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We present an efficient method for the simulation of time-resolved photoelectron imaging (TRPEI)
spectra in polyatomic molecules. Our approach combines trajectory-based molecular dynamics that
account for non-adiabatic effects using surface hopping, with an approximate treatment of the pho-
toionization process using Dyson orbitals as initial and Coulomb waves as final electron states.
The method has been implemented in the frame of linear response time-dependent density func-
tional theory. As an illustration, we simulate time- and energy-resolved anisotropy maps for the
furan molecule and compare them with recent experimental data [T. Fuji, Y.-I. Suzuki, T. Horio,
T. Suzuki, R. Mitrić, U. Werner, and V. Bonačić-Koutecký, J. Chem. Phys. 133, 234303 (2010)].
Our method can be generally used for the interpretation of TRPEI experiments allowing to shed light
into the fundamental photochemical processes in complex molecules. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4820238]

I. INTRODUCTION

In polyatomic molecules the dynamics of electrons and
nuclei are often coupled in an intricate way giving rise to
fundamental photochemical processes such as internal con-
version or intersystem crossing.2 These processes govern the
fate of the electronically excited molecules and represent fun-
damental steps involved in photochemical reactions, biolog-
ical processes such as vision,3 stabilization of DNA against
UV-radiation4 or light harvesting and numerous technologi-
cal applications.

A powerful experimental tool for studying non-adiabatic
dynamics in excited states and non-radiative transitions is
time- and angle-resolved photoelectron imaging (TRPEI).5–8

In short, in TRPEI experiments first an ultrafast pump pulse
creates a wave packet on an excited electronic state. Then
the system is allowed to evolve freely, moving on the excited
state potential energy surfaces and undergoing non-radiative
transitions to other states. After some time-delay a probe-
pulse ionizes the molecule and the intensity of the ejected
electrons is measured as a function of the angle and photo-
electron kinetic energy (PKE). By repeating the experiment
with different time delays, the dynamics can be mapped to a
time-sequence of observables. A map of the anisotropy of the
signal reveals ultrafast non-radiative transitions7–11 because
these often cause the electronic character of the wave func-
tion to change abruptly.

The simulation of these non-adiabatic effects still poses
challenges to current theory, since it requires an accurate de-
scription of the electronic structure of the involved molecules,

a)Author to whom correspondence should be addressed. Electronic mail:
roland.mitric@uni-wuerzburg.de

their quantum dynamics, and the electronic continuum to
which the photoelectron is ionized. Previously, nuclear wave
packets have been propagated on globally precalculated po-
tential energy surfaces and femtosecond time-resolved photo-
electron spectra and photoelectron angular distributions have
been simulated using the Lippmann-Schwinger equations to
obtain photoionization matrix elements.12, 13 The same
authors developed a variational principle that allows to cal-
culate the transition dipole moments between bound and
continuum states iteratively on the basis of atomic centered
orbitals. The application of this method to NO2 has shown that
although the contribution from different non-radiative chan-
nels cannot be distinguished in the time-resolved photoelec-
tron spectrum alone, the angular resolved photoelectron dis-
tributions allow to track the wave packet dynamics near the
conical intersections.13 Since the exact wave packet propa-
gation is limited to systems with a small number of nuclear
degrees of freedom, it is highly desirable to develop meth-
ods for the simulation of TRPEI spectra utilizing more ap-
proximate propagation methods which are generally applica-
ble to polyatomic molecules. In this context, previously the
time-resolved photoelectron spectra for several systems have
been calculated in the framework of the ab initio multiple
spawning (AIMS)14, 15 as well as trajectory surface hopping
methods.16, 17

The aim of this paper is to extend the existing methodol-
ogy to efficient simulations of both time-, energy- as well as
angle-resolved photoelectron spectra in polyatomic molecules
in the gas phase allowing for the full interpretation of re-
cent TRPEI experiments.1, 7, 9–11 Our approach combines the
surface hopping non-adiabatic dynamics “on the fly” with
an approximate treatment of photoionization using Fermi’s

0021-9606/2013/139(13)/134104/9/$30.00 © 2013 AIP Publishing LLC139, 134104-1
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golden rule and Dyson orbitals19 calculated along classical
non-adiabatic trajectories.

The paper is structured as follows: In Sec. II we de-
scribe how we model the photoionization process, we give
working equations for computing anisotropies (Sec. II A)
and describe the procedure for calculating Dyson orbitals
(Sec. II B) within linear response time-dependent density
functional theory (TDDFT). Furthermore, we discuss differ-
ent approximations for the scattering states (Sec. II C) repre-
senting the ionized system. In Sec. III we apply the simulation
procedure to furan and explain how anisotropy maps are gen-
erated from Dyson orbitals along non-adiabatic trajectories.
Finally, in Sec. III B we analyze our dynamics simulation and
compare with experimental data on furan.

II. THEORY

A. Theoretical description of photoionization
along non-adiabatic trajectories

Since the photoionization process is much faster than the
motion of the nuclei, we can assume that the nuclear geom-
etry �R(t), representing a configuration along a non-adiabatic
trajectory, remains constant while the electron is ejected. If
the intensity of the ionizing radiation is chosen low enough
to avoid multiple ionization and the probe pulse has Gaussian
shape, the transition probability to the continuum can be ap-
proximately calculated using Fermi’s golden rule.20 In pho-
toionization of a polyatomic molecule, the initial and final
states are multielectron states consisting initially of an elec-
tronically excited molecule with a bound electron that inter-
acts with a photon to give an ion and a free electron:

M∗ + hν −→ M+ + e−. (1)

By noting that the molecule interacts with light through cou-
pling to the dipole operator, which is a single particle opera-
tor, the interaction can be reduced to a single particle process:
The initial state is a single electron in an effective orbital ψD,
called Dyson orbital5, 6, 21, 22 (see Sec. II B below), while the fi-
nal state ψ

(−)
�k is a scattering state of the ionized molecule (see

Sec. II C) that asymptotically has linear momentum �k. The
differential cross section for the photoionization according to
Fermi’s golden rule is given by

dσ

d�
∝ |〈ψ (−)

�k | �E · �r|ψD〉|2. (2)

Notice that field polarization and electron momentum are vec-
tors defined in the laboratory frame, while the Dyson orbital
and the continuum orbital are defined in the molecular frame.
Thus, one frame has to be rotated into the other by a rota-
tion matrix R in order to calculate the above matrix element
(Eq. (2)).

We assume that initially all molecules are isotropically
oriented and reside in the ground state. A linearly polarized
pump pulse preferentially excites those molecules whose tran-
sition dipole moment �d0→I between the ground state and the
state that is resonantly pumped is aligned with the polarization
vector �E. To first order, the transition probability depends on

the cosine of the angle between the two vectors:

T0→I ∝ |〈�I | �E · �r|�0〉|2 ∝ cos2( � ( �E, �d0→I )), (3)

which leads to an excited state population with aligned dipole
moments. During time delays between pump and probe pulse
that are shorter than the rotational period, the molecules can-
not reorient. The probe pulse therefore encounters an aligned
ensemble in the excited state that can be characterized by a
distribution of orientations f (R).

Each molecular orientation corresponds to a rotation
around three Euler angles (α, β, γ ). Molecules with orien-
tation given by the rotation matrix R �d→ẑ = R(α, β, γ ), that
rotates the transition dipole moment �d into the z-axis, will be
selected by the pump pulse. The spherical coordinates of the
transition dipole are related to the Euler angles of the most
likely orientation:

�d = | �d |

⎛
⎜⎜⎝

sin(
) cos(�)

sin(
) sin(�)

cos(
)

⎞
⎟⎟⎠ ⇒

αd = arbitrary

βd = 


γd = π − �

. (4)

As both pump and probe pulse are linearly polarized and par-
allel to the z-axis, the distribution f only depends on the angle
β − 
 (how much does the angle deviate from the perfectly
aligned transition dipole moment). For an ensemble that has
been aligned by pumping with a beam polarized along the
z-axis, the orientations are, therefore, distributed around the
angle 
 = � ( �E, �d0→I ) between the transition dipole moment
and the polarization vector according to

faligned(R) = 3

2
cos2(β(R) − 
). (5)

In order to calculate the photoionization cross section,
averaging over molecular orientations weighted by the distri-
bution given in Eq. (5) needs to be performed:

dσ

d�
∝

∫
d R〈|ψ (−)

R�k | �E · (R−1�r)|ψD〉|2f (R). (6)

The averaged scattering cross section depends only on the
angle θ k between the polarization vector (or the z-axis for
light circularly polarized in the xy-plane) and the electron
momentum and can be characterized for non-chiral molecules
by two quantities, the total scattering cross section σ and the
anisotropy β (ranging between −1.0 and 2.0):

dσ

d�
= σ

4π
[1 + βP2(cos(θk))] , (7)

where P2(x) is the second Legendre polynomial.23 A TRPEI
experiment is fully described by maps of these two parame-
ters in the time and photoelectron kinetic energy domain. For
prealigned molecules the averaged cross section can also de-
pend on higher even powers of cos (θ k) but these are usually
small.

To find analytical expressions for σ and β the dipole in-
teraction with a polarized electric field �Emp

(mp = 0, −1,
1 stands for a linearly, left and right-polarized probe pulse)
and the initial and final states ψD and ψ ( − ) are expanded into
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spherical harmonics with respect to �r and �k:

�Emp
· (R−1�r) = | �E| (1 − 2δ1,mp

)√
4π

3
r

×
∑

m′=−1,0,1

D1
m′,mp

(R−1)Y1,m′ (r̂), (8)

ψD(�r) =
∞∑

lγ =0

lγ∑
mγ =−lγ

ψD
lγ ,mγ

(r)Ylγ ,mγ
(r̂), (9)

ψ (−)(�r, R · �k) =
∞∑

lr=0

lr∑
mr=−lr

∞∑
lk=0

lk∑
mk=−lk

ψ
(−)
lr ,mr ;lk ,mk

(r, k)

×Ylr ,mr
(r̂)Y ∗

lk ,mk
(R · �k). (10)

Now the average in Eq. (6) can be performed in part analyti-
cally using the transformation properties of spherical harmon-
ics under rotations and formulae for averages over Wigner
D-matrices.24 In one of the intermediate steps one has to
integrate products of Wigner D-matrices over Euler angles
weighted with the distribution function to obtain an orienta-
tion factor (OF) that accounts for the orientation distribution:

OF = 1

8π2

∫ 2π

0
dα

∫ π

0
sin(β)dβ

∫ 2π

0
dγf (α, β, γ )

×D
l1∗
0,m1−m2

(α, β, γ )Dl2
mk,mδ−mβ

(α, β, γ ). (11)

The α- and γ -integrals can be performed analytically:

OF[f (α, β, γ ) = f (β)]

= 1

8π2

∫ 2π

0
eimkαdα

∫ 2π

0
ei(mδ−mβ−m1+m2)γ dγ

×
∫ π

0
sin(β)dl1

0,m1−m2
(β)

× d
l2
mk,mδ−mβ

(β)f (β − 
)dβ

= 1

2
δmk,0δmδ−mβ,m1−m2

∫ π

0
sin(β)dl1

0,m1−m2
(β)

× d
l2
mk,mδ−mβ

(β)f (β − 
)dβ. (12)

Here dl
m′,m(β) are the small Wigner-D matrices (see

Eq. (4.5.2) in Ref. 24). The remaining one-dimensional inte-
gral over β can be calculated easily by numerical quadrature.
The orientation averaged photoionization cross section from
an aligned ensemble thus becomes(

dσmp

d�
(θk)

)
aligned

= α

(
k2

2
+ IE

)
k

2∑
l1=0

2l1 + 1

4π

(
1 1 l1

−mp mp 0

)

×
∑

m1=−1,0,1

∑
m2=−1,0,1

(
1 1 l1

−m2 m1 m2 − m1

)

×
∞∑

lβ=0

∞∑
lδ=0

lβ+lδ∑
l2=|lβ−lδ |

×
∫ π

0
sin(β)dl1

0,m1−m2
(β)dl2

0,m1−m2
(β)f (β − 
)dβ

× (2l2 + 1)

(
lβ lδ l2

0 0 0

)

×
lβ∑

mβ=−lβ

lδ∑
mδ=−lδ

(−1)m1+mp+mδ
√

(2lβ + 1)(2lδ + 1)

×
(

lβ lδ l2

−mβ mδ m2 − m1

)

× δmδ−mβ,m1−m2 × Ĩlβ ,mβ ,m1 (k)Ĩ ∗
lδ ,mδ,m2

(k)Pl2 (cos(θk)).

(13)

In this expression σ equals the terms linear in P0 and
β equals the terms linear in P2 divided by σ /4π . The terms
Ĩlβ ,mβ,m1 (k) are defined as

Ĩlβ ,mβ ,m1 (k)

=
√

2

π

{
(−1)m1

1√
3

∫
r3ψD∗

0,0 (r)ψ (−)
1,−m1;lβ ,mβ

(r, k)dr

+
∞∑

lγ =1

lγ∑
mγ =−lγ

(−1)lγ +mγ

[√
lγ

(
lγ − 1 1 lγ

mγ − m1 m1 −mγ

)

×
∫

r3ψD∗
lγ ,mγ

(r)ψ (−)
lγ −1,mγ −m1;lβ ,mβ

(r, k)dr

−√
lγ + 1

(
lγ 1 lγ + 1

−mγ m1 mγ − m1

)

×
∫

r3ψD∗
lγ ,mγ

(r)ψ (−)
lγ +1,mγ −m1;lβ ,mβ

(r, k)dr

]}
. (14)

This expression shows that the cross section involves over-
laps between partial waves of the Dyson orbital with angu-
lar momentum lγ (i.e., ψD∗

lγ ,mγ
) and partial waves of the con-

tinuum state with angular momenta lγ + 1 and lγ − 1 (i.e.,
ψ

(−)
lγ +1,mγ −m1;lβ ,mβ

and ψ
(−)
lγ −1,mγ −m1;lβ ,mβ

).
To check the consistency of our formulae we consider

resonant photoionization from an isotropically oriented en-
semble. For an isotropic distribution of orientations we have
fiso(β) = 1

2 and Eq. (13) reduces to the expressions for the av-
eraged photoelectron angular distribution derived in Ref. 25
or in the appendix of Ref. 26.

B. Dyson orbitals within linear response TDDFT

The Dyson orbital is a single electron wave function de-
fined as the overlap between the neutral state with N electrons
and the cationic state with N−1 electrons

|φD〉 =
√

N〈�N−1|�N 〉, (15)
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where the integration is performed over N-1 electrons so that
the transition dipole integral has the form

〈�k| ⊗ 〈�N−1|
N∑

i=1

�E · �ri |�N 〉 = 〈�k| �E · �r|φD〉. (16)

Since the integration only extends over the coordinates of
N−1 electrons, the Dyson orbital has still a dependence on
one electron coordinate and represents the effective single
particle orbital from which the electron is ionized in the
approximation that the electron does not interact with the
cationic core. It also takes into account the electronic recon-
figuration between the neutral molecule and the ion.

In our case, the Dyson orbitals depend parametrically on
a non-adiabatic nuclear trajectory �R(t) and since the ioniza-
tion takes place on a much shorter time scale than the move-
ment of the nuclei, we calculate the ground- and excited states
of the neutral and ionized molecule at the same geometry.

Although linear response TDDFT operates with the elec-
tron density, wave functions can be assigned to excited states
on the basis of TDDFT linear response eigenvectors.27 The
wave function of the ith excited state is represented as a linear
combination of single excitations from the Kohn-Sham refer-
ence determinant |�N

0 〉 (containing N electrons):

|�N
i 〉 =

∑
o∈occupied
v∈virtual

ci
o,va

†
vao

∣∣�N
0

〉
, (17)

with the weights ci
o,v where o and v stand for occupied and

virtual spin orbitals with the same spin. The Dyson orbital
for the transition from a neutral to a cation state will then
be a linear combination of overlaps between singly excited
determinants with N and with N−1 electrons.

The Kohn-Sham orbitals of the neutral molecule will
in general differ from those of the ionized molecule, so
that one needs rules for the computation of overlaps be-
tween Slater determinants built from different sets of molecu-
lar orbitals. In the following |�N〉 and |�N − 1〉 will denote
Slater determinants built from the neutral set of molecular
orbitals {φ1(x), . . . , φN(x)} and the cationic set {χ1(x), . . . ,
χN − 1(x)}, respectively. A neutral determinant can be written
as

�N (x1, . . . , xN ) = 〈x1, . . . , xN |{φ1, φ2, . . . , φN }〉

=
√

1

N !

∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) . . . φN (x1)

φ1(x2) φ2(x2) . . . φN (x2)

...
...

. . .
...

φ1(xN ) φ2(xN ) . . . φN (xN )

∣∣∣∣∣∣∣∣∣∣∣∣
.

(18)

The determinant can be expanded in the last row to give a sum
over Slater determinants of dimension N−1. Note that the ith
orbital is missing from the ith Slater determinant and that the
minor determinants are functions of the first N−1 electron
positions only:

〈xN |�N 〉 =
√

(N − 1)!

N !

N∑
i=1

(−1)i+1

× |{φ1, . . . , φi−1, φi+1, . . . , φN }〉φi(xN ). (19)

Overlapping with an N−1 electron Slater determinant
yields the Dyson orbital between a neutral and a cationic
Slater determinant:

φD
Slater(x) =

√
N

∫
�N−1(x1, x2, . . . , xN−1)∗�N (x1, x2, . . . , xN−1, x)dx1dx2 . . . dxN−1, (20)

=
N∑

i=1

(−1)i+1〈{χ1, χ2, . . . , χN−1}|{φ1, . . . , φi−1, φi+1, . . . , φN }〉φi(x). (21)

This equation can be written in the symbolic form

∣∣φD
Slater

〉 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈χ1|φ1〉 〈χ1|φ2〉 . . . 〈χ1|φN 〉
〈χ2|φ1〉 〈χ2|φ2〉 . . . 〈χ2|φN 〉

...
...

. . .
...

〈χN−1|φ1〉 〈χN−1|φ2〉 . . . 〈χN−1|φN 〉
|φ1〉 |φ2〉 . . . |φN 〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(22)
which only makes sense, if the determinant is expanded along
the last row, which contains the molecular orbitals of the neu-
tral molecule.

As the nuclear geometry remains fixed during the ioniza-
tion, the same atomic basis set {a1(x), a2(x), . . . , aK(x)} can
be employed to represent the neutral and cationic molecular

orbitals:

|φj 〉 =
K∑

μ=1

CN
μjaμ(x), (23)

|χj 〉 =
K∑

ν=1

CN−1
νj aν(x), (24)

where CN
μj and CN−1

νj are the molecular orbital expansion co-
efficients for the neutral and the ionized molecules, respec-
tively. Denoting the overlap matrix between the atomic or-
bitals by Sνμ = ∫

a∗
ν (x)aμ(x)dx, the overlaps between the

neutral and the cationic molecular orbitals become

〈χi |φj 〉 =
K∑

μ=1

K∑
ν=1

(
CN−1

νi

)∗
CN

μjSνμ. (25)
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If the Kohn-Sham orbitals for the neutral and ionized
molecule do not differ greatly and if, furthermore, the excited
states are dominated by a single electronic configuration, then
the Dyson orbital will just be the molecular orbital that is not
occupied in both the neutral and the ionized molecule. On
the other hand, if electron correlations play a major role, then
the Dyson orbital may deviate from the individual molecular
orbitals. The norm of the Dyson orbital indicates the strength
of the photoionization signal. If the norm is sufficiently low,
the particular transition can be neglected in the analysis.

C. Approximate description of the continuum states

Description of photoionization requires the solution of a
scattering problem, which is computationally very demanding
for molecules with many degrees of freedom. Calculation of
molecular scattering states are still not part of standard quan-
tum chemical methodology. For fixed ground state geometries
the ionization parameters have been calculated by combining
configuration interaction methods for bound states and contin-
uum multiple scattering Xα methods for continuum states.40

Since our aim is the description of dynamical evolution of
photoelectron spectra, we need to calculate scattering states
very often along non-adiabatic nuclear trajectories. For this
purpose we adopt two different alternative approximations in-
troduced in Ref. 22 for the final continuum states: For pho-
todetachment of an electron from an anion one can assume
that the continuum states are free plane waves ei�k·�r , for which
the spherical wave expansion (Eq. (10)) with respect to r̂ and
k̂ reads28

ψ
(−)
lα,mα ;lβ ,mβ

(r, k) = 4π ilα jlα (kr)δlα,lβ δmα,mβ
, (26)

where jn(x) are the spherical Bessel functions of the first
kind.29, 30 If a neutral molecule is ionized, the Coulomb poten-
tial generated by the positive charge of the remaining cation,
acts over a long range. For photoionization from neutral
molecules the continuum states can be better approximated by
the scattering states of the Coulomb potential,31 whose spher-
ical wave decomposition with respect to r̂ and k̂ is32

ψ
(−)
lα,mα ;lβ ,mβ

(r, k) = 4π ilα eiσl

× 1

kr
Flα

(
−1

k
, kr

)
δlα,lβ δmα,mβ

. (27)

Here Fl(η, ρ) is the regular Coulomb function and
σl = arg�(l + 1 − iZ/k) are the Coulomb phase shifts.
While Coulomb waves are the exact scattering states of a
Coulomb potential, for general molecules neither Coulomb
nor Bessel functions represent the correct scattering states.
Asymptotically the scattering states will coincide either
with linear combinations of Bessel functions or Coulomb
waves depending on whether the molecule is neutrally or
positively charged after the removal of one electron. For
molecules, the correct scattering states are as complex as their
bound states. Approximating them by spherically symmetric
scattering states of hydrogen is a very drastic simplification
especially at photoelectron kinetic energies closely above
the ionization threshold. At high photoelectron kinetic
energies the approximations might be more warranted, since

in the Schrödinger equation the molecular potential can be
neglected as compared with the large eigenenergy.

These simple approximations can be improved by orthog-
onalizing the final continuum state with respect to the Dyson
orbital.19 Formally this can be achieved by subtracting from
the final state its projection along the initial state and normal-
izing the result. If the final state with momentum �k is denoted
by |k〉, the orthogonal not yet normalized state becomes

|k̃〉 = |k〉 − 〈ψD|k〉|ψD〉. (28)

Instead of calculating the overlap 〈ψD|k〉 the same results can
be reached by shifting the origin of the coordinate system, so
that the expectation value of the dipole operator in the Dyson
orbital vanishes. Then the transition dipole moments, from
which the cross section is computed, are the same regardless
of whether the orthogonal or the unmodified final states are
used:

〈ψD|�r|k̃〉 = 〈ψD|�r|k〉 − 〈ψD|k〉 〈ψD|�r|ψD〉︸ ︷︷ ︸
0

. (29)

III. TRPEI OF FURAN

A. Computational details

1. Electronic structure of furan

As discussed previously,1 the electronic structure of fu-
ran has been described at the TDDFT level using the hybrid
PBE0 functional33 together with the 6-311++G∗∗ atomic ba-
sis set.34 At the planar equilibrium geometry the spectrum of
furan exhibits a dark first excited state S1 (ε1 = 5.87 eV)
with Rydberg character and a bright second excited state S2

(ε2 = 6.21 eV) with π − π* character (cf. Fig. 1).
The initial ensemble for the dynamics simulations has

been obtained by sampling 189 uncorrelated initial posi-
tions and velocities from a 20 ps ground state trajectory
at 300 K.

Since the experimental pump pulse of 6.2 eV is resonant
with S2, all trajectories started in the electronic state S2. The

FIG. 1. Theoretical absorption spectrum of furan at 300 K. The absorption
for individual excited states is shown in red for S1, green for S2 and blue for
S3. The total absorption spectrum is depicted by the filled magenta curve.
The discrete absorption lines for all initial geometries were convolved with a
Lorentzian of width 0.1 eV and summed. The insets show the orbitals for the
dominant excitations of S1 (left) and S2 (right). At the optimized (PBE0/6-
311++G**) equilibrium geometry S1 is a dark Rydberg state (HOMO
→ LUMO+1 excitation, ε1 = 5.87 eV) while S2 is the bright state (HOMO
→ LUMO excitation, ε2 = 6.21 eV).
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energy spectrum of the pump pulse also overlaps with the Ry-
dberg state S1, but the oscillator strength is much smaller than
for S2. We started additional 10 trajectories on S1 and found
that by neglecting a small initial population on this state we do
not miss any feature in the theoretical anisotropy map. Dur-
ing the simulation the Rydberg state is reached through de-
cay from S2. Since the ground state cannot be ionized by the
experimental probe pulse of 4.8 eV, the photoionization spec-
trum is exclusively due to trajectories on the states S1 and S2.

2. Selection of Dyson orbitals

We selected those Dyson orbitals that are relevant to
the experiment reasoning as follows: With a probe energy of
4.8 eV, molecules in the ground state cannot be ionized. Ion-
ization from the neutral ground state to the cationic ground
state already requires 9 eV at equilibrium geometry and is,
therefore, unlikely to be energetically possible at any other
geometry reached during the simulation. As S1 and S2 can
be ionized to the lowest three cation states D0, D1, and D2,
the Dyson orbitals for the transitions S1, S2 → D0, D1, D2

are needed. Since the ionization energies for the transitions
S1 → D0, S2 → D0, S1 → D1, and S2 → D1 are overesti-
mated at PBE0/6-311++G∗∗ level by ≈1 eV as compared
with EOMCCSD/6-311G∗∗(3df)41, 42 at the equilibrium ge-
ometry, the ionization energies for these channels are shifted
down by 1 eV.

3. Simulation procedure

The non-adiabatic dynamics has been performed in the
frame of TDDFT as described previously.17 The energies and

gradients needed for integrating Newton’s equations of mo-
tion as well as the non-adiabatic couplings needed for deter-
mining the surface hopping probabilities were calculated “on
the fly” in the frame of TDDFT. The time step for the propa-
gation of the nuclear trajectories was 0.1 fs. At each nuclear
time step the electronic Schrödinger equation was integrated
with a time step of 10−6 fs.

The trajectories were propagated for 200 fs which is
enough to observe the ultrafast decay from S2 to S1 and the
slightly slower decay from S1 to the electronic ground state.
The electronic structure of the neutral molecule (N electrons)
and the ionized molecule (N−1 electrons) at the same geom-
etry were calculated at intervals of 1 fs along each trajectory
using TDDFT. Energies and wave functions (linear combi-
nations of single excitation from the Kohn-Sham reference
state) for the 3 lowest excited neutral states and ionized states
were extracted from linear response TDDFT calculations per-
formed with the Turbomole package.35 From the overlap of
the neutral wave function of the current state with the cation
ground state wave functions Dyson orbitals were obtained
along each trajectory (using Eq. (20) to reduce the overlap be-
tween neutral and cation Slater determinants). In order to cal-
culate orientation averaged transition dipole matrix elements
the Dyson orbitals were shifted by their dipole moments
and expanded into spherical harmonics on a Lebedev grid.36

Spherical wave components for Coulomb waves (Eq. (27))
were computed on the same radial grid for a range of pho-
toelectron kinetic energies. For each trajectory i, maps for
σi(PKE, t) and βi(PKE, t) were calculated using the Dyson
orbital at time t as initial state and Coulomb waves for an
electron with momentum k = √

2PKE as final states.
In order to calculate the anisotropy parameter along one

non-adiabatic trajectory we calculated the transition dipole

FIG. 2. Anisotropies (a), energy levels (b), and Dyson orbitals (c) along a typical trajectory. (a) After a fast decay from S2 to S1 the Dyson orbital oscillates
between an extended s-like orbital with high anisotropy (C and E) and a valence orbital with lower anisotropy (B, D, and F). On transition to the ground state
the anisotropy drops drastically. (b) The current state is marked by magenta dots. Non-adiabatic transitions occur after less than 10 fs from S2 to S1 and after
75 fs from S1 to the ground state.
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FIG. 3. Anisotropies at key geometries. Anisotropy parameters depend strongly on the nuclear geometry and the electronic state. (a) The planar equilibrium
geometry shows a high positive anisotropy for S1 over the entire photon energy range typical of an s-type orbital. At the ring puckering conical intersection
(b) both states acquire valence character. Cross sections were averaged isotropically.

moment �d0→I = (dx, dy, dz) between the ground state and the
excited state I in the first time step, i.e., at the time of the
pump pulse. The photoionization cross section was then av-
eraged over molecular orientations with the 3

2 cos2(β − 
)
weight factor, where 
 = arccos( dz

| �d | ).
Finally, the maps of all trajectories were combined.

Each trajectory contributes only along a line where en-
ergy conservation hν = PKE + IE(t) is satisfied (ν is the
frequency of the probe pulse and IE(t) the energy dif-
ference between the current neutral state and the cation
ground state along the trajectory). For points in (PKE, t)-
space that were visited by more than one trajectory, the
averaged anisotropy parameter is obtained as β(PKE, t)
= (

∑
i σi(PKE, t)βi(PKE, t))/(

∑
i σi(PKE, t)).

B. Results and discussion

The electronic excitation to the S2 state leads to an ul-
trafast population decay with the time constants τ (S2 → S1)
≈ 10 fs and τ (S1 → S0) ≈ 50 fs. One typical non-adiabatic
trajectory is shown in Fig. 2.

Whereas the first and second excited states are very close
in energy (see Fig. 2(b)), so that non-adiabatic transitions be-
tween them can happen at any time shortly after the excita-
tion, the relaxation to the ground state occurs later through
different conical intersections.1 One is associated with an out-
of-plane movement of the oxygen. Another relaxation mech-
anism is accompanied by an opening of the ring at the oxy-
gen atom. These geometries were identified in Ref. 37 in the
framework of the MS-CASPT2/6-311G* method. We find in

our TDDFT simulation that the transitions occur close to sim-
ilar geometries.

The change in the character of the Dyson orbital can be
read off directly from the anisotropy parameters, as the nu-
clear geometry changes from planar to ring-puckered (com-
pare Fig. 3(a) with Fig. 3(b)). At planar geometry it is pos-
itive over the entire energy range for ionization from S1, as
expected from an s-orbital. For ionization from S2 it is nega-
tive and has a dip at low PKE, which is a sign of a p- or d-
orbital. At the conical intersection both Dyson orbitals show
the anisotropy profile characteristic of a valence orbital.

Anisotropies do not remain constant in one electronic
state. Vibrations on S1 can cause the Dyson orbital to expand
into a Rydberg-like orbital and to contract again periodically
into a valence orbital, as was found by analyzing the excited
state character previously.1 A plot of the anisotropy parame-
ters along a typical trajectories shows peaks and troughs when
the Dyson orbital cycles between the two shapes (Fig. 2(a)).
The transition to the ground state leads to a fast increase in
the ionization potential and a decrease in the anisotropy pa-
rameter.

In Fig. 4, the simulated photoionization cross section map
is compared with the experimental one. The map was pro-
duced by superimposing the photoionization cross sections
for the included ionization channels S1, S2 → D1, D2 along
189 non-adiabatic trajectories and averaging appropriately for
(PKE, t)-points that are crossed by more than one trajectory.
The (PKE, t) coordinates of individual trajectories are deter-
mined by the condition that the kinetic energy of the photo-
electron and the ionization potential of the channel N → I
have to add up to the photon energy, hν = PKE + IEN→I (t).

FIG. 4. Simulated (a) and experimental1 (b) photoionization cross section maps of furan.
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FIG. 5. Simulated (a) and experimental1 (b) anisotropy maps of furan. The electronic character of the initially pumped state changes from a Rydberg state with
high anisotropy in region A to a valence state with lower anisotropy in region B. In the simulated map the anisotropies along 189 trajectories are superimposed.
Final continuum states of the electron were modelled by Coulomb waves. The same colormap is used for both plots: Although the absolute values differ
(simulated anisotropies are higher by 0.8), the relative changes between components A and B agree (from 0.8 to −0.2 in the experiment and from 1.6 to 0.6 in
the simulation).

The simulated cross section map shows the clearly visible Ry-
dberg state (component A at 1.8 eV) which is separated from
the low-PKE signal. Although the strong signal at low PKE
is missing in the simulated map, the envelope of the signal
agrees with the experiment. The strong signal at low PKE
comes from the rearrangement of the nuclear wave packet
as it interacts with the probe pulse. We could reproduce
it in previous work1 by assuming constant Franck-Condon
factors.

In Fig. 5, simulated and experimental maps of the
anisotropy are shown. Analyzing the anisotropy map by ion-
ization channels reveals that the features at PKE ≈ 1.8 eV
stem from ionization to D0 while the signal at PKE ≈ 0.4 eV
comes from ionization to D1. Overall the simulated anisotropy
map nicely reproduces the most important experimental fea-
tures. Both maps exhibit positive anisotropy values in the
region which is associated with ionization from the Ryd-
berg state to D0. This region is separated by an area of low
anisotropy, which is characteristic for ionization from a va-
lence state, from the low PKE-region below 1 eV, which is
attributed to ionization to D1. The disappearance of the high
anisotropy around 25 fs in the region can be linked to the os-
cillations in the ionization potential due to vibration within
the furan ring. It should be pointed out that the D1-channel is
weak and cannot be seen in the map of the cross section (Fig.
4), but it can be seen in the anisotropy map (Fig. 5), which
is independent of absolute intensities. This demonstrates the
strength of the TRPEI method.

Although our simulation overestimates the absolute
anisotropy values, the separation between the two regions and
the relative changes are reproduced quantitatively correctly.
Notice that the convolution of the simulated anisotropy map
with the experimental probe pulse in the energy and time do-
main could in principle lower these values. However, in order
to perform this convolution values for (PKE, t)-points, which
are not crossed by trajectories, would have to be assigned
arbitrarily.

The main limitations of the method are the use of
Coulomb waves as continuum states and the neglect of
Franck-Condon factors for the ionization transition. While
the Dyson orbital accounts for the correct molecular geome-
try and for rearrangements of the electronic structure in the
ion, the final states are oblivious to both relaxation effects
and the shape of the molecule. In the TRPEI experiment on

furan, the signal at high photoelectron kinetic energy was at-
tributed to photoionization from a Rydberg state. According
to the Cooper-Zare formula38 the anisotropy should be close
to 2, but the experiment shows much lower values around 0.6.
Although the Dyson orbital resembles an s-orbital, the contin-
uum states to which the electron is ionized do not have spher-
ical symmetry. Therefore, Coulomb functions as final states
cannot lead to quantitative predictions for anisotropy parame-
ters. Better agreement with the experiment should be achieved
by using molecular scattering states as final states, but as al-
ready mentioned they are notoriously complicated to calcu-
late. Notice that another source of error might be the Gaus-
sian basis set used to expand the Dyson orbital. Photoelectron
angular distributions have been shown by Oana19 to be sen-
sitive to the diffuse tails of the Dyson orbitals, which cannot
be accurately described by quickly decaying Gaussians. This
note might be particularly relevant to diffuse extended Ryd-
berg states. Our choice of the basis set, which includes diffuse
functions, has been previously shown to reproduce correctly
the energetic position of the Rydberg state as well as main
features of the photoionization signal.1

The second shortcoming is related to the treatment of
the nuclear wave functions and their interaction with the
laser field. The probe pulse can interact with the nuclear
wave packet and redistribute vibrational energy. This effect
could be accounted for with the field-induced surface hop-
ping method.18 The description of the nuclear wave function
could be improved by replacing point-like classical trajecto-
ries by interacting swarms of parametrized wave-packets as in
the ab initio multiple spawning method, which has been used
recently to calculate photoelectron spectra for benzene.39

IV. CONCLUSION AND OUTLOOK

We have presented a method for simulating time-resolved
photoelectron imaging spectra based on trajectory surface
hopping non-adiabatic dynamics. The method is efficient and
generally applicable to complex polyatomic molecules and
can serve for the interpretation of TRPEI experiments pro-
viding valuable insight into the photochemistry and photo-
physics.

Non-adiabatic dynamics is modelled by propagating
a swarm of trajectories that can jump between different
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electronic states. For each delay time along a non-adiabatic
trajectory, photoionization by the probe pulse is treated as an
instantaneous transition from the Dyson orbital between the
current state and the cation ground state to the electronic con-
tinuum, which is approximated by Coulomb waves orthogo-
nalized with respect to the Dyson orbital. Anisotropy param-
eters of the photoelectron angular distribution are obtained
from averaging the transitions dipole moments between the
Dyson orbitals and Coulomb waves over molecular orienta-
tions analytically. By averaging over all trajectories we can
produce time- and energy-resolved maps of the total cross
section σ and the anisotropy β, which can be directly com-
pared to experimental data.

We have applied our method to the furan molecule for
which experimental data are available from our previous
work.1 Our simulations have allowed us to interpret the ex-
perimental TRPEI spectrum by assigning the experimental
features to the underlying dynamics involving valence and
Rydberg excited states.

The interpretation of TRPEI experiments remains chal-
lenging if the underlying dynamics are not accompanied by
clear signatures in the photoelectron kinetic energy spectrum
such as a Rydberg state. Experiments where the changes of
the photoelectron angular distribution are more subtle require
a joint theory of molecular dynamics and photoionization.
Our work represents a step in this direction. Further improve-
ments will include a better description of the electronic con-
tinuum that treats photoionization beyond Fermi’s golden rule
and takes into account the impact of the pump and probe
pulses on the nuclear dynamics. Such a theory could then be
expanded to treat shaped laser pulses that steer coupled nu-
clear and electronic dynamics in a controllable fashion.
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2J. Michl and V. Bonačić-Koutecký, Electronic Aspects of Organic Photo-
chemistry (Wiley, 1990).

3D. Polli, P. Altoe, O. Weingart, K. Spillane, C. Manzoni, D. Brida, G.
Tomasello, G. Orlandi, P. Kukura, R. Mathies, M. Garavelli, and G.
Cerullo, Nature (London) 467, 440 (2010).

4T. Gustavsson, R. Improta, and D. Markovitsi, J. Phys. Chem. Lett. 1, 2025
(2010).

5T. Suzuki, Annu. Rev. Phys. Chem. 57, 555 (2006).
6A. Stolow and J. Underwood, Adv. Chem. Phys. 139, 497 (2008).
7G. Wu, P. Hockett, and A. Stolow, Phys. Chem. Chem. Phys. 13, 18447
(2011).

8T. Suzuki, Int. Rev. Phys. Chem. 31, 265 (2012).
9T. Horio, T. Fuji, Y.-I. Suzuki, and T. Suzuki, J. Am. Chem. Soc. 131, 10392
(2009).

10Y.-I. Suzuki, T. Fuji, T. Horio, and T. Suzuki, J. Chem. Phys. 132, 174302
(2010).

11Y.-I. Suzuki, T. Horio, T. Fuji, and T. Suzuki, J. Chem. Phys. 134, 184313
(2011).

12R. Lucchese, K. Takatsuka, and V. McKoy, Phys. Rep. 131, 147 (1986).
13Y. Arasaki, K. Takatsuka, K. Wang, and V. McKoy, J. Chem. Phys. 132,

124307 (2010).
14H. R. Hudock and T. J. Martinez, ChemPhysChem 9, 2486 (2008).
15H. Tao, T. K. Allison, T. W. Wright, A. M. Stooke, C. Khurmi, J. van

Tilborg, Y. Liu, R. W. Falcone, A. Belkacem, and T. J. Martinez, J. Chem.
Phys. 134, 244306 (2011).
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