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Molecular Dynamics-Green’s Function Reaction Dynamics (MD-GFRD) is a multiscale simulation
method for particle dynamics or particle-based reaction-diffusion dynamics that is suited for systems
involving low particle densities. Particles in a low-density region are just diffusing and not interacting.
In this case, one can avoid the costly integration of microscopic equations of motion, such as molecular
dynamics (MD), and instead turn to an event-based scheme in which the times to the next particle
interaction and the new particle positions at that time can be sampled. At high (local) concentrations,
however, e.g., when particles are interacting in a nontrivial way, particle positions must still be
updated with small time steps of the microscopic dynamical equations. The efficiency of a multi-
scale simulation that uses these two schemes largely depends on the coupling between them and the
decisions when to switch between the two scales. Here we present an efficient scheme for multi-scale
MD-GFRD simulations. It has been shown that MD-GFRD schemes are more efficient than brute-force
molecular dynamics simulations up to a molar concentration of 10> M. In this paper, we show that the
choice of the propagation domains has a relevant impact on the computational performance. Domains
are constructed using a local optimization of their sizes and a minimal domain size is proposed. The
algorithm is shown to be more efficient than brute-force Brownian dynamics simulations up to a molar
concentration of 10° 4M and is up to an order of magnitude more efficient compared with previous

MD-GFRD schemes. Published by AIP Publishing. https://doi.org/10.1063/1.5010190

. INTRODUCTION

Particle-based reaction-diffusion simulations have been
widely used to simulate signaling cascades in biological sys-
tems.'= In contrast to other approaches to simulate molecular
kinetics simulations, such concentration-based approaches or
Gillespie’s dynamics,®” the trajectory of all interacting par-
ticles is resolved, providing a reaction kinetics model with
high spatio-temporal detail. Particles diffuse according to
the Langevin equation, and whenever they are close to each
other, reactions can happen. In a brute-force approach, all
particles are simultaneously propagated over a fixed integra-
tion step—at sufficiently long time scales, typically using a
time-discretization of the overdamped Langevin or Brownian
dynamics (BD) equation.® Unfortunately, a short integration
step is generally required to avoid systematically missing par-
ticle interactions.’ In interacting-particle reaction-diffusion
(iPRD) simulations, particles are interacting with nonlinear
potentials at close distances, which require even shorter time
steps in the BD integrator.'%!! Especially in biological appli-
cations, where many proteins may interact in a crowded
environment to give rise to some supramolecular machin-
ery, such detailed simulations may be required.'”~'* How-
ever, this approach becomes computationally expensive with
large particle numbers and also when fast-diffusing species
are involved that require small simulation time steps, making
it challenging to reach biologically relevant time scales.!!
Hence, designing efficient multi-scale reaction-diffusion algo-
rithms that can reach the biologically relevant resolution
where required, but avoid unnecessary computation time
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wherever possible, is of high relevance for the bio-simulation
community.

One possible strategy adopted to improve computational
performances in particle-based simulations is implementing
an event-based algorithm as in the first-passage kinetic Monte
Carlo (FPKMC) algorithm!®'® and Green’s function reac-
tion dynamics (GFRD/eGFRD).>*!° The central idea is to
directly sample the next time point at which particles will
interact, e.g., to perform a reaction, rather than simulating
the trivial diffusion of free particles via BD. GFRD is syn-
chronous and approximate: in every iteration of the algorithm,
an integration step length is chosen such that at most two par-
ticles can interact; particles are propagated for that time and
eventually react.*!® Depending on the system configuration,
a new integration step is selected. This algorithm may suffer
from inaccuracies because a finite propagation time always
results in a finite choice of interactions between more than
two particles simultaneously, which is not covered by the
algorithm.

In the subsequent asynchronous versions, first proposed
in FPKMC!%-18 and then in eGFRD,? the volume of the system
is decomposed into non-overlapping protective domains con-
taining one or at most two particles. In each of these domains,
a next event is sampled. Events comprise domain escapes,
unimolecular reactions, or bimolecular reactions in domains
containing two particles. In this asynchronous scheme, a list
of all scheduled events is initially compiled, and then at every
step, the system jumps to the next event and the list gets
updated with a new event. However, some unscheduled events
can occur and the list must then be updated on the fly. For
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example, when a particle is about to enter a protective domain,
this domain must be burst, i.e., destroyed, the particle positions
must be sampled prematurely, and new protective domains
must be drawn.

A recent extension of this algorithm is the multi-scale
combination of explicit time step integration [for the sake
of generality called molecular dynamics (MD), although in
many practical cases BD will be used] and FPKMC/eGFRD,
in short MD-GFRD.?%?! In MD-GFRD, interacting particles,
i.e., particles that are close in space are simulated via short
time steps, whereas isolated particles are propagated via an
event-based FPKMC/eGFRD scheme on longer time scales,
protective domains thus can contain only one particle. Using
direct time-integration at short distances allows us to incorpo-
rate a variety of effects that are relevant to describe molecu-
lar detail. For example, these local dynamics could involve
momenta,2’ anisotropic diffusion,?!?2 nonlinear interaction
potentials, or complex reactions'? and would be a natural place
to include the dynamics simulated by kinetic models obtained
from all-atom MD, e.g., Markov State Models (MSMs)?*-%7
or multi-ensemble Markov models (MEMMs).28:2°

MD-GFRD has been shown to be several orders of magni-
tudes faster than brute-force integration of Brownian dynam-
ics.?%2! The efficiency improvement is particularly evident
in dilute systems, where particles spend most of their time
freely diffusing in the system before encountering each other,
which renders an event-based algorithm, that directly samples
encountering times, dramatically faster. However, this effi-
ciency is lost at high densities, while the efficiency of direct
time step integration is only mildly dependent on the parti-
cle density (e.g., through the number of neighbor interactions
that need to be evaluated in each time step). Indeed, construct-
ing a domain and sampling an event in it is computationally
more demanding than performing few brute-force Brownian
motion steps. Therefore, one typically avoids the construction
of very small domains that would burst rapidly and instead
uses direct time step integration when the size of a newly con-
structed domain is below the minimal domain size.2%-2!-30 Still,
as the system becomes denser, the efficiency of this scheme
decreases, as the fraction of particles that are described by
direct time step integration increases, and domains, which are
required to be non-overlapping, tend to be smaller and thus
more prone to a premature burst. In this context, determining
the optimal size of the minimal domain and avoiding unneces-
sary, premature bursts can be critical to ensure computational
performance.

In this paper, we present a domain making scheme
and several numerical improvements that make multi-scale
FPKMC/eGFRD algorithms such as MD-GFRD more effi-
cient. The main developments are the determination of the
optimal domain size upon construction and of the minimal
domain size for the construction of small domains.

Il. MOLECULAR DYNAMICS-GREEN’S FUNCTION
REACTION DYNAMICS

We briefly introduce MD-GFRD in order to summa-
rize the concepts relevant for the present paper. In MD-
GFRD, the system is decoupled into non-overlapping spherical
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domains, or shells, that contain at most one particle. MD-
GFRD is an event-based algorithm, whose events are particle
escapes from their protective domain. The event times are
obtained by sampling from Green’s function as explained
below.

Brownian motion can be described probabilistically by
the Einstein diffusion equation

op(7,1)
ot

where p(7, t) is the probability distribution of a Brownian par-
ticle with diffusion coefficient D, ¥ = (r, 8, ¢) is the position
of the particle, and A is the Laplace operator in spherical coor-
dinates. Isolated particles are treated using Green’s function
dynamics. To facilitate that, one creates spherical “protective”
domains of radius b around them, in order to mark the volume
within which they can diffuse without interacting with other
particles. The domain size b is chosen such that it contains
only one particle and the whole sphere’s volume is not subject
to any external potentials, i.e., the interaction of other parti-
cles, membranes, etc. Given the spherical symmetry of this
problem, the evolution of the probability distribution can be
described by the radial function p(r, t), which represents the
probability to be in any point on the surface of a sphere of
radius r. The radial probability to be at a radius r < b, with-
out having previously hit the domain border b, is computed by
imposing absorbing boundary conditions on the domain bor-
ders, p(b, t) = 0.3! By imposing this boundary condition and
the initial condition p(rg, f9) = 6(r¢) on Eq. (1), we obtain
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which represents the probability that the particle is inside the
domain at ¢, without having previously hit the borders. The first
exit time probability g() is defined via the survival probability
S(),
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and it gives the probability that the particle escapes its domain
for the first time at 7.

In this derivation, we have assumed that no other parti-
cles enter the domain, and the particle inside the domain is not
subject to any external potentials or forces (e.g., exerted by
particles near the domain). However, in a multi-particle sim-
ulation, this assumption is not always valid. Let us assume
that at #op we have constructed a protective domain around an
isolated particle, and this particle has sampled a first exit time
to + 7 from its domain. In this situation, it is possible that an
external particle, whose motion is brute-force integrated, is in
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proximity to the first domain at a time, #; < o + 7, i.e., before
the escape time. The first exit time 7 has been sampled assum-
ing that no other particle interacts with the domain; hence, the
intrusion of another particle before that time would make the
sampling of the particle’s escape time invalid. Consequently,
to ensure that particles in protective domains are freely dif-
fusing, we define a burst radius for each pair of particles to
be at least the interaction length between the intruding particle
and the particle in the domain. Whenever a particle approaches
a protective domain to a distance below the burst radius, the
domain is burst, i.e., destroyed. In that event, the particle posi-
tion is updated inside the domain by sampling Eq. (2) at time
t = t;. After a domain burst, the clock of the two particles is
synchronized to #;.

A. Algorithm outline

In MD-GFRD, the particle propagation is performed alter-
natively via direct time step integrations or Green’s function
samplings. The choice of the propagation method depends on
the system configuration and, in particular, whether the particle
is freely diffusing or interacting with other particles. At each
iteration of the algorithm, one particle is selected from a time-
ordered event-list. If this particle is not interacting with other
particles, the construction of a protective domain is attempted.
The construction is then accepted only if the domain radius
is larger than the minimal domain size; whenever the con-
struction is rejected, the particle motion is instead brute-force
integrated.

In this scheme, particle interactions are always evaluated
on discrete times {#,}, where #, = n dt, n is an integer, and
dt is the MD integration step. Therefore, a GFRD particle that
leaves a protective domain and thus becomes an MD particle is
mapped to the next discrete time via a small Brownian motion
step. MD particles that are evaluated at the same time point ¢
can be updated simultaneously and collectively as in usual MD

J. Chem. Phys. 147, 184106 (2017)

implementations. In the following pseudocode, however, it is
simpler to explain the algorithm as if all particles are treated
by an asynchronous event list.

Each particle possesses a current and a scheduled posi-
tion and time. Each particle is also associated with an event
that takes the particle from its current position and time to
its scheduled position and time, if it is successfully executed.
Events include MD integration step and scheduled exits from
a protective domain, but they may be modified due to events
such as domain bursting. In the beginning of the simulation, the
domain making algorithm creates a protective domain for each
particle that is not involved in a direct interaction. Domains
larger than the minimal domain size p are constructed, and
first exit times are sampled via Eq. (4). These exit events
are then stored in a list ordered by increasing scheduled-time.
All particles that could not construct a protective domain are
placed on top of the event-list, forces between them are com-
puted and their scheduled positions are computed and stored.
Based on this initial list, the following asynchronous algorithm
propagates the system state in time:

1. Pick the first particle i in the event-list:

(a) If the particle was in a protective domain, place it on a
position sampled uniformly at random on the domain
boundary. Then, propagate it to the next discrete time
t; via a free Brownian motion sampling.

(b) Else: update the particle position and time to the stored
scheduled position and time.

2. Compute the distances {r,]}j]i . from the N neighboring
particles. The distances are between the centers of mass
and are computed between synchronous positions when
particles are not located in a protective domain, other-
wise, the distance between the center of mass of the
particle i and the center of the protective domain of the

particle j is computed.

(a)

(b)

(c)

(e)

©

FIG. 1. Outline of the multi-scale MD-GFRD algorithm. (a) Particles are placed in their initial configuration. (b) A protective domain is drawn on all those
particles that are not directly interacting. Domains are effectively constructed only if their size is larger than the particle’s minimal domain size (blue and orange
particles). (c) Particles which do not have a protective domain are integrated with direct time steps (purple and yellow particles), and as soon as a particle becomes
sufficiently distant from all others, a protective domain is generated around it (yellow particle). (d) When a particle gets too close to a domain (purple particle),
it is burst and the inside particle samples a new position (orange particle). (e) After a domain burst, the new particle position can be sufficiently far from the
intruding particle to allow both particles for constructing a protective domain (orange and purple particles). (f) The global time advances to the next time from
the scheduled exit times, and the exiting particle position is sampled randomly from all points on the previous protective domain (blue particle).
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3. Forallj=1, ..., N:if the particle j is in a protective
domain and the i — j distance is below the burst radius
(rj —1n < Rémm, where r; is the domain size of the
particle j):
(a) Burst the j-domain.
(b) Synchronize the scheduled time of particle j to ¢; and
update the scheduled position of particle j by sampling
from Eq. (2).
(c) Place particle j on top of the event-list.
(d) Update the r;; distance.

] _\N
4. Use the distances {r,j}

\» Where 7y = ry; — R! and R}
is the interaction length, in a domain making algorithm
to create a domain with radius r;:

(a) If the proposed radius is larger than the minimum
domain size, r; > p;: accept the domain, sample the
first exit time 7; from Eq. (4), and increase the particle
event time by 7;.

(b) Else: Update the scheduled position and scheduled
time via direct time step propagation (this step might
involve also interactions and reactions).

5. Place the particle i in the event-list according to increas-
ing event time.

Note that if particles i and j construct domains that are in
contact and if following step 1(a), these particles have identical
scheduled discrete exit times, it is possible that the particle
i, upon escape, bursts the j-domain at a later time than the
scheduled exit time of particle j. This apparent inconsistency
is due to the fact that in this serial algorithm, particle j has not
executed the step 1(a) yet. Clearly, in this occasion, the position
of particle j is updated by executing the step 1(a) rather than
sampling from Eq. (2).

InFig. 1, a graphical representation of a possible outcome
of this algorithm is shown; there is not a match between the
points in the algorithm and the points in the figure.

lll. DOMAIN MAKING SCHEME AND MINIMAL
DOMAIN SIZE

The basic idea of domain making schemes is that larger
domains correlate with more efficient computation, as the par-
ticle does not participate in direct time step integration during
the correspondingly longer exit times [see Eq. (4)]. However,
choosing domain sizes in a greedy manner does not necessar-
ily lead to optimal performance. For instance, when a large
domain is next to a much smaller one, or to a domain close
to its escape time, the latter domain is likely to experience a
particle exit very soon, which might in turn burst the large
domain, thereby annihilating the advantage of the long exit
time from that domain. Domain bursting is not convenient
since it involves sampling a second Green’s function. More-
over, it represents an unscheduled event that is difficult to treat
efficiently in a parallel implementation.

The minimal domain size determines whether the domain
construction is accepted or not. Instead of sampling the first
exit time from a small domain, it might be more convenient
to simulate the same particle propagation via direct time step
integrations. Indeed, solving a first exit time problem generally
has a higher computational cost than simulating a number of
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direct time step integrations. Thus, in MD-GFRD algorithms,
the dimension of the smallest domain whose construction is
allowed must be determined: whenever the construction of a
domain of smaller size is attempted, this trial is rejected and
the particle is instead brute-force integrated.

A. MD-GFRD

The MD-GFRD domain making schemes employs the
largest shell principle to draw protective domains. We dis-
tinguish between Green’s function (GF) particles which are
located in a protective domain and Brownian motion (BM)
particles that are undergoing a direct time step integration.
The domain making routine first computes the center-center
distance r;; between the particle i of interest from all neigh-

boring particles j, subtracting the interaction length RY of

it
the particle pair. The resulting distance 7;; = r; — R} is
then divided by 2 if the particle j is a BM particle. If the
particle j is a GF particle, the distance is reduced by the j-
domain size r; (Fig. 2). In the case of a BM particle, only
half of the total distance is used to let the other particle con-
struct a domain of equal size in the subsequent step. This
routine is iterated over all neighboring particles and the lowest
value obtained is finally selected. This domain creation makes
domains as large as possible while avoiding direct particle
interaction.

In previous studies, the minimal domain size in MD-
GFRD algorithms has been set proportional to the particle
radius,?*?13% where the sum of the particles radii gives the par-
ticles pairwise interaction. In particular, the minimal domain
size has been suggested to be always larger or equal than the
particle radius.’® In the implementation of Ref. 21, the mini-
mal domain size p is chosen to be equal to the particle radius.
In the implementation of Ref. 20, p can have different val-
ues depending on whether the particle is undergoing a direct
time step integration (pGrrp) or has just escaped a protective

@

int

FIG. 2. MD-GFRD domain making scheme suggested in Refs. 20 and 21.
The domain size choice is made according to the status of the neighboring
particle: (a) the prime neighbor is a GF particle, and then the shell takes all
available space; (b) the prime neighbor is a BM particle, and then only half of
the available space is used.
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domain (ppp). The minimal domain value assumes a larger
value when the particle is under direct time step integration
(pGcrrp > pap)- This technique has been used to prevent par-
ticles from rapidly switching between the GF and BM mode.
Indeed, when the particle motion is subject to direct time step
integration, it is likely to be located in a crowded region of the
system, where a domain is more likely to be burst. Diminishing
the number of domains constructed in this region correlates
with a lowering of the total number of bursts. This scheme
has been used to simulate particles interacting via a Lennard-
Jones potential, and the minimal domain values pgrrp = S0
and ppp = 30 were used, where o is the Van-der-Waals
radius.

Finally, the bursting radius should be chosen equal or
larger than the interaction length of the two particles. How-
ever, it cannot be larger than the minimal domain size of any
other particle to prevent the algorithm from entering in an
infinite mutual bursting loop, where a pair of isolated par-
ticles alternatively constructs a domain which is burst by
the other particle in the subsequent step. In MD-GFRD, the
bursting radius is set equal to the interaction length plus the
minimal domain size of the particle because whenever a par-
ticle is close to another domain, that domain must be burst
in order to allow creating two new domains of significant
size.

B. New domain-making scheme

The aim of the new scheme is to improve the algorithm’s
computational performance and to decrease the number of
domain bursting events. In order to keep the number of bursting
events small, domains are sized such that they have the same
average first exit time as the domains that will be constructed
in their proximity. The key idea is that when domains are con-
structed, not only the first exit time of the particle is sampled
but also its exit position. This information is used by neighbor-
ing particles to propose an optimized domain size such that it
has the same average first exit time as the domains that will be
later constructed on the memorized exit positions [Fig. 3(a)].
In Ref. 18, the importance of constructing optimized domains
has already been discussed, and it is suggested that domains
should be constructed to delay in time as far as possible the
first event in the queue, which corresponds to constructing
domains with equal mean first exit times. However, this was
achieved only when all domains are constructed simultane-
ously, which optimizes only over the first event in queue. By
pre-sampling the exit position of particles, it is instead possi-
ble to construct balanced domains over a long series of events.
Although developed for MD-GFRD, the idea of pre-sampling
the exit position can also be applied to FPKMC/eGFRD
schemes.

In order to further reduce the number of bursting events,
the domain size is then shrunk. Although the domains are not
chosen to be of maximum size, this approach significantly
reduces the overall number of bursts compared to the scheme
described in Sec. III A. The choice for the size reduction in
the second step [Fig. 3(b)] is performed to obtain a balance
between a low number of bursts and long domain exit times.
Clearly, the specific setting of these parameters depends on
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FIG. 3. New domain making scheme for the case of an isolated pair of parti-
cles. At time ¢;, particle i is attempting the construction of the i-domain close
to particle j that is already enclosed in a domain. The escape time #;7 > ¢; and
particle j’s escape position were sampled when the domain was constructed.
(a) Particle i constructs a domain whose size r; ; is such that its average first
exit time is the same as the average first exit time of particle j from the j’-
domain that might be constructed after the exit from its current j-domain. (b)
The domain size in the previous step obtained is further reduced to finally
obtain r; 5.

implementation details such as serial or parallel execution,
etc., and can be adapted to the local setting. This algorithm is
illustrated in the simplest case of an isolated pair of particles
in Fig. 3. In the new scheme, the bursting radius is also chosen
to be equal to the interaction length plus the minimal domain
size.

In practice, if the domain is created close to a GF particle
[Fig. 3(a)], the first domain r; | is obtained by solving a system
of two equations,

P 5

—— + At = —,

6D; 6D ©)
Fnext = Fij1 + rjr, (6)

where Fpext = Tnext — Rint 1S the available space, ryex¢ is the
distance between the center of particle i and the exit position
of particle j, and At = ty —t; is the time difference between the
scheduled exit time of particle j and the current time, i.e., the
time in which particle i is attempting to construct a domain.
The first equation imposes that the average exit time from the
i-domain is the same as that from the j’-domain, where the
expected exit time () of a Brownian particle with diffusion
coefficient D from a sphere of radius b is

bZ
(1) = 2. M)

The second equation enforces the domains to be adjacent by
taking all available space, according to the largest shell princi-
ple. In contrast to MD-GFRD, the largest domain principle
is applied between the i-domain and the j’-domain that is
possibly constructed subsequently.

If the average first exit time of particle i from the avail-
able space r; ] = Tnext is less than Az, the time interval to the
scheduled exit time of particle j, the solution of the system in
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Eq. (5) has no real values, which means that the i-domain and
the j’-domain cannot have the same average first exit time. As
the j-particle is not expected to burst the i-domain in this case,
we use all available space for the i-domain, i.e., ;1 = Fpex.
Consistently, inserting At = ﬁeﬂ /6D; in Eq. (5) results in the
solution r; | = Fpex-

The system in Eq. (5) is then solved only when

~2 . [ .
At < 7., /6D;. The optimal domain size is then given by
— 2
Tnexts At > g—erl
ri1 = - 1_(1_%)(“6501- (8)
—~ v r .
Tnext — ———p——~—, Otherwise.

The square root argument in Eq. (8) is always positive if
At < 72,,/6D;; therefore, the solution is always real-valued.
The boundary condition 0 < r;; < e has been applied, as
explained in Appendix A.

If the two particles have identical diffusion coefficients D,
the solution simplifies to

C))

The value r;; obtained is a function of the distance 7yex.
Hence, r;; does not take the volume of the existing j-domain
into account and thus does not ensure to avoid overlap of the i
and j domains. To avoid such an overlap, the i-domain must be
accordingly resized to the largest possible value: ;| =7 —r;,
where 7 = r — Rjp¢ and r is the center-center distance between
particles i and j.
A similar approach is used if the particle j is a BM particle.
In this case, the i-domain is created so as to leave enough space
for particle j to construct adomain whose first exit time is equal
to the i-domain
T — (10)
D,

i
1+ D;

Finally, the domain radius is further reduced as

Tip = Til — Nred4(2D; dt, (1D

where npq is a parameter [Fig. 3(b)]. The domain reduction is
set proportional to the average displacement that the particle j
performs in one integration step. This reduction is performed
to reduce the probability that the particle j bursts the i-domain
in cases where the sampled escape time of the particle i is
larger than the expected value. Note that if Ar > ri%l /6D;, the
particle j is expected to escape its domain after the particle i,
in this case, there is no need to reduce the size of the i-domain
and thus the step in Eq. (11) is omitted. When this scheme
is applied to multi-particle systems, the previously outlined
approach is applied to all nearest-neighbor particle pairs, and
the lowest value of r; 5 is chosen.

C. New scheme for minimal domain size

In contrast to previous studies, the minimal domain size
is proposed here to be proportional to the square root of the
particle diffusivity, rather than the particle size. The minimal
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domain size defines the particle distance below which direct
time step integration is assumed to be more efficient than
sampling Green’s functions. We assume that the CPU time
required to sample the probability density of the first exit time
is approximately independent of domain size and diffusion
coefficient. In contrast, the CPU time spent to simulate first
exit times via brute-force integrations depends on the domain
size, on the particle diffusion coefficient, and on the time step
length.

Given the average first exit time (7) of a particle with
diffusion coefficient D from a sphere of radius b, Eq. (7), the
average number of steps (n) to simulate the first exit time
is

2
W= Eoar
where dt is the time step. The average CPU time, (Tpr(b)),
spent to compute escape times via brute-force integrations is
proportional to the number of integration steps, and thus

12)

2

b
(Tpr(b)) o D (13)

It is assumed that the average CPU time, (Tgr (b)), spent to
sample Green’s function is approximately constant,

(Tgr (b)) = Const. (14)

Let p be the domain size at which the CPU times are equal,
(Tpr(p)) = (TGr(p)), then

p2 oc Ddt. (15)

Hence, the minimal domain radius p(D, dt) is defined as the
threshold that determines whether the domain construction is
accepted or not,

p(D,dt) = aVDdt. (16)

Simulations indicate that this function correctly describes the
point where a direct time step integration becomes more effi-
cient than a Green’s function root finding (Fig. 4). The param-
eter o is a value that depends on the implementation and

0.30 . : . : .
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0.20 | .
0.15 | o .

plnm]
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D[]
FIG. 4. Minimal domain radius p as a function of D using the time step
dr = 0.1 ns. The dots represent the radius of the minimal protective domain
where Green’s function sampling and direct time step integration have equal
CPU costs. Simulations to compute the first exit time from the domain with
size p were conducted for different diffusion coefficients and domain sizes,
using either direct time step integration or Green’s function sampling. For
small domain sizes, the direct time step integration is always more efficient.
The dashed red line shows p = aVDdt, as described in Eq. (16), with the
implementation-specific value @ = 8.4 that has been found empirically.
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machine and is determined in the beginning of a simulation
(see Appendix B).

IV. RESULTS

We compare the performance of the multi-scale MD-
GFRD scheme implemented in Refs. 20 and 21, the new
scheme, and a direct time step integration scheme using Brow-
nian dynamics. Two versions of the new scheme are simulated:
one with n,; =5 in Eq. (11) (new scheme 1) and the other
which does not use domain size reduction (1,4 = 0, new
scheme 2), thus tending to size domains more greedily. In
addition, we also test a hybrid scheme, which implements the
minimal domain size as described in Sec. III C but employs
the same domain making scheme as proposed in Refs. 20 and
21. For simplicity, we simulate particles in a periodic box
interacting with a harmonic repulsion

1 2

Vir) = 3 k (Rint = 1), r < Rin, a7
where r is the inter-particle distance between the centers of
mass, k = 100 is the spring constant, and the interaction length
Riy is equal to the sum of particle radii. Reactions, more
complex particle-particle potentials, or other near-space inter-
actions can be straightforwardly integrated in the direct time
step integration regime that is used to simulate interacting
particles.

Two simulations have been performed using different
diffusion coefficients and particle radii.

1. 10spherical particles with radius R =2.5 nm and diffusion
coefficient D = 10 um?/s.

2. 5 faster and smaller particles with radius R; = 1.5 nm
and diffusion coefficient D| = 10 um?/s and 5 slower and
larger particles with radius R, = 3.5 nm and diffusion
coefficient Dy = 1 pum?/s.

A. Efficiency comparisons of different MD-GFRD
schemes and direct Brownian dynamics

To obtain clean benchmarks, most calculations are run
with ten particles and direct evaluation of all pairwise particle
distances, while the particle density is adjusted by choosing
the box size. For a more complex test, Sec. IV C simulates
larger particle numbers with a neighbor list implementation.

The efficiency of MD-GFRD strongly depends on the par-
ticle concentration since in case of dilute systems, particles are
allowed for constructing large domains and performing large
time steps. Hence, MD-GFRD algorithms are dramatically
faster than BD schemes at low concentrations. As the particle
concentration is increased, MD-GFRD becomes less efficient,
while the BD efficiency remains constant. Consequently, there
is a concentration threshold where BD starts being more effi-
cient than MD-GFRD. In Fig. 5, the performance is compared
between the new schemes, the hybrid scheme, the previous
MD-GFRD schemes, and direct BD simulation. It is evi-
dent that all MD-GFRD schemes are several orders of mag-
nitude faster than BD at low densities. Moreover, the new
schemes are faster than the previous MD-GFRD schemes at
all densities, but performances are similar at low densities. In
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FIG. 5. CPU time required to simulate 1 ms of real time, using a brute-
force integration step of dr = 0.1 ns. The number of particles is kept fixed
to N =10, while the system volume is adapted to the selected molar con-
centration. Simulations are performed in a cubic-shaped box with periodic
boundary conditions. Particles are spherical-shaped with radius R = 2.5 nm
and diffusion coefficient D=10 um?/s in (a) and radii R; =1.5 nm and
R» = 3.5 nm and diffusion coefficients D; = 10 ,umz/s and D, =1 ,umz/s in
(b). A binary interaction length is defined as the sum of particles radii, when
particles are within this distance repulse according to a harmonic potential
as in Eq. (17), where k = 100. The minimal domain of the new schemes and
of the hybrid scheme uses the pre-factor @ = 9 as defined in Eq. (16), see
Appendix B. In the new scheme 1, n,,4 = 5; in the new scheme 2, n,,q = 0,
see Eq. (11). In MD-GFRD 1, the minimal domain size is equal to the parti-
cle radius.2! In MD-GFRD 2, the minimal domain sizes PGFRD = 2.5 R and
pap=1.5 R0 were used, where the pre-factors 1.5 and 2.5 have been chosen
to adapt to a different simulation than the pre-factors used in Ref. 20, while
preserving their same relative proportions. At low concentrations, MD-GFRD
schemes are several orders of magnitude faster than BD. The new schemes
and the hybrid scheme are faster than BD up to concentrations of 10% uM,
while MD-GFRD schemes are preferable over BD up to 10% M.

particular, for both diffusion coefficients, the new schemes and
the hybrid scheme are preferable over BD for concentrations
up to 10° uM, whereas previous MD-GFRD schemes were
preferable over BD only up to molar concentrations of 10>
uM. The schemes which implement the new minimal domain
size all show similar performance, and among them the new
scheme 2 is the fastest. We note that these numbers may be
different in different implementations (codes and machines),
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and comparison is therefore only meaningful within the same
implementation.

The total number of direct integration time steps per-
formed in each multi-scale MD-GFRD simulation increases
with increasing particle concentration (Fig. 6). This growth is
remarkably similar to the growth in the CPU time, indicating
that the reason of the improved performance of MD-GFRD
schemes is essentially due to a reduction of the direct time-
integration steps that represent the computational bottleneck.
In the new schemes and in the hybrid scheme, the minimal
domain size is smaller than in previous MD-GFRD schemes,
which enables more protective domains to be constructed,
which in turn reduces the fraction of time spent in direct time
step integrations. Although having equal minimal domain size,
the new scheme 2 shows a slightly lower number of direct

New scheme 1
—— New scheme 2

—k— MD-GFRD 1
—¥— MD-GFRD 2
—#— Hybrid scheme

108 + (a)
107 -
106 4
10 -
10* 1
103 -
107 1
101 .

Brute — force steps

Brute — force steps

1072 1072 107 10° 10t 10%2 103

Molar concentration [pM]

FIG. 6. Total number of direct time steps in the multi-scale MD-GFRD sim-
ulations described in Fig. 5. As the particle density increases, interactions
between particles become more frequent, and more simulation time is spent
in conducting direct time step integration. The behavior of these curves is
similar to that in Fig. 5, indicating that the number of brute-force Brownian
motion steps represents the bottle-neck in the present simulations. The largest
value in each plot, 108, represents the condition where each of the 10 particles
has performed 107 direct time steps, which means that no particle propagation
was made using Green’s function sampling. In the new schemes and in the
hybrid scheme, FPKMC/eGFRD steps are still done 90% of the time under
the same conditions.
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integration time steps with respect to the hybrid scheme. This
is essentially the result of the construction of more balanced
domains which allow for an optimization of the available
space. On the other hand, the new scheme 1 spends a larger
fraction of time under direct time step integration because after
the reduction step, more domains are not sufficiently large for
construction.

B. Minimization of the domain burst frequency

Despite the fact that domain sizes are small on average,
Fig. 7 shows that the total number of bursts is the lowest
in the new scheme 1, i.e., when the domain reduction is
included. The hybrid scheme involved the highest number
of bursts since the construction of small domains is allowed,
but their sizes are not chosen optimally. The incorporation
of particle exit positions into domain construction, and the
choice of domain sizes so as to balance the exit times allows
us to reduce the number of bursts to one third (new scheme 2);

—— MD-GFRD 1
—¥— MD-GFRD 2
—#— Hybrid scheme

New scheme 1
—— New scheme 2

1044 @)

E 103 3
T 2]
~ 107 3
RS ]
S 105
= E
- ]
S 10°4
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S 103 3
T )
s 1073
'E ]
S 10t E
= E
< ]
S 1073
s

1071

1073 1072 107t 10 10t 102

Molar concentration [pM]

FIG. 7. Average total number of protective domain bursts in the multi-scale
MD-GFRD simulations described in Fig. 5. As the molar concentration is
increased, domains tend to be smaller and to be constructed more often, which
goes along with an increase of the number of bursts. The average number of
bursts in the new scheme 1 is lower than in the previous MD-GFRD implemen-
tations at any density. Keeping the total number of bursts low can be important
for efficient parallelization, e.g., using Graphical Processing Units (GPUs).
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if areduction step is also added (new scheme 1), the number of
bursts is further reduced by approximately one order of mag-
nitude. This improved efficiency on the domain construction is
evident in Fig. 8, which shows the probability that a protective
domain is burst prematurely by intrusion of another particle
rather than being annihilated by a regular exit of the parti-
cle contained therein. This quantity is computed as the ratio
of the total number of domain bursts over the total number
of constructed domains. At low concentrations, the bursting
probability is small, but it increases with increasing particle
density. The new domain-making scheme clearly results in
more efficient domains that are much less probably to be burst
prematurely compared to the previous MD-GFRD scheme,
especially at higher concentrations.

The full implementation of the new scheme (version 1)
is to be preferred to previous MD-GFRD schemes in both
cases: when the serial computational performance is most
relevant and when the number of total bursts is required to

—4&— MD-GFRD 1
—¥— MD-GFRD 2
—— Hybrid scheme

New scheme 1
—8— New scheme 2
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FIG. 8. Domain bursting probability, i.e., the ratio of the total number of
domains burst over the total number of domains constructed in the MD-GFRD
simulations described in Fig. 5. The domain construction schemes proposed
here are clearly more efficient than previous schemes and results in domains
that are more likely to survive until the particles contained therein make suc-
cessful exits. The bursting probability is always lower than 3% in the new
scheme 1, while in the implementations MD-GFRD 1,2, this value is roughly
an order of magnitude larger at the higher concentrations.
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be low. The MD-GFRD implemented in Ref. 21 is faster than
the implementation in Ref. 20, while the latter scheme has a
lower number of domain bursts. The new scheme 1 is instead
superior in both computational performance and number of
domain bursts. More specifically, the implementation as in the
new scheme 1 is optimal to drastically lower the number of
bursts while preserving efficiency. The new scheme 2 instead
has a slightly higher CPU performance in our implementation
but does not keep the number of bursts small. The improve-
ments result to up an order of magnitude of gain in the CPU
performance and an order of magnitude of gain in the total
number of bursts.

C. Large particle numbers

The general trends observed in the benchmarks shown in
Secs. IV A and IV B are also expected to hold for systems with
many particles. However, in systems with many particles n, it
is necessary to implement a neighbor list to avoid that each
time step scales with n? as a result of the pairwise distance
calculations.

In order to validate that our MD-GFRD scheme can still be
efficiently implemented with many particles, we implemented
the new scheme 1 with n,,s = 5 using a neighbor list. Par-
ticles are interacting with harmonic repulsion with radius R
= 2.5 nm, k = 100, and periodic boundary conditions are
applied as described in Sec. IV. The system volume is kept
fixed to 17.576 x 10° nm3, while the number of particles
is adapted to achieve the desired molar concentration. All
particles have diffusion coefficient D = 10 um?/s.

In order to efficiently implement a neighbor list, we used
a discretization of the simulation box in cells of length L.y
= 5 nm for the brute-force BD simulations and of L..; = 10
nm for the MD-GFRD simulations. Each particle checks the
cell it is located in and the 26 neighboring cells for possible
neighbors. In such a cell discretization, the smallest distance
at which two particles can loose track of each other is the cell
length, and thus the maximum protective domain size must
be limited to at most half the cell length minus the interac-
tion length, which is the gap to be left between contiguous
domains. Here, we limited the maximum domain size to R,y
=2.5nm.

The simulation results in Table I show that the new scheme
remains to be faster than a brute-force integration up to a molar
concentration of 103 uM.

TABLE I. Computational time to simulate 1 ms of real time, using a brute-
force integration step of df = 0.1 ns. Particles are spherical-shaped with radius
r = 2.5 nm and diffusion coefficient D = 10 gm?/s. A harmonic potential is
used to reproduce particles interactions as in Eq. (17), with k = 100. A linked
list cell has been implemented, where each grid box is a cube with length L,
=5nm in BD, and L, = 10 nm in the new scheme. In these simulations, the
new scheme remains to be more efficient than BD up to a molar concentration
of 10° uM.

Molar concentration Particles CPU time, CPU time,
(uUM) number new scheme (s) BD (s)

10% 103 271 14.5 x 10°
103 104 230 x 103 260 x 103
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FIG.9. Mean square displacement of particles diffusing, simulated as
described in Fig. 5 for a molar concentration of 10% M. The MD-GFRD
scheme used is from Ref. 21, in the new scheme, a reduction step was per-
formed with n,,4 =5. The expected value of free diffusing particles (red dashed
line) is given by (Ar?) = 6Dt in (a) and A2y =6 % t in (b). The mean
squared displacements are slightly below the mean square displacements of
freely diffusing particles due to crowding effects.

D. Mean square displacement

In order to validate the implementation of the MD-GFRD
schemes, of the new scheme and of the direct time step integra-
tion scheme used, the mean squared displacement of the par-
ticles simulated with the different schemes has been recorded
and compared. In Fig. 9, the mean square displacement shows
an excellent agreement between the different schemes.

V. CONCLUSIONS

We have described a novel multi-scale MD-GFRD scheme
to simulate diffusion and interaction of Brownian particles.
In a multi-scale MD-GFRD scheme, the propagation of free
particles is performed in an event-based fashion via Green’s
function samplings, whilst the reactions and the interac-
tions between particles are simulated via direct time step
integration (here using time-discretized Brownian dynamics,
BD).

Multi-scale MD-GFRD has been shown to be several
orders of magnitude faster than BD at low particle concen-
trations. The efficiency of MD-GFRD strongly depends on the
density of the system, and previous schemes have been shown
to be more efficient than BD up to a molar concentration of
102 uM.?%2! In crowded systems, free space around parti-
cles tends to be scarce and constructing protective domains
around them is more difficult. In addition, domains are often
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burst prematurely by the intrusion of other particles, which
is undesirable as it increases the computational effort and the
domain making is less parallelizable than direct BD steps or
FPKMC/eGFRD extractions. It is thus desirable to optimize
the domain making scheme so as to avoid unnecessary prema-
ture bursting and improve the computational performance at a
given particle concentration.

In the multi-scale MD-GFRD scheme described in this
paper, a new domain making algorithm and a way to determine
the minimal domain size accurately have been introduced. The
new domain making algorithm constructs domains with sizes
chosen so as to balance the domain exit times of adjacent par-
ticles. In contrast to previous domain selection schemes, this
approach involves sampling exit positions, i.e., it looks ahead
in time in order to plan domain sizing optimally. In addition,
the minimal domain size is proposed to be proportional to
the square root of the particle diffusivity, which leads to the
existence of smaller domains than in previous implementa-
tions. Nonetheless, the domains created with this algorithm
are more efficient as they are less likely to burst. Overall, the
new scheme exhibits up to an order of magnitude improvement
of computational efficiency compared to the previous multi-
scale MD-GFRD implementations. Moreover, the new scheme
is superior to direct time step integration for concentrations up
to 103 uM. In future studies, this algorithm will be used as a
part of the software ReaDDy to simulate realistic biological
systems.
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APPENDIX A: NEW DOMAIN SIZE SCHEME

The solution to Eq. (5) has the following two roots:

(AD)

ril = Tnext

Assuming that the condition Ar < fﬁext/6D,~ is satisfied, the
argument of the square root is nonnegative, resulting in two
real-valued solutions. In the following derivations, we study

two different cases depending on D; and D;.

Firstly, we study D; > D;, which leads to 1— % >0. In
case the discriminant is added, the factor that multiplies
Fnexe 18 clearly higher than one since diffusion coefficients
are always positive, then we would obtain 7| >7pey, an

unphysical solution. The discriminant must thus be subtracted.
=2

Furthermore, imposing the condition ré’—g; > AT, or equiv-

alently 7% < GLD,-’ we can verify that if the discriminant is

subtracted
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The condition r;; < Fyex is satisfied if the discriminant is
subtracted. b
In case D; > D;, then 1 - 3’_ <0,

11\/1+|1—%|(1+

11—

6 At Dj
=2
rnext

(A3)

ril = Tnext D; |
D;
In order to satisfy the condition r; ; > 0, the discriminant must
have a positive sign. However, the sign of the discriminant
has been inverted by the modulus in the denominator since it
comes from the subtraction of the discriminant.

To sum up, only the root obtained by subtracting the
discriminant satisfies the condition 0 < 7;; < 7y,

1—\/1—(1—%)(1+

D:
—
1 D;

6 At Dj
=
r”l?/\'f

(A4)

Vi1 = Vnext

APPENDIX B: o VALUES

The minimal domain size is given by Eq. (16), where @ is a
parameter that is determined in the beginning of the simulation.
An optimal value @ = 8.4 has been already suggested in Fig. 4.
However, that value was selected by taking only the Green’s
function solver and the direct time step integrator into account.
In general, it might seem appropriate to insert a penalty for the
possibility of a burst and then to slightly rise the @ value, where
the penalty would be higher when a higher number of bursts is
expected.

Figure 10 shows that the optimal value of « lies in the
range 8 < @ < 12, in agreement with Fig. 4. However, in the
system studied here, the effect of varying @ in Refs. 8 and 12
on CPU performance is lower than 5%, and essentially any

1y, Schoneberg, M. Heck, K.-P. Hofmann, and F. Noé, Biophys. J. 107, 1042
(2014).
2K. Takahashia, S. Tanase-Nicolad, and P. R. ten Wolde, Proc. Natl. Acad.
Sci. U. S. A. 107, 2473 (2009).
3R. Erban and S. J. Chapman, Phys. Biol. 6, 046001 (2009).
4J. van Zon and P. ten Wolde, J. Chem. Phys. 123, 234910 (2005).
5. Schoneberg et al., Nat. Commun. 8, 15873 (2017).
°D. T. Gillespie, J. Comput. Phys. 22, 403 (1976).
7S. Winkelmann and C. Schiitte, J. Chem. Phys. 145, 214107 (2016).
8p. Langevin, C. R. Acad. Sci. 146, 530 (1908).
9S. S. Andrews and D. Bray, Phys. Biol. 1, 137 (2004).
105, Schéneberg and F. Noé, PLoS One 8, €74261 (2013).
115, Schéneberg, A. Ullrich, and E. Noé, BMC Biophys. 7, 11 (2014).
12M. Gunkel et al., Structure 23, 628 (2015).
13A. Ullrich ez al., PLoS Comput. Biol. 11, e1004407 (2015).
145 R. McGuffee and A. H. Elcock, PLoS Comput. Biol. 6, 1000694 (2010).
15, Biedermann, A. Ullrich, J. Schéneberg, and F. Noé, Biophys. J. 108, 457
(2015).
16T, Opplestrup ez al., Phys. Rev. Lett. 97, 230602 (2006).
17T, Oppelstrup et al., Phys. Rev. E 80, 066701 (2009).
18A. Donev et al., J. Comput. Phys. 229, 3214 (2010).
197, van Zon and P. ten Wolde, Phys. Rev. Lett. 94, 128103 (2005).
204, Vijaykumar, P. Bolhuis, and P. ten Wolde, J. Chem. Phys. 143, 214102
(2015).
24, Vijaykumar, T. Ouldridge, P. ten Wolde, and P. Bolhuis, J. Chem. Phys.
146, 114106 (2017).
22J, Schluttig, C. B. Korn, and U. S. Schwarz, Phys. Rev. E 81, 030902 (2010).
23].-H. Prinz et al., J. Chem. Phys. 134, 174105 (2011).
24An Introduction to Markov State Models and Their Application to Long
Timescale Molecular Simulation, Advances in Experimental Medicine and
Biology Vol. 797, edited by G. R. Bowman, V. S. Pande, and F. Noé (Springer
Heidelberg, 2014).
25M. Sarich and C. Schiitte, Metastability and Markov State Models in Molec-
ular Dynamics, Courant Lecture Notes (American Mathematical Society,
2013).
26F. Noé and C. Clementi, J. Chem. Theory Comput. 11, 5002 (2015).
27N. Plattner, S. Doerr, G. D. Fabritiis, and F. Noé, Nat. Chem. 9, 1005 (2017).
28H. Wu, A. S. J. S. Mey, E. Rosta, and F. Noé, J. Chem. Phys. 141, 214106
(2014).
29H. Wau, F. Paul, C. Wehmeyer, and F. Noé, Proc. Natl. Acad. Sci. U. S. A.
113, E3221 (2016).
30T, Sokolowski, Ph.D. thesis, VU University Amsterdam, 2013, pp. 48—49.
31S. Redner, A Guide to First-Passage Processes (Cambridge University
Press, 2001).


https://doi.org/10.1016/j.bpj.2014.05.050
https://doi.org/10.1073/pnas.0906885107
https://doi.org/10.1073/pnas.0906885107
https://doi.org/10.1088/1478-3975/6/4/046001
https://doi.org/10.1063/1.2137716
https://doi.org/10.1038/ncomms15873
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1063/1.4971163
https://doi.org/10.1088/1478-3967/1/3/001
https://doi.org/10.1371/journal.pone.0074261
https://doi.org/10.1186/s13628-014-0011-5
https://doi.org/10.1016/j.str.2015.01.015
https://doi.org/10.1371/journal.pcbi.1004407
https://doi.org/10.1371/journal.pcbi.1000694
https://doi.org/10.1016/j.bpj.2014.12.025
https://doi.org/10.1103/physrevlett.97.230602
https://doi.org/10.1103/physreve.80.066701
https://doi.org/10.1016/j.jcp.2009.12.038
https://doi.org/10.1103/physrevlett.94.128103
https://doi.org/10.1063/1.4936254
https://doi.org/10.1063/1.4977515
https://doi.org/10.1103/physreve.81.030902
https://doi.org/10.1063/1.3565032
https://doi.org/10.1021/acs.jctc.5b00553
https://doi.org/10.1038/nchem.2785
https://doi.org/10.1063/1.4902240
https://doi.org/10.1073/pnas.1525092113

