that are always

present when the molecular potential changes,

independently of the photoelectron energy.

The energy range over which the v-ratios of

gas-phase molecules can be investigated is lim-

ited by experimental factors – decreasing pho-

toionization cross-sections, low transmission of

electron analyzers at high energies, difficulties

in obtaining sufficient energy resolution and,

most importantly, lack of suitable x-ray sources

for gas-phase electron spectroscopy. The ear-

lier investigations of photoelectron recoil effects

were carried out at soft x-ray synchrotron radi-

ation beamlines dedicated to gas-phase exper-

iments. The grating monochromators used at

these sources limit the practical photon energy

range to 1500 eV or less. The present study

was carried out at the GALAXIES beamline of

the SOLEIL synchrotron which, by combining a

crystal monochromator with a gas-phase exper-

imental arrangement and with a dedicated high-

energy electron analyzer, dramatically extends

the practicable energy range to about 10 keV –

covering the so-called tender x-ray region. An

advantage of the broader energy range is that it

provides an opportunity to obtain reliable data

on the v = 0 → 2 and v = 0 → 3 transi-

tions, which have not been previously available.

Whereas the intensity for the v = 0→ 1 transi-

tion varies approximately linearly with the pho-

toelectron energy, the photoelectron energy de-

pendence of the v = 0 → 2 and v = 0 → 3

intensities is described by quadratic and cubic

polynomials, respectively, and this behavior be-

comes apparent only at higher energies than

have heretofore been available.
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In the tender x-ray region, the steadily in-

creasing recoil effects are transformed from

slight modifications to the Franck-Condon-

determined vibrational profiles into a major fac-

tor determining the v-ratios. Consequently,

more stringent tests of our current assumptions

are possible and more precise models need to be

implemented. Here we discuss a model to deal

with these theoretical questions and then com-

pare the theoretical predictions with our exper-

imental results. Finally we consider some fur-

ther details and implications of the theoretical

model.

II. THE RECOIL MODEL

A. Recoil energy and excitations

To see how the photoelectron recoil affects

the molecular excitation we consider the ejec-

tion of a photoelectron with kinetic energy Ekin

and linear momentum ~pe from atom A of a di-

atomic molecule AB. Momentum conservation

requires that the whole molecule undergo a mo-

mentum change ∆~pM = −~pe, which leads to a

change in the translational motion of its cen-

ter of mass. This results in an increase in the

average translational energy of the molecule of

∆Etrans = p2e/(2M), where M is the molecular

mass. On the other hand, the recoil energy of

the emitter atom, ∆EA = p2e/(2MA), is larger

than ∆Etrans. The energy difference between

these, which we refer to as Erec, goes into in-

ternal excitation of the molecule and is given in

eq. 1.

Erec = ∆EA −∆Etrans

=
p2e

2M

MB

MA
= Ekin

mMB

MMA
(1)

where m is the electron mass. For a diatomic

molecule this internal excitation divides be-

tween vibrational and rotational excitation ac-

cording to the projection of ~pe on the molecular

axis. Thus

Evib = Erec cos2 θ (2)

Erot = Erec sin2 θ (3)

where θ is the angle between ~pe and the molec-

ular axis.

We see from eqs. 1, 2, and 3 that the internal

excitation increases linearly with the photoelec-

tron kinetic energy. For a typical photoelectron

spectrum the vibrational structure is resolved

but the rotational structure is not. To mea-

sure the recoil-induced rotational excitation it

is necessary to measure the shift of peak cen-

troids relative to an internal standard, as has

been done for the valence photoelectron spec-
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trum of N2 [9, 10]. For vibrational excitation

it is possible to measure this effect by recogniz-

ing that the recoil-induced vibrational excita-

tion (eq. 2) must be reflected in the excitation

probabilities of the vibrational energy levels –

that is, in the Franck-Condon factors. From an

experimental point of view these probabilities

are conveniently represented by intensity ratios,

Rv0 = Iv′/Iv′=0, where Iv′ is the observed in-

tensity for the indicated peak in the spectrum.

These ratios are affected by Franck-Condon

excitation, by recoil-induced vibrational excita-

tion, and by the effects of the recoil-induced ro-

tational excitation on the final-state vibrational

wavefunctions. In addition, the experimental

intensities are determined in systems where the

molecules are randomly oriented with respect to

the photoelectron direction.

An appropriate theoretical model must take

all of these effects into account and we discuss

such a model in the following section. However,

even without a detailed model certain qualita-

tive conclusions can be drawn and we discuss

these in the following paragraphs.

Take CO as an example and assume for sim-

plification that it has zero angular momentum

and that we can ignore the one unit of angular

momentum associated with dipole ionization.

Since the equilibrium bond length shrinks upon

ionization, there will be some Franck-Condon

profile of vibrational states excited even at low

energy excitation. At higher energies we must

take into account the recoil-induced ionization.

For emission at 0◦ to the molecular axis, there

will be an increase in the vibrational energy,

but no change in the energies of the individ-

ual vibrational states. Therefore, the increase

in vibrational energy must appear as a mod-

ification of the Franck-Condon profile, which

becomes shifted to a higher average value of

the vibrational quantum number, v′. For emis-

sion at 90◦ there will be excitation of rotational

motion, leading to a final-state angular mo-

mentum of J ′ given by J ′(J ′ + 1)~2 = (pR)2,

where p is the recoil momentum in the center-

of-mass system and R is the equilibrium bond

length. Within the rigid-rotor approximation,

the final-state vibrational wavefunction is inde-

pendent of J ′, with the result that the Franck-

Condon factors are the same in this case as

they are for the case of no recoil-induced exci-

tation. However, the rovibrational energies are

shifted to higher values by the rotational energy

J ′(J ′ + 1)~2/(2µR′2), where R′ is the equilib-

rium bond length for the ionized molecule and

µ is the reduced mass of the molecule.

Thus, we see that the rovibrational profile is

dependent on the angle of emission of the photo-

electron with respect to the molecular axis. For

0◦ the rovibrational energies are approximately
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equal to ~ω′(v′ + 1/2), where ω′ is the vibra-

tional frequency, and the Franck-Condon pro-

file is shifted to higher values of v′. At 90◦ the

rovibrational energies are approximately equal

to ~ω′(v′+1/2)+J ′(J ′+1)~2/(2µR′2), but the

Franck-Condon factors are approximately the

same as the no-recoil values. So far, there has

been no observation of these angularly resolved

profiles; the only measurements are for angle-

averaged profiles. In interpreting these exper-

iments, it is necessary, therefore, to calculate

these angle-averaged profiles and to do this we

need predictions of the profiles over the angular

range from 0◦ to 90◦.

In closer detail, the picture outlined above is

not quite correct. The portion of the recoil en-

ergy that goes into internal excitation, Erec, is

equal to p2/(2µ). For emission at 90◦ the an-

gular momentum is, as noted above, given by

J ′(J ′ + 1)~2 = (pR)2 = 2µErecR
2. The rota-

tional energy of the ionized molecule is

J ′(J ′ + 1)~2/(2µR′2) = ErecR
2/R′2 (4)

For carbon 1s ionization of CO R′ < R, with the

result that the rotational excitation is higher

than the recoil energy. This extra energy arises

from Coriolis coupling. As the newly formed

rotating molecule shrinks from the equilibrium

bond length of the neutral molecule to the equi-

librium bond length of the ionized molecule, the

Coriolis interaction leads to a transfer of en-

ergy from the vibrational mode to the rotational

mode. Thus, the average rotational energy is

larger than the recoil energy by Erec(1/R
′2 −

1/R2) and the average vibrational energy is

smaller than the energy expected from the usual

Franck-Condon factors by the same amount.

The existence of this effect of the Coriolis cou-

pling has previously been explored from a clas-

sical point of view [11]. In order to see this ef-

fect from a quantum mechanical point of view,

it is necessary to explore the effects of the an-

gular momentum on the eigenvalues and eigen-

functions of the rotating oscillator as well as

on the Franck-Condon factors that connect the

rotating ionized molecule to the initial neutral

molecule.

III. THEORETICAL MODELS

A. Generalized Franck-Condon factors

If we are not concerned with recoil-induced

excitation of vibrational motion, then the rela-

tive intensities, Iv′ , of the rovibrational peaks

are given by the usual Franck-Condon factors,

FCF :

Iv′ ∝ FCF =

∣∣∣∣∫ ψ′v′J′(r)ψv=0J(r)dr

∣∣∣∣2 (5)
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where r is the coordinate along the bond direc-

tion. The unprimed symbols refer to the initial

state, assumed to be in its vibrational ground

state, and the primed symbols refer to the ion-

ized state.

The wavefunctions, ψvJ , are the r-dependent

vibrational wavefunctions for the molecule or

ion [12]. If the effects of rotation are included,

they are also J dependent and are eigenfunc-

tions of the Hamiltonian

Ĥ = Ĥ0 +
J(J + 1)~2

2µr2
(6)

where Ĥ0 is the Hamiltonian for the oscillator

in the absence of angular momentum.

In order to include the effects of recoil-

induced excitation it is necessary to use gen-

eralized Franck-Condon factors [13, 14]:

Iv′ ∝ GFCF (v′, J ′, v, J, p, θ) =∣∣∣∣∫ ψ′v′J′(r)eirp cos θ/~ψv=0J(r)dr

∣∣∣∣2 (7)

Here p is the magnitude of the recoil momentum

(in the center-of-mass system), and θ is the an-

gle of emission of the photoelectron with respect

to the molecular axis.

For comparison between experimental obser-

vations and predictions it is necessary to aver-

age eq. 7 over the initial values of J and the

emission angles θ, and to sum it over the final

values of J ′. For the case at hand, this pro-

cedure is more complicated than is necessary.

Firstly, in a typical core-electron photoelectron

spectrum, the rotational states are not resolved.

Secondly, for high-energy photoelectrons J ′ is

likely to be much larger than J . Accordingly, it

is appropriate to introduce the simplifying ap-

proximations that the initial angular momen-

tum is zero and that the one unit of angular

momentum associated with the dipole ioniza-

tion can be ignored. Then the term in J disap-

pears from the initial-state Hamiltonian and we

can replace J ′(J ′+1)~2 with (pR)2 sin2 θ in the

final state Hamiltonian [15]. We can rewrite eq.

7 as

GFCF (v′, J ′ = pR sin θ, v = 0, J = 0)∣∣∣∣∫ ψ′v′pR sin θ(r)e
irp cos θ/~ψ00(r)dr

∣∣∣∣2 (8)

The left-hand wavefunctions are eigenfunctions

of the Hamiltonian

Ĥ = Ĥ0 +
(pR)2 sin2 θ

2µr2
(9)

The right-hand wavefunction is the ground-

state wavefunction for the neutral molecule.

Evaluation of the generalized Franck-Condon

factors, eq. 8, requires that we specify a model

and its Hamiltonian. Two possibilities are con-

sidered in the following two sections: the linear-

coupling model with a rigid rotor, and a Morse

potential plus an angular momentum term.
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B. The linear-coupling rigid-rotor model

Before looking at the generalized Franck-

Condon factors in detail, we consider first a sim-

ple model that illustrates the main features of

the results that will be seen in the more exact

calculations. This is the linear-coupling model,

which assumes that the initial- and final-state

wavefunctions are harmonic oscillator functions

and that the characteristic frequency for the os-

cillators, ω, is the same for both initial and final

states. In addition, for this approximation, we

also assume the rigid-rotor approximation, with

the result that the effects of the rotational mo-

tion on the wavefunctions are ignored. These

approximations lead to a semiquantitative pic-

ture of what to expect from the more general

results.

For the linear-coupling model, the general-

ized Franck-Condon factors for the transition

from the ground vibrational state of the neutral

molecule to vibrational state v′ of the ion are

given by a Poisson distribution [14].

Pv′ = Sv
′
e−S/v′! (10)

S includes a contribution from Franck-Condon

excitation, SFC , arising from the change in

equilibrium bond length between the initial and

final states, and a recoil contribution, Srec,

arising from the recoil-induced excitation of

vibrational motion. SFC can be calculated

from the change in bond length, and Srec =

Erec cos2 θ/(~ω). The cos θ dependence arises

because only the component of the recoil mo-

mentum along the molecular axis contributes to

the vibrational excitation, as indicated in eq. 2.

The two terms are additive [14], and we have

S = SFC + Erec cos2 θ/(~ω) (11)

We see immediately the result discussed qual-

itatively above that the generalized Franck-

Condon distribution broadens (S increases) as

cos θ increases and more of the recoil momen-

tum contributes to motion along the molecular

axis.

For θ > 0 there will be rotational as well as

vibrational excitation, and, as a consequence,

the rovibrational energies will be given by the

expression

E(v′, J ′) = (v′ + 1/2)~ω +
J ′(J ′ + 1)~2

2µR2

= (v′ + 1/2)~ω + Erec sin2 θ (12)

The factor of sin2 θ arises because only the com-

ponent of recoil momentum perpendicular to

the molecular axis gives rise to rotational ex-

citation, as indicated in eq. 3. The difference

between R and R′ is ignored for this example,

which is intended to be illustrative rather than

quantitative. This approximation is consistent
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with the rigid-rotor model. The average value

of the excitation energy is given by

〈E(v′, J ′)〉 =
∑
v′

E(v′, J ′)
Sv

′
e−S

v′!
(13)

= SFC~ω + Erec + ~ω/2 (14)

Eq. 14 is obtained by substituting eqs. 11 and

12 into eq. 13. Thus the average energy (cen-

troid of the rovibrational distribution) is inde-

pendent of the angle of emission and is equal to

the zero-point energy plus the Franck-Condon

excitation and the recoil excitation.

By a similar exercise we can show that the

variance of the rovibrational distribution is

given by the following expression.

〈
E(v′, J ′)2

〉
− 〈E(v′, J ′)〉2 = (~ω)2S

= (~ω)2SFC + ~ωErec cos2 θ (15)

Thus the centroid of the rovibrational distribu-

tion is independent of θ, but the variance of the

distribution varies linearly with cos2 θ. These

features will be seen in the more detailed re-

sults discussed below.

From an experimental point of view, it is rel-

atively easy to make a precise measurement of

the centroid of an isolated peak, or even the

centroids of overlapping peaks of comparable in-

tensity. However measuring the centroid for the

entire rovibrational profile is difficult because of

the low intensity of the peaks for higher values

of v′. These may be too small to provide reliable

information, but because of their high v′ val-

ues they make significant contributions to the

centroid. This problem is even more acute for

determining the variance. An alternative ap-

proach has been to measure the intensity ratios

Rv0 = Iv′/I0, which can be used as measures

of the recoil-induced excitation, and this is the

quantity reported in our experimental results.

For a Poisson distribution we have the follow-

ing relationships.

Rv′0 =
(
SFC + Erec cos2 θ/(~ω)

)v′
/v′! (16)

R10 = SFC + Erec cos2 θ/(~ω) (17)

R20 = S2
FC/2 + SFCErec cos2 θ/(~ω) +(
Erec cos2 θ/(~ω)

)2
/2 (18)

and thus we can expect R10 to vary linearly

with cos2 θ with a slope equal to Erec/(~ω) and

an intercept equal to SFC . For R20 we have a

quadratic relationship, eq. 18. The first term in

this expression arises from direct excitation of

the v′ = 2 state via normal Franck-Condon exci-

tation. The second term represents the process

where one unit of the change in v′ comes from

Franck-Condon excitation and one unit from

recoil-induced excitation. The third shows the

contribution of two units of excitation by recoil.

For the case of CO, the Franck-Condon excita-

tion is strong, with the result that the energy
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dependence of R20 is dominated by the linear

term for small values of Erec. We will see these

features in the more detailed calculations pre-

sented below.

The discussion above is appropriate for a par-

ticular value of θ, that is for a system where

the orientation of the molecule with respect to

the photoelectron is known. However, for the

measurements that have been made so far on

recoil effects have involved randomly oriented

molecules, and it is, therefore, necessary to find

appropriate angular averages. A convenient,

but approximate, approach is to average Rv0

over angles, assuming an isotropic distribution

of the photoelectrons in the molecular frame.

For R10 this gives

〈R10〉 = SFC +
Erec
3~ω

(19)

This expression, which since Ref. [7] has been

used to predict recoil-induced vibrational exci-

tation, indicates that the observed value of R10

should vary linearly with the recoil energy and

with the photoelectron energy.

However, the measured quantity,

〈R10m〉, is not 〈R10〉 but 〈Iv′〉 / 〈I0〉 =

〈GFCFv′〉 / 〈GFCF0〉. For the linear-coupling

model we show in the appendix, eq. A.9, that

〈R10m〉 = SFC +
Erec
3~ω

− 4

5

(
Erec
3~ω

)2

· · · (20)

For low values of the recoil energy 〈R10m〉 fol-

lows the linear dependence of eq. 19, but

at higher values of Eexc there is a downward

quadratic trend. We will see precisely this be-

havior in the results of the more accurate cal-

culations described below.

The previous discussion has ignored the ef-

fects of the rotational motion on the general-

ized Franck-Condon factors and on the inten-

sity ratios. The ion is initially created with

angular momentum J ′ in a vertical transition

at the equilibrium bond length, R, of the neu-

tral molecule. The rotational energy is J ′(J ′ +

1)~2/(2µR2). As the molecule contracts to-

wards the equilibrium bond length of the ion,

R′, the angular momentum remains constant

but the average rotational energy increases to

J ′(J ′ + 1)~2/(2µR′2). The additional energy

comes from the vibrational energy via Coriolis

coupling, with the consequence that the aver-

age vibrational energy is lowered by the amount

J ′(J ′+1)~2
(
R2/R′2 − 1

)
/(2µR2). This change

must be reflected in the generalized Franck-

Condon factors.

We can use the approach that the general-

ized Franck-Condon factors are given approxi-

mately by a Poisson distribution to gain some

insight into this question. As described in the
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appendix, eq. A.8,

〈R10mJ〉 = SFC + (1− 2f)
Erec
3~ω

−4

5

(
(1 + f)

Erec
3~ω

)2

· · · (21)

where 〈R10mJ〉 is the predicted value of the ob-

served ratio including the effects of rotation,

and f = R2/R′2 − 1 = 0.093 for CO. Thus the

coefficient of the linear term in eq. 20 is ex-

pected to be decreased by the Coriolis effect by

about 19%, and the coefficient of the quadratic

term is expected to be increased by about the

same amount. We will see that this is indeed

the case for the more accurate calculations.

The linear-coupling model thus provides a

framework within which to understand the re-

sults of the more accurate calculations.

C. Morse model

For a more detailed study the linear-coupling

rigid-rotor model is replaced by a Morse model.

The Morse potential is completely character-

ized by the frequencies ωe and ωxe, and the

radius parameter, re. For neutral CO, ωe =

2169.81358 cm−1, ωxe = 13.28831 cm−1, and

re = 1.128323 Å [16]. For illustrative ex-

amples of the theoretical results we have used

the following values for carbon 1s ionized CO:

ω′e = 2456.765 cm−1, ωx′e = 10.001 cm−1, and

r′e = 1.079005 Å [1].

It is necessary to average eq. 7 over the ini-

tial values of J and over the angle θ and to sum

over the values of J ′. For the case at hand, how-

ever, we can introduce a simplifying approxima-

tion. At room temperature, the initial values of

J are small, whereas at the photoelectron en-

ergies considered here J ′ is large. Accordingly,

we use the approximations that J = 0 and that

the one unit of angular momentum associated

with the photon can be ignored. In this case,

we can set J ′ ≈ pR sin θ/~, or, more accurately,

J ′(J ′+1) = p2R2 sin2 θ/~2, where R is the equi-

librium bond length in the neutral molecule.

The wavefunctions ψ′v′J′(r) and ψv=0J(r) in

eq. 7 are eigenfunctions of the Hamiltonian

Ĥ (eq. 6), where Ĥ0 is the Hamiltonian for

the oscillator in the absence of angular momen-

tum. For the present analysis Ĥ0 is based on

the Morse potential. The eigenfunctions and

eigenvalues for this Hamiltonian must be eval-

uated numerically. For this we have used the

Numerov method, using a procedure created

by Mueller and Huber [17] for Maple. For the

ground state, the only eigenfunction needed is

for v = 0 and J = 0. For the ionized state

it is necessary to consider a range of v′ values

and a value of J ′ appropriate to the recoil en-

ergy and angle being considered according to

the relationship J ′(J ′ + 1) = (pR)2 sin2 θ/~2.
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Once suitable wavefunctions have been calcu-

lated it is straightforward to evaluate the gen-

eralized Franck-Condon factors using eq. 8. For

the ionized state we also consider a rigid-rotor

Hamiltonian

Ĥ = Ĥ0 +
J(J + 1)~2

2µR′2
(22)

where R′ is the equilibrium bond length for the

ion. In this case, the wave functions do not

depend on J ′, and are simply Morse functions,

and the eigenvalues are the Morse values plus

J(J + 1)~2/(2µR′2).

The eigenvalues are nearly the same for both

rigid and nonrigid rotor, differing primarily in

the contribution from vibration-rotation inter-

action, which is present for the nonrigid rotor

and absent for the rigid rotor. For the current

example this is quite small. When the rovibra-

tional wavefunctions are used in calculating the

GFCFs, the vibrational excitation probabilities

and the v-ratios are decreased in comparison

to the calculation with purely vibrational wave-

functions of a rigid rotor. The vibrational ra-

tios are lower for the nonrigid rotor because of

Coriolis coupling between the rotational and vi-

brational modes. The role of the Coriolis inter-

action is discussed in more detail below and in

ref. [18].

A comparison of the calculated ratios with

the observed ones is presented in the following

section. A more detailed view of theoretical re-

sults is presented in a subsequent section.

IV. EXPERIMENTAL PROCEDURES

AND RESULTS

A. Experimental procedures

The results were obtained at the SOLEIL

Synchrotron, France, on the GALAXIES beam-

line equipped with an end station dedicated

to hard and tender X-ray photoelectron spec-

troscopy [19, 20]. Linearly polarized light is

provided by a U20 undulator and monochroma-

tized by a Si(111) double crystal monochroma-

tor. At some energies it was necessary to reduce

the photon flux at the sample in order to avoid

nonlinearity effects associated with the readout

of the CCD detector of the Scienta spectrom-

eter. This was achieved by introducing Al foil

filters of 6 and 12 µm thickness into the beam.

The CO sample and the calibration gas argon

were introduced into a differentially pumped gas

cell.

The photoelectron spectra were recorded by

a large acceptance angle EW4000 Scienta hemi-

spherical analyser, optimized for high kinetic

energy measurements. The spectrometer was

mounted with the lens axis colinear with the

polarization vector of the x-rays. In this exper-
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iment, the spectrometer was operated at 100-

eV pass energy and with the entrance slit of

0.3 mm, except for the photon energy of 6900

eV, at which the larger slit of 0.5 mm was used.

B. Data analysis

The primary goal of the analysis of the photo-

electron spectra was to extract accurate values

for the v-ratios. In the earlier experiments us-

ing the soft x-ray excitation, the combined total

energy resolution was sufficient to resolve the vi-

brational progression in the C 1s spectra, which

has the ν=0-1 peak spacing of 302 meV – see

Fig. 1a. This figure shows, for reference, a C 1s

photoelectron spectra recorded at hν=400 eV at

the PLEIADES beamline of the SOLEIL syn-

chrotron, previously analyzed and reported in

Ref. [1]. The Lorentzian lifetime broadening of

92 meV and the vibrational spacings for ν=0-3

were obtained from the least-squares curve fit-

ting of this spectrum; these values were then

used in analyzing the new spectra at the tender

x-ray region.

In the tender x-ray range various contribu-

tions to the practically obtainable resolution

combine to make the progression unresolved –

see Fig. 1b and 1c. The v-ratios can still be

extracted using least-squares curve fitting, but

only with careful application of constraints in

order to reduce the number of free parameters

and to increase reliability.

At each photon energy (spectra for

hν=2500 eV, 2700 eV and 3000 eV are

not shown in Fig. 1), a calibration spectrum of

Ar 2p photoelectrons was measured with the

same settings as for CO. The Ar 2p spin-orbit

doublet was fitted with Voigt profiles using the

SPANCF macros for Igor Pro [6, 21]. It became

apparent that in the photon energy range

from 2300 to 3000 eV a single profile could

not give a satisfactory representation of the

spectral peaks, due to the fact that the photon

band from the double-crystal monochromator

strongly deviates from the Gaussian shape.

However, a statistically near-perfect fit was

obtained by using two Voigt profiles of equal

Gaussian and Lorentzian widths for each peak.

The intensity ratio and energy separation of

these two profiles then gave a template for

the instrument function, to be applied to the

analysis of the CO 1s spectra. The individual

peaks in Fig. 1b are in fact composites of two

Voigt profiles, obtained as described above.

The Ar 2p photolines recorded at hν=6900 eV,

on the other hand, are well described by single

Voigt profiles. Here, the monochromator is

operated at the 3rd order of diffraction and

the optical conditions produce a Gaussian-like

photon band. Thus the corresponding CO 1s
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spectra in Fig. 1c were also fitted with a single

Voigt profile per peak.

Neither the Lorentzian nor Gaussian widths

of the Voigt profiles can be directly transferred

from the Ar 2p results. The former differs due

to different core-hole lifetimes. In the curve

fitting, the fixed value of 92 meV from the

reference spectrum at hν=400 eV was used.

The latter has contributions, in addition to the

purely instrumental ones from the monochro-

mator and electron analyzer, also from both

the translational and rotational Doppler broad-

enings, which are sample-specific. The instru-

mental contribution can be derived from the

Ar 2p spectra after removing the translational

Doppler broadening for argon. These various

contributions are summarized in Table 1. As

can be seen, the convolution of the three contri-

butions (total) accounts fairly well for the ex-

perimental (fitted) Gaussian component of the

peak width.

Table I. Spectral line widths in C 1s photoelec-
tron spectra, as Gaussian FWHM (in meV). Dplrt
and Dplrr refer to the translational and rotational
Doppler broadenings, respectively.

hν(eV) Instr. Dplrt Dplrr Total Fitted

2300 195 106 99 243 253
2500 200 111 104 251 261
2700 231 116 109 280 290
3000 252 123 115 303 310
6900 210 192 180 337 344

C. Vibrational intensity ratios

The intensity ratios were calculated from the

intensities for the first four peaks in the vibra-

tional progression. These intensities were ob-

tained from the spectra by least-squares curve

fitting as described above. In addition to the

peak intensities, the energy of the ν=0 peak, the

common Gaussian width and the background

intensity were the adjustable parameters in the

fit. The v-ratios R10, R20 and R30 are shown

in Fig. 2 together with their values in the soft

x-ray range from earlier measurements (for R10

and R20) [1]. The error bars represent the sta-

tistical uncertainty in the peak intensity values;

an additional systematic component to the error

can arise from uncertainties in the peak separa-

tion values or in the Lorentzian lifetime width.

The figure also shows theoretical predictions

at various levels of accuracy. The lower-

accuracy models are included for two reasons:

they have been used in the analysis of the recoil

effects in earlier publications [1], they are also

easier to apply and computationally much less

demanding.

First, the dashed lines in Fig. 2 repre-

sent the v-ratios obtained using the linear-

coupling model as presented in Section III B,

with the ground-state fundamental frequency of

269.0 meV and the bond contraction of ∆R =



15

−5.0 pm. This calculation also neglects the ef-

fects of molecular rotation. The averaging over

the electron emission angles in the molecular

frame, however, was done accurately, according

to Eq. 20 (and similar expressions for the higher

v-ratios). The accurate angular averaging is the

cause of the visible deviation downwards from

the expected linear form of R10 and has a sim-

ilar effect on the other curves. The curves have

a significant vertical offset with respect to the

experimental values for both R10 and R30, al-

though they happen to match very well with

the experiment in the case of R20. These offsets

are due to the neglect of both the anharmonic-

ity and the change of the frequency. On the

other hand, the slope of the curves is in a good

agreement with the data points, which suggests

that the linear-coupling model, although crude,

is still useful as an easy-to-apply first estimate of

the recoil-induced vibrational excitations even

in the tender x-ray range.

The next step towards a more accurate model

is given by the dash-dotted black line in Fig. 2

(labeled ”harmonic”), which represents the v-

ratios obtained using the generalized Franck-

Condon factors (GFCFs) as described in Sec-

tion III A. The model now accounts for the

fundamental frequency change from 269.0 to

301.9 meV upon core ionization but retains the

harmonic oscillator approximation. The calcu-

lation also still does not include the effects from

molecular rotations. Although the simple for-

mulae of the LCM model are not applicable any

more, analytical forms of the harmonic wave-

functions can be used in GFCFs. The result

is a clear improvement for R10, but is much

worse for R20 and R30 in terms of vertical off-

sets. However, the recoil-related behavior (the

slopes) does not change from the linear-coupling

model. This is expected, since it is the ground-

state fundamental frequency, not that of the

ionic state, that affects the strength of the recoil

excitations [14].

Next, wavefunctions obtained numerically

from Morse potential energy curves were used

in calculating the GFCFs and v-ratios (thin red

lines in Fig. 2), giving a good agreement with

the experiment both in offsets and slopes (ex-

cept for the high-energy point in R30). For the

ground state the parameters of the Morse po-

tential are re = 1.128323 Å, ~ωe = 0.269022

eV, and ~ωxe = 0.00164754 eV [16]. These are

the same values that we have used to obtain the

results described in the theoretical section.

For the ionized state we have derived new

values for ~ω′e (0.3057 ± 0.0004 eV) and ~ωx′e
(0.00189 ± 0.00015 eV) from analyzing 10 low-

energy, high-resolution spectra for C 1s ioniza-

tion of CO, taken at various times and various

synchrotron facilities (ALS, MAX II, SPring-8,
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and SOLEIL). The value for r′e can be deter-

mined from reported values of the bond-length

change, ∆R, which are close to -5.0 pm. How-

ever, almost all of these values are based on

analysis of vibrational spectra for core-ionized

CO in the low-energy region, where the intensi-

ties are strongly affected by scattering and in-

terference. Consequently we have chosen to use

the value of -4.96 pm, which has been obtained

in a multireference average coupled-pair func-

tional calculation [22], and is independent of

these effects.

Accurate angular averaging was performed

numerically, first calculating the GFCFs for a

range of emission angles relative to the molec-

ular axis for each emission energy and then av-

eraging with the weighting factors that corre-

spond to an isotropic distribution.

Finally, we add the effects of molecular ro-

tations, as discussed in Section III. This is

the computationally most expensive model, re-

quiring numerical integration of the rovibra-

tional wavefunctions of the core-ionized state

for every emission energy and angle. For the

ground state, according to the approximations

described in Section III, we need only the single

wavefunction ψ00. The thick red curves repre-

senting this model show the expected behavior

– that the slopes of the v-ratios are lowered due

to the Coriolis coupling between the vibrational

and rotational motions. This effect is as large

as 20% (see Sections III B and V C) and is an

essential element of the recoil model.

This model, which includes rotational effects,

gives poorer agreement with the experiment for

R10 than do the less complete models. The

data are not sufficient at this point to assess

the significance of this discrepancy, which could

arise from larger uncertainties in the data than

we have indicated, from unknown systematic

experimental errors, or from effects that may

have been omitted from the theoretical analysis

(such as possible anisotropy for the photoelec-

tron emission).

Figure 2a reproduces (by the red dotted line

labeled ”DFT”) also earlier scattering calcula-

tions [1] that were extended up to a photoelec-

tron kinetic energy of 8 keV, in order to demon-

strate that the v-ratios in the tender x-ray re-

gion are essentially free from the intramolecu-

lar scattering induced oscillations. The theo-

retical treatment of Section III (which neglects

scattering) is therefore well suited for this en-

ergy range. The scattering calculation matches

closely with the GFCF recoil model using Morse

potentials, but neglecting rotational coupling.
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V. THEORETICAL RESULTS

Here we consider some more detailed results

of the theoretical models that have been dis-

cussed earlier.

A. Rovibrational profiles

As a specific illustration, we have done a set of

calculations with the momentum in the center-

of-mass system, p, equal to 8 au. This corre-

sponds to a photoelectron energy of 2667 eV.

The average energy of excitation due to the

change in equilibrium bond length upon ion-

ization (Franck-Condon excitation) is 2609.39

cm−1 and the recoil excitation is 561.86 cm−1

for a total excitation of 3171.25 cm−1. If the

emission is perpendicular to the axis, J ′ ≈ 17.

The calculations have been done for five angles

corresponding to cos θ = 0(0.25)1. Results from

these calculations are seen in Fig. 3.

Fig. 3a shows the rovibrational profiles for

two angles of emission with respect to the

molecular axis, 0◦ (black) and 90◦ (grey). In

each case the generalized Franck-Condon fac-

tors for each value of v′ are plotted against the

rovibrational energy for that v′. We see here

the behavior expected from the earlier discus-

sion. For θ = 0◦ the Franck-Condon distri-

bution is broadened, but the rovibrational en-

ergies are those for a molecule with no rota-

tional excitation. By contrast, for θ = 90◦

the Franck-Condon factors are very close to

those expected for no recoil-induced excitation

(shown as the crosses), but the rovibrational en-

ergies are shifted to higher values by the rota-

tional energy. In spite of the obvious visible dif-

ferences in the two profiles, the average rovibra-

tional energies (centroids) are the same, 3170.20

cm−1 at 0◦ and 3171.23 cm−1 at 90◦, as we ex-

pect from the discussion of the linear-coupling

model [23].

Also shown in Fig. 3a are lines represent-

ing the bars dispersed with Gaussian function

with a width of 2400 cm−1 (300 meV), which

is typical of the resolution that can be obtained

at this photoelectron energy. The features that

are seen in the stick spectra are still evident in

these dispersed spectra.

Although the centroids are independent of an-

gle, this is not the case for the variances, which

are plotted against cos2 θ in Fig. 3b. The

straight line in this figure is a linear fit to the

calculated points, and we see that the fit is quite

good, in keeping with our expectations from eq.

15.

Fig. 3c shows the intensity ratios R10 (solid

circles) and R20 (open circles), plotted against

cos2 θ. The solid line shows a linear fit to the

R10, which fits well, in keeping with the linear-

coupling model. For R20 a quadratic fit (dashed
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line) is necessary, in keeping with eq. 18. The

quadratic term, which goes as E2
rec is, however,

relatively small compared with the linear term.

B. The Coriolis effect

Forty eigenvalues have been calculated in this

exercise, covering the range in v′ from 0 to 7 and

in J ′ from 0 to 17. We expect these energies to

be described by the relationship

E(v′, J ′)/hc = (v′ + 1/2)ω′e − (v′ + 1/2)2ωx′e

+B′J ′(J ′ + 1)

−α′(v′ + 1/2)J ′(J ′ + 1) (23)

Fitting the calculated eigenvalues to this equa-

tion gives the spectroscopic constants for the

ionized molecule, which are summarized in Ta-

ble II. Also shown here are the original values

of ω′e and ωx′e that were used to generate the

Morse potential from which the wavefunctions

and eigenvalues were derived. We see that there

is satisfactory agreement between the input set

and the derived set.

Table II. Spectroscopic constants from fitting the
eigenvalues. Also shown are the input values of ωe

amd ωxe. cm−1.

Constant Fit Input
ω′e 2456.74 2456.76
ωx′e 10.003 10.001
B′ 2.119
α′ 0.013

We can apportion eq. 23 into two equations

giving approximately the contributions of vibra-

tional motion, on the one hand, and rotational

motion, on the other.

E(v′)/hc ≈ (v′ + 1/2)ω′e − (v′ + 1/2)2ωx′e

−α′(v′ + 1/2)J ′(J ′ + 1)/2 (24)

E(J ′)/hc ≈ B′J ′(J ′ + 1)

−α′(v′ + 1/2)J ′(J ′ + 1)/2 (25)

(The rotational-vibrational term, which has

been divided equally between the two forms of

motion, is quite small.) Using these equations

together with the constants in Table II and the

generalized Franck-Condon factors for 90◦ we

can obtain values for the average vibrational

and rotational excitation at 90◦. These are

2556.7 cm−1 and 614.7 cm−1. The first of these

is to be compared with the Franck-Condon exci-

tation that would be found in the case for θ = 0◦

where there is no rotational excitation. This is

2609.4 cm−1, which is greater than the 90◦ value

by 53 cm−1. The second is to be compared with

the recoil energy, 561.9 cm−1, which is smaller

by 53 cm−1. These differences arise from Cori-

olis coupling.

The ionized molecule is created in a vertical

transition with the bond length of the neutral

molecule. At this point the vibrational exci-

tation – 2609.4 cm−1 – is equal to the extra
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potential energy arising because the ion is not

at its equilibrium distance. The rotational en-

ergy, equal to BJ ′(J ′ + 1), is, at this point,

equal to the recoil energy, Erec. As the molecule

shrinks towards its equilibrium radius the angu-

lar momentum remains constant and the rota-

tional energy increases. This increase in energy

is taken from the vibrational energy by the Cori-

olis interaction. The rotational energy averaged

over a vibrational cycle is B′J ′(J ′ + 1). Thus

the average rotational energy is greater than the

recoil energy by the amount

∆Erot = J ′(J ′ + 1)(B′ −B)

=
p2R2

2µ

(
1

R′2
− 1

R2

)
= Erec

{
R2/R′2 − 1

)
(26)

as noted in the introduction. For carbon 1s

ionization of CO, the two bond lengths are

R = 1.128323 Å and R′ = 1.079005 Å. With

these values R2/R′2 − 1 = 0.0935 cm−1 and

∆Erot = 53 cm−1, as observed.

This decrease in the vibrational energy is re-

flected in the generalized Franck-Condon fac-

tors, as can be seen in Fig. 3a. Here the grey

bars show the generalized Franck-Condon fac-

tors in the case where there is recoil-induced an-

gular momentum; the crosses show the Franck-

Condon factors when there is no recoil excita-

tion. For v′ = 0, the factor for the former is

greater than that for the latter. For v′ = 1,

they are nearly the same and for v′ > 1 the the

factors for no recoil are greater. Thus, in this

case (R′ < R) the recoil-induced rotational ex-

citation leads to a shift in the Franck-Condon

distribution and to the observed lowering of the

average vibrational energy.

C. Averaging over angles

The foregoing discussion has dealt with pho-

toelectron spectra measured at specific angles

with respect to the molecular axis. However,

up to the present, no angular resolved measure-

ments of recoil-induced excitation have been

made. Reported results have involved measure-

ments that are averaged over all angles. In these

experiments the most easily measured quantity

has been the ratio of the intensity for v′ = 1 to

that for v′ = 0, the so-called v-ratio, R10. It

is, therefore, appropriate to develop predictions

for this angle-averaged ratio.

In the case of the linear-coupling model, we

see from eq. 17 that R10 varies linearly with

cos2 θ. In Fig. 3c we see that the results from

the Morse potential follow this prediction fairly

closely. Consequently, we can take as one mea-
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sure of R10 averaged over angles as

〈R10〉 = SFC + Erec
〈
cos2 θ

〉
/~ω

= SFC + Erec/(3~ω) (27)

(assuming that the distribution of photoelec-

trons is isotropic with respect to the molecular

axis). Since Erec is proportional to the pho-

toelectron energy, it follows that 〈R10〉 varies

linearly with the photoelectron energy. This is

a convenient approximation and has been used

in the past to provide predictions of the recoil-

induced vibrational excitation. Values of 〈R10〉

calculated from the Morse results are plotted

versus the photoelectron energy as the open

squares points in Fig. 4. The dotted line in

this figure is a fit of a quadratic function to the

points. The fitting parameters are listed in Ta-

ble III, where we see that the quadratic term

is very small; the values are well fit by a linear

function, in accordance with the linear-coupling

model, eq. 27.

Table III. Parameters of the lines fitting the points
in Fig. 4.

linear quadratic
〈R10〉 3.20× 10−5 −4.7× 10−12

〈R10m〉 3.20× 10−5 −7.94× 10−10

〈R10mJ〉 2.61× 10−5 −9.37× 10−10

Although 〈R10〉 is easily calculated and pro-

vides a convenient guide to estimate the effects

of recoil-induced vibrational excitation, it is not

the quantity that is measured in an experiment.

The photoelectron spectra that are measured

give the intensities, Iv′ , for each final vibrational

state, averaged over all emission angles. There-

fore, the measured values of Rv0 are given by

the expression

〈Rv0m〉 = 〈Iv′〉 / 〈I0〉 (28)

where the averages on the right-hand side are

taken over all angles of emission. This quan-

tity differs from 〈R10〉, as can be seen in Fig.

4, where 〈R10m〉 is plotted as the open circles.

The dashed line represents a fit of a cubic poly-

nomial to these points; the linear and quadratic

coefficients are listed in Table III. From these

parameters, we see that the two quantities agree

at low photoelectron energies, but that 〈R10m〉

becomes nonlinear at high energies. We can

understand this behavior by considering the

linear-coupling model.

In the discussion of the linear-coupling model

we have seen that

〈R10m〉 = SFC +
Erec
3~ω

− 4

5

(
Erec
3~ω

)2

· · · (29)

The linear term is the same as in eq. 27, in

agreement with the linear terms shown in the

first two rows of Table III. The quadratic term

for 〈R10〉 is not significant, whereas for 〈R10m〉

it is and leads to the downward turn of the
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dashed curve. From eq. 29 we can see that the

quadratic term should be approximately equal

to −4/5 of the square of the linear term, or,

in this case about −8.20 × 10−10. The actual

value for the Morse results, listed in Table III,

is−7.94×10−10, in approximate agreement with

this expected value.

The results indicated by curves a and b in

Fig. 4 do not contain the effects of rotational

motion on the generalized Franck-Condon fac-

tors. These effects are included in the solid cir-

cles, c, designated by the label 〈R10mJ〉. The

solid curve is a fit of a quartic function to the

points, with the linear and quadratic coefficients

listed in Table III. We see that these results dif-

fer from those in which the rotational excitation

has not been considered. In particular the slope

of 2.61 × 10−5 for C is about 19% lower than

the value of 3.20× 10−5 for a and b, indicating

that the effects of the rotational excitation are

noticeable even at low photoelectron energies.

Similarly the quadratic term for c is about 18%

higher than that for b. These values are in ac-

cord with the predictions of the linear-coupling

model discussed earlier

VI. CONCLUSIONS

The present study demonstrates experimen-

tally that in the tender x-ray region the pho-

toelectron recoil effects become a major factor

in determining the vibrational structure of the

photoemission spectrum. These effects are ob-

served clearly for the first time not only for

the single-quantum recoil excitation from the

ground vibrational level, but also for higher re-

coil excitations and combined recoil and Franck-

Condon excitations. This much more exten-

sive experimental data has necessitated also

further developments in the theoretical models

for treating recoil, such as the use of general-

ized Franck-Condon factors in actual numeri-

cal calculations, accurate angular averaging, use

of Morse potentials and incorporating rovibra-

tional coupling into the model. In this paper,

we have applied and tested these developments

in the particular case of C 1s photoemission in

CO. We saw that the simplest, pen-and-paper

model, the linear-coupling model, is still quite

useful even in the tender x-ray region as the first

approximation, if one is specifically interested

in the recoil contributions to the v-ratios. How-

ever, clear overall improvement is obtained by

employing GFCFs and accurate Morse poten-

tials for the ground and ionized states. Further-

more, including the rovibrational coupling was

shown theoretically to have a significant impact

on the v-ratios as it redistributes the recoil en-

ergy from the vibrational to rotational degrees

of freedom. It has not yet been proven con-
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clusively that the inclusion of the rovibrational

coupling actually brings the model to a better

agreement with the experiment, but we antic-

ipate that further investigations in the tender

x-ray region will shed light on this as well as

on the questions of whether there are more ap-

proximations in the recoil model that need to be

revised, such as the isotropic emission assump-

tion.
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VIII. APPENDIX

Appendix: Averaging over emission angles.

A simple model

A simple model provides insight into the re-

sults of averaging over emission angles for both

the case in which the rotational excitation is

ignored and the case in which it is included.

We start with the approximation that the gen-

eralized Franck-Condon factors that describe

the rovibrational intensity distribution, Pv, are

given by a Poisson distribution.

Pv = Sve−S/v! (A.1)

We also assume that the rovibrational levels

are spaced harmonically with frequency ω. Al-

though neither of these approximations is accu-

rate, the results obtained using these approx-

imations aid in understanding those obtained

from the more complete calculations.

For a Poisson distribution, the average en-

ergy (relative to the energy of the lowest en-

ergy state of the distribution) is equal to S~ω.

This energy contains contributions from the

Franck-Condon excitation, SFC~ω, the recoil

energy, Erec cos2 θ, and the Coriolis correction,

−Erec sin2 θ
(

(R/R′)
2 − 1

)
. Thus

S~ω = SFC~ω + Erec cos2 θ

−Erec sin2 θ
(

(R/R′)
2 − 1

)
S = SFC +

Erec
~ω

cos2 θ − f Erec
~ω

(1− cos2 θ)

=

[
SFC − f

Erec
~ω

]
+

[
(1 + f)

Erec
~ω

]
cos2 θ

= A+B cos2 θ (A.2)

where f = (R/R′)
2 − 1 and the terms A and

B replace the bracketed quantities. The angle-
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averaged generalized Franck-Condon are then

〈GFCFv〉 =

∫ π/2

0

exp
(
−A−B cos2 θ

)
(A+Bcos2 θ)

v

v!
sin θdθ

=
e−A√
B

∫ √B
0

e−x
2 (A+ x2)v

v!
dx(A.3)

where the substitution x2 = B cos2 θ has been

made in the last line. Specifically,

〈GFCF0〉 =
e−A√
B

∫ √B
0

e−x
2

dx (A.4)

〈GFCF1〉 =
e−A√
B

∫ √B
0

e−x
2

(A+ x2)dx

(A.5)

The angle-averaged expression for R10 is

R10 = 〈GFCF1〉 / 〈GFCF0〉

= A+

∫√B
0

x2e−x
2

dx∫√B
0

e−x2dx
(A.6)

Expanding the two integrands in a Taylor series

and integrating gives

R10 ≈ A+
B/3−B2/5 · · ·

1−B/3 · · ·
≈ A+

B

3
−4

5

(
B

3

)2

· · ·

(A.7)

Replacing the symbols A and B with their def-

initions gives

R10 = SFC − f
Erec
~ω

+ (1 + f)
Erec
3~ω

(
1− 4

15
(1 + f)

Erec
~ω
· · ·
)

= SFC + (1− 2f)
Erec
3~ω

−4

5

(
(1 + f)

Erec
3~ω

)2

· · · (A.8)

If we ignore the effect of the Coriolis interac-

tion, then f = 0 and we have

R10 = SFC +
Erec
3~ω

− 4

5

(
Erec
3~ω

)2

· · · (A.9)
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Figure 1. Carbon 1s photoelectron spectra of
CO at a) hν=400 eV, b) hν=2300 eV and c)
hν=6900 eV. Circles – experiment, red curves – vi-
brational peaks, blue curve – their sum.
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Figure 2. V-ratios in the C 1s photoelectron spec-
tra. Blue circles – earlier measurements [1]; red
filled circles – present data and the reference at
hν=400 eV. Dashed black line – LCM; Dash-dotted
black line – harmonic oscillator; thin red line –
Morse oscillator and thick red line – Morse oscilla-
tor with rovibrational coupling. Dotted green line
in panel a (mostly overlapping with the ”Morse”
curve) is static exchange DFT scattering calcula-
tions extended from Ref. [1].
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Figure 3. a. Generalized Franck-Condon factors for
0◦ (black) and 90◦ (grey) emission of a photoelec-
tron with a center-of mass momentum of p = 8 au.
Plotted against the rovibrational energy. The lines
show the same results dispersed with a Gaussian
with a FWHM of 2400 cm−1. The crosses show the
Franck-Condon factors for p = 0. b. Variances of
the rovibrational distribution plotted against cos2 θ.
The line shows a linear fit to the points. c. Inten-
sity ratios Rv0 for v′ = 1 (closed circles) and 2 (open
circles), plotted against cos2 θ. The solid line shows
a linear fit and the dashed line a quadratic fit.
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tional potential has been included. The lines show
fits of polynomials to the calculated results.


