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0 Introduction

Order convergences of sequences is a well-known concept in Analysis. It has been gen-
eralized to order convergence of nets and filters in a complete lattice (even in a partially
ordered set) by G. Birkhoff [6] and D. C. Kent [12] respectively. D. C. Kent[6] proved also
that order convergence of filters in a complete lattice is not induced by a limit structure in
general and consequently there is no topology such that convergence w. r. t. the topology
means order convergence. Recently, R. Anguelov and J. H. van der Walt [1] have proved
that order convergence of sequences in the vector lattice C(X) of all continuous real-valued
maps on a topological space X is not topological but it is induced by a suitable limit
structure on C(X).

In this paper a certain condition on a lattice, namely σ-distributivity, is studied such
that order convergence of sequences is induced by a limit structure, even a finest one. It
is already mentioned in the book of Luxemburg and Zaanen [15] that each vector lattice
(=Riesz space) is σ-distributive.

Another non-topological mode of convergence is convergence almost everywhere which
is mainly studied in measure theory and probability theory. An example that convergence
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almost everywhere is not topological has been given by H.-J. Kowalsky [13] and later on
by E. T. Ordmann [16]. In particular H.-J. Kowalsky introduced limit structures (=“Lim-
itierungen”) in order to remedy this inconvenience. Independently, limit spaces, i.e. sets
endowed with a limit structure, have been introduced by H. R. Fischer [9]. They are nowa-
days also called convergence spaces and form a suitable framework for Functional Analysis
(cf. E. Binz [4, 5], W. Gähler [10], and R. Beattie and H. P. Butzmann [3]). But they are
also used in Convenient Topology (cf. e. g. [17]) together with suitable generalizations.

U. Höhle [11] pointed out that H.-J. Kowalsky used in his example everywhere defined
functions whereas in probability theory almost everywhere defined functions are used. He
improves this situation by introducing a suitable limit structure on the quotient set S/S
where S is the set of all Borel measurable functions f : [0, 1]→ R and (f, g) ∈ S iff f = g
λ-almost everywhere (λ denotes the Lebesque measure). This limit structure is constructed
via a fuzzy topology(=many-valued topology) on S/S.

Here a more general situation is studied, namely

1. R is substituted by the extended real line R̄, and

2. ([0, 1],B, λ), where B denotes the σ-algebra of Borel subsets of [0, 1], is substituted
by a general measure space (Ω,A, µ) with µ 6= 0.

Furthermore, the fact that convergence almost everywhere can be regarded as order con-
vergence in a certain σ-distributive lattice is used explicitly. Thus, the obtained result on
order convergence can be applied. In particular, Höhle’s result appears as a corollary and
is obtained in a direct way without using fuzzy topologies.

1 Preliminaries

1.1 Definition. Let X be a set, F (X) the set of all filters on X, and q ⊂ F (X) × X.
Consider the following:

1. (ẋ, x) ∈ q for each x ∈ X, where ẋ = {A ⊂ X : x ∈ A},

2. (F , x) ∈ q whenever (G, x) ∈ q and G ⊂ F ,

3. (F , x) ∈ q and (G, x) ∈ q imply (F ∩ G, x) ∈ q,

4. For each x ∈ X, (Uq(x), x) ∈ q, where Uq(x) =
⋂

(F ,x)∈q
F is the neighborhood filter of

x w. r. t. q,

5. For each U ∈ Uq(x) there is some V ∈ Uq(x) such that U ∈ Uq(y) for each y ∈ V , and

6. (F , x) ∈ q and (F , y) ∈ q imply x = y.

Then q is called:
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a) a generalized convergence structure on X iff 1. and 2. are satisfied,

b) a limit structure on X iff 1., 2., and 3. are satisfied,

c) a pretopological structure (or pretopology) on X iff 1., 2., and 4. are satisfied,

d) a topological structure (or topology) on X iff it is a pretopological structure such that
for each x ∈ X, 5. is satisfied.

A generalized convergence structure q is called T2 iff it satisfies 6.. If (F , x) ∈ q we say F
converges to x and we write F q→ x or shortly F → x. A sequence (xn) in X converges to
x ∈ X w. r. t. a generalized convergence structure on X iff the elementary filter Fe((xn))
converges to x, where Fe((xn)) = {Y ⊂ X : xn ∈ Y for all but finitely many n ∈ N}. If
q1 and q2 are generalized convergence structures on X, then q1 is finer than q2 (or q2 is
coarser than q1) iff q1 ⊂ q2.

1.2 Remark. There is an alternative description of pretopologies by means of closure
operations in the sense of E. Čech [7] (cf. [17; 2.3.1.6.2)] for the details).

1.3 Proposition. Let q be a pretopology on a set X. Then the convergence of sequences
in X fulfills the Urysohn property, i.e. a sequence (xn) in X converges to x ∈ X whenever
each subsequence of (xn) has a subsequence converging to x.

Proof. Let (xn) be a sequence in X such that each subsequence (yn) has a subsequence
(yna)a∈N converging to x ∈ X. Furthermore, let M be the set of all subsequences of (xn)
and f : M →M a map assiging to each subsequence (yn) of (xn) exactly one subsequence
of (yn) converging to x. Then

(∗) Fe((xn)) =
⋂

(yn)∈M

Fe(f((yn))) :

1. If F ∈ Fe((xn)), then F contains all but finitely many xn and thus all but finitely
many f((yn)), i.e. F belongs to Fe(f((yn))) for each (yn) ∈M .

2. If F ∈
⋂

(yn)∈M
Fe(f((yn))) such that F /∈ Fe((xn)) then, for each n ∈ N, F 6⊃ En =

{xm|m ≥ n}, i.e. (X\F )∩En 6= ∅ for each n ∈ N. Choose zn ∈ En ∩ (X\F ) for each
n ∈ N. Hence (zn) is a sequence consisting of terms of (xn) which do not belong to
F . In particular, the set I = {i ∈ N : xi = zn for some n ∈ N} is infinite, namely if I
were finite with maximum m, then zm+1 ∈ Em+1, i.e. zm+1 = xk with k ≥ m+1 and
k ∈ I, which would imply that m is not the maximum of I – a contradition. Let j1
be the least j ∈ N belonging to I, j2 the least j ∈ N\{j1} belonging to I, and so on.
Then (jn) is a strictly increasing sequence and (yn) = (xjn)n∈N is a subseqence of (xn)
consisting of terms which do not belong to F . Therefore, f((yn)) is a subsequence of
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(yn) converging to x whose terms do not belong to F , i.e. F /∈ Fe(f((yn))), which is
imposible. Consequently, each F ∈

⋂
(yn)∈M

Fe(f((yn))) belongs to Fe((xn)).

Now Fe((xn)) =
⋂

(yn)∈M
Fe(f((yn))) ⊃

⋂
(H,x)∈q

H = Uq(x) since each Fe(f((yn))) converges

to x, i.e. (Fe(f((yn))), x) ∈ q. This implies (Fe((xn)), x) ∈ q, i.e. (xn) converges to x in
X, since (Uq(x), x) ∈ q.

1.4 Definition. A lattice L is called σ-distributive (fully distributive) provided that the
following are satisfied:

1. If A ⊂ L is countable (arbitrary) such that
∨
A exists in L, then for x ∈ L, x∧

∨
A =∨

a∈A
x ∧ a.

2. If B ⊂ L is countable (arbitrary) such that
∧
B exists in L, x ∨

∧
B =

∧
b∈B

x ∨ b.

1.5 Remark. Even if L is a complete lattice, 1. does not imply 2. (cf. [14; 1.1.30] for an
example). In particular, if L is a vector lattice (=Riesz space), then L is fully distributive
(cf. [14; 12.2]) and thus σ-distributive. Furthermore, every complete chain is completely
distributive and hence infinitely distributive (= complete and fully distributive).

1.6 Corollary. Let L be a σ-distributive (fully distributive) lattice. If A,B ⊂ L are
countable (arbitrary) such that

∨
A and

∨
B or

∧
A and

∧
B exist, then

1.
∨
A ∧

∨
B =

∨
a∈A, b∈B

a ∧ b

or

2.
∧
A ∨

∧
B =

∧
a∈A, b∈B

a ∨ b

Proof. In order to prove 1. or 2., apply 1. or 2. in 1.4.

1.7 Proposition. Let L be a σ-distributive lattice.

1. If (α1
n)n∈N and (α2

n)n∈N are increasing sequences in L such that
∨
n
α1
n = x and

∨
n
α2
n =

y exist in L, then (α1
n ∧ α2

n)n∈N is increasing and
∨
n
α1
n ∧ α2

n = x ∧ y.

2. If (β1
n)n∈N and (β2

n)n∈N are decreasing sequences in L such that
∧
n
β1
n = x and

∧
n
β2
n =

y exist in L, then (β1
n ∨ β2

n)n∈N is decreasing and
∧
n
β1
n ∨ β2

n = x ∨ y.

4



Proof. 1. By 1.6.1., x∧ y =
∨
n,m

α1
n ∧ α2

m and since (α1
n), (α2

n) are increasing, (α1
n ∧ α2

n)

is increasing and x ∧ y =
∨
n
α1
n ∧ α2

n:

(a)
∨
n
α1
n ∧ α2

n ≤
∨
n,m

α1
n ∧ α2

m.

(b) n = m: α1
n ∧ α2

m = α1
n ∧ α2

n ≤
∨
n
α1
n ∧ α2

n

n < m: α1
n ∧ α2

m ≤ α1
m ∧ α2

m ≤
∨
n
α1
n ∧ α2

n

n > m: α1
n ∧ α2

m ≤ α1
n ∧ α2

n ≤
∨
n
α1
n ∧ α2

n

(c) By (b)
∨
n
α1
n ∧ α2

n ≥
∨
n,m

α1
n ∧ α2

m.

2. By 1.6.2. and the fact that (β1
n) and (β2

n) are decreasing, the assertion is proved.

2 Order convergence

It is well-known that a convergent sequence of real numbers is bounded. Thus, we may
restrict our interest to bounded sequences, i.e. to sequences which are defined on a closed
interval [a, b] of the real line R, whenever convergence will be considered. But then conver-
gence can be defined by means of the partial order (induced by the natural partial order on
R) on the closed interval [a, b]. In particular, a sequence (xn) of elements of [a, b] converges
to x0 ∈ [a, b] iff lim(xn) = lim(xn) = x0, where lim(xn) (resp. lim(xn)) denotes the limes
superior (resp. limes inferior) of (xn). Using this idea, order convergence of filters (resp.
nets) in complete lattices can be introduced, which has been done by D. C. Kent [12] (resp.
G. Birkhoff [6]).

2.1 Definition. Let L be a complete lattice, F a filter on L and x0 ∈ L. F order converges
to x0 iff limF = limF = x0 where limF =

∧
F∈F

∨
F and limF =

∨
F∈F

∧
F .

2.2 Proposition. Let L be a complete lattice and F ∈ F (L). If B is a base of F , then
the following hold:

1. limF =
∧
B∈B

∨
B

2. limF =
∨
B∈B

∧
B

In particular,

1′. limF = inf{y ∈ L : there is some B ∈ B such that y ≥ x for each x ∈ B}

2′. limF = sup{y ∈ L : there is some B ∈ B such that y ≤ x for each x ∈ B}
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Proof. 1. For each F ∈ F there is some B′ ∈ B such that B′ ⊂ F . Consequently,∧
B∈B

∨
B ≤

∨
B′ ≤

∨
F and hence,

∧
B∈B

∨
B ≤

∧
F∈F

∨
F . Since each B ∈ B belongs

to F ,
∧
F∈F

∨
F ≤

∧
B∈B

∨
B,

2. is proved analogously to 1..
1′. and 2′. are obvious.

2.3 Proposition. Let L be a complete lattice. Then limF ≤ limF for each F ∈ F (L).

Proof. Let y ∈ Su = {y ∈ L : there is some F ∈ F such that y ≤ x for each x ∈ F} and
z ∈ S0 = {z ∈ L : there is some F ∈ F such that z ≥ x for each x ∈ F}. Then there are
F1, F2 ∈ F such that y ≤ x for each x ∈ F1 and z ≥ x for each x ∈ F2. Since F1 ∩ F2 6= ∅,
there exists some a ∈ F1 ∩ F2 with y ≤ a ≤ z. Therefore, y ≤ limF = inf S0 for each
y ∈ Su. But then limF = supSu ≤ limF .

2.4 Definition. Let L be a complete lattice, (xα)α∈I a net in L, and x0 ∈ L. (xα)α∈I
order converges to x0 iff the filter F generated by (xα)α∈I order converges to x0. Instead
of limF (resp. limF) one writes lim(xα) (resp. lim(xα)).

2.5 Remark. The filter generated by (xα)α∈I has the base B = {Eβ : β ∈ I} where
Eβ = {xα : α ≥ β}. If I = N, i.e. (xn)n∈N is a sequence in L, the filter generated by (xn)
is the elementary filter of (xn).

2.6 Corollary. If (xα) is a net in a complete lattice, then

lim(xα) =
∨
β

∧
Eβ

lim(xα) =
∧
β

∨
Eβ

(This is G. Birkhoff’s original definition).

2.7 Corollary. ([6; p.244]) Let L be a complete lattice. A net (xα) in L order converges
to x0 ∈ L iff there are nets tα ↑ x0 and uα ↓ x0 such that tα ≤ x0 ≤ uα, where tα ↑ x0

means that the map α 7→ tα is isotone and sup tα = x0, and uα ↓ x0 is defined dually.

This leads to the following generalization of order convergence to arbitrary partially ordered
sets.

2.8 Definition. Let P be a partially ordered set. A sequence (xn) in P order converges to
x0 ∈ P iff there is an increasing sequence (αn) with sup{αn : n ∈ N} = x0 and a decreasing
sequence (βn) with inf{βn : n ∈ N} = x0 such that αn ≤ xn ≤ βn for each n ∈ N.
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2.9 Remark. An analogous definition can be given for order convergence of nets in a
partially ordered set.

2.10 Corollary. ([6; p. 245]). Each partially ordered set P is a Fréchet L-space with
respect to order convergence of sequences, i.e. the following are satisfied:

1. If xn = x0 for each n ∈ N, then (xn) order converges to x0.

2. If (xn) order converges to x0 ∈ P , then each subsequence (xnk
)k∈N order converges

to x0.

3. Order convergence of sequences is unique, i.e. if (xn) order converges to x, y ∈ P ,
then x = y.

2.11 Proposition. Let L be a σ- lattice and (xn) a sequence in L. Then lim(xn) =∨
n

∧
m≥n

xm and lim(xn) =
∧
n

∨
m≥n

xm exist and the following are valid:

1. (a) lim(xn) =
∧
{y ∈ L : there is some m ∈ N such then y ≥ xn for each n ≥ m}.

(b) lim(xn) =
∨
{y ∈ L : there is some m ∈ N such then y ≤ xn for each n ≥ m}.

2. (xn) order converges to x ∈ L in the sense of 2.8 iff lim(xn) = lim(xn) = x.

Proof. 1. is obvious.

2. α) “⇐”. Let lim(xn) = lim(xn) = x. Then (tn =
∨
m≥n

xm)n∈N is a decreasing

sequence with sup
n
tn = x and (sn =

∧
m≥n

xm)n∈N is an increasing sequence with

sup
n
sn = x. Furthermore, sn ≤ xn ≤ tn for each n ∈ N. Thus, (xn) order

converges to x in the sense of 2.8.

β) “⇒”. By assumption, there exists an increasing sequence (sn) and a decreasing
sequence (tn) in L with sn ≤ xn ≤ tn for each n ∈ N such that sup

n
sn = x

and inf
n
tn = x. By [18, 8.36], lim(sn) = lim(sn) = sup

n
sn = x and lim(tn) =

lim(tn) = inf
n
tn = x. Thus, x = lim(sn) ≤ lim(xn) ≤ lim(xn) ≤ lim(tn) = x.

Consequently, lim(xn) = lim(xn) = x.

2.12 Proposition. Let L be a complete lattice and define q ⊂ F (L)× L by (F , x) ∈ q iff
F order converges to x. Then q is a T2 generalized convergence structure on L.

Proof. 1. limẋ = inf{y ∈ L : y ≥ x} = x and
limẋ = sup{y ∈ L : y ≤ x} = x imply that ẋ order converges to x for each x ∈ L.
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2. Let F ∈ F (L) order converge to x ∈ L and let G ∈ F (L) such that G ⊃ F . Obviously,
limF ≥ limG and limF ≤ limG. Using 2.3 we obtain limF ≤ limG ≤ limG ≤ limF .
Since limF = limF = x, limG = limG = x, i.e. G order converges to x.

3. The uniqueness of order convergence of filters is obvious.

2.13 Remarks. 1. The T2 generalized convergence structure q on L in 2.12 is generally
not a limit structure which D.C. Kent [12] has been demonstrated by means of the
following example: Let L be the (set) union of two replicas of the open interval (0, 1)
together with the addition of a least element x0 and a greatest element x1 as follows:

Then L is a complete lattice and q is no limit structure: Let F1 be the elementary
filter of (1

2 −
1
n)n>2 and F2 the elementary filter of (1 − 1

n)n>2. Then F1
q→ x1 and

F2
q→ x1 but F1 ∩ F2 6→ x1 since limF1 ∩ F2 = x1 and limF1 ∩ F2 = x0.

2. Next, let us restrict our interest to order convergence of sequences. R. Anguelov
and J. H. van der Walt [1] have proved that order convergence of sequences in the
lattice C(R) of all real-valued continous functions on the usual topological space of
real numbers does not fulfill the Urysohn property (cf. their example 20 on page
437). Thus, by 1.3, order convergence of sequences is generally not induced by a
pretopology (or topology). Under certain conditions on a lattice L there exists a limit
structure which describes the order convergence of sequences. This will be realized
in the following.
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2.14 Theorem. Let L be a σ-distributive lattice and define q ⊂ F (L)× L by

(F , x) ∈ q ⇔



1. For each n ∈ N there is some closed interval [αn, βn] ⊂ L
2. [αn+1, βn+1] ⊂ [αn, βn] for each n ∈ N
3. sup

n
αn = inf

n
βn = x

4. G ⊂ F where G is the filter generated by the filter base
{[αn, βn] : n ∈ N}

Then q is a limit structure on L such that for each sequence (xn) in L the following is
valid:
(xn) order converges to x in the sense of 2.8 iff (Fe((xn)), x) ∈ q, i.e. q induces the order
convergence of sequences.

Proof. 1. q is a limit structure:

(a) ẋ
q→ x is trivial for each x ∈ L since {x}is a closed interval.

(b) F q→ x and G ∈ F (L) with G ⊃ F imply obviously G q→ x.

(c) Let F q→ x and G q→ x. By assumption, there are [αn, βn] ⊂ L with [αn+1, βn+1] ⊂
[αn, βn] for each n ∈ N such that sup

n
αn = inf

n
βn = x as well as [α′n, β

′
n] ⊂ L

with [α′n+1, β
′
n+1] ⊂ [α′n, β

′
n] such that sup

n
α′n = inf

n
β′n = x, where F and G are

generated by {[αn, βn] : n ∈ N} and {[α′n, β′n] : n ∈ N} respectively. Then

(1) [αn ∧ α′n, βn ∧ β′n] ⊃ [αn, βn] ∪ [α′n, β
′
n] for each n ∈ N

By 1.7, (αn ∧ α′n)n∈N is increasing and (βn ∨ β′n)n∈N is decreasing such that
sup
n

(αn∧α′n) = inf
n

(βn∨β′n) = x. Obviously, for each n ∈ N, [αn+1∧α′n+1, βn+1∨

β′n+1] ⊂ [αn ∧ α′n, βn ∨ β′n]. Furthermore (cf. (1)), H ⊂ F ∩ G, where H is the
filter generated by {[αn ∧ α′n, βn ∨ β′n] : n ∈ N}, i.e. F ∩ G q→ x.

2. (a) Let (xn) be a sequence in L order converging to x ∈ L. Then there are sequences
(αn), (βn) in L with αn ≤ an+1 and βn ≥ βn+1 for each n ∈ N such that
αn ≤ xn ≤ βn, i.e. xn ∈ [αn, βn], and sup

n
αn = inf

n
βn = x. Then the filter

generated by {[αn, βn] : n ∈ N} is contained in Fe((xn)), i.e. Fe((xn))
q→ x

since each [αn, βn] contains all but finitely many xn.

(b) Let (xn) be a sequence in L such that Fe((xn))
q→ x. Then there exists [αn, βn] ⊂

L for each n ∈ N with αn ≤ αn+1 and βn ≥ βn+1 as well as sup
n
αn = inf

n
βn = x.

Additionally, {[αn, βn] : n ∈ N} ⊂ Fe((xn)): Inductively, an increasing sequence
(kn)n∈N of natural numbers is constructed such that

(2) αn ≤ xm ≤ βn for each m ≥ kn.
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Then two sequences (am)m∈N and (bm)m∈N are defined as follows:

am = inf{x1, . . . , xk1−1, α1}, m = 1, 2, . . . , k1 − 1
am = αn, m = kn, kn + 1, . . . , kn+1 − 1, n = 1, 2, . . .
bm = sup{x1, . . . , xk1−1, β1}, m = 1, 2, . . . , k1 − 1
bm = βn, m = kn, kn + 1, . . . , kn+1 − 1, n = 1, 2, . . .

Obviously, (am)n∈N is increasing and (bm)m∈N is decreasing. By (2), am ≤ xm ≤
bm, m ∈ N. Furthermore, sup

m
am = sup

n
αn = x and inf

m
bm = inf

n
βn = x. Thus,

(xn) order converges to x.

2.15 Corollary. Let L be a σ-distributive lattice. Then the limit structure q on L in 2.14
is T2.

Proof. Let F q→ x, y. Then, for each n ∈ N, there are intervals [α1
n, β

1
n] and [α2

n, β
2
n] in L

with [α1
n+1, β

1
n+1] ⊂ [α1

n, β
1
n] and [α2

n+1, β
2
n+1] ⊂ [α2

n, β
2
n] such that sup

n
α1
n = inf

n
β1
n = x and

sup
n
α2
n = inf

n
β2
n = y as well as {[α1

n, β
1
n] : n ∈ N} ⊂ F and {[α2

n, β
2
n] : n ∈ N} ⊂ F .

Thus, for each n ∈ N, [α1
n, β

1
n] ∩ [α2

n, β
2
n] 6= ∅. Choose exactly one xn form each [α1

n, β
1
n] ∩

[α2
n, β

2
n]. Hence, (xn) is a sequence in L order converging to x and y. This implies x = y

(cf. 2.10.3.).

2.16 Remarks. 1. If X is a lattice, then q ⊂ F (X)×X as defined in 2.14 is a gener-
alized convergence structure, which induces the order convergence of sequences. Fur-
thermore, q is T2. (cf. the corresponding proofs of 2.14 and 2.15).

2. By [15; theorem 12.2], each vector lattice (=Riesz space) is σ-distributive. In particu-
lar, the set C(X) of all continuous real-valued maps on a topological space X endowed
with the pointwise order is a vector lattice. Thus, the above results on σ−distributive
lattices are valid for C(X) (cf. also [1]). But also the following in this section is valid.

2.17 Proposition. Let L be a σ-distributive lattice. Then the order convergence of se-
quences fulfills the following conditions ( and additionally the conditions 1., 2. and 3. in
2.10):

4. If ζ, η are sequences in L such that ζ order converges to x ∈ L, and Fe(ζ) = Fe(η),
then η order converges to x.

5. If ζ, η are sequences in L order converging to x ∈ L, then ζ ∗ η order converges to x,
where ζ ∗ η denotes the simple mixture of ζ and η defined by ζ ∗ η(2n− 1) = ζ(n) and
ζ ∗ η(2n) = η(n) for each n ∈ N
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Proof. Since, L is σ-distributive, there is a limit structure q on L inducing the order
convergence of sequences (cf. 2.14). Thus, 4. is obvious and 5. follows from 3. in 1.1..

2.18 Corollary. Let L be a σ-distributive lattice. Then there is a finest limit structure q0
on L inducing the order convergence of sequences and being defined by

(F , x) ∈ q0 ⇔ There is a sequence ζ in L order converging to x
such that Fe(ζ) ⊂ F .

In particular, q0 is T2.

Proof. 1. q0 is a limit structure (cf. [3; proof of 1.7.6]).

2. Let q′ be a limit structure on L inducing the order convergence of sequences. If
(F , x) ∈ q0 there is a sequence ζ in L order converging to x such that Fe(ζ) ⊂ F .
Since Fe(ζ) converges to x w.r.t. q′, F converges to x w.r.t. q′, i.e. q0 ⊂ q′.

3. By 2.14 and 2.15, q is a T2 limit structure and q induces the order convergence of
sequences. Thus, by 2., q0 is finer than q which implies that q0 is also T2.

3 Convergence almost everywhere

In this section a measure µ on a σ-algebra (Ω,A) is assumed to be non-trivial, i.e. µ 6= 0
( or equivalently: µ(Ω) 6= 0).

3.1 Definition. Let (Ω,A, µ) be a measure space and R̄ the extended real line, i.e.
R̄ = R ∪ {−∞,+∞}.

1. A function f : Ω→ R̄ is called (A−)measurable provided that it isA−B1−measurable,
where B1 is the σ-algebra on R̄ whose trace on R is the set B of all Borel sets in R
(i.e. B1 consists of B, B ∪ {+∞}, B ∪ {−∞}, and B ∪ {−∞,+∞} for all B ∈ B).

2. Let N ⊂ Ω be a (µ−)null set (i.e. N ∈ A and µ(N) = 0) and M = Ω\N . A map
f : M → R̄ which is (M ∩A−)measurable, is called a (µ−)almost everywhere defined
(A−)measurable function (note: M ∩ A = {M ∩A : A ∈ A}.

3. If f, g : Ω → R̄ are (A)-measurable functions, then f is said to be equivalent to g
iff f = g (µ-)almost everywhere, i.e. f(x) = g(x) for each x ∈ Ω\N where N is a
(µ-)null set. The equivalence class belonging to f is denoted by [f ].

4. (a) If f : M → R̄ is a µ-almost everywhere defined A-measurable function, then f◦

denotes its trivial extension,

i.e. f◦(x) =

{
f(x) for each x ∈M ,

0 for each x ∈ Ω\M .

11



(b) Let f : A → R̄ and g : B → R̄ be µ-almost everywhere defined A-measurable
functions. Then f is called equivalent to g iff [f◦] = [g◦], i.e. iff there is a µ-null
set N such that for each x ∈ M = A ∩ B ∩ (Ω\N), f(x) = g(x) (obviously
M is the complement of a µ-null set, i.e. f = g µ-almost everywhere). The
corresponding equivalence class of f is denoted by f̃ .

3.2 Corollary. a) Let X = {[f◦] : f µ-almost everywhere defined A-measurable function}
and Z = {f̃ : f µ−almost everywhere defined A-measurable function}. Then H : Z →
X defined by H(f̃) = [f◦] is bijective.

b) Let Y = {[f ] : f : Ω→ R̄ A-measurable function}. Then X = Y .

3.3 Definition. A partial order ≤ on X is defined as follows:

[f ] ≤ [g]⇔ f ≤ g µ-almost everywhere
(i.e. f(x) ≤ g(x) for each x ∈ Ω\N ,

where N is a µ-null set).

3.4 Remark. 3.3 is independent of the choice of the representatives.

3.5 Proposition. Let ([fn])n∈N be a sequence in X. Then sup
n

[fn] and inf
n

[fn] exist and

the following are valid:

1. sup
n

[fn] = [sup
n
fn],

2. inf
n

[fn] = [inf
n
fn].

In particular, (X,≤) is a σ-lattice which is σ-distributive.

3.6 Corollary. Let ([fn])n∈N be a sequence in X. Then lim[fn] and lim[fn] exist and the
following are satisfied:

1. lim[fn] = [limfn],

2. lim[fn] = [lim[fn].

Proof of 3.5. By [2; 9.5], sup
n
fn and inf

n
fn are A-measurable functions from Ω to R̄.

1. (a) Let gn ∈ [fn], i.e. [gn] = [fn] for each n ∈ N. Then gn = fn almost everywhere
for each n ∈ N, which implies that there is some µ-null set N such that for each
x ∈ Ω\N , gn(x) = fn(x) for all n ∈ N, i.e. sup

n
fn = sup

n
gn almost everywhere.

Thus, [sup
n
fn] = [sup

n
gn].
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(b) α) [sup
n
fn] is an upper-bound of {[fn] : n ∈ N} (fn(x) ≤ sup

n
fn(x) for each

x ∈ Ω and each n ∈ N, i.e. fn ≤ sup
n
fn even everywhere).

β) Let [fn] ≤ [h] for each n ∈ N. Then fn ≤ h almost everywhere for each
n ∈ N which implies that there is a µ-null set N such that for each x ∈ Ω\N ,
fn(x) ≤ h(x) for all n ∈ N. Thus, sup

n
fn ≤ h almost everywhere, i.e.

[sup
n
fn] ≤ [h].

2. is proved analogously.

3. The σ- distributivity of (X,≤) follows from the rules for equivalence classes and the
fact that the A-measurable functions on Ω form a σ-distributive σ-lattice (note: R̄
is a complete chain and thus completely distributive).

Proof of 3.6. By [2; 9.5], limfn and limfn are A-measurable.

a) Let [fn] = [gn] for each n ∈ N. Then there is a µ-null set N such that for each x ∈ Ω\N
fn(x) = gn(x) for all n ∈ N which implies limfn = limgn almost everywhere, i.e.
[limfn] = [limgn].

b) Applying 3.5 one obtains lim[fn] =
∧
m

∨
{[fn] : n ≥ m} =∧

m
{[

∨
fn] : n ≥ m} = [

∧
m

∨
n≥m

fn] = [limfn]

Thus, 1. is proved. The proof of 2. is similar.

3.7 Definition. A sequence ([fn])n∈N in X is called convergent to [f ] ∈ X (µ-)almost
everywhere iff (fn)n∈N converges to f (µ-)almost everywhere.

3.8 Remarks. 1. The above definition is independent of the choice of the representa-
tives.

2. There is – in general – no pretopology (and thus no topology) on X inducing the
convergence of sequences (µ-)almost everywhere as the following example shows:

3.9 Example. Let Ω = [0, 1] (= closed unit interval), A the σ-algebra of Borel sets, and
λ the Lebesgue measure. Further, for each S ⊂ [0, 1] let χS be the characteristic function
of S and let (fn)n∈N be a sequence of A-measurable real-valued functions on [0, 1] whose
first term is χ[0,1], whose next two terms are χ[0, 1

2
] and χ[ 1

2
,1], whose next three terms

are χ[0, 1
3
], χ[ 1

3
, 2
3
], and χ[ 2

3
,1], whose next four terms are χ[0, 1

4
], χ[ 1

4
, 2
4
], χ[ 2

4
, 3
4
], and χ[ 3

4
,1],

and so on. Obviously, (fn) converges to the zero function 0 in measure (i.e. for each
ε > 0, limµ({x ∈ [0, 1] : |fn(x)| > ε} = 0) but (fn) does not converge pointwise to the
zero function since, for each x ∈ [0, 1], the sequence (fn) contains infinitely many ones
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and infinitely many zeros. Thus, (fn) does not converges to the zero function 0 λ-almost
everywhere. Consequently, ([fn]) does not converge to [0] λ-almost everywhere. If there is
a pretopology on X inducing the convergence of sequences λ-almost everywhere, then there
exists a neighborhood N of [0] such that infinitely many terms of ([fn]) are outside of N .
Hence, there is a subsequence ([fnl

])l∈N of ([fn]) whose terms belong to the complement of
N . Furthermore, (fnl

)l∈N converges to 0 in measure. By [8; 3.13], there is a subsequence of
(fnl

)l∈N which converges to 0 λ-almost everywhere and whose corresponding subsequence of
equivalence classes converges to [0] λ-almost everywhere.Then all but finitely many terms
of this subsequence belong to N in contrast of the fact that all terms of ([fnl

]) are outside
of N . Hence, such a pretopology cannot exist.

3.10 Theorem. Let X be the σ-lattice described under 3.2-3.6. The order convergence
of sequences in X is exactly the convergence almost everywhere. It is induced by a limit
structure on X, in particular by a finest one.

Proof. 1. Let ([fn]) be a sequence in X order converging to [f ] ∈ X. Thus, lim([fn]) =
[lim(fn)] = [f ] and lim([fn]) = [lim(fn)] = [f ], i.e. lim(fn) = f µ-almost everywhere
and lim(fn) = f µ-almost everywhere. Then (fn) converges to f µ-almost everywhere,
i.e. ([fn]) converges to [f ] µ-almost everywhere.

2. Let ([fn]) be a sequence in X converging to [f ] ∈ X µ-almost everywhere. Then
[f ] = [lim(fn)] = lim([fn]) and [f ] = [lim(fn)] = lim([fn]), i.e. ([fn]) order converges
to [f ] in (X,≤).

3. Since X is σ-distributive there is a limit structure on X inducing the order conver-
gence of sequences (cf. 2.14), in particular a finest one (cf. 2.18).

3.11 Remark. A pair (S, qS) is called a limit space iff X is a set and qS a limit structure
on S. A map f : (S, qS) → (S′, qS′) between limit spaces is said to be continuous iff
(f(F), f(x)) ∈ qS′ for each (F , x) ∈ qS . The category Lim of limit spaces (and continuous
maps) is a topological construct (cf. [17]). In particular, if S is a set, ((Si, qSi))i∈I a
family of limit spaces, and (fi : S → Si)i∈I a family of maps, then qS = {(F , x) ∈
F (S) × S : (fi(F), fi(x)) ∈ qSi for each i ∈ I} is the initial limit structure such that each
fi : (S, qS)→ (Si, qSi) is continuous. This one is needed for the following corollaries.

3.12 Definition. A sequence (f̃n)n∈N in Z = {f̃ : f µ-almost everywhere defined A-
measurable function } is said to converge to f̃ ∈ Z (µ-)almost everywhere iff the sequence
(fn)n∈N convergence to f (µ-)almost everywhere, i.e. iff the set of all points x ∈ Ω, where
all fn(x) are defined and the sequence (fn(x)) converges to f(x), is the complement of a
(µ)-null set.

3.13 Remark. The above definition is independent of the choice of the representatives.
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3.14 Corollary. Let q be a limit structure on X inducing the convergence of sequences
almost everywhere (cf. 2.14 and 2.16). Then the initial limit structure q̃ on Z w.r.t. the
bijective map H : Z → X defined by H(f̃) = [f◦] induces the convergence of sequences in
Z almost everywhere. In particular, H : (Z, q̃)→ (X, q) is an isomorphism (in Lim).

Proof. 1. By definition, (F , f̃) ∈ q̃ iff (H(F), H(f̃)) ∈ q. Thus, a sequence (f̃n) in
Z converges to f̃ ∈ Z w.r.t. q̃ iff ([f◦n]) converges to [f◦] w.r.t. q, i.e. iff (fn)n∈N
converges to f almost everywhere. But this means that (f̃n) converges to f̃ almost
everywhere.

2. H is an isomorphism since that it is a surjective embedding.

3.15 Remark. 3.14 means that the almost everywhere convergence of sequences of almost
everywhere defined A-measurable functions is included in our considerations. If we restrict
our interest to equivalence classes of real-valued A-measurable functions, we obtain the
following corollary, which corresponds to the case described by U. Höhle [11] for Ω = [0, 1],
A = [0, 1] ∩ B, and µ = λ in a different way.

3.16 Corollary. Let X ′ = {f ′ : f : Ω → R A-measurable} where f : Ω → R is called
A-measurable iff it is A-B-measurable and f ′ is the equivalence class of the A-measurable
real-valued function f w.r.t. the equivalence relation ρ on {f : f : Ω → R A-measurable}
defined by fρg iff f = g µ-almost everywhere. If i : R→ R̄ denotes the inclusion map, then
k : X ′ → X defined by k(f ′) = [i ◦ f ] ∈ X for each f ′ ∈ X ′ is well-defined and injective.
Further, let q be a limit structure on X inducing the convergence of sequences almost
everywhere and denote the initial limit structure on X ′ w.r.t. k by q′, then a sequence (f ′n)
in X converges to f ′ ∈ X ′ w.r.t. q′ iff ([i ◦ fn]) converges to [i ◦ f ] w.r.t. q, i.e. iff (fn)
converges to f µ-almost everywhere. In particular, k : (X ′, q′)→ (X, q) is an embedding
(in Lim).
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