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and DOL states and have been shown to provide an efficient ansatz for performing tomography of open
© quantum systems. So far, however, the connection between cMPS and open quantum systems has not
- yet been developed for quantum transport experiments in the condensed-matter context. In this

work, we first present an extension of the tomographic possibilities of cMPS by demonstrating the
validity of reconstruction schemes based on low-order counting probabilities compared to previous
schemes based on low-order correlation functions. We then show how fermionic quantum transport
settings can be formulated within the cMPS framework. Our procedure, via the measurements of low-
order correlation functions only, allows us to gain access to quantities that are not directly measurable
with present technology. Emblematic examples are high-order correlations functions and waiting
time distributions (WTD). The latter are of particular interest since they offer insights into short-time
scale physics. We demonstrate the functioning of the method with actual data, opening up the way to
accessing WTD within the quantum regime.

1. Introduction

Continuous matrix product states (cMPS) have recently been recognized as powerful and versatile descriptions of
certain one-dimensional quantum field states [ 1-3]. As continuum limits of the MPS—a well-established type of
tensor network states underlying the density-matrix renormalisation group [4]—they introduce the intuition
developed in quantum lattice models to the realm of quantum fields, offering similar conceptual and numerical
tools. In the cMPS framework, interacting quantum fields such as those described by Lieb-Liniger models have
been studied, both in theory [1, 5, 6] and in the context of experiments with ultra-cold atoms [7].

On a formal level, cMPS are intricately related to Markovian open quantum systems [1, 2]: the open quantum
system takes the role of an ancillary system in a sequential preparation picture of cMPS. Elaborating on this
formal analogy, cMPS can capture properties of fields that are coupled to a finite dimensional open quantum
system. This connection has been fleshed out already in the description of fermionic quantum fields [8] and of
light emitted from cavities in cavity-QED [2, 9] in the quantum optical context, under the keyword of the input—
output formalism [10].

Another methodological ingredient to this work is that cMPS have been identified as tools to perform
efficient quantum state tomography of quantum field systems [7, 11-14], related to other approaches of tensor
network quantum tomography[12, 15]. These efforts are in line with the emerging mindset that for quantum
many-body and quantum field states, tomography and state reconstruction only make sense within a certain
statistical model or a variational class of states. Importantly, in our context at hand, it turns out that cMPS can be
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Figure 1. Extension and applications of cMPS based tomography (see sections 3-5). Previous works [7, 11] have shown that
measurements of low-order correlation functions C,, with n = 2, 3 are sufficient to access higher-order correlations using cMPS
tomography based on the cMPS matrices M and D (right side, black arrows). The first achievement of this work is the formal
demonstration that measurements of low-order counting probabilities constitute an alternative to measurements of low-order
correlation functions for carrying out cMPS tomography (blue arrow). We show that the probabilities to detect zero or one particle (P,
and P}, respectively) are sufficient to reconstruct alternative cMPS parameter matrices M and D, from which higher-order
correlation functions can be computed. The second achievement of this work is to extend the applicability of this cMPS framework to
quantum transport experiments. As a main illustration, we show that cMPS-based tomography provides an access to the distribution
of waiting times V. The according statistics are not directly measurable due to experimental limitations on single-particle detectors.
However, we demonstrate with experimental data that they can in fact be reconstructed from the knowledge of low-order correlation
functions (broad blue arrows).

reconstructed from the knowledge of low-order correlation functions alone [11, 12]. This is a very attractive
feature of cMPS: recently, a reconstruction scheme has successfully been applied to data on quantum fields
obtained with ultra-cold Bose gases [7]. In section 2, after introducing the cMPS formulation, we will provide the
reader with the key arguments that make this reconstruction scheme possible from low-order correlation
functions only. Read in the mindset of open quantum systems, cMPS tomography can be interpreted as open
system tomography by monitoring the environment of the open quantum system.

In this work, these methodological components will be put into a different physical context and substantially
developed further as illustrated in figure 1. At the heart of the analysis is a tomographic approach, applied to an
open quantum system, yet brought to a new level. In section 3, we extend the set of tomographic methods within
the cMPS framework, showing that the dynamics of the ancillary system and of the whole open quantum system
is not only accessible from low-order correlation functions, but also from low-order counting statistics.
Specifically, we prove that for generic systems, the two density functions Py and P;—which express the
probability of detecting zero and one particle, respectively, as a function of the time since the last detection—
provide sufficient knowledge to successfully perform tomography of the open quantum system.The physical
application of the established methods will also be different from the cavity-QED or the quantum field context:
here, we treat fermionic quantum transport experiments within the cMPS framework.

In a general transport setting, a scatterer is coupled to aleft reservoir (the ‘source’) and a right reservoir (the
‘drain’). Fermions (with or without a spin degree of freedom) can be seen as jumping in and out of the scattering
region from the source to the drain and can be described by a leaking-out fermionic quantum field. In section 4,
we show how the dynamics of the open quantum system (scatterer and leaking-out fermionic field) can be
encoded into a cMPS state vector. To provide the reader with an intuition about the equivalence between the
cMPS language and a more traditional Hamiltonian formulation, we will consider one of the simplest setups in
quantum transport: a single-level quantum dot weakly coupled to two reservoirs. These results are also valid for
transport experiments of ultra-cold fermions between a ‘hot” and a ‘cold’ reservoir as recently realised in [16, 17].

This will clear the way for making use of the tomographic possibilities offered by the cMPS formalism to
access various quantities in quantum transport that are not yet measurable with current experimental
technologies (see figure 1). Emblematic examples are higher-order charge correlation functions and the
distribution of waiting times (WTD, see section 5).

The waiting time is defined as the time interval between the arrivals of two consecutive electrons. Therefore,
the WTD provides a privileged access to short-time physics, short-range interactions and the statistics of the
particles. As such, it has gained a lot of attention recently [18-25], but WTDs suffer from their difficulty to be
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measured effectively: measuring WTDs requires the detection of single events while ensuring that no events have
been missed—for instance, due to the dead time of the detector.

With present technologies, WTDs in transport experiments can be measured when the injection rate of
electrons is within the kHz range as in the experiments of [26, 27]. Indeed, at those frequencies, the current trace
is resolved in time and the WTD can be directly deduced from it. As we will show in section 5, the WTD reflects
the quantum statistics of the electrons. However, quantum coherence and entanglement cannot be detected at
those frequencies. To observe these quantum effects, one needs to move to the GHz regime, which can be
achieved either with DC sources with a typical bias of tens of meV, or with periodically driven sources at GHz
frequencies [28—32]. In the GHz range, the current trace cannot be resolved in time so that the measurement of
the WTD is not feasible at present. In contrast, second- and third-order correlation functions have been proven
to be feasible [32, 33].

With these experimental constraints in mind, we propose in section 5 an indirect way to access the WTD
with methods that are within reach of the experimental state of the art. Namely, the dynamics of the full open
quantum system is accessed from measurements of low-order correlation functions (typically second- or third-
order). This is made possible with a cMPS formulation of the transport experiments as explained in the
following section.

Weillustrate this indirect path of accessing the WTD by considering real data obtained in the experiment of
[27], where single electrons tunnel through a single-level quantum dot in the kHz regime. Both the current trace
resolved in time and the two- and three-point correlation functions have been measured. The data allows us to
demonstrate a very good agreement between the WTD deduced directly from the current trace and the WTD
obtained via our reconstruction scheme based on the data of the correlation functions. This gives substance to
our protocol based on cMPS to access the WTD with present technologies. We claim that this method remains
valid in the GHz frequency range and for more complex systems such as a double quantum-dot coupled to two
reservoirs—which would exhibit quantum coherence effects—and for quantum transport experiments with
fermionic quantum gases.

2. Tomography of cMPS

In order to present a self-contained analysis, we start by reviewing the cMPS formulation of capturing a finite
dimensional open quantum system [2] and the tomography procedure of reconstructing the relevant cMPS
parameter matrices [11]. Consider an open quantum system (in cMPS terms the ancillary system) with
dimension d (called bond dimension in that context) and interacting with one or more quantum fields that are
described by field operators 1), for different fields cv. Its dynamics can in general be represented by different
mathematical objects:

(a) The master equation in Lindblad form, which governs the evolution of the ancillary system described by its
state vector |U') defined on the Hilbert space H of dimension d x d. The degrees of freedom of the coupled
fields are traced out in this approach.

(b) The set of n-point correlation functions of the coupled fields.

(c) The full counting statistics of the field system, i.e. the complete set of cumulants of the probability
distribution of transferred particles. The nth cumulant of the generating function is linked to the n
moments of this distribution, which correspond to the n-point correlation function.

(d) The cMPS state vector |t)ovps), which we now introduce.

2.1. Reconstruction of cMPS from correlation functions
An intuitive way of establishing the cMPS state vector |aps) consists in starting from the well-known Lindblad
equation. This equation describes the evolution of the state p in time via the Liouvillian superoperator £

p=Llp) = K pl — 5 S ({RiRwr p) — 2RopRY). (1)

a=1

The first term relates to the free evolution via a Hamiltonian K € C9%4, while the last two terms describe the
coupling to the environment (the according operator is known as the dissipator). The matrices R,, € C#*4,
a = 1,..., p, correspond to jump operators between the system and external quantum fields {h, }. The matrices
Kand {R,, } completely characterize the evolution of the system.

Making use of the Choi-Jamiotkowski isomorphism [34] (which maps linear superoperators from H; to H,
to linear operators actingon H; ® H,) the state p is mapped to a state vector | p) and the Liouvillian £ to the
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matrix T'[1, 2] with
T=Q*®1+1®Q+ > RX®R,. )

The matrix T € C4 >4 is known as the transfer matrix and the matrix Qs defined as

Q=-iK — %ZR(IRQ. 3)
Formally, the isomorphism introduced above is defined by the following relations for an operator and the
product of operators

p=1p),
ATpB i (A* ® B)lp). (4)

Being closely connected to Kand { R, } introduced above, the knowledge of the matrix and T"and its components
provides access to the dynamics of the open quantum system, and allows to directly derive the according
Lindblad equation.

The (translationally invariant) cMPS state vector | Uzyps) on the interval [0, L]is defined in terms of the

matrices Q, {R,, } and the field operators 121(1 by
L A A
|Vaws) = T Pexp [ x|l Q@1+ R @ du | 12 5)

This expression is related to the path ordered exponential that arises when integrating the Lindblad
equation. The embedding of the cMPS state vector |1vps) into Fock space becomes clear when expanding the
path ordered exponential P exp. For more details, we refer to [3] where the authors formulate the cMPS in
different representations such as the Fock space and a path integral formulation. After integration, the ancillary
system is traced out via T,y and the resulting term is applied to the vacuum state vector |2), where 1% ) =0
for each .

Compared to the Lindblad equation, the main difference is that the degrees of freedom of the ancillary
system are traced out such that its dynamics is mapped into the dynamics of the coupled quantum fields {1}
The evaluation of expectation values of field operators leads to expressions that only contain quantities from the
ancillary system, and information about the ancillary system can be inferred from according field operator
measurements. For the sake of clarity, we restrict ourselves to the case where a single coupled quantum field,
denoted as 7%, is measured.

The density-like correlation functions of the measured quantum field 3 then read

Ci(x) = <1/)cMPs|fl(x1) ﬁ(xn) waPS>, (6)

where x == (x, ..., x,)and 71 := 7,71; 12)3 According to the calculus of expectation values in the cMPS setting [3],
inserting equation (5) into equation (6) in the thermodynamic limit L — oo leads to the expression

C,(x) = lim Tr [eD(L”‘")MeD(""’xH)M. ) .MeD("l’O)]. 7)
L—oo
With D we denote the transfer matrix T—introduced in equation (2)—in its diagonal basis
D = X'TX, ®)
where the columns of X represent the eigenvectors of T. Analogously, the matrix M denotes R} ® Rgin the
diagonal basis of T
M= X—l(R;k ® Rg)X. )

Let us mention that the knowledge of X is in principle not necessary to reconstruct the matrices Q and R and
hence the according Lindblad equation [11].
Specifically, the second- and third-order correlation functions take the form

2

d
Cy(x) = Tr [eDOOMeDXM] = Y MM eh* (10)
i=1
and
d2
Cs(x, x/) _ Z Ml,kMk,j]VIj,leije/\k(XLX)’ (11)
k=1
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with { ); } being the eigenvalues of T. Due to the translation invariance of the system, we can set x; = 0. The
tomographic possibilities of the cMPS formalism can be understood from equations (10)—(11): if the products
{M, My jM; | } are known, we can—using gauge arguments [ 12]—require each of the matrix elements {M; ; } to
be equal to one, which enables us to access each M ; by dividing the appropriate terms:

M My jM;

= M ;. (12)
MM, ;M !

Both numerator and denominator appear as coefficients in C; and can be determined with spectral estimation
procedures. This means that in principle we just need to analyse a three-point function in order to obtain the
building elements M and D of arbitrary-order correlation functions.

This reconstruction scheme demonstrates the central role of the matrices M and D to derive the different
equivalent objects that describe the dynamics of an open quantum system: the Lindblad equation, the set of n-
point correlation functions, the full counting statistics of the number of transferred particles and the cMPS state
vector. These matrices M and D can therefore be considered as the central quantities on which our
reconstruction procedure is based; this is illustrated in figure 1.

2.2. Use of the thermodynamic limit

Intuitively, it is clear that the reconstruction of the matrices M and D should gain precision by increasing the
number of correlation functions C,, on which the reconstruction scheme is based. The same statement is valid
when increasing the size of the set of available counting probabilities P,.. But in general, experiments will only
provide us measurements of low-order correlation functions, typically those of the second- and third-order
[26,27,33]. A priori, this might render the reconstruction of the matrices M and D infeasible, but the work in
[12] proved that this limitation can be circumvented by making use of the structure of the cMPS state vector
combined with the thermodynamic limit.

For a given finite region I and a fixed bond dimension 4, all expectation values can be computed from all
correlation functions C, (x) taking values in the finite range I, x = (xy,...,x,,) C I*". This contrasts with the
situation of having access to correlation functions C,, (x) for arbitrary values of x = (x1 ,..., x,,), but for low n.
Here, arbitrary values x imply the thermodynamic limit, i.e. the finite region I tends to infinity. Then indeed, low
order correlation functions (typically G, C,, Cs) are sufficient to reconstruct an arbitrary expectation value of
an observable supported on L.

3. Reconstruction of cMPS from low-order counting probabilities

In this section, we extend the central role played by the matrices M and D for tomographic purposes by showing
that they (more precisely: their equivalents M and D) are also accessible from low-number detector-click
statistics, i.e. the idle time probability density function Py and the density function P;, which correspond to the
detection of zero and one particle, respectively, within a certain time interval 7.

Itis well-known that correlators and counting statistics are closely related. When assuming perfect detectors,
the probability to observe n events in the time interval between tand ¢t + 7 is given [35] by the expression

X (_1)yn—n t+7 t+7
Bt 7)== ZLI d f dty Con(t1 t2s 05 tm), (13)
t t

n! (m — n)!

m=n

where the correlation function C,,, has been introduced in equation (6). For a translationally invariant system, we
can without loss of generality set t = 0. Furthermore, when changing the integration bounds and performing the
limit L — oo, we obtain

T 1 L ~
Pn(T) = Pn(oa 0+ T) = f dtlf dtZ f dtn Cn(Ta fy £y ooy tn)) (14)
0 0 0
with

Cn(T, By oovs t,,) = el Z 'eP M, ---/\/l2eD(“‘tZ)MleD(T‘tl)Zel, (15)

the canonical unit vector e;, the diagonal matrix D of Q* ® 1 + 1 ® Q with basis transformation matrix Y,

M =Y (R;k ® Rj)Y,and Z := Y~'X, where X diagonalizes T as defined in equation (8).With equations (13)—
(15), the low-order counting probabilities Py (7) and P; (1) within a cMPS formulation are given by similar
expressions to equations (10) and (11), namely

dz
Po(r) = e[ Z7'eP7Ze; = > 3 zj €M7, (16)
j=1
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dZ
N etk — eHjT -
Pi(1) = E 21 M;kzi (1 — 6]-,;()— + 6jkTelim |, 17)
k=1 Hie = 1

with { i) being the diagonal values of D and {z; x } being the elements of the matrix Z (with inverse
Z ' =t (Zj))- See appendix for details.

As afirst step, we can extract from Py and P, the coefficients {2 ;z; ; } and the eigenvalues {1, }, which give
rise to D. The matrix elements of M can then in principle be determined using gauge arguments and under the
assumption that the additive components of P, are linearly independent. From M and D, the cMPS matrices Q,
Rand K describing the dynamics of the open quantum system can be determined in a straightforward way (see
appendix for details).

Let us comment on the feasibility of this reconstruction scheme with present technology. In order to
measure Py and Py, efficient single-particle detectors without dark-counting and tiny dead-time are necessary.
Dark-countingleads to detector output pulses in the absence of any incident photons while the dead-time s the
time interval after a detection event during which the detector cannot detect another particle. Although
significant experimental efforts have been made in order to improve single-photon [36] and single-electron
detectors [37, 38], the state-of-the-art for single-particle detection is not yet sufficient to perform a reliable
measurement of P;. For the moment, these experimental constraints make the reconstruction scheme based on
P, onlyvalid on a formal, mathematical level. In the light of the recent experimental progress towards the reliable
detection of single particles, we believe that this idea will become relevant in the future.

4. Application to fermionic quantum transport experiments

Very recent works have successfully formulated experimental setups in cavity QED and ultra-cold Bose gases as
well as the corresponding measurements in terms of cMPS [7, 9]. This allowed them to make predictions for
higher-order correlation functions that are not accessible experimentally and to investigate the ground-state
entanglement.

Here, we tackle the problem of formulating quantum transport experiments and the corresponding
measurements (average charge current, charge noise) in cMPS terms To this end, we demonstrate that the field
that is leaking out and is measured in a quantum transport experiment belongs to the cMPS variational class. We
then provide an example to illustrate the equivalence between an Hamiltonian and a cMPS formulation by
considering one of the simplest transport experiment, namely single electrons tunnelling through a single-level
quantum dot. We derive the first-order and second-order correlation functions in cMPS terms, and show that
we recover the well-known expression of the average current and charge noise, when writing the cMPS state
equation (5) in terms of the parameters of the quantum system.

4.1. Quantum transport experiments in terms of cMPS

We now turn to a description of the physical setting under consideration. We assume here transport
experiments, where single electrons transit through a scatterer coupled to fermionic reservoirs. The reservoirs,
considered at equilibrium, are characterized by their chemical potential and their temperature via the Fermi
distribution. The bias energy and the bias temperature between the different reservoirs will set the direction of
the charge current. For the sake of simplicity, we restrict ourselves to two reservoirs, the source and the drain.
This transport setting can be described by the Hamiltonian

A~ N

I:IT = Hsys + Hres + Hino (18)

where PAISYS relates to the quantum system under investigation, which acts as scatterer. It is characterized by

. . . . AT o4 5 AT .
discrete energy levels &; with occupation number operators given by d;, , d; , (d; , and d, , denote the fermionic
annihilation and creation operators for an electron on the energy level i and spin degree of freedom o = 1, |).
The Hamiltonian Hi relates to the left and right reservoirs, and Hi,; describes the interaction between the

quantum system and the reservoirs,

EO
A= % [ AEEE () euo (), (19
a=L,Ro=1,| 0
A= 3 f AE (to)0 (B) iy © &, (B) + h.c). (20)
a=L,Ri,o

The creation and annihilation operators of the reservoirs, &, and ¢, satisfy the canonical anti-commutation
relationsand o = L, R denotes the left and right reservoirs, respectively. The amplitude ¢, ; , sets the interaction
between the quantum system and its environments.

6
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In order to model a DC source, the energy levels in the left and right reservoirs are assumed to be densely
filled up to the energies E + eV and Ey, respectively. Here, Er is the Fermi energy and Vis the bias potential
applied on the ‘source’ reservoir. At zero temperature, the bias energy eV enables uni-directional transport of
electrons between the left and right reservoirs. It plays a similar role to the frequency bandwidth when, e.g.,
considering cavity QED setups, and fixes the energy domain over which electronic transport takes place.

With this assumption about the direction of propagation of the electrons (from left to right), we will see that
equation (18) is equivalent to a generalized version of the cMPS Hamiltonian introduced in [1, 2],

. " 5 ”t
Homps = Q ® 1+ (RL @ YL+ Rp ® 7/’11), (21)

where the matrices Q and {R,, } and the quantum fields {121“ } have been introduced in section 2. The cMPS
Hamiltonian for quantum transport experiment reflects the direction of the current: a fermionic excitation
present on the left of the scatterer is annihilated at the scatterer as described by the quantum field 1. (an electron
jumps into the scatterer). Similarly, a fermionic excitation present on the right of the scatterer is created at the
scatterer as described by the quantum field 12}11 (an electron jumps out of the scatterer). The case of a multi-
terminal setup can be considered in a similar way. Showing that equations (18) and (21) are equivalent implicates
that there is a fermionic quantum field leaking out of the scatterer to be measured and that it belongs to the cMPS
variational class. Such a description of the transport experiment corresponds to a fermionic version of the input-
output formalism of cavity-QED setups.

Using equation (20), the quantum field leaking out of the quantum system, g (t), can be written in terms of
the creation operator in the right reservoir ¢&; the incoming quantum field can be written in a similar way in
terms of the creation operator in the left reservoir ¢

B @) = f dE e B/t (E), a=L,R. 22)
E

The Fermi sea for the electrons is taken into account in the following way: on the right side of the scatterer, the
quantum field satisfies @R (t)|Eg) = 0, where | Ep) denotes the state of the Fermi sea at energy Er, whereas on the
left side of the scatterer, be (t)|Er + eV) = 0, where the state vector | Ex + eV') defines the state of a Fermi sea at
energy Ep + eV.

Assuming that the energy levels ¢; of the quantum system are well inside the bias energy window eV, we can
rewrite the integration over the energy domain E as f dE = f “ dE.

This assumption is the so-called large-bias limit, V\fhich is cor(;sidered in order to derive the master equation
corresponding to the tight-binding Hamiltonian. In quantum optics, it corresponds to a finite frequency
bandwidth, which allows the use of the rotating wave approximation [9, 10]. In the following, we assume that the
interaction amplitude is spin- and energy-independent within the interval [Eg, Eg + eV ]:t,;, (E) = t,.Letus
remark that the demonstration remains valid with an interaction amplitude that depends on spin and energy.
Importantly, no assumption about the coupling strength is required here.

In a rotating frame with respect to the energies of the reservoirs and after a Jordan-Wigner transformation
using the definitions of the quantum fields @R,L given in equation (22), the Hamiltonian in equation (18) can be
rewritten as

Br=Hyol+ 3 3 (tadi ® ¢, + he). (23)
a=L,Ri,0
Following quantum optics calculations—which remain valid in this case because Hy is a transport version of the
spin-boson model—we finally arrive at an effective non-Hermitian Hamiltonian

a=L,Ri,o

~ ~ ik At o4 4 o At A
Heg = Hsys - ? z Zradi,adi,a] @1+ Z ( \/F_Rdi,n ® wR,(r @ + \/TLdi,(r ® 'IZ)L,J (t)) (24)
with t,, == \/ITQ . Expressed in the eigenbasis of ﬁsys, the operators \/F_R ﬁi,,, and \/E c?ii, take the form of matrices
labelled Ry ; , and Ry ; ,, respectively. The effective non-Hermitian Hamiltonian can then be rewritten in a
compact form

N N N N ~AF
Aa = Qo 1+ (Rl @ duo® + Ruio @ dao(0): (25)
i,0
When comparing this effective Hamiltonian with equation (21), the identification of the matrix Q and the
matrices {R,, } is direct. For spin-less fermions, the matrices R verify R ; , = 0 in order to satisfy the Pauli
principle. Equation (25) demonstrates that transport settings can be adequately formulated within the cMPS
framework. This result is important as it clears the way for applying methods from cMPS tomography to

fermionic quantum transport experiments.
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Fr + eV

- Yr|Er) =0 fin Pk

Figure 2. Scheme of a transport experiment through a single-level quantum dot. (a) The single-level quantum dot with energy € is
tunnel-coupled to two biased reservoirs with coupling strengths I} and Ir. Spin-less single-electron tunnelling events take place in
the energy window eV above the Fermi sea with energy E. (b) The same transport experiment from the open quantum system
perspective for a cMPS formulation. The single-level dot is described by I—AISys and coupled to fermionic quantum fields ¢ and 9.
The coupling matrices Ry /r depend on the parameters I} /g, see equations (24)—(25). The transport direction fixed by the biased
energy between the left and right reservoirs is ensured in the cMPS formulation by imposing oy |Eg + eV) = 0 and ¢k |Eg) = 0.

4.2. Single energy-level quantum dot
To illustrate the input—output formalism and the cMPS formulation of quantum transport experiments, we
consider one of the simplest setups, namely a single energy-level quantum dot, without spin-degree of freedom,
weakly coupled to two fermionic reservoirs. Even though this experiment is characterized by Markovian
dynamics, this example is of particular interest for this work as it has been widely investigated experimentally. In
section 5, we will use real data obtained in [27] for this setup to show that cMPS tomography allows us to access
the electronic distribution of waiting times.

This simple transport experiment is sketched in figure 2 and the corresponding Hamiltonian reads

Br=cdd+ ¥ f dE(VT, d ® (B + he.) + Fres (26)

a=L,R

Assuming that we perform a measurement on the right of the scatterer, the first two correlation functions of
the right quantum field v (¢) read in terms of cMPS matrices

() = lim Tr| e (RY @ Re )| @)
and
(I O D Ix D) = lim Tr[ " ED(RE @ Re)e™ (R @ Re) | (28)
L—oo

The matrices Rg /1, correspond to the operators \/ITR d and JIL d’ expressed in the eigenbasis of the single-level
quantumdot, {|0), |1) } (empty and occupied state)

_ 0 0 (o T
(0w ) .

Inserting these expressions into equation (27), we recover the well-known expression for the steady-state
current of a single-level QD coupled to biased reservoirs [39, 40]
L1 Ir

PNEIN - _ (i
<waR> - FR + FL <I>ss- (30)

Furthermore, we can derive the noise spectrum from equation (28) via the MacDonald formula [41-43]

PARN R

Sy =2(I)| 1 - —————
(FL —+ FR) + (.d2

(€29

This example aims at bridging the gap between a more traditional Hamiltonian and the cMPS formulation,
which allows to write these well-known expressions in terms of the parameter matrices Q, T, and {R,, }.

5. Reconstruction of waiting time statistics

In this section, we address the problem of accessing the distribution of waiting times in electronic transport
experiments. As mentioned in the introduction, a direct measurement of the WTD in the GHz range is not yet
possible due to the lack of single-particle detectors with sufficient accuracy at those frequencies. Here, we
propose to reconstruct the WTD based on the experimental measurements of low-order correlation functions.
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Figure 3. Two-point correlation function C, for single fermions tunnelling through a single-level quantum dot with data from [27]
(red-dotted curve). The blue curve, obtained from the reconstructed values of the parameters I} g using a cMPS formulation of the
quantum experiment, agrees well with the experimental measurement of C,. The deviation for small times is due to experimental
limitations in the time bin with respect to which the current trace is resolved.

The reconstruction is carried out using the cMPS framework presented in section 2 and the formulation of
transport experiments in terms of cMPS as exposed in section 4.

5.1. Definitions

The statistics of waiting times can be expressed in terms of the probability density function Py, which—asa
function of ——expresses the probability of having detected zero particles in the interval [0, 7]. In terms of Py,
the WTD has first been derived in the context of quantum transport experiments in [20],

O*P
W(r) = (1) IR(@ (32)
or?
Here, (1) denotes the mean waiting time. Inserting P, (7) in cMPS terms (equation (16)), we arrive at an
expression for W in terms of the cMPS matrices D, D and Z defined in equations (8) and (15),
Wir) = Le (D227 = 2D27'D + 27'D?)eP" Zey, (33)
c

00
The normalization factor ¢ > 0 ensures that f W(T)dr = 1.Equation (33) allows us to access the WTD

from the measurements of the low-order correlation functions only via the use of the cMPS framework to
reconstruct the cMPS matrices D, D and Z.

5.2. Results based on experimental data

We demonstrate our novel approach to derive the WTD from the measurement of correlation functions using
experimental data obtained in [27] for spinless electrons tunnelling through a single-level quantum dot. This
system is also known as a single-electron transistor at the nanoscale and has been discussed in section 4.2. The
experiment in [27] has been carried out in the kHZ frequency range, where a time-resolved measurement of the
current trace is possible. Although all the statistics—including correlation functions of arbitrary order as well as
the WTD—can directly be computed from this time-resolved current trace, this experiment provides an ideal
test-bed for our proposal. We can compare the WTD obtained from our reconstruction scheme based on cMPS
with the WTD directly deduced from the experimental current trace.

Due to the simplicity of the setup, our proposed method to access the WTD only requires the two-point
function C,. This one can directly be derived from the experimental spike train I (the time-resolved current
trace) and is shown in figure 3 (red dots). The rates I} = 13.23 kHz and I} = 4.81 kHz have been determined
experimentally and the corresponding C,-function agrees very well with the analytical expression when the
detector rate is taken into account [27]

_Llg (T4
Cy(7) = FL+1“R(1 e (it )). (34)

In our reconstruction scheme, the quantity I} + I canbe determined from the current spike train
autocorrelation function I x I by least squares methods or spectral estimation procedures analogous to the
procedure described in [11]. By requiring I7 > Iy and using the expression of the steady-state current (see

9
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Figure 4. WTD obtained from state-of-the-art experimental measurements with data from [27]. The reconstructed WTD using
equation (33) is shown in blue. It matches the WTD obtained directly from the time resolved experimental current trace (red dots)
well. The deviation is due to the finite-sized time bin corresponding to the resolution of the current trace. A more accurate
reconstruction of the WTD is expected by increasing the time resolution of the current trace or of the measurement of C,.

equation (30)), I} and Iy can be uniquely identified. The reconstructed values for the rates are

riecon = 10.80 kHz, (35)
Tiecon = 4.76 kHz. (36)

The differences to the values from [27] are well within the range we would expect, regarding the time-resolution
in the spike train data. The curve plotted from these reconstructed values of the parameters I} p is shown in
figure 3 in blue. The slight deviation between the experimental points and this reconstructed C,-function is due
to the discretization of the counting time intervals used in the experiment: the size of each time bin is not much
smaller than the time scale on which C, changes mostly. This leads to an error in the estimation of the damping
factor I1 + Iy and explains the difference of the blue and the red dotted curves. Naturally, one could expecta
more accurate reconstruction of the parameters I} and Iy when increasing the time resolution of the current
trace or of the measurement of C,.

From I3 and I, the corresponding cMPS matrices Ry and Ry can be constructed, as well as the matrices M
and D. In this simple case, we did not need to employ the whole reconstruction procedure from [11]. Indeed, it is
clear from equation (34) that only two out of the four parameters that characterize the system appear: C, only
depends on the tunnelling rates I} and Iy—the eigenenergies 0 and € of I—AISYS do not contribute’. This will in
general not be the case.

The matrices Ry and Ry, give access to the matrices D and D by direct computation. Inserting the latter into
equation (33), the WTD can be reconstructed and the result is plotted in figure 4 (blue curve). In order to build
confidence in our procedure, we compare this result with the experimentally accessible WTD (red dots). Let us
recall that the transport rate is in the kHz range, hence the WTD can directly be extracted from the current spike
train I: by sorting, counting all (discrete) waiting times between two consecutive incidents, and subsequently
normalizing the resulting histogram, one obtains the red-dotted WTD in figure 4. The slight deviation between
the WTD reconstructed via our proposal and the experimental one is again due to the discretization of the
counting time intervals. One could expect a more accurate reconstruction of the WTD when increasing the time
resolution of the current trace.

The WTD in figure 4 shows elementary transport properties of single independent fermions that cannot
tunnel at the same time through the single-level quantum dot, which is consistent with the fact that W(7) — 0
for 7 — 0.Itisimportant to emphasize that it is the first time a WTD is extracted from experimental data,
therefore bridging the gap between theoretical predictions and experiments. The good agreement of the two
curves demonstrates the potential of our cMPS-based reconstruction procedure to access the WTD from the
measurements of low-order correlation functions. This opens the route to access the WTDs in the high-
frequency domain from low-order correlation-functions measurements.

> The eigenvectors of T only depend on I} and Iy, this applies to My, M and all residues as well. Accordingly, the two non-real poles are the
only quantities that depend on ¢, however, only the residues connected to the two real poles do not vanish. When adding off-diagonal
elements to K, the terms mix and a dependency on K arises.
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6. Conclusion

In this work, we have taken an approach motivated by cMPS to perform tomographic reconstructions of
quantum transport experiments. On a formal level, we have extended this formalism to perform a
reconstruction of unknown dissipative processes based on the knowledge of low-order counting probabilities.
We then demonstrated that cMPS is an adequate formalism to describe quantum transport experiments based
on tight-binding Hamiltonians.

This work advocates a paradigm change in the analysis of transport experiments. The traditional method is
to make explicit use of a model to put the estimated quantities into context, a model that may or may not
precisely reflect the physical situation at hand. The cMPS approach is to not assume the form of the model, with
the exception that the quantum state can be described by a cMPS. Such an approach is of particular interest as it
opens the way to the access of quantities that are not measurable experimentally with current technologies, high-
order correlation functions and distributions of waiting times.

To convincingly demonstrate the functioning of cMPS tomographic tools applied to quantum transport
experiments, we presented a simple example that consists of electrons tunnelling through a single-level quantum
dot. Making use of experimental data, we showed that we could successfully reconstruct the distribution of
waiting times from the measurement of the two-point correlation function only. This work constitutes therefore
asignificant step towards accessing the waiting time distribution in the quantum regime experimentally, a
challenge present for several years now. Importantly, the application of our reconstruction procedure goes
beyond the interest in WTD: it also provides an access to higher-order correlation functions, which are key
quantities to better understand interacting quantum systems.

In subsequent research, it would be desirable to further flesh out the statistical aspects of the problem. After
all, the description in terms of cMPS constitutes a statistical model. It would constitute an exciting enterprise in
its own right to identify region estimators that provide efficiently computable and reliable confidence regions
[44] when considering the problem as a statistical estimation problem, related to the framework put forth in
[45-47]. We hope that the present work inspires such further studies of transport problems in the mindset of
quantum tomography.
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Appendix. Reconstruction method from low-order counting probabilities

In this appendix, we provide further technical details on the reconstruction scheme based on the measurement
oflow-order counting probabilities, Py and P;. The goal is to access the central cMPS parameter matrices M and
D. Werefer to figure 1 for a general view of the reconstructible items. We start from equation (13) in the main
text. By changing the integration bounds, we obtain equation (14),

T t by ~
B(r) = fo dtlj; dt2~-~f0 dt, Cn(T, fy ty oees t,,),

where the integrand C,, is altered to

c, (7_, b o tn) = lim Tr I:eT(Lfter)eStnR;lk ® Ry R ® RzeS(tlftz)Rl* ® Rles(ffn)]. (A1)
L—oo

Note that in contrast to equation (7) where the propagating matrix is the transfer matrix T defined by equation (2)

(or equivalently its diagonal representation D), the propagating matrix in the exponential terms between two

measurement points now is the matrix S, which is defined by

S=Q*®14+1®Q=T-3) R QR (A.2)
j

We can further simplify equation (A.1) by performing the thermodynamic limit L — oco. The spectrum of T for
a generic system consists of complex values with negative real part and only one eigenvalue being equal to zero.
When taking the limit L — oo, all eigenvalue contributions to e’ ¢ =7 vanish, except the one corresponding to
the zero eigenvalue. Hence
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lim eT@"" = Xejel X1, (A.3)

L—oo

with the first canonical unit vector denoted by e; and the basis transformation matrix X to the diagonal basis of T.
Similar to D and T, we define the matrix D as the diagonal matrix of S with basis transformation matrix Y:

S=YDy L (A4)

By defining the matrices M; == Y~! (R;|< ® RjY for j = 1,..,n,and setting Z := (zjx) := Y 'X (with inverse
Z = (Zx)), we arrive at equation (15),
C, (7, Hy oo t,,) =el Z71 el M,,-- eP(1=1) M, eP(8=1) A, P(7-1) Ze,.
Equations (15) and (7) have a close structural resemblance: the matrices M and M are simnilar in the linear algebra
sense, i.e., there exists a basis transformation from M to M. The matrices D and D are the diagonal matrices of the
transfer matrix T'and the matrix S, respectively. It is straightforward to transform M and D into M and D and
vice versa: by subtracting M from D, we obtain S (up to similarity/basis transformation), whose diagonal matrix is
D. Applying the same basis transformation (from (D — M) to D) to the matrix M results in the matrix M.

For n =0, the counting probability function then reads

Py(T) = el XY ePs7 Y IX ¢, (A.5)

which can be rewritten as a sum of complex exponential terms, with { z1; } being the eigenvalues of S as
dZ
P()(T) = Zél,jzj)l ehiT, (A6)
=1
This expression corresponds to the analogue of equation (10) in the main text. Since S is by definition a Kronecker
sum of Q* and Q with eigenvalues {q].* }and {g;} respectively, the spectrum of S consists of the sums q].* + q;
with j, k = 1,...,d.Itis closed under complex conjugation (for each element of the set its complex conjugate is
also element of the set), as well as the coefficient set {2, ;z; 1 }. This ensures that P, is real-valued. Being related to
Q (which consists of a skew-hermitian matrix (with imaginary spectrum) and negative definite matrices), we
have that Re p; < 0 for each j, such that all summands vanish sufficiently fast and P, is normalizable.
Furthermore, the dominance of the damping factors over the oscillatory components ensures the positivity of Py
(in particular, the 4i; with the least damping is always real-valued). Analogously, for P (7) we obtain

dZ
R ek — eT
Z Zl,ij,ka,l (1 — (5]"1()—] + (5j’k7'e”j'r (A.7)
k=1 M — 1y
with the Kronecker delta 6; t,
F) = cmntmel". (A.8)
m,n

Assuming that the terms 7™e#" are linearly independent, in principle one can always single out these
contributions as well as their corresponding prefactors c,, ,. This gives us the chance to extract the coefficients
{21,jz;,1 } and the eigenvalues { 1, } from Py, provided that no coefficient is identical to zero. Rearranging the
values { 1, } to a diagonal matrix in Kronecker sum form results in the matrix D. One should note, however, that
efficient spectral recovery algorithms like the matrix pencil method do not straightforwardly work for functions
suchasP,,, n > 2, where the exponential functions are multiplied with powers of 7.

In order to reconstruct the elements of the matrix M together with the off-diagonal elements of Z, we use a
gauge argument: All probability functions P, are invariant under scaling and permutation of the eigenvectors in
the matrices X and Y (except for the eigenvector of T corresponding to eigenvalue zero). This allows us to require
all but one 2 ; to be equal to one, and immediately obtain the according number z; ;. The remaining coefficient
can then be determined via the normalization constraint

P2
Zél‘jzj,l =1, (A.9)
j=1

sothatall z; ; are known. This can be used to obtain the diagonal elements M; ; from M. For the remaining
matrix elements, only the symmetric elements M; ;. + M ; (but not their constituents) are directly accessible
since

'S L, T LT d* L, T T
A e — el . . T — el
lej/\/lj,kzk,li = Z(zl,j/\/lj,kzk)l + Zl,kMk,ijyl)i. (A.10)
k=l Mg — Ky i<k B — H
j=k

However, this does not constitute a limitation for the reconstruction of the matrices Q and R of the ancillary
system. To this end, we make use of the inner structure of M. The diagonal matrix D with eigenvalues 1, can be
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reordered such that it has the form D = Dj ® 1 + 1 ® Dq with diagonal Dg, consisting of the eigenvalues of Q.
Reordering the eigenvectors in Y accordingly, we can assume that the matrix Y and hence the matrix M have the
form of a Kronecker product

M = R¥ ® Re. (A.11)

Here Riec = (rjx) € C4*4is in general not diagonal. The symmetrized components of M can then be written
as r;'f Tom + T jm,1 and the constituents r; can be determined (up to a phase factor) by equating them with the
coefficients in equation (A.10). The according equation system can then be solved.

The important point is that R, and Q. := D are valid cMPS parameter matrices in the same gauge and
hence are sufficient for reconstruction with the same argument as in [11, III.E]. Let us note that concrete values
of the basis transformation matrices X and Y are in fact never used or needed in the reconstruction procedure.
From R, and Q,.., we can compute all quantities we need to establish the correlation and counting probability
functions, in particular M and D. Regauging R, and Q... such that the orthonormalization condition [1] is
fulfilled, yields a reconstruction of the free Hamiltonian K, of the ancillary system.
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