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Abstract. Conventional tomographic techniques are becoming increasingly
infeasible for reconstructing the operators of quantum devices of growing
sophistication. We describe a novel tomographic procedure using coherent states,
which begins by reconstructing the diagonals of the operator and then each
successive off-diagonal in a recursive manner. Each recursion is considerably
more efficient than reconstructing the operator in its entirety, and each successive
recursion involves fewer parameters. We apply our technique to reconstruct
the positive-operator-valued measure corresponding to a recently developed
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coherent optical detector with phase sensitivity and number resolution. We
discuss the effect of various parameters on the reconstruction accuracy. The
results show the efficiency of the method and its robustness to experimental
noise.
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1. Introduction

Quantum detectors inform our classical world of the underlying quantum world through a set
of operators known as positive-operator-valued measures (POVM). In practice, the success of
many quantum applications relies on certain knowledge of measurement apparatuses [1–3].
Successful applications of sophisticated detectors rely on a complete and accurate knowledge of
the detector, i.e. detector characterization. Detector characterization can be implemented in two
different ways. One is synthetic, wherein each constituent of a detector is carefully calibrated
before being incorporated into a sophisticated physical model of the measurement process. As
quantum technologies evolve into increasingly complicated systems, so do quantum detectors,
which makes synthetic characterization progressively less feasible. Additionally, any coupling
with external degrees of freedom not incorporated into the theoretical model may make the
characterization fail [4, 5]. A fundamentally different approach is taken in quantum detector
tomography (QDT) [6–9], where the unknown specifics of a detector are characterized in a
largely assumption-free way: here, the POVM of a detector are reconstructed from the outcome
statistics in response to a set of tomographically complete certified input states.

To date QDT has been successfully applied to avalanche photodiodes (APD) [4], time-
multiplexed photon-number-resolving detectors (TMD) [9–11], transition edge sensors [12] and
superconducting nanowire detectors [13, 14]. These detectors are phase-insensitive, i.e. they
can only measure the mixture of the photon-number states, not the coherence among them.
Accordingly, the POVM of these detectors have only non-zero matrix elements on the main
diagonals, and the number of parameters to be decided is proportional to d . Here d is the
dimensionality of the Hilbert space, and for optical detectors can be estimated as the number
of photons to saturate the detector. Yet a large number of effects characteristic for quantum
mechanics, including entanglement, violation of local realism [15], measuring non-classical
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correlations of radiation fields [16] and testing macroscopic realism [17], etc, rely on quantum
coherence. The effort to harness and exploit quantum coherence brings the prosperity of
quantum information processing and quantum metrology. Moreover, exploration and utilization
of the full Hilbert space of a quantum system requires a detector capable of implementing a
tomographically complete set of measurements [18]. Therefore, optical detectors that can access
quantum coherence among photon-number states, i.e. phase-sensitive detectors, for example
strong- and weak-field homodyne detectors [19], are crucial not only for quantum applications,
but also for testing fundamental theories of quantum mechanics. Phase-sensitivity comes with
the non-zero off-diagonal matrix elements of the POVM. Thus the tomography of a phase-
sensitive detector requires the estimation of a number of parameters proportional to d2. For
practical detectors, d can range from 102 to 105, and d2 from 104 to 1010. For example, a weak-
field homodyne TMD with nine time bins requires 1.8 × 106 parameters to completely describe
its POVM [5], which is about two orders higher than the largest tomography that had been
performed until then [20]. Such a large set of parameters represents a considerable challenge to
the characterization of phase-sensitive detectors.

In this work we explore potential solutions to the QDT of phase-sensitive quantum
detectors. In particular we introduce an algorithm that allows us to reconstruct the POVM
recursively, with no more than d parameters per recursion. Simulations with the QDT of weak-
field detectors demonstrate the robustness of this algorithm.

2. Definition of the problem

QDT is performed by preparing a set of known probe states {ρm} incident on a quantum detector
and observing the detector outcomes. The probability of registering outcome n is given by the
Born rule

pn|m = tr(ρm5n), (1)

where {5n} is the POVM of the detector with n = 0, . . . , N − 1, and N is the number of possible
outcomes of the detector. In practice the experiment is repeated for each of the many identical
copies of the probe states, and the frequency fn|m for each measurement outcome n occurring
when the probe state ρm is used is recorded. Then pn|m can be estimated from the relative
frequency pn|m = fn|m/

∑
n fn|m . One can then invert equation (1) to find 5n. For a finite number

of repetitions, there are always fluctuations in the estimation of pn|m , therefore the inversion
should normally be preformed with convex optimization.

A key requirement is that the set of probe states must be tomographically complete.
However, it is also important that the set of probe states are experimentally feasible. That
means that the states should themselves be well-characterized, and that a large variety should
be available with high precision. There are proposed methods to generate the probe states
through quantum correlations [8, 21]. Yet with current quantum optical sources it is very hard
to generate probe states strong enough to saturate the detector being tested. For photodetector
measurements, there is a more straightforward option. The set of coherent state vectors |α〉

of an optical beam are ideal candidates, where α = |α|eiθ is the complex amplitude. They are
overcomplete in the sense that two different coherent states are not orthogonal with each other
yet any quantum state can be decomposed on the set of coherent states. Therefore, coherent
states can form a tomographically complete set by transforming their amplitudes (by means of
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optical attenuation) and their phases (with a simple delay line). Importantly, they are generated
very easily by a laser.

With coherent states as input, the probabilities are given by

pn|α = 〈α|5n|α〉 = π Qn(α), (2)

where Qn(.) is the Q-function of the detector POVM elements 5n. This is equal to the Husimi
representation of the POVM, and is uniquely and invertibly related to the POVM. To reconstruct
5n one can write both |α〉 and 5n in the photon-number basis and truncate the expansion at
d − 1, where d − 1 is the number of photons that saturate the detector,

|α〉 = e−|α|
2/2

d−1∑
j=0

|α|
j

√
j

ei jθ
| j〉, (3)

5n =

d−1∑
j,k=0

π j,k
n | j〉〈k|. (4)

Then equation (2) can be written as

pn|α = e−|α|
2

d−1∑
j,k=0

|α|
j+k

√
j!k!

ei(k− j)θπ j,k
n . (5)

We can relabel equation (5) in s = kd + j + 1 (16 s 6 d2), with j = [(s − 1)mod d] and k =

(s − j − 1)/d . For M probe states, there are M × N linear equations, which can be written in a
matrix form

P = F5̃, (6)

where P is an M × N matrix with elements Pm,n
= pn|αm , F is an M × d2 matrix with elements

Fm,s
= e−|α|

2 |αm|
j (s)+k(s)

√
j (s)!k(s)!

ei(k(s)− j (s))θm , (7)

and 5̃ is a d2
× N matrix with elements π̃ s,n

= π j (s),k(s)
n . In practice where the experimental

noise is taken into account, the POVM set can be estimated from equation (6) with convex
optimization subject to the constraints

5n > 0, (8)

N−1∑
n=0

5n = I, (9)

where I is the identity operator. One common approach is the least square estimation

min ||P − F5̃||2, (10)

where ||A||2 =
√

Tr(A† A) is the Frobenius norm. The reconstruction problem effectively
deconvolves a coherent state from the statistics to obtain the POVM set. This is an ill-
conditioned problem, as seen by the large ratio between the largest and smallest singular values
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of the matrix F . This makes the POVM extremely vulnerable to small fluctuations in the
measurement statistics. Such instability can be overcome by adding a regularization function
g(5̃) to the optimization [9, 10], therefore the problem is modified as

min{||P − F5̃||2 + g(5̃)},

subject to 5n > 0,

N−1∑
n=0

5n = I. (11)

For a phase-insensitive detector with finite detection efficiency, one would expect the variation
of the diagonal matrix elements to be smooth, therefore a regularization function known as the
Tikhonov regularization [22] is applied

g(5̃) = γ
∑

j,n

|π j, j
n − π j+1, j+1

n |
2. (12)

This limits the variation between adjacent elements along the diagonal matrix elements. Yet
for a phase-sensitive detector a regular function is not easy to find: even as each of the leading
diagonals are smooth, the relation among different leading diagonals can be arbitrary.

An alternative approach for convex optimization is maximum likelihood estimation,
which was also proposed for QDT [7]. Maximum likelihood alleviates the requirement of the
regularization function. However, its convergence speed is normally not high. Moreover, both
the maximum likelihood estimation and the least square estimation in equation (11) requires
the reconstruction of all the POVM matrices at the same time. When the size of the matrices
becomes large, the problem becomes infeasible. For example, the estimation of a POVM set with
nine elements, each of which is a 50 × 50 matrix, is already a hard problem for the capability of
current multi-processor desktops (2× Quad Core 3 GHz, 8 GB RAM).

Engineering large entangled quantum states and developing sophisticated quantum
operations has set a challenge for standard quantum tomography techniques. There has been an
increased interest in the development of a novel algorithm with improved efficiency for special
situations. In particular, there are process tomography schemes that allow one to selectively
reconstruct the state or process matrix partially in each run. Several of them use a priori
knowledge about the state such as their symmetry [23–25], or simply reconstructing a subset of
the entire state or process [26, 27]. Using improved techniques from classical signal processing
has also become common, such as compressed sensing [28, 29]. In the following, we introduce
a novel algorithm that reconstructs the POVM elements recursively in multiple runs.

3. The detector model

The algorithm discussed in this work can be universally applied to the tomography of any
quantum detector. To illustrate its working in this work we consider a simple example of a
phase-sensitive detector, the weak-field homodyne APD. The configuration of such detectors
together with a schematic tomography setup is given in figure 1. The probe state is prepared
by the phase modulation and amplitude modulation of the output of a laser system. The weak-
field homodyne detector is shown in the black box, where the input state interferes with a local
oscillator (LO) and detected by photon-number-resolving or a photon-counting detector. For a
weak-field homodyne APD, there are two possible measurement outcomes, no-click and click
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Figure 1. The configuration of a weak-field homodyne detector and its
tomography setup. A set of probe states are prepared by the phase-modulation
(PM) and amplitude-modulation (AM) of the output of a laser. The magnitude of
the probe state is adjusted by a half-wave plate (HWP) followed by a polarizing
beam-splitter (PBS) and neutral density (ND) filters. The phase of the probe state
is controlled by a piezo translator. The setup of the weak-field homodyne detector
(WHD) is shown in the black box.

events, and the corresponding POVM elements 50 and 51 are given as [19]

50 =

∑
c=0

∑
d=0

(1 − ηAPD)c e−|αL|
2

c!d!2c+d

× (α∗

L + â†)c(α∗

L − â†)d
|0〉〈0|(αL + â)c(αL − â)d, (13)

51 = I − 50, (14)

where αL is the complex amplitude of the LO and ηAPD is the detection efficiency of APD.

4. A selective algorithm with Glauber–Sudarshan P-function

Before we proceed to the recursive algorithm, we consider a more straightforward selective
algorithm. Each matrix element π j,k

n of 5n is given by

π j,k
n = Tr (|k〉〈 j |5n) . (15)

Using the Glauber–Sudarshan decomposition of |k〉〈 j |

|k〉〈 j | = 2
∫

P j,k(α)|α〉〈α| d2α, (16)

we have

π j,k
n = 2

∫
P j,k(α)〈α|5n|α〉 d2α = 2π

∫
P j,k(α)Qn(α) d2α. (17)

In principle we can estimate each individual matrix element π j,k
n separately with either the exact

form of P j,k(.), which contains the derivative of the Dirac-delta function or the approximated
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Figure 2. Simulation results for the tomography of the no-click POVM of a
weak-field homodyne APD, displayed up to d = 5. From (a) to (d): theoretical
POVM; reconstructed without noise; f = 105; f = 1010.

regular form [30]. A similar method has been used for quantum process tomography [31–33].
However, due to the singularity of the P-function, this scheme is extremely sensitive to the noise
in the measured Q-function of the POVM element, rendering it infeasible for practical QDT.

As an example, we consider the reconstruction of the no-click POVM of a weak-homodyne
APD with the reflectivity of the beam-splitter of 0.5, LO intensity |αLO|

2
= 5 and quantum

efficiency of the APD 60% (overall detection efficiency 30%). We choose the probe states that
sample the phase space from X, Y = −10 to X, Y = 10 with a step size 0.05, where X and
Y are the two quadratures of an optical field. We assume that for each probe state we run the
experiment f times, then the expected frequency to get the no-click event is 〈 f0|α〉 = π Q0(α) f .
In practice there are many experimental imperfections that may induce fluctuations to the
measurement results. In this work we only consider the most fundamental fluctuation due to
the random nature of the outcome of each measurement process, and simulate it by assuming
that f0|α is a random number with a binomial distribution, and assigning the experimentally
measured Q-function as Qexp(α) = f0|α/ f .

The results are shown in figure 2. Without experimental fluctuations, the reconstructed
POVM matches almost perfectly with the theoretical prediction. Yet when there is experimental
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noise present, the results deviate from the theoretical prediction very quickly: for f = 105 as
in figure 2(c), the reconstructed POVM element is not even a physical measurement operator.
Only when the number of measurements is large enough f = 1010 and thus the experimental
fluctuations are small, is the reconstructed POVM element close to the real one. The results
presented here are reconstructed up to the four-photon component. The P-functions of higher
photon-components are more singular, and the reconstruction is more sensitive to experimental
fluctuations. Therefore, this method has a serious problem for its scalability. For a practical
QDT, we need to seek another solution.

5. Recursive reconstruction of the positive-operator-valued measures (POVM) set

5.1. Outline of the recursive reconstruction

In this section, we discuss a novel recursive method for the tomographic reconstruction of
quantum operators. We begin with equation (5). Before relabeling, we first integrate over the
probe state phase θ . With∫ 2π

0
ei(k− j)θ dθ = 2πδk, j , (18)

we have

1

2π

∫ 2π

0
pn|α dθ =

d−1∑
j=0

e−|α|
2 |α|

2 j

j!
π j, j

n . (19)

The left side of equation (19) is a partial integration of the experimental results, while the right
side involves only the main diagonals of the POVM. Equation (19) can be interpreted as using
phase-randomized coherent states as inputs to the detector. Since the input states are completely
mixed, the measurement process only involves the main diagonals of the POVM. In a practical
experiment, one should change the integration on the left side to summation. The probe states
should be prepared with Ma different amplitudes and for each amplitude there are Mp different
phases. In total there are M = Ma Mp probe states with the complex amplitudes αu,v = |αu|eiθu,v ,
with u = 1, . . . , Na and v = 1, . . . , Np. Therefore the integration on the left side of equation (19)
can be approximated as

1

2π

∫ 2π

0
pn|α dθ ≈

1

Mp

Mp∑
v=1

pn|αu,v
. (20)

For reconstructing the off-diagonals we first note that POVM elements are Hermitian and it is
sufficient to reconstruct just the upper or lower off-diagonals. We multiply equation (5) by e−ilθ

and integrate over θ . Since∫ 2π

0
ei(k− j)θ dθ = 2πδk, j , (21)

we have

1

2π

∫ 2π

0
pn|α e−ilθ dθ =

d−1∑
j=0

e−|α|
2 |α|

2 j+l

√
j!( j + l)!

π j, j+l
n . (22)
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Again for a practical experiment, the integration should be substituted with a summation

1

2π

∫ 2π

0
pn|α e−ilθ dθ ≈

1

Mp

Mp∑
v=1

pn|αu,v
e−ilθu,v (23)

with an error

1 = −
2π3

3M2
p

d2
(

pn|αe−ilθ
)

dθ 2
∼ −

2π 3 l2

3M2
p

. (24)

Equation (22) includes the situation in equation (19) when l = 0. For each l, there are Ma

equations. As has been done in equation (6), we can write them in a matrix form P (l)
= F (l)5̃(l),

with P (l) an Ma × N matrix, F (l) an Ma × d matrix, 5̃(l) a d × N matrix, and the coefficients
given by equation (22). Comparing with equation (6), all the matrices involved here are
significantly smaller. With the presence of the experimental fluctuations, the reconstruction
becomes a convex optimization problem, in fact a semi-definite problem

min{||P (l)
− F (l)5̃(l)

||2 + g(5̃(l))},

subject to 5n > 0,

N−1∑
n=0

5n = I. (25)

Since this is a convex optimization problem, there is only one minimum value, which can
be found with the YALMIP toolbox for Matlab [34] with the solver SeDuMi [35] utilizing
primal–dual interior point methods [22]. For the examples discussed in this paper, the
calculation converges to its minimum in less than 40 iterations, which takes about 1 s on a
multi-process desktop (Dual Core 2 GHz, 2 GB RAM). This allows us to reconstruct the POVM
recursively for l = 0, . . . , d . For l = 0, the second condition is that the summation of the main
diagonals of all the POVM elements equals 1, while for l 6= 0, this condition means that the
summation of the lth leading diagonals of all the POVM elements equals 0. The positivity
condition should be enforced recursively based on Sylvester’s criterion, which states that a
matrix is positive if and only if all of its principal minors are positive. For l = 0 this requires
all the matrix elements on the main diagonals to be positive. Now we derive the condition for
l > 0. We start with l = 1. In equation (26) we show the matrix 5n where the diagonal elements
(green) have been determined using equation (19) and the first row of off-diagonals (red) is to
be determined with equation (23). Any other entry is unknown and will not be reconstructed at
this step:

5n =



π 0,0
n — π0,1

n ? ? . . .

| |

π0,1
n

∗ — π 1,1
n — π1,2

n ?
| |

? π1,2
n

∗ — π2,2
n

. . .

? ?
. . .

. . .
...

πd−2,d−2
n — π d−2,d−1

n
| |

π d−2,d−1
n

∗ — π d−1,d−1
n



. (26)
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For an input state vector of the form |8〉 = a| j〉 + b| j + 1〉 the effective submatrix of 5n is
given by

5 j,1
n =

(
π j, j

n π j, j+1
n

π j, j+1
n

∗
π j+1, j+1

n

)
, (27)

which needs to be positive. We marked these submatrices with blue, orange, and black lines
for the j = 0, 1, and M − 1 cases in equation (26). Thus we imposed the additional constraint
that all diagonally centered 2 × 2 submatrices of 5 j,1

n need to be positive for the reconstruction
of the first off-diagonal. This condition is satisfied if and only if the determinant det(5 j,1

n ) is
positive, which implies∣∣π j, j+1

n

∣∣2
6 π j, j

n π j+1, j+1
n ∀n, j. (28)

For the following reconstruction of the lth leading diagonal we impose a similar constraint
on the (1 + l) × (1 + l) submatrices starting with π j, j

n , illustrated in equation (29)

5 j,l
n =


π j, j

n — · · · — · · · π j, j+l
n

| |

...
...

| |

π j, j+l
n

∗ — · · · — · · · π j+l, j+l
n

 , (29)

where only π j, j+l
n is unknown. It is required that 5 j,l

n is a positive matrix. Since constraints in
the previous steps ensure all its principle minors are positive, this condition is equivalent to its
determinant det(5 j,l

n ) being positive. To facilitate numerical calculations we derive the bounds
on π j, j+l

n , which can be done by noticing that det(5 j,l
n ) is a quadratic polynomial of π j, j+l

n

det(5 j,l
n ) = A × (π j, j+l

n )2 + B × π j, j+l
n + C. (30)

It is easy to see that A is positive, since A is the product of the elements along the anti-diagonal
and 5 j,l

n is Hermitian. Therefore det(5 j,l
n )> 0 implies that

−B −
√

B2 − 4AC

2A
6 π j, j+l

n 6
−B +

√
B2 − 4AC

2A
if B2

− 4AC > 0. (31)

The value of A, B and C can be easily estimated from equation (30) by substituting π j, j+l
n =

±1, 0 into 5 j,l
n and calculating the determinant numerically.

5.2. The number of leading diagonals l

To reconstruct the full POVM matrices, we should run the calculation in equation (25) until
l = d − 1. As can be seen from equation (24), for higher l it requires an increased number of
phases Mp to reduce the numerical error. Yet, in practice, the number of leading diagonals can
be estimated during the calculation. From the positivity condition, one has

|π j, j+l
n |

2 6 π j, j
n π j+l, j+l

n . (32)

Therefore, after the reconstruction of the principle diagonals, we can put a bound on the number
of leading diagonals to be reconstructed. Moreover, in any practical detector there is always
a finite fluctuation of the reference phase (with a fluctuation of 2π for a phase-insensitive
detector), which will further reduce the number of leading diagonals, as shown below. In fact,
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this phase noise will ensure that the entries of the POVM elements decay exponentially away
from their main diagonal.

Assume the reference phase has a Gaussian distribution with a width of δ > 0. Instead of
having a POVM 5n we have

5′

n =
1

δ
√

2π

∫ π

−π

dξ R(ξ)†5n R(ξ) exp(−ξ 2/(2δ2)), (33)

where R(ξ) is the rotation operator in the phase space with angle ξ . The matrix elements of 5′

n
are given by

π
′ j, j+l
n =

1

δ
√

2π

∫ π

−π

dξ〈 j |R(ξ)†5n R(ξ)| j + l〉 exp(−ξ 2/(2δ2))

=
1

δ
√

2π

∫ 2π

0
dξ〈 j |5n| j + l〉 exp(−ξ 2/(2δ2) + ilξ)

=
π j, j+l

n

δ
√

2π

∫ π

−π

dξ exp(−ξ 2/(2δ2) + ilξ)

=
π j, j+l

n

δ
√

2π

∫ π

−π

dξ exp(−ξ 2/(2δ2)) cos(lξ). (34)

Intuitively, if the fluctuation of the phase reference is small, i.e., δ � π , the last integration in
equation (34) can be approximated as∫ π

−π

dξ exp(−ξ 2/(2δ2)) cos(lξ) ≈

∫
∞

−∞

dξ exp(−ξ 2/(2δ2)) cos(lξ) = δ
√

2π exp(−l2δ2/2). (35)

The intuition of exponentially decaying coefficients can be made rigorous as follows. One has,
for w.l.o.g. l even, ∣∣∣∣∫ π

−π

dξ exp(−ξ 2/(2δ2)) cos(lξ)

∣∣∣∣6 δ
√

2π exp(−l2δ2/2)

+ 2

∣∣∣∣∫ ∞

π

dξ exp(−ξ 2/(2δ2)) cos(lξ)

∣∣∣∣
= δ

√
2π exp(−l2δ2/2)

+ 2

∣∣∣∣∫ ∞

0
dξ exp(−(ξ + π)2/(2δ2)) cos(lξ)

∣∣∣∣
6 δ

√
2π exp(−l2δ2/2)

+ 2

∣∣∣∣∫ ∞

0
dξ exp(−ξ 2/(2δ2)) cos(lξ)

∣∣∣∣
= 2δ

√
2π exp(−l2δ2/2). (36)

Thus, the matrix elements of 5′

n satisfy

|π
′ j, j+l
n |6 2|π j, j+l

n | exp(−l2δ2/2). (37)

The lth leading diagonal is decreased by a factor of 2 exp(−l2δ2/2). With the increase of l this
factor increases therefore reduces the number of significant leading diagonals in 5′

n, leading to
l � d. That is to say, the effort of reconstruction up to a constant error is of order O(d) instead
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of O(d2). For example, with a phase fluctuation of 10◦, the 18th leading diagonal is reduced to
1% of that with no LO phase fluctuation.

Another reason for the reduction of the required calculation for the leading diagonals comes
from one of the major points of performing detector tomography: to predict the response of the
detector with various input quantum states. For situations involving input states with a fixed
photon number N , like N00N states [36] or Holland–Burnett states [2], we only require N
leading diagonals of the POVM elements to predict all measurement outcomes. Due to the lack
of bright quantum sources, N is usually small (less than 8).

5.3. Regularization

The numerical stability of a reconstruction algorithm is one of its vital certificates. Numerical
instability has been a common problem in tomography [37, 38], particularly so in using phase
space data from homodyne tomography to reconstruct operators in the Fock spaces [39]. Tools
such as pattern functions [40–42] exist that can bridge this gap. They are however, hard to
identify and cumbersome to work with [43]. The use of maximum likelihood functions has
also been suggested for detector tomography [7, 8]. Unfortunately, as mentioned earlier, the
speed of the convergence of such algorithms is not generally guaranteed to be high, becoming
exponentially slow for certain problems.

We strike a balance by developing a recursive algorithm that is efficient by virtue of being
cast as a semi-definite programme, as is evident from the convex function to be minimized,
and the linear constraints in equation (11). Unfortunately, this still leaves us with an ill-
conditioned problem, primarily due to the extremely large ratio between the largest and smallest
singular values of the matrix F (l). This is a consequence of the large range of coherent state
amplitudes needed to cover the entire dynamical range of the detector in the Fock space. The
most common outcome of this ill-conditioning is to result in reconstructed POVMs that have
sharp discontinuities [10]. As shown in equation (12) this can be resolved by a smoothing
function or Tikhonov regularization [22]. We will next discuss how this mathematical technique
is physically enforced in realistic detectors.

Most realistic optical detectors have finite efficiencies which enforces a certain degree
of smoothness in their corresponding POVM representations. If a lossy optical detector has
a POVM element with a non-zero amplitude |m〉〈n| it will also have a non-zero amplitude in
|m + 1〉〈n + 1|, |m + 2〉〈n + 2|, . . . , |m + K 〉〈n + K |, decreasing with K . If the detector has a finite
efficiency η, it will impose some smoothness on the distribution π j,k

n . That is because if G(k) is
the probability of registering k photons and H(k ′) is the probability that k ′ were present, then
the loss process will impose

G(k) =

∑
k′

(k′

k )η
k(1 − η)k′

−k H(k ′). (38)

This motivates an immediate generalization of equation (12) to that in equation (25) as

g(5̃(l)) = γ
∑

j,n

|π j, j+l
n − π j+1, j+l+1

n |
2. (39)

While γ is a free parameter introduced into the problem for numerical smoothness, we show
that the outcomes of our reconstruction procedure are fairly insensitive to the actual value of the
parameter. Figure 3 presents the effect of the regularization condition for the reconstruction
of the no-click POVM of a weak-homodyne APD with the reflectivity of the beam-splitter
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Figure 3. Reconstructed POVM element for the no-click event of a weak-field
homodyne APD (with the reflectivity of the beam-splitter of 0.5, LO intensity
|αLO|

2
= 5 and quantum efficiency of the APD 60%) under different levels of

regularization γ = 0.1, 1, 10. The simulation is done for Mp = 40 and f = 105.
We demonstrate each leading diagonal separately up to l = 3. Red bars on top
of the reconstructed POVM element indicate the distance from the theoretical
prediction.

of 0.5, LO intensity |αLO|
2
= 5 and quantum efficiency of the APD 60% (overall detection

efficiency 30%). We vary the weight of the regularization condition for two orders of magnitude.
In addition to the fidelity, we also calculate the relative error of the reconstructed POVM
||5rec

0 − 5the
0 ||2/||5

the
0 ||2. The results are presented in table 1, which show that the change of

the reconstructed POVM elements due to the change of regularization strength is small. This
confirms that the main effect of the regularization condition is to suppress the ill-conditioning
and noise while leaving the POVM fitting unaffected.

As a comparison, we also calculated the reconstruction of the no-click POVM of a weak-
homodyne APD with the reflectivity of the beam-splitter of 0.5, LO intensity |αLO|

2
= 5 and

quantum efficiency of the APD 20% (overall detection efficiency 10%) and that of a weak-
homodyne APD with the reflectivity of the beam-splitter of 0.1, LO intensity |αLO|

2
= 5 and

quantum efficiency of the APD 90% (overall detection efficiency 81%). The results are shown
in figures 4 and 5. Calculated fidelities and relative errors are presented in tables 2 and 3. We
can see that regularization works very well for moderate and low detection efficiencies, while its
performance decreases if the detection efficiency is very high since the corresponding POVM
elements are not smooth any more. On the other hand, one can infer the detection efficiency from
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Table 1. Sensitivity of the reconstruction procedure to the choice of parameter
γ . No-click event of a weak-homodyne APD with the reflectivity of the beam-
splitter of 0.5, LO intensity |αLO|

2
= 5 and quantum efficiency of the APD 60%

(overall detection efficiency 30%).

γ Fidelity (%) Relative error (%)

0.1 98.38 5.54
1 98.32 3.33
10 98.36 6.88
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Figure 4. Reconstructed POVM element for the no-click event of a weak-field
homodyne APD (with the reflectivity of the beam-splitter of 0.5, LO intensity
|αLO|

2
= 5 and quantum efficiency of the APD 20%) under different levels of

regularization γ = 0.1, 1, 10. The simulation is done for Mp = 40 and f = 105.
We demonstrate each leading diagonal separately up to l = 3. Red bars on top
of the reconstructed POVM element indicate the distance from the theoretical
prediction.

the differences between the reconstructed results with different regularization strengths. If such
difference is large, one should utilize a reduced regularization strength in the reconstruction.

5.4. Reconstruction of the POVM of a weak-field homodyne avalanche photodiode

To discuss the performance of the recursive reconstruction method, we numerically simulate
a reconstruction of the POVM set of a weak-homodyne APD with the reflectivity of the
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Table 2. Sensitivity of the reconstruction procedure to the choice of parameter
γ . No-click event of a weak-homodyne APD with the reflectivity of the beam-
splitter of 0.5, LO intensity |αLO|

2
= 5 and quantum efficiency of the APD 20%

(overall detection efficiency 10%).

γ Fidelity (%) Relative error (%)

0.1 99.85 1.34
1 99.87 1.28
10 98.87 2.32
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Figure 5. Reconstructed POVM element for the no-click event of a weak-field
homodyne APD (with the reflectivity of the beam-splitter of 0.1, LO intensity
|αLO|

2
= 5 and quantum efficiency of the APD 90%) under different levels of

regularization γ = 0.1, 1, 10. The simulation is done for Mp = 40 and f = 105.
We demonstrate each leading diagonal separately up to l = 3. Red bars on top
of the reconstructed POVM element indicate the distance from the theoretical
prediction.

beam-splitter of 0.5, LO intensity |αLO|
2
= 5 and quantum efficiency of the APD 60%. We

choose the intensity of the probe state |αu|
2 from 0 to 100 photons with a step size of 0.5 photon.

This is sufficient to saturate the detector response. For each intensity we consider probe phases
distributed uniformly between 0 and 2π , i.e. θu,v = {0, 2π/Mp, . . . , 2(Mp − 1)π/Mp}. Again
we only consider the fluctuation induced by the random nature of the measurement process. We
assume that for each probe state we run the experiment f times and simulate the experimental
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Table 3. Sensitivity of the reconstruction procedure to the choice of parameter
γ . No-click event of a weak-homodyne APD with the reflectivity of the beam-
splitter of 0.1, LO intensity |αLO|

2
= 5 and quantum efficiency of the APD 90%

(overall detection efficiency 81%).

γ Fidelity (%) Relative error (%)

0.1 99.87 1.82
1 96.95 8.29
10 71.08 45.96
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Figure 6. Theoretical prediction and reconstructed POVM element for the no-
click event of a weak-field homodyne APD. We consider three different probe
phase settings Mp = 5, 20, 40. For each probe state we assume the experiment
is run f = 105 times, and simulate the experimental fluctuation with a binomial
distribution. We demonstrate each leading diagonal separately up to the l = 3.
Red bars on top of the reconstructed POVM element indicate the distance from
the theoretical prediction. The results are constructed with the weight of the
regularization function γ = 1.

noise by assuming f0|α is a random number with a binomial distribution. In figure 6 we show the
theoretical prediction and the reconstructed POVM for the no-click event with Mp = 5, 20, 40
and f = 105. To illustrate the results, we show each leading diagonal separately up to l = 3.
The reconstruction is done up to 150 photon-number component and is only displayed to the
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Figure 7. Reconstructed POVM element for the no-click event of a weak-field
homodyne APD under different levels of experimental fluctuations. For each
probe state we assume the experiment is run f = 103 and 105 times, and simulate
the experimental fluctuations with a binomial distribution. We demonstrate each
leading diagonal separately up to the l = 3. Red bars on top of the reconstructed
POVM element indicate the distance from the theoretical prediction. The results
are constructed with Mp = 40 and the weight of the regularization function
γ = 1.

25 photon-number component for clarity. We calculate the fidelity between the reconstructed
POVM 5rec

0 and theoretical prediction 5the
0

F =

(
Tr

((√
5rec

0 5the
0

√
5rec

0

)1/2
))2

/Tr
(
5rec

0

)
Tr

(
5the

0

)
, (40)

which are 87.04, 98.19 and 98.32% for Mp = 5, 20 and 40 respectively. The change in fidelity
can be further elucidated by the red bars on top of the reconstructed POVM element, which
indicate the distance from the theoretical prediction. From the results we can see that although
all three phase settings give almost the same results for the principle diagonal, for higher l it
requires more probe phases for an accurate reconstruction. This is due to the numerical error for
the calculation of the integral given in equation (24). This, on the other hand, shows a practical
advantage of the recursive QDT. The probe phase setting can be decided by the elements in the
POVM matrices to be reconstructed. If we are only interested in the low leading diagonals, we
can greatly reduce the number of probe phases from that needed for a complete reconstruction
of the POVM.

In figure 7 we show the performance of the recursive QDT under different levels of
experimental fluctuations. Here for each probe intensity we adjust Mp = 40 phases. The method
discussed in section 4 requires f = 1010 to achieve a satisfactory accuracy. As a comparison,
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the recursive QDT is very robust against the experimental fluctuations: a decent accuracy can
already be achieved for f = 103 (fidelity with the theoretical prediction 98.27%), with further
improvement for f = 105 (fidelity 98.32%). Depending on the repetition rate of the detector and
the laser system for LO and probe state, this requires only several milliseconds to one second
for each probe state.

6. Conclusion

Phase-sensitive quantum-optical detectors are crucial to fully exploit the fundamental features
of quantum physics and to optimally utilize optical telecommunications channels [44–46]. The
success of these applications relies on the accurate knowledge of detectors. Yet as quantum-
optical detectors become more sophisticated, normal parameters like detectivity, spectral
sensitivity and noise-equivalent power are not sufficient to provide a complete specification
of the detector. Moreover the complex structures of detectors and the coupling with external
degrees of freedom make the conventional characterization of these detectors less feasible.
QDT, a black-box or device-independent approach for the complete characterization of quantum
detectors, provides a universal solution to this problem. Full characterization enables more
flexible design and use of detectors, be they noisy, nonlinear, inefficient or operating outside
their normal range. However, the large number of parameters associated with the tomography
of coherent quantum detectors presents a technical challenge. This challenge is becoming
increasingly typical as quantum devices grow in sophistication. In this work we present a novel
recursive reconstruction algorithm to overcome this problem. Aided by numerical simulations,
we have demonstrated successful reconstructions of the POVM of a weak-field homodyne
APD. The results show the flexibility of the algorithm and its robustness to experimental
noise. The capability to fully characterize coherent quantum-optical detectors paves the way
to study genuine quantum features, including wave-particle duality, super-sensitivity, etc,
of a measurement process. It allows the benchmarking of the performance of quantum-
optical detectors for various quantum applications and sheds new light on the assessment
and verification of more complex detectors. We also hope that recursive quantum tomography
provides an efficient procedure for quantum tomography in other quantum states and process
characterization problems.
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