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Abstract

Photochromic molecular switches immobilized by direct contact with

surfaces typically show only weak response to optical excitation, which

often is not reversible. In contrast, here we show that a complete and

reversible ring-opening and ring-closing reaction of submonolayers of spi-

ronaphthopyran on the Bi(111) surface is possible. The ring-opening to the

merocyanine isomer is initiated by ultraviolet light. Switching occurs in a

two-step process, in which after optical excitation an energy barrier needs

to be overcome to convert to the merocyanine form. This leads to a strong

temperature dependence of the conversion efficiency. Switching of the me-

rocyanine isomer back to the closed form is achieved by a temperature

increase. Thus, the process can be repeated in a fully reversible manner,

in contrast to previously studied nitrospiropyran molecules on surfaces.

This is attributed to the destabilization of the merocyanine isomer by the
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electron-donating nature of the naphtho group and the reduced van-der-

Waals interaction of the Bi(111) surface. Our result shows that molecules

designed for switching in solutions need to be modified to function in direct

contact with a surface.

Keywords: molecular switches, spiropyran, photochromism, surfaces,

x-ray absorption spectroscopy

1 Introduction

Molecules that can be switched by external stimuli in a reversible manner have

attracted tremendous scientific interest since they allow for the manipulation

of materials on the nanoscale. In biological systems they are crucial for the

realization of complex functions like, e.g., sight [1] or cell regulation [2]. Over

the last century, chemists have designed many molecules that can, for example,

switch their conformation [3], electric dipole moment [4], magnetic moment [5],

conductance [6, 7], or trigger a unidirectional motion in molecular machines [8,

9]. If such molecular switches are used to represent information, they have the

potential to boost the density in data storage or information processing [10, 11].

To use individual switchable molecules as functional units of data storage or

processing devices, they need to be immobilized and contacted. This requires

to bring the molecules into contact with a surface. However, molecules that are

designed to show a certain functionality in solution may lose this property if they

are adsorbed on a surface. Several reasons can be identified as the cause for

a quenching of their switching behavior in contact with a surface: A chemical

reaction with the substrate may take place that changes the molecular properties

[12]; the lifetime of the excited state reached by the stimulus may be reduced on

the surface due to additional de-excitation channels [13]; the interaction with the

surface may shift total energies and result in a destabilization of one of the two
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metastable ground states [14]. Especially in densely packed molecular layers steric

hindrance and intermolecular interaction are additional causes for suppression of

switching functionality.

Spiropyran (SP) is a molecular switch that can be controlled by light. It

undergoes a ring-opening reaction to its merocyanine (MC) form upon UV light

exposure. The initial SP state can be restored by visible light or thermal acti-

vation, as illustrated in figure 1 a). The ring-opening reaction is accompanied

by a change in electronic conjugation, which can be used to switch the electrical

conductance. The strong difference between the electric dipole moments of the

two molecular states is useful, for example, to optically control the electrostatic

properties of a surface [15]. The ring-opening of SP to MC and the ring-closing

back-reaction are widely investigated in solutions [16–21], but a reversible switch-

ing of SP molecules in direct contact with solid surfaces has not yet been achieved.

Switching was only reported in nanometer-thick films of SP containing a nitro

group on MgO(100) [22] and in self-assembled molecules on nanoparticles [23,24].

Directly adsorbed submonolayers on Au(111) showed ground-state energies that

are reversed compared to solution [14]. The MC state is thereby stabilized by the

formation of an image dipole at the surface, increased van-der-Waals interaction

due to its planar geometry, and the formation of molecular dimers by hydrogen

bonds. Heating above room temperature led to a thermally activated, irreversible

transition from the SP to the MC state [14]. On Bi(110), a light-induced ring

opening of SP has been observed but no thermal- or light-induced back reaction

could be shown [25].

Here, we investigate submonlayers of a spironaphthopyran (SNP, see figure

1a)) on Bi(111). Compared to the former experiments, the electron-withdrawing

nitro group is replaced by an electron-donating naphtho group in order to desta-

bilize the MC state. To reduce van-der-Waals interaction, we use a semimetallic

Bi(111) substrate that, compared to metal substrates like Au(111) or Cu(111),
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exhibits a low density of states at the Fermi level [26–28]. Both effects are suit-

able to counteract the surface-induced stabilization of the MC state that was

found by previous studies [14, 29]. With these modifications, we achieve a vir-

tually complete and fully reversible switching of SNP in direct contact with a

Bi(111) surface. Illumination with UV light at a temperature of 200 K induces

the transition from SNP to MC. Heating to 245 K fully resets the SNP state.

2 Results and Discussion

2.1 Adsorption

To investigate the isomerization of the SP derivate, XA measurements at the N

and O K edges were performed. For the former, the results are shown in figure 1

b) for an isotropic absorption measured at the magic angle (54.7◦), at which the

influence of the orientation of the molecules on the spectra cancels. O K edge XA

can be found in the Supporting Information. Figure 1 b) shows the N K XAS of

0.69 monolayers (ML) of SNP at a sample temperature of 200 K on the Bi(111)

surface directly after deposition. A weak π∗ absorption at 401.5 eV and a broad

absorption maximum at 404.5 eV originating from σ∗ states are present. DFT

calculations of the absorption spectrum of the free gas phase SNP molecule shown

in panel c) agree well with the spectrum of the pristine form. The simulations

were performed by means of the StoBe code [30], which has been successfully

applied to a variety of molecules [12, 14, 31]. Further details are presented in

the Supporting Information. The energetic distance between the most intense π∗

absorption and the σ∗ maximum matches quite well to the experiment as well

as the ratio of their intensities. A significant accordance in line shape between

experiment and theory for the SP form is reached.
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Figure 1: a) Sketches of the spironaphthopyran (SNP, left) and merocyanine
isomer (MC, right, in a TTC-configuration) molecules. Carbon atoms are colored
in grey, nitrogen in blue, oxygen in red, and hydrogen in white. Isomerization
in solution from SNP to MC can be triggered by UV light and vice versa by
visible light or temperature. b) Measurement of the N K XA of a sub-ML SNP
on Bi(111) recorded at the magic angle, c) simulation of N K XA of free SNP
by means of the StoBe code, d) N K absorption spectrum after the illumination
of the sample by a UV LED for 90 min at 194 K, e) simulation of the N K XA
signal of free MC.
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2.2 UV-Induced Ring-Opening Reaction

The ring-opening reaction was monitored at the N K edge. For the light-induced

isomerization, the UV LED was used which illuminated the sample continuously

for about 90 min with an initial temperature of 194 K (cf. Supplementary In-

formation), until no further change in the spectrum was observed. The resulting

isotropic x-ray absorption at the nitrogen K edge is shown in figure 1 d). A

clear difference to the pristine spectrum is present. The most significant change

is the new π∗ absorption peak at 400.0 eV. The spectral shape is similar to that

of a MC derivative with a nitro group on the Au(111) surface after irreversible

temperature-induced isomerization [14]. The simulated spectrum of free MC in

figure 1 e) with carbon bonds in trans-trans-cis (TTC) isomerziation is in good

agreement with the experimental spectrum. Theory clearly reproduces the shift

of the first π∗ resonance from SNP to MC. The overall lineshape of the spectrum

also agrees, except for the second π∗ resonance that appears stronger in the sim-

ulation. This is likely caused by the absence of a surface in the calculation and

has been seen in many systems before [12, 14,32].

There are two indicators that there are no molecules blocked in the SNP

configuration. Due to the very low interaction of the SNP which even leads to

desorption at temperatures above room temperature. There is no spectroscopic

sign for a significant amount of molecules staying in SNP configuration, also the

intensity ratio of the 400.0 eV peak to the maximum of the σ∗ resonances at

around 406.0 eV is even higher than for the theoretical simulations of a free MC

molecule.

In literature, a similar isomerization has also been reported for nitro-spiropyran

on the Bi(110) surface [25]. In contrast to [25], we excite the molecule with a

wavelength that lies in the typical absorption band in solution [18,21] and reach

a larger amount of switched molecules with a higher effective cross section, as

will be discussed in the context of the activation barriers.
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2.3 Reversibility

After UV illumination, the MC configuration can be switched back to SNP in a

reversible manner. Figure 2 shows N K XA spectra measured with p-polarized

light under 20◦ angle of incidence. SNP is present at 196 K after evaporation

(black line). Upon UV illumination with an initial temperature of 196 K, it

is switched to MC (blue line). Heating up to 245 K leads to a relaxation of

the molecules and the XA spectrum (red line) matches very well the one of the

freshly evaporated molecules. No molecules are blocked in the MC configuration

and fully reversible switching is possible.
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Figure 2: XA measurements of the N K edge by p-polarized light (20◦ angle of
incidence) for a submonolayer of SNP on Bi(111). The molecules are first in the
pristine SNP form at 196 K (black), and then present in the MC configuration
after UV illumination (blue). After heating up, the molecules relax back to SNP
at 245 K (red).

2.4 Activation Barriers

In order to get a more detailed and quantitative view of the photo-isomerization

mechanism of SNP on Bi(111), several illumination series were carried out. Mea-
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surements at different initial temperatures, using the same optical photon flux, of-

fer the possibility to determine energy barriers. During illumination, consecutive

measurements of the N K edge in 20◦ grazing incidence with p-polarized x rays

were taken. The grazing-incidence spectra have a stronger signal at the 400.0 eV

π∗ resonance compared to the magic-angle-incidence due to the orientation of

the SNP on the surface. Further details on the angle-resolved measurements are

briefly discussed in the Supporting Information.
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Figure 3: a) Evaluation of the peak area of the resonance at 400.0 eV as a function
of the UV illumination time. Three different series were taken at initial sample
temperatures of 184, 207, and 223 K. b) Temperature-dependent evaluation of
the MC saturation during UV illumination from the 400.0 eV-peak area. The
temperature has been corrected by an offset due to heating by the UV LED (see
Supporting Information). The same sample as for a) was used and both data sets
were fitted simultaneously to the model to obtain a well-defined set of parameters.

The peak area of the 400 eV-peak was determined by integrating from 399.4

to 400.3 eV for each of the spectra after background correction by subtracting
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the signal of the pristine SNP state. This peak area is directly proportional

to the fraction of MC molecules present on the surface, since the SNP isomer

has no XA at this energy. The result of three illumination series is shown in

figure 3 a). After each series, the molecules were switched back to the MC

configuration by heating up to 245 K and waiting for thermal relaxation as shown

in figure 2. The saturation fraction of MC strongly depends on the temperature,

leading to the conclusion that a thermal back reaction must take place. Not

only the saturation is changing, but also the speed of the switching process. At

higher temperature (223 K, red line), saturation was achieved after nearly 1000

seconds, whereas for 184 K, saturation is still not achieved after more than 5000

seconds. Measurements of the saturated fraction of switched molecules under

UV illumination as a function of temperature are shown in figure 3 b). Here, the

amount of MC has been saturated at lower temperatures using the UV LED and

then the temperature was increased step-by-step under continuing illumination.
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Figure 4: A schematic representation of the proposed energy barriers in the
potential energy surfaces that are involved in the switching process. Our data
suggests an energy barrier ES,2 in the switching path, leading to a temperature
dependence on the switching efficiency from SNP to MC. The ground-state energy
barrier EG determines the thermal back-switching rate from MC to SNP.

A scheme of a potential energy landscape is shown in figure 4. It includes

three different energy barrier heights in the ground state to explain the temper-
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ature dependence of the switching rates and the fraction of MC in saturation as

measured in the experiment. The model assumes an intermediate state in the

ground state after ring-opening by UV excitation. From this state, ES,2 needs to

be overcome to reach the metastable MC configuration. ES,1 describes the barrier

from the intermediate state to the SNP configuration and has to be sufficiently

small since we have observed no signature of an intermediate state by XA at lower

temperatures. The barrier EG needs to be overcome to switch from the MC con-

figuration back to SNP and describes the thermal relaxation. The coexistence of

these three energy barriers leads to different photo- and thermostationary states.

In terms of rate equations, these observations can be expressed by a differential

equation for the fraction χMC of MC molecules as:

dχMC

dt
= −χMC · kMC→SNP + (1 − χMC) · kSNP→MC . (1)

kSNP→MC and kMC→SNP are the rates for both isomerization directions, indepen-

dent of their mechanism. In such a two-state model the transient, i.e. the excited

state and intermediate state are not included explicitly assuming that the life

times are small and their populations negligible. The two rates are temperature

dependent by using Arrhenius equations and derived in the Supporting Informa-

tion as:

kMC→SNP = −AG e−EG/(RT ) 1

1 + e−∆ES/(RT )
(2)

kSNP→MC = σ(λ)φUVΦ1
1

e∆ES/(RT ) + 1
(3)

Here, σ(λ) is the crosssection of one SNP molecule absorbing a photon, φUV the

photon flux density of the UV LED, and Φ1 the quantum yield of the excited state

to relax to the intermediate state after photoabsorption. AG is a preexponential

factor that depends on the vibrational freedom of the MC molecules and ∆ES =

ES,2 −ES,1 is the difference of the barriers confining the intermediate state. Full

rate equations for a four-state model and the derivation of the rates in the effective
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two-state model are given in the Supporting Information.

To fit simultaneously the data from figure 3 a) and b), the differential equation

(1) is evaluated using the prefactors AG and kS = σ(λ)φUVΦ1, the difference of the

energy barriers of the intermediate state ∆ES = ES,2−ES,1 and the energy barrier

EG together with a common scaling factor as fitting parameters. Due to a heating

by the LED, the temperature is time dependent during UV illumination and has

been included as T = T0 + ∆T · e−t/τ , with ∆T = 9.46(1) K and τ = 147(1) s

(cf. Supporting Information). For the photo-thermo stationary state (figure 3

b)),dχMC

dt
was set to 0 in equation (1) and solved for constant temperature given as

T0 + ∆T . Values of EG = 79(2) kJ mol−1, ∆ES = 16(2) kJ mol−1, AG = 1015.4(4)

s−1, and kS = 7(2) s−1 are determined. The fit identifies the photo-thermo

stationary states as 38(1)%, 88(1)%, and 99(1)% for initial sample temperatures

of 223 K, 207 K and 184 K, respectively. We assume that all molecules undergo

a switching process, as suggested by the StoBe simulations before.

The activation energy EG = 79(2) kJ mol−1 for the thermal relaxation of MC

to SNP is slightly higher than the activation energy of the same compound in

polar solutions such as ethanol (75 kJ mol−1) [18]. For less polar solvents such as

methylcyclohexane the activation energy is lower, being around 65 kJ mol−1 [18].

The preexponential factor on Bi(111) of AG = 1015.4(4) s−1 is as well slightly higher

than the preexponential factor for polar solvents and even higher than for weakly

polar solvents [18]. Temperature-dependent experiments have shown that nitro-

spiropyran is more stable in its MC configuration on Au(111) and Bi(110) [14,25].

Also the activation energy of SNP on Bi(111) is rather high compared to solutions,

but in this case still low enough to have a thermal relaxation of the molecule at

temperatures above 245 K.

Directly after breaking the SNP C-O bond by UV excitation, the indole and

naphthopyran moieties of the open molecule are still perpendicular to each other.

The cleavage of the C-O bond was found to be ultrafast, faster than 100 fs,
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afterwards the bond can be reformed within 180 fs or a transition from near-

perpendicular configuration to the planar MC state can occur within several

picoseconds [33]. This has been extensively studied in solution by time-resolved

UV-Vis spectroscopy to determine possible pathways for the isomerization pro-

cesses [18,33,34]. Studies using ultrafast pump-probe experiments found no tem-

perature dependence of the quantum yield from the excited state to the inter-

mediate state [36]. Showing that in their case is no barrier in the excited state

present. We propose a similar mechanism here. However, on the basis of our

data, we cannot exclude the possibility of a barrier in the excited state. The

proposed rate equation does not rely on a barrier in the ground state. A barrier

in the excited state would lead to a similar rate equation as presented in equation

(1). It has been shown, however, that the photochromism of nitro-substituted

SP and SNP involves different pathways. Results from theoretical work [34, 35]

and time-resolved spectroscopy [18,36] indicate that there is no metastable state

for cis-isomerized MC molecules and proposed pathways lead to a planar TTC

configuration. Accordingly, the perpendicularly oriented merocyanine isomer di-

rectly after photoexcitation needs to undergo an unfolding process. Such a process

may be supported by the presence of a surface since a planar MC confguration

maximizes van-der-Waals interactions. For the switching of SNP to MC on

the Bi(111) surface, the experimentally determined energy barrier difference of

∆ES = 16(2) kJ mol−1. This is of the same order of magnitude as the energy

barrier seen for various SPs in solution, which is attributed to the unfolding of the

perpendicularly oriented rings of the molecule after ring-opening to a metastable

MC configuration [34,36].

The conversion efficiency to reach the photo-thermo stationary state in figure

3 a) is temperature-dependent and varies with time constants from 2500(150) s

to 260(30) s for the switching series with initial temperatures of 184 K and 223

K, respectively. Switching at an initial temperature of 223 K is therefore efficient
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with an effective cross section of σeff = (φτ)−1 = 1.1(3) · 10−20 cm2 and φ being

the photon flux density of the UV LED of 3.5(8) · 1015 photons s−1 mm−2. The

former is more than one order higher than for the light-induced ring-opening of a

nitro-spiropyran on Bi(110) [25]. The cross section of the photo-isomerization of

an azobenzene derivate in a monolayer on the same Bi(111) surface [37] is found as

3.4(3) · 10−23 cm2 and therefore even much lower than for the ring-opening of SP.

Switching of SNP on Bi(111) is thus efficient, compared to other photochromic

molecules on surfaces. On the other hand, even when considering that the light

intensity is reduced by more than a factor of 2 in the proximity of the surface [38]

due to the superposition of the incoming and reflected light wave, the effective

cross section is still orders of magnitude smaller than in solution, where it is

around 10−16 cm2 [18,20]. This indicates that there exists a variety of relaxation

channels of the photo-excited molecule due to hybridization of its states with the

surface.

3 Conclusions

Using in situ x-ray absorption spectroscopy, we have demonstrated a reversible

switching of spironaphthopyran molecules in contact with a bismuth surface. Ir-

radiation with UV light switches the molecules from spironaphthopyran to its

merocyanine isomer. This reaction has a high cross section compared to similar

experiments on surfaces. For the photoswitching from the SNP to the MC isomer,

a barrier difference of is determined, leading to a higher effective cross-section at

higher temperatures, since at lower temperatures the excited molecules relax more

likely back to SNP after UV excitation. The thermal kinetics reveals that the

energy barrier in the ground state, responsible for the bistability of the molecules

in solution, is preserved on the surface with a height of 79(2) kJ mol−1. This is

important for the reversibility of the process, since an unfavorably stabilized MC
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isomer, which was previously observed on surfaces, suppresses the ring-closing

back reaction. In our case, the back reaction can be triggered by a temperature

increase. Molecular functional units for information processing need to possess

bistability, addressability, and reversible switching controlled by external stim-

uli. Molecules that have been designed to switch well in solution, however, may

not provide these properties on a surface. They thus need to be redesigned, for

example by tuning of molecular end groups, taking into account the interaction

with the particular surface.

4 Experimental Section

All experiments and sample preparations were carried out in situ in an ultra-

high vacuum (UHV) system with a base pressure of p = 8 × 10−10 mbar. The

Bi(111) single crystal has been prepared by repeated sputtering-annealing cycles.

Sputtering with Ar+ ions of 600 eV and annealing at 350 K was carried out un-

til no contamination of the surface was present in x-ray photoelectron spectra

and sharp LEED patterns were observed. X-ray absorption (XA) measurements

were performed by using linearly p-polarized x rays of the undulator beamline

UE56/2-PGM2 at BESSY II of the Helmholtz-Zentrum Berlin. The degree of

polarization was about 99% . The incidence angle between the x-ray wave vector

and the surface was set to 54.7◦ for magic angle measurements and 20◦ for grazing

angle measurements, respectively. Absorption spectra were acquired by the total

electron yield (TEY) method, measuring the sample drain current as a function

of x-ray photon energy. A freshly prepared gold grid upstream the experiment

and measurements of the clean Bi(111) substrate were used for normalization of

the signal. To reduce possible defragmentation of the molecules by the x rays,

the UHV chamber was moved out of the focus of the x-ray beam to minimize the

x-ray flux density, and the exposure time was kept as short as possible. Subse-
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quent measurements of the same XA spectrum did not show any visible changes

in neither of the isomerization states in a reasonable experimentation time. Fur-

thermore, the measurement spot was moved on the sample surface for different

experiments to obtain identical conditions.

In all experiments, 1,3,3-trimethylindolino-β-naphthopyrylospiran molecules

(SNP, purchased from TCI Europe) were evaporated directly onto the substrate

kept in UHV. The molecules were evaporated at a temperature of 380 K from

a tantalum Knudsen cell and deposited onto the substrate held at temperatures

around 200 K to avoid thermal desorption from the surface. The deposition rate

was monitored by a quartz microbalance and calibrated by the total carbon K

edge XA signal. A reference measurement has been performed with continuous

evaporation of the same molecule onto a Bi(111) substrate held at room temper-

ature. The exponential saturation of the carbon K edge jump observed at room

temperature has been assigned to a completely saturated monolayer (ML). Sam-

ples with a submonolayer coverage of 0.56(5) ML were used for the determination

of the energy barriers (figure 3), 0.64(5) ML for the reversible switching (figure

2), and 0.69(5) ML for the comparison to simulations (figure 1)).

Illumination of the samples was performed in the measurement position by

different LEDs. In order to collimate the LED light, a coated aspherical lens was

used with a focal length of 32 mm. A 300 mm spherical lens was mounted in front

of a fused silica window on the chamber (transmission > 90 %). UV illumination

was performed with a wavelength of λ = 365 nm and a full width at half-maximum

(FWHM) of 7.5 nm. The approximate spot size of the light on the sample was

5 × 7 mm2 By means of a power meter, the photon flux density at the sample

position was determined as φUV = 3.5(8) · 1015 photons s−1 mm−2. The initial

sample temperatures during synchrotron-radiation experiments were measured

on the sample holder and not directly on the sample. During illumination, these

temperatures are lower than the temperature on the crystal. To identify the real
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sample temperature, a calibration measurement with a thermocouple glued to the

bismuth crystal has been performed. A temperature increase of 9.46(1) K with a

time constant of 147(1) s for the UV illumination has been determined. The data

are presented in the Supporting Information. This time-dependent temperature

has been taken into account when fitting the model to the UV illumination data.

Supporting Information

Additional details about the theoretical simulations by the StoBe code and the

O K XA data compared with the simulations. Angle-resolved N K XA spectra

of SNP and MC submonolayers on Bi(111). Temperature change during LED

illumination. Effect of blue-light illumination on MC molecules.
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