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In recent decades, molecular simulation has developed into an industry. Since its beginnings in
the 1950s, the field has grown continuously with the tremendous increase of computational power
but, even more, by the successful efforts of many researchers devoted to finding ways of computing
the properties of aggregates of molecular systems at atomistic resolution. Molecular simulations
developed from basic theoretical techniques (Molecular Dynamics, MD, and Monte Carlo. In the
following we will focus on MD although for many problems the two techniques go arm in arm) to
compute all kinds of properties of condensed phases for the simplest molecular models. For a long
time, these calculations could be done only for simple systems, but computing power and algorithms
began catching up with the theory to enable the application of calculations to large, practically
relevant molecules like proteins, drugs and materials. In 1998 the Nobel Prize in chemistry was
awarded to Walter Kohn and John A. Pople for the development of advanced computational methods
in quantum chemistry while in 2013 it was awarded to Martin Karplus, Michael Levitt and Arieh
Warshel for the development of models for complex chemical systems, so confirming that the field
has reached a “nobility status”. If you ask a professional in the field: “Where is MD heading next?”,
the answer is generally “larger, faster, more complex”: The field seems obsessed with gearing up
the machinery for advancing to more complex, and more relevant molecular systems. This may be
an appropriate target but, as a general answer, it is also a treacherous one. It reveals that MD as a
scientific field has changed scope and purpose. MD started as an auxiliary tool of the theory that
made possible calculations that scientists could not even dream of doing by hand before. It started
as a simple prolongation of the human mind. Then, step by step, the machinery was scaled up and
simulations started to allow realistic insight into the molecular basis of the cosmos and also into
the molecular micro-cosmos itself. These simulations seem to create a virtual reality that scientists
just have to visit in order to find out “what is going on”. Furthermore, today, at the onset of the
era of exascale computing, the dream of inspecting the processes of life on the level of molecular
resolution seems to be coming true. However, there are pitfalls. For example, even in the exascale
era, clock speed and bandwidth will no longer substantially increase. That is, the more complex
molecular systems that come into reach will be larger but the timescale accessible by brute-force MD
simulations will no longer grow. This means that the timescale challenge will not be solved by the next
generation of supercomputers but only by theory. Since the beginning, research regarding algorithms
to overcome the challenges associated to the limitations of the atomistic approach have been at the
heart of the development of the field. However, in recent years, the pace of the phenomenon, specially
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focused on the timescale challenge, has witnessed a dramatic acceleration. Ideas from statistical
physics, rare event simulations, and related fields, generally led by stochastic modelling, have been
utilized for new algorithms like milestoning, interface sampling, Markov state modelling, enhanced
sampling or accelerated MD that allow for obtaining reliable statistics on timescales far beyond the
ones accessible by the longest MD trajectories computable by brute force. At the same time, the gap
between simulation and understanding in molecular dynamics is widening. One reason for this gap is
that massive simulations produce massive data and tools for understanding it have not developed and
are not developing at the same rate as the rate of increase in simulation size. Simultaneously, fields
like machine learning and big data analytics are experiencing explosive growth. The idea of using
the progress in the data sciences for the extraction of information from long MD trajectories is not
new; however, recently, many research groups have taken the lead and developed completely new
techniques, e.g., for data-based identification of reaction coordinates or kinetic fingerprinting, that
are simultaneously based on simulation as well as on experimental (spectroscopic) data. However,
again, theory is needed to provide understanding of what is actually computed and with which
accuracy. In this promising but complex situation, the standard trial and error way in which the
field has progressed in the past, led by chemists and physicists not particularly mathematically
(probabilistically) trained, seems to have reached some kind of saturation and more attention to
the tools of applied mathematics appears to be needed. In particular, if we aim beyond standard
statistical mechanics and equilibrium expectation values at dynamical phenomena. Developing the
right probabilistic framework for the study of dynamical phenomena, such as rare events or transition
pathways of non-equilibrium processes, is a formidable challenge. This part of Statistical Mechanics
is still much less developed and requires more sophisticated tools from Stochastic Processes Theory;
one has to deal with a stochastic process rather than with random variables. As a result, the probability
distributions relevant to dynamical phenomena are more complicated objects in path space, and their
theoretical characterization and efficient computation are in their infancy. However, establishing
what these distributions are and how to use MD or modifications of it as a tool to sample them
efficiently is the right way to go. Given the growing importance of advanced statistical techniques
and stochastic modeling to understand and develop a more solid basis for computational statistical
mechanics and, in particular, MD simulation, we need a novel effort to overcome the traditional way
of approaching this problem. The present Special Issue is a first attempt to collect some of these
new theory-related research efforts in the framework of MD, specially addressing algorithms [1–4],
theoretical methods [5–7] and rigorous mathematical formulations [8,9]. The issue also presents some
further applications [10,11] of molecular dynamics which can be of use while widening the perspective.
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