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1. Introduction

Nigel Kalton was one of the greatest mathematicians of the last 40 years,
although he did his best to conceal this fact. An outsider wouldn’t recognise
the mathematical giant that he was in this modest person who was always
friendly and good-humoured and who was more than willing to share his
ideas with everyone.

Nigel published more than 260 papers (including several books) not only
in Banach and quasi-Banach space theory, but also in so diverse fields such
as game theory, continued fractions, harmonic analysis, operator semigroups
and convex geometry. Every single of these papers contains a deep contribu-
tion by Nigel, often taking care of the most difficult case that his coauthors
would have to leave open without his help. He had a wide interest in mathe-
matics, and his problem solving abilities were legendary. For instance, once
after a colloquium talk on continued fractions he got hooked on the subject
and redeveloped the theory for himself over one weekend, eventually solving
the problem exposed in the talk.

I met Nigel for the first time at the conference on Banach spaces in Mons
in 1987. It so happened that on the day after the conference we were both
waiting for the same train to Paris, but not for the same coach: he told me
that he always rides the first class, adding, “I’m snobbish.” Of course he
couldn’t be more wrong in his self-assessment! Some years later he solved a
big problem in M -ideal theory (see Section 2), a problem, where we, a group
of fresh Ph.D.s in Berlin, couldn’t get anywhere. He emailed me a file with
his solution, and this was the beginning of our collaboration, in which more
often than not I felt like a pedestrian next to a racing-car. In June 2010,
after a talk at the conference in Valencia with a somewhat set-theoretical
flavour, I reminded him of the quote from Star Trek, “It’s mathematics, but
not as we know it.” I knew that this would strike his sense of humour; I did
not know that this would be the last time I saw him.

In the next few sections I will try to survey some of Nigel’s contributions
to Banach space theory. I will restrict myself to problems of an isomet-
ric nature, but even this narrower area is still so rich that omissions and
misconceptions will be inevitable. Certainly, the only way to do justice to
Nigel’s genius would be to not only paraphrase the main results, but to ex-
pound all the ideas contained in his papers. I have to leave this to an abler
mathematician.
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In the following, papers by Nigel will be cited in the form [K1] and other
papers in the form [25]. The bibliography will first list Nigel’s cited papers
chronologically, and then the other papers alphabetically.

2. M-ideals

An M -ideal V of a Banach space E is a closed subspace such that the dual
admits an `1-direct decomposition E∗ = V ⊥⊕1W for some closed subspace
W ⊂ E∗. (In other words, V ⊥ is an L-summand of E∗.) The notion of an M -
ideal was introduced by E.M. Alfsen and E.G. Effros [1]; for a detailed study
one may consult [10]. Of course, c0 is an M -ideal in `∞, and Dixmier proved
back in 1951 that K(H), the space of compact operators on a Hilbert space
H, is an M -ideal in L(H), the space of bounded operators. By the end of the
1980s more examples of Banach spaces X for which K(X) is an M -ideal in
L(X) were known; basically, these examples were `p-sums (p > 1) or c0-sums
of finite-dimensional spaces and certain of their subspaces and quotients. On
the other hand, several necessary conditions were known: X has to be an
M -embedded space (i.e., X is an M -ideal when canonically embedded into
X∗∗), which implies for example that X∗ has the RNP, and X must have
the metric compact approximation property; this was proved by P. Harmand
and Å. Lima [9]. For subspaces of X ⊂ `p the converse was proved by C.-
M. Cho and W.B. Johnson [4]: the metric compact approximation property
is sufficient for K(X) to be an M -ideal in L(X). (Later Nigel obtained this
in complete generality, see Corollary 2.2.)

Let us recall what this approximation property means. A Banach space
X has the metric compact approximation property if there is a net of com-
pact operators Ki: X → X of norm ≤ 1 that converges pointwise to the
identity: Kix → x for all x ∈ X. Actually, an even stronger approxima-
tion property holds if K(X) is an M -ideal in L(X): one can achieve that
lim sup ‖Id−2Ki‖ ≤ 1 and both Ki → Id and K∗i → Id pointwise (shrinking
unconditional metric compact approximation property). Here the shrinking
bit derives from the fact that also K∗i x

∗ → x∗ for all x∗, like for the projec-
tions associated with a shrinking basis, and the unconditionality is hidden
in the norm condition lim sup ‖Id−2Ki‖ ≤ 1; see the beginning of Section 4.

Although the M -ideal problem for K(X) was intensively studied in the
1980s, there were no conditions on X known that were necessary and suffi-
cient for K(X) to be an M -ideal in L(X); the best result by then was given
by W. Werner [36]: K(X) is an M -ideal in L(X) if and only if X has the
metric compact approximation property by means of a net (Ki) satisfying

lim sup ‖SKi + T (Id−Ki)‖ ≤ max{‖S‖, ‖T‖} ∀S, T ∈ L(X).

This was a big achievement, but still the condition is so complicated that
one cannot check easily that it is fulfilled for X = `2.

This was the moment when Nigel got interested in the problem, probably
after some eventually successful bugging by Gilles Godefroy. (It should be
added that in the 1980s people working on M -ideals of compact operators
often used techniques from Nigel’s much quoted paper [K1].1) In his paper

1It got quoted 47 times according to the Mathematical Reviews database; but Nigel
once told me that it was accepted for publication only at the third attempt.
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[K6] he offered an entirely new approach based on what he called prop-
erty (M) and property (M∗). Here are the definitions. A Banach space X
has property (M) if whenever (xi) is a bounded weakly null net and x, y ∈ X
satisfy ‖x‖ = ‖y‖, then

lim sup ‖xi + x‖ = lim sup ‖xi + y‖, (1)

and X has property (M∗) if whenever (x∗i ) is a bounded weak∗ null net and
x∗, y∗ ∈ X∗ satisfy ‖x∗‖ = ‖y∗‖, then

lim sup ‖x∗i + x∗‖ = lim sup ‖x∗i + y∗‖. (2)

These notions can be recast in the language of types on Banach spaces; see
Section 6 below.

It is easy to see that (M∗) implies (M); for the converse see the remarks
following Theorem 2.3.

Nigel’s theorem is as follows.

Theorem 2.1. The following assertions about a Banach space X are equiv-
alent:

(i) K(X) is an M -ideal in L(X).
(ii) X has property (M), does not contain a copy of `1 and has the

unconditional metric compact approximation property, i.e., there
is a net of compact operators satisfying Kix → x for all x and
lim sup ‖Id− 2Ki‖ ≤ 1.

(iii) X has property (M∗) and has the unconditional metric compact ap-
proximation property.

Actually, in his paper Nigel only deals with the case of separable spaces
and the sequential versions of (M) and (M∗), but the extension to the
general case doesn’t offer any difficulties; it can be found in [10, page 299]
for example. One should remark that the sequential property (M) is trivially
satisfied in Schur spaces (where by definition weakly convergent sequences
are norm convergent), but these are excluded by the requirement that `1
does not embed into X in Theorem 2.1.

Let me point out that it is trivial to verify that the `p-spaces for 1 < p <∞
and in particular Hilbert spaces satisfy Nigel’s conditions; to see that `p has
(M) just note that for `p we have

lim sup ‖x+ xi‖p = ‖x‖p + lim sup ‖xi‖p (3)

so that (1) becomes obvious.
Using property (M) Nigel has been able to solve a number of open prob-

lems in the theory of M -ideals. For example, he proved a general version of
the theorem of Cho and Johnson mentioned above:

Corollary 2.2. If K(X) is an M -ideal in L(X) and E ⊂ X has the compact
metric approximation property, then K(E) is an M -ideal in L(E) as well.

He also showed that Orlicz sequence spaces and more generally modular
sequence spaces can be renormed to have property (M); if in addition such
a space X has a separable dual, then X can be renormed so that K(X)
becomes an M -ideal in L(X). In the other direction, a separable non-atomic
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order continuous Banach lattice can be renormed to have property (M) if
and only if it is lattice isomorphic to L2.

Another interesting corollary is that spaces X with property (M) contain
subspaces isomorphic to `p; more precisely, there exists 1 ≤ p < ∞ so that
`p embeds almost isometrically into X (cf. Section 3 for this concept) or c0
embeds almost isometrically into X. The proof relies on a deep theorem
due to J.-L. Krivine [21]; a particular consequence is the theorem, originally
obtained by J. Lindenstrauss and L. Tzafriri, that an ifinite-dimensional
subspace of an Orlicz sequence space hM contains a copy of some `p or of
c0.

Concerning Lp = Lp[0, 1] it was known by 1990 that K(Lp) is not an
M -ideal in L(Lp) for p 6= 2, and conversely that an M -ideal in L(Lp) is
necessarily a two-sided ideal for 1 < p < ∞; indeed this is so since Lp and
its dual are uniformly convex [5]. But in our joint paper [K10] it was shown
that, for p 6= 1, 2,∞, there are no nontrivial M -ideals in L(Lp) whatsoever
(nontrivial meaning different from {0} and the whole space), and if 1 <
p, q <∞ then K(`p(`nq )) is the only nontrivial M -ideal in L(`p(`nq )). In both
these results we had to assume complex scalars; the proofs use arguments
involving hermitian operators.

In the paper [K14], with coauthors G. Androulakis and C.D. Cazacu, Nigel
takes his construction of spaces with property (M) still further in that he
considers Fenchel-Orlicz spaces [33]. The definition of these spaces is similar
to that of Orlicz sequence spaces, but they are built on a Young function
on Rn rather than R and consist of vector-valued sequences. Now Nigel and
his coauthors proved that Fenchel-Orlicz spaces can be renormed to have
propert (M) and that many interesting Banach spaces have a represention
as a Fenchel-Orlicz space. This is in particular so for the “twisted sums” Zp,
1 < p <∞, from [K3]. These are “extreme” counterexamples to the three-
space problem for `p: Zp is not isomorphic to `p, yet contains a subspace Yp
isomorphic to `p such that Zp/Yp is isomorphic to `p as well. In the language
of homological algebra, Zp is a nontrivial twisted sum of `p with itself, i.e.,
there is a short exact sequence 0 → `p → Zp → `p → 0 that does not split.
Nigel has contributed a lot to twisted sums, but this is another story.

In a subsequent publication [K9] Nigel pursued an idea mentioned at the
end of [K6], namely to decide whether the unconditionality assumption, i.e.,
lim sup ‖Id− 2Ki‖ ≤ 1, in Theorem 2.1 is actually needed. It turns out that
this is not so.

Theorem 2.3. For a separable Banach space X, K(X) is an M -ideal in
L(X) if and only if X has property (M), does not contain a copy of `1 and
has the metric compact approximation property.

The proof of the if-part consists of two steps: first to show that X has
property (M∗) as well, which is much more difficult than the implication
(M∗) ⇒ (M), and then to construct, using property (M∗), from a compact
approximation of the identity satisfying lim sup ‖Kn‖ ≤ 1 another compact
approximation of the identity satisfying lim sup ‖Id − 2Ln‖ ≤ 1. This is
done by a skipped blocking decomposition argument. Meanwhile other and
simpler arguments for the second step have been given by Å. Lima [23],
E. Oja [28] and O. Nygaard and M. Põldvere [26].
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This theorem was proved while I was a visitor at the University of Missouri
in 1993. Let me commit myself to some personal recollections at this stage.
The day I arrived, Nigel asked me what I was working on. One of the
questions had to do with Banach spaces X for which K(X ⊕p X) is an M -
ideal in L(X⊕pX), like X = `p. The conjecture was that such a space should
be similar to `p, more precisely such an X should embed almost isometrically
into an `p-sum of finite-dimesional spaces. In fact, in the paper [34] I had
previously formulated the bold conjecture that all spaces for which K(X) is
an M -ideal in L(X) are stable in the sense of Krivine and Maurey [22] and
that one should be able to deduce from that that K(X ⊕pX) is an M -ideal
in L(X ⊕p X) for some p. The first half was disproved by Nigel in [K6]
whereas he did prove the second part to be correct. Almost on the spot he
suggested an idea how to tackle the problem. Of course, it took me some
time to digest it, and after a week or so I understood what he had in mind.
I then suggested to use an ultrapower argument at some stage of the proof,
upon which Nigel said, “Oh, I missed that point!” – only to come up with
a much better idea that eventually solved the problem. I also pointed out a
relation to work by Bill Johnson and Morry Zippin, and Nigel asked, “Can
they do it without the approximation property?”, which was the case, and
he added, “Then we can do without the approximation property too!” I’ll
describe the outcome in the next section.

3. Almost isometric embeddings

Let us start with some vocabulary. We say that a (separable) Banach
space X has property (mp) if, whenever xn → 0 weakly,

lim sup ‖x+ xn‖p = ‖x‖p + lim sup ‖xn‖p ∀x ∈ X

if p <∞, resp.

lim sup ‖x+ xn‖ = max{‖x‖, lim sup ‖xn‖} ∀x ∈ X

for p = ∞. It is clear that `p has (mp) for p < ∞ (cf. (3) above) and that
c0 has (m∞). If K(X ⊕p X) is an M -ideal, then X has (mp), as proved by
Nigel [K6].

The Johnson-Zippin space Cp is an `p-sum of a sequence of finite-dimen-
sional spaces E1, E2, . . . that are dense in all finite-dimensional spaces with
respect to the Banach-Mazur distance. A Banach space X embeds almost
isometrically into Y if for each ε > 0 there is a subspace Xε ⊂ Y such that
d(X,Xε) ≤ 1 + ε, d(X,Xε) denoting the Banach-Mazur distance. We use a
similar definition for X to be almost isometric to a quotient of Y . Note that
any two versions of Cp (built on different Ek) embed almost isometrically
into each other.

In [K9], the following result is proved.

Theorem 3.1. Suppose X is a separable Banach space not containing `1.
Let 1 < p < ∞. Then X has (mp) if and only if X embeds almost iso-
metrically into Cp. Likewise, X has (m∞) if and only if X embeds almost
isometrically into c0.

The proof uses again a skipped blocking decomposition technique.
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Because of the duality of the property (mp), one obtains the following
corollary.

Corollary 3.2. Let 1 < p <∞. If X ⊂ Cp, then X is almost isometric to a
quotient of Cp, and if X = Cp/Z, then X is almost isometric to a subspace
of Cp.

This is an almost isometric refinement of a result due to Johnson and
Zippin who proved the corresponding isomorphic result [15]. On the other
hand, isomorphic versions of Theorem 3.1 using tree conditions were later
obtained by Nigel for p = ∞ [K19] and E. Odell and Th. Schlumprecht for
p <∞ [27].

In the context of Lp-spaces more can be proved. First of all, if X ⊂ Lp =
Lp[0, 1] has property (M), then it has (mr) for some r; if 1 < p ≤ 2, then
p ≤ r ≤ 2, and if 2 < p <∞, then r = 2 or r = p. We now have [K9]:

Theorem 3.3. Suppose 1 < p < ∞, p 6= 2, and let X ⊂ Lp be infinite-
dimensional. Then the following are equivalent:

(i) BX , the unit ball of X, is compact in L1 (i.e., with respect to the
topology inherited from L1).

(ii) X has property (mp).
(iii) X embeds almost isometrically into `p.

If p > 2, then (i)–(iii) are equivalent to each of the following:
(iv) X is isomorphic to a subspace of `p.
(v) X does not contain a copy of `2.

Our proof was (iii) ⇒ (ii) ⇒ (i) ⇒ (iii) and (iii) ⇒ (iv) ⇒ (v) ⇒ (i) for
p > 2, where (iii) ⇒ (iv) ⇒ (v) is trivial, as is (iii) ⇒ (ii). Originally the
equivalence of (iv) and (v) for p > 2 is due to Bill Johnson and Ted Odell
[12], see also [11].

Concrete examples of subspaces of Lp with (mp) are the Bergman spaces
consisting of all analytic functions on the unit disc D = {z ∈ C: |z| < 1}
for which

∫
D |f(x + iy)|p dx dy < ∞. Likewise, the “little” Bloch space has

(m∞). In [K22], Nigel proved that also the “little” Lipschitz space has
(m∞), thus showing that it is an M -ideal in its bidual, a problem left open
in [3].

Results concerning isometric embeddings of subspaces of Lp into `p were
proved by F. Delbaen, H. Jarchow and A. Pe lczyński [6]; as is often the case
in isometric considerations in Lp, one has to distinguish whether or not p is
an even integer.

In a conversation in 1998, Nigel once suggested to prove a result similar
to Theorem 3.1 for property (M). His idea was to show that such spaces
embed into Fenchel-Orlicz spaces. I am sure that he knew an outline of the
argument, but as far as I know the proof has never been written down.

There is also an isomorphic version of Theorem 3.1 for p = ∞, devised
by Nigel and his coauthors G. Godefroy and G. Lancien [K17]. The main
result of their paper is that the Banach space c0 is determined by its metric,
that is:

Theorem 3.4. If a Banach space X is Lipschitz isomorphic to c0, that is,
if there is a bijective map T : X → c0 with T and T−1 Lipschitz, then X is
linearly isomorphic to c0, that is, T can be chosen linear.
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To prove this, they first show that X embeds isomorphically into c0, for
which an isomorphic version of property (m∞) and of Theorem 3.1 is needed.
To conclude the proof of Theorem 3.4 one has to appeal to known properties
of subspaces of c0. Theorem 3.4 is one of the most remarkable achievements
in the nonlinear theory of Banach spaces.

In their paper [K12], Nigel together with G. Godefroy and D. Li addressed
the problem of extending results like Theorem 3.3 to the case of subspaces
of L1. There are two intrinsic difficulties that do not occur in the case p > 1.
For one thing, the Haar basis is unconditional in Lp for p > 1, but not in
L1, and this was an essential ingredient in the proof of Theorem 3.3. Also,
the L1-topology on the unit ball of a subspace X ⊂ Lp is certainly locally
convex, whereas the Lr-spaces for r < 1 are not locally convex and hence
the Lr-topology on the unit ball of a subspace X ⊂ L1 need not be locally
convex. (Here we enter the world of quasi-Banach spaces, one of Nigel’s
favourite areas.) So in order to be able to study when subspaces of L1

embed into `1, one has to assume some unconditionality.
A separable Banach space has the unconditional metric approximation

property (UMAP for short) if there is a sequence of finite rank operators
such that Fnx → x for all x and ‖Id − 2Fn‖ → 1; the latter obviously
implies that ‖Fn‖ → 1 as well. We have already encountered a variant in
Theorem 2.1; the definition of UMAP is due to Nigel and Pete Casazza [K5].
We shall have more to say on this in Section 4.

In the next theorem, one of the main results from [K12], τm denotes the
topology of convergence in measure, i.e., the topology of the F -space L0.

Theorem 3.5. Let X be a subspace of L1 with the approximation property.
The following statements are equivalent.

(i) X has the UMAP, and BX is relatively compact for the topology τm.
(ii) BX is τm-compact and τm-locally convex.
(iii) For any ε > 0, there exists a weak∗ closed subspace Xε of `1 with

Banach-Mazur distance d(X,Xε) ≤ 1 + ε.

By a result of Rosenthal, BX is τm-relatively compact if and only if X
fulfills a strong quantitative version of the Schur property, called the 1-strong
Schur property.

The paper [K12] also contains a very interesting counterexample as to
possible generalisations of the previous theorem.

Theorem 3.6. There exists a subspace X of L1 with the approximation
property, whose unit ball is τm-compact but not τm-locally convex. In par-
ticular, X fails the UMAP.

The construction of this space would not have been possible without
Nigel’s insight into the nature of Lp-spaces for 0 ≤ p < 1—for most of
us a no-go area—in particular the strange world of needle points and the
failure of the Krein-Milman theorem there, cf. [30].

Another type of embedding result is contained in Nigel’s work with Alex
Koldobsky [K24]; it concerns subspaces of the quasi-Banach space Lp for
p < 1. It is known that a Banach space X embeds into some Lp, p < 1,
isomorphically if and only if X embeds into all Lr, 0 < r < 1, isomorphically.
(The embedding into Lr for r ≤ p is clear since Lp embeds into those Lr
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isometrically; the issue is the range of r between p and 1.) Nigel proved in
[K4] that embedding into L1 is equivalent to the embeddability of `1(X) into
Lp. As for the corresponding isometric question, A. Koldobsky [20] showed
that there is a finite-dimensional Banach space that embeds isometrically
into L1/2, but not into L1. Using stable random variables, Nigel and Alex
Koldobsky obtain a vast generalisation.

Theorem 3.7. Let 0 < p < 1; then there is an infinite-dimensional Ba-
nach space Ep that embeds isometrically into Lp, but not into any Lr for
p < r ≤ 1.

The space Ep has a representation as `1 ⊕Np R by means of some very
cleverly chosen absolute norm Np on R2, and the embedding of Ep into Lp
is realised by means of a sequence of independent random variables having
a 1-stable (i.e., Cauchy) distribution. In addition to this example Ep, a
second example is constructed that is isomorphic to a Hilbert space, viz.
Fp = `2 ⊕Ñp

`2.

4. Unconditionality

We have already mentioned the notion of unconditional metric approx-
imation property (UMAP) on page 7. The UMAP was introduced in the
paper [K5] by Nigel and Pete Casazza. Let us explain what “unconditional”
refers to here. Following Nigel and Pete one can obtain from an approx-
imating sequence (Fn) with ‖Id − 2Fn‖ → 1, for a given ε > 0, another
approximating sequence (F ′n) such that for An = F ′n − F ′n−1 and all N∥∥∥∥ N∑

n=1

εnAn

∥∥∥∥ ≤ 1 + ε

whenever εn = ±1; this should be compared to the estimate∥∥∥∥ N∑
n=1

εne
∗
n(x)en

∥∥∥∥ ≤ (1 + ε)‖x‖

for (1 + ε)-unconditional bases. Hence the epithet “unconditional.” Re-
placing finite rank operator by compact operators in the approximating
sequence, one arrives at the notion of unconditional metric compact approx-
imation property (UMCAP). Apart form studying these properties, [K5] also
contains the proof of the following stunning result concerning the ordinary
metric approximation property (MAP).

Theorem 4.1. If a separable Banach space has the MAP, then it even
has the commuting MAP, meaning that there are commuting finite rank
operators with ‖Tn‖ ≤ 1 and Tnx→ x for all x.

For reflexive spaces, the same type of conclusion is proved for the UMAP
in [K5] as well, but in a paper by Nigel and G. Godefroy [K13], the result
was proved in full generality.

Theorem 4.2. If a separable Banach space has the UMAP, then it even
has the commuting UMAP.
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The key to the proof is to look at some norm-1 approximating sequence
(Fn) and to study the limiting projection

Px∗∗ = w∗- lim
n→∞

F ∗∗n x∗∗

in the bidual and to prove that its range is weak∗ closed. The paper [K13]
also contains an embedding result that is similar in spirit to Theorem 3.1
and Theorem 3.3:

Theorem 4.3. A Banach space X has the UMAP if and only if, for each
ε > 0, X embeds isometrically as a (1 + ε)-complemented subspace into a
space with a (1 + ε)-unconditional Schauder basis.

Another outgrowth of [K5] is the concept of a u-ideal that is studied in
detail in the influential paper [K7] by Nigel, G. Godefroy and P. Saphar.
Let X ⊂ Y be Banach spaces. X is said to be a u-summand in Y if there
is a projection P from Y onto X with ‖Id − 2P‖ = 1; equivalently, one
may decompose Y = X ⊕ Xs in such a way that ‖x + xs‖ = ‖x − xs‖
whenever x ∈ X, xs ∈ Xs. An easy example of a u-decomposition is the
decomposition of f ∈ C[−1, 1] into its even and odd part. An important
special case is when Y = X∗∗; for example, the bidual of L1 admits such a
decomposition, which is even `1-direct: (L1)∗∗ = L1 ⊕1 (L1)s, the so-called
Yosida-Hewitt decomposition. (In technical terms, L1 is an example of an
L-embedded space; see Chapter IV in [10].) Likewise, X is a u-ideal in
Y if X⊥, its annihilator, is a u-summand in Y ∗. By definition, every M -
ideal is a u-ideal, but also every order ideal in a Banach lattice is a u-ideal.
When working with complex scalars, it is more appropriate to replace the
condition ‖Id−2P‖ = 1 by ‖Id− (1 +λ)P‖ = 1 for all scalars of modulus 1;
correspondingly, one then speaks of h-summands and h-ideals. In these
definitions, u stands for “unconditional” and h for “hermitian.”

The extensive paper [K7] contains a wealth of information concerning
u-ideals and h-ideals. I will mention only a few aspects. First of all, there
are certain similarities to M -ideals, for example, the u-projection is uniquely
determined, and a u-ideal that does not contain a copy of c0 is a u-summand.
On the other hand, if X is a u-ideal in its bidual, then the u-projection need
not be the canonical projection from the decomposition X∗∗∗ = X⊥ ⊕X∗,
as for M -embedded spaces. (An example is X = L1.) Let us say that X is
a strict u-ideal (in its bidual) in this case.

One of the main results in [K7] characterises strict u-ideals by means of
a quantitative version of Pe lczyński’s property (u). To explain this, some
notation is needed. Let x∗∗ ∈ X∗∗ be such that there is a sequence in X
converging to x∗∗ in the weak∗ topology of X∗∗. Define

κu(x∗∗) = inf
{

sup
n

∥∥∥ n∑
k=1

εkxk

∥∥∥: εk = ±1, xk ∈ X, x∗∗ = w∗-
∞∑
k=1

xk

}
and let κu(X) be the smallest constant such that κu(x∗∗) ≤ C‖x∗∗‖ for all
x∗∗ in the sequential closure of X in (X∗∗, w∗). κh is defined in the same
way, replacing εk = ±1 with |εk| = 1, εk ∈ C. The Banach space X has
property (u) if κu(X) <∞.
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Theorem 4.4. Suppose X does not contain a copy of `1. Then X is a strict
u-ideal in X∗∗ if and only if κu(X) = 1.

As for spaces of operators, Nigel and his collaborators obtain the following
results.

Theorem 4.5. Let X be a separable reflexive Banach space. Then X has
the UMCAP if and only if K(X) is a u-ideal in L(X).

Generally, the results for h-ideals are more satisfactory and precise, since
one can apply the powerful machinery of hermitian operators; for example
(the notion of complex UMCAP should be self-explanatory):

Theorem 4.6. Let X be a complex Banach space with a separable dual.
Then X has the complex UMCAP if and only if K(X) is an h-ideal in L(X)
and X is an h-ideal in X∗∗.

Theorem 4.7. Let X be a separable complex Banach space with the MCAP.
Then K(X) is an h-ideal in its bidual K(X)∗∗ if and only if X is an M -ideal
in X∗∗ and has the complex UMCAP.

In their paper [K30] (with S.R. Cowell) Nigel takes up the question of
embedding into a space with an unconditional basis, as in Theorem 4.3, but
without the assumption of the approximation property. Such a result was
given by W.B. Johnson and B. Zheng [13], but now the aim is to find an
(almost) isometric version. The key to this are the asymptotic uncondition-
ality properties (au) and (au∗). A separable Banach space X has property
(au) if

lim(‖x+ xd‖ − ‖x− xd‖) = 0
whenever (xd) is a bounded weakly null net; in [K19] Nigel referred to this
property as “X is of unconditional type.” If X∗ is separable, it is equivalent
to use weakly null sequences instead, and one obtains a notion that has been
known by the acronym WORTH in the literature. Likewise, X has property
(au∗) (previously “X is of shrinking unconditional type”) if

lim(‖x∗ + x∗n‖ − ‖x∗ − x∗n‖) = 0

whenever (x∗n) is a (necessarily bounded) weak∗ null sequence; due to the
weak∗ metrisability of the unit ball there is no need to consider nets here.
These notions are reminiscent of the properties (M), (M∗) and (mp), and
(au∗) has also been considered by Å. Lima [23] under the name (wM∗).
In general (au∗) implies (au), and the converse is true under additional
hypotheses. The main result of [K30] says the following.

Theorem 4.8. A separable Banach space X has property (au∗) if and only
if X embeds almost isometrically into a space Y with a shrinking 1-uncondi-
tional basis; if X is reflexive, Y can be taken to be reflexive as well.

I will briefly mention other contributions by Nigel on the topic of un-
conditional bases, Schauder decompositions and expansions. In a series of
papers with P. Casazza or F. Albiac and C. Leránoz, Nigel investigated
uniqueness of unconditional bases in Banach or quasi-Banach spaces ([K11],
[K15], [K16], [K20], [K23]). For example, in [K16] it is proved that although
the Tsirelson space T admits a unique unconditional basis, this is not so
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for c0(T ). In the paper [K25] with A. Defant the question of existence of
an unconditional basis in the space P (mE) of m-homogeneous on a Banach
space E is considered. Sean Dineen had conjectured that P (mE) has an
unconditional basis if and only if E is finite-dimensional. This conjecture
is vindicated in [K25]; the proof uses local Banach space theory and some
greedy basis theory.

See also Theorem 5.8 below for unconditional expansions in L1.

5. Operators on L1

Nigel looked at operators on function spaces like L1 or indeed Lp for p ≤ 1
in a vast number of papers; I will report on a small sample of his results.

In [K2] he devised a very useful representation theorem for operators on
Lp, 0 ≤ p ≤ 1, by means of random measures. For p = 1 the result is as
follows.

Theorem 5.1. If T : L1[0, 1] → L1[0, 1] is a bounded linear operator, then
there are measures µx on [0, 1], with x 7→ µx ∈ M [0, 1] weak∗ measurable,
such that

(Tf)(x) =
∫ 1

0
f(s) dµx(s) a.e.

Moreover,

‖T‖ = sup
λ(B)>0

1
λ(B)

∫ 1

0
|µx(B)| dx.

Decomposing the measures µx into their atomic and continuous parts µax
and µcx allows to define the corresponding operators

(T af)(x) =
∫ 1

0
f(s) dµax(s), (T cf)(x) =

∫ 1

0
f(s) dµcx(s).

This permits Nigel to derive the following variant of a result due to P. Enflo
and T.W. Starbird [7].

Theorem 5.2. If T a 6= 0, there is a Borel set B of positive measure such
that T |L1(B) is an into-isomorphism whose range is complemented.

Let me remark that it is still an open problem whether a complemented
infinite-dimensional subspace of L1 is isomorphic to L1 or `1. However, Enflo
and Starbird have proved that Lp is primary for p ≥ 1. This means that
whenever Lp is isomorphic to a direct sum X⊕Y , then X or Y is isomorphic
to Lp. Using his representation theorem, Nigel extends this result to p < 1
and obtains a new proof for p = 1. Thus:

Theorem 5.3. Lp is primary for 0 < p <∞.

The representation theorem 5.1 is also used in the paper [K8] of Nigel and
Beata Randrianantoanina, where they show that a surjective isometry on a
real rearrangement invariant space X on [0, 1] different from L2 has the form
(Tf)(s) = a(s)f(σ(s)); if X is not isomorphic to Lp for any 1 ≤ p ≤ ∞,
then in addition |a| = 1 a.e. and σ is measure preserving.

In [K18], Nigel and his coauthors G. Godefroy and D. Li take up the line
of reasoning based on Theorem 5.1 to obtain results of a more isometric
flavour, for example a quantitative version of a result due to D. Alspach [2].
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Theorem 5.4. There is a function ϕ with limα→0+ ϕ(α) = 1 such that if
T : L1 → L1 satisfies

‖f‖ ≤ ‖Tf‖ ≤ α‖f‖ ∀f ∈ L1,

then there is an isometry J : L1 → L1 such that ‖T − J‖ ≤ ϕ(α).

In other words, there is always an into isometry close to a given into
near-isometry.

The paper also contains an example, of a similar nature as that of Theo-
rem 3.6, to show that this result does not extend to (near-) isometries from
subspaces of L1 to L1.

Specifically, Nigel and his coauthors investigate certain subspaces of L1

that they call small subspaces and operators that they call strong Enflo
operators. The latter means that in the representation of T by the measures
µx one has µx({x}) 6= 0 on a set of positive measure. A subspace X of L1 is
called small if the mapping f 7→ f |A fromX to L1(A) is not surjective for any
A ⊂ [0, 1] of positive measure. In other words, the inclusion BL1(A) ⊂ kBX
is false whenever λ(A) > 0 and k > 0, where we consider L1(A) ⊂ L1[0, 1]
in a natural way. The following short-hand notation is now handy. Say

M ⊂
∼
N

for two subset of L1 if there is a positive constant k such that M ⊂ kN , i.e.,
M is absorbed by N . Hence X is not small if BL1(A) ⊂∼ BX .

It is worthwhile to equip L1 with the topology τm of convergence in mea-
sure, defined above Theorem 3.5. For a subspace X ⊂ L1, let CX be the
closure of BX in L1 with respect to τm. The subspace X is called nicely
placed if BX = CX , that is, if its unit ball is closed for the topology τm. By
a theorem due to A.V. Buhvalov and G.J. Lozanovskĭı [10, page 183], X is
nicely placed if and only if the Yosida-Hewitt projection associated to the
decomposition

(L1)∗∗ = L1 ⊕ (L1)s
maps X⊥⊥ onto X. Hence, X ⊂ L1 is nicely placed if and only if it is
L-embedded, i.e., X∗∗ = X ⊕1Xs. Nicely placed subspaces were introduced
in [8] and studied intensively in many papers, see Chapter IV in [10] for a
survey.

Returning to the paper [K18], let us note the following result.

Theorem 5.5. A subspace X of L1 is small if and only if no strong Enflo
operator satisfies T (BL1) ⊂

∼
CX . Consequently, a nicely placed subspace is

small if and only if no operator from L1 to X is a strong Enflo operator.

Since strong Enflo operators have a nonzero atomic part, they fix a copy of
L1 by Theorem 5.2; therefore a nicely placed subspace of L1 not containing
L1 is small.

Another feature of operators that are not strong Enflo operators is the
equation

‖Id + T‖ = 1 + ‖T‖,
known as the Daugavet equation. By the above, this is fulfilled for all op-
erators valued in a small nicely placed subspace. The Daugavet equation is
one of the technical ingredients in the proof of the main result of [K18]:
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Theorem 5.6. Let X and Y be small subspaces of L1 and suppose that there
is an isomorphism S: L1/X → L1/Y with max{‖S‖, ‖S−1‖} < 1+δ < 1.25.
Then there is an invertible operator U : L1 → L1 such that ‖U‖ ‖U−1‖ ≤
(1 + δ)/(1− 25δ) and dH (U(BX), BY ) ≤ 71δ/(1− 25δ), where dH denotes
the Hausdorff distance.

If X and Y are additionally assumed to be nicely placed, the conclusion
can be strengthened: If ‖S‖ ‖S−1‖ = 1 + α < 2, then U above can be
chosen to map X onto Y and ‖U‖ ‖U−1‖ ≤ (1 + α)/(1 − α). A particular
consequence in this setting is: If L1/X and L1/Y are isometric, then so are
X and Y .

Leaving the field of small subspaces let us turn to rich subspaces. These
were introduced by A. Plichko and M. Popov [29]; later the definition was
slightly modified [18] to accommodate the general setting of Banach spaces
with the Daugavet property introduced in [17]. A Banach space X has the
Daugavet property if the Daugavet equation

‖Id + T‖ = 1 + ‖T‖

holds for all compact operators T : X → X; examples include L1[0, 1], C[0, 1],
L∞[0, 1], the disc algebra, L1/H

1 and many other function spaces, but also
more pathological spaces in the spirit of Theorem 3.6 [19]. A subspace Y of
X is called rich if whenever Y ⊂ Z ⊂ X, then Z has the Daugavet property.
(There are other equivalent reformulations of this, see e.g. the survey [35].)

I did some work on these notions with Vova Kadets and other coauthors.
Upon hearing about some of our results, Nigel immediately contributed the
following theorem, published in our joint paper [K21], showing that rich
subspaces are indeed the largest possible proper subspaces of L1. Recall
that CX is the closure of BX for the topology of convergence in measure.

Theorem 5.7. A subspace X ⊂ L1 is rich if and only if, for each 1-
codimensional subspace H ⊂ X, 1

2BL1 ⊂ CH . On the other hand, if
rBL1 ⊂ CX for some r > 1

2 , then X = L1.

One of the consequences of Nigel’s representation theorem (Theorem 5.1)
is not only the primariness of L1, but more generally that whenever L1 is
isomorpic to an unconditional Schauder decomposition X1⊕X2⊕ · · · , then
one of the Xk is isomorphic to L1. In other words, this result ponders on
possible or impossible representations of Id =

∑
Tn as a pointwise uncon-

ditionally convergent series. In our joint paper [K26] (with V. Kadets) we
investigate this question further. This paper introduces a class C of oper-
ators related to the narrow operators of Plichko and Popov [29] and to the
not sign preserving operators of H.P. Rosenthal [31], but I will skip the exact
definition and will only mention that compact operators belong to this class.
Anyway, here is the result.

Theorem 5.8. Let X be a Banach space and T, Tn: L1 → X be bounded
operators such that Tf =

∑
n Tnf unconditionally for each f ∈ L1. If each

Tn is in C , then T is in C .

Nigel’s student R. Shvydkoy had obtained a similar result for the narrow
operators in the case X = L1 in his Ph.D. thesis.
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Theorem 5.8 can be considered as a generalisation of A. Pe lczyński’s clas-
sical theorem that L1 does not embed into a space with an unconditional
basis. It also contains an unpublished (in fact unwritten, but occasionally
quoted) result due to H.P. Rosenthal [32] as a special case: L1 does not even
sign-embed into a space with an unconditional basis.

6. Extensions of operators into C(K)-spaces

It is a classical fact that whenever E ⊂ X are Banach spaces and T0:
E → L∞[0, 1] is a bounded linear operator, then there exists an extension
T : X → L∞[0, 1] of the same norm; however, there need not exist a bounded
linear extension whatsoever if L∞[0, 1] is replaced by C[0, 1]. By constrast,
Joram Lindenstrauss’s memoir [24] presents a detailed study of those range
spaces for which compact operators are extendible; it turns out, that, for all
pairs E ⊂ X, every compact operator T0: E → F admits, for every ε > 0,
an extension T : X → F of norm ‖T‖ ≤ (1 + ε)‖T0‖ if and only if F ∗ is
isometric to a space L1(Ω,Σ, µ). In particular this is true for F = C[0, 1].

More recently, the problem of extension of bounded operators into C(K)
was reexamined by Bill Johnson and Morry Zippin [16] who obtained (3 + ε)-
extensions for the pair (E, `1) provided E is weak∗ (meaning σ(`1, c0)-)
closed.

In a series of papers that are enormous in wealth of ideas, technical mas-
tery and also in size ([K19], [K27], [K28], [K29]) Nigel has contributed to
this circle of ideas. I will now describe just a few of his findings. Let us say,
following Nigel, that the pair (E,X), with E a subspace of the separable
space X, has the λ-C-extension property if, given a bounded linear opera-
tor T0: E → C(K) into some separable C(K)-space, there is an extension
T : X → C(K) of norm ‖T‖ ≤ λ‖T0‖. (The same problem can be studied
for Lipschitz maps where the Lipschitz constant plays the role of the norm.
This setting is investigated in detail in [K27], [K28].) In this language the
Johnson-Zippin result says that (E, `1) has the (3+ε)-C-extension property
for every ε > 0 if E ⊂ `1 is weak∗ closed.

Now, Nigel improves the (3 + ε)-bound to (1 + ε), and he also obtains
a converse: If (E, `1) has the λ-C-extension property for some λ > 0 and
additionally `1/E has an unconditional FDD, then there is an automorphism
S: `1 → `1 such that S(E) is weak∗ closed. To prove this, he makes a detailed
study of spaces embedding into c0 and presents the tree characterisation of
such spaces mentioned on page 6. He also proves that if (E, `1) has the
(1+ε)-C-extension property for all ε > 0 (the “almost isometric C-extension
property”), then E is weak∗ closed.

In [K29] Nigel goes on to develop an approach to the C-extension prop-
erty that is rooted in the theory of types, introduced by J.L. Krivine and
B. Maurey [22]. Let X be a separable Banach space. A type generated by a
bounded sequence (xn) (or more generally a bounded net) is a function of
the form

σ: X → R, σ(x) = lim
n→∞

‖x+ xn‖

(provided all these limits exist); it is called a weakly null type if xn → 0
weakly. Property (M) can now be rephrased by saying that for a weakly null
type σ, σ(x) depends only on ‖x‖, and X has (mp) whenever each weakly



NIGEL KALTON’S WORK IN ISOMETRICAL BANACH SPACE THEORY 15

null type has the form σ(x) = (‖x‖p + limn ‖xn‖p)1/p. Property (au) is a
symmetry condition, viz. σ(x) = σ(−x). Now X is said to have property (L)
if two weakly null types coincide once they coincide at 0:

σ1(0) = σ2(0) ⇒ σ1(x) = σ2(x) for all x.

Property (L∗) is defined similarly using weak∗ null types in the dual. Clearly,
`p has properties (L) and (L∗) for 1 < p <∞, and so do certain renormings
of Orlicz sequence spaces or Fenchel-Orlicz spaces. These renormings are
similar in spirit to the renormings that yield property (M), but not identical.
Indeed, if X has both properties (M) and (L) and fails to contain `1, then
it has (mp) for some 1 < p ≤ ∞.

With the help of types, Nigel is able to characterise the almost isometric
C-extension property. I won’t give the exact formulation of this result, but
will note only one special case.

Theorem 6.1. If X is a separable Banach space with (M∗) or (L∗) and if
E ⊂ X, then (E,X) has the almost isometric C-extension property.

In particular, this applies to (renormings of) the twisted sums Zp. Nigel
also provides a particular renorming of `2 to show that the existence of
almost isometric extensions need not guarantee isometric extensions.

Moreover, Nigel gives the first examples of spaces with the following uni-
versal property: Whenever E embeds into a separable space X isometrically,
then the pair (E,X) has the almost isometric C-extension property. Indeed,
all weak∗ closed subspaces of `1 have this property as do the spaces of The-
orem 3.6. The proof again uses the theory of types.

An intriguing study of the corresponding isomorphic property is contained
in [K29]. Let us say that the pair (E,X) of separable spaces has the C-
extension property if, given a bounded linear operator T0: E → C(K) into
some separable C(K)-space, there is a bounded linear extension T : X →
C(K); here it is enough to consider K = [0, 1] by Milutin’s theorem. A
Banach space E has the universal C-extension property if (E,X) has the
C-extension property whenever E embeds into X isometrically.

Nigel proves the following result:

Theorem 6.2. A separable Banach space E has the universal C-extension
property if and only if E is C-automorphic.

The latter means that whenever E1 ⊂ C[0, 1] and E2 ⊂ C[0, 1] are iso-
morphic to E, then there is an automorphism S: C[0, 1]→ C[0, 1] mapping
E1 to E2. One can paraphrase this by saying that there is essentially only
one way to embed E into C[0, 1].

It is a classical result due to J. Lindenstrauss and A. Pe lczyński [25]
that c0 is C-automorphic. Theorem 6.2 enables Nigel to show that c0(X)
is C-automorphic as well if X is (for example X = `1), but `p is not C-
automorphic for 1 < p < ∞. Indeed, for a certain superreflexive Z ⊃ `p
with an unconditional basis, the pair (`p, Z) fails the C-extension property.
If, however, Z ⊃ `p is a UMD-space with an unconditional basis, then (`p, Z)
satisfies the C-extension property; in Nigel’s own words, “the appearance of
the UMD-condition is quite mysterious.”
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A technical device to prove these theorems are homogeneous mappings
Φ: X∗ → Z∗ that are weak∗ continuous on bounded sets such that Φ(x∗)
extends x∗ with a bound ‖Φ(x∗)‖ ≤ λ‖x∗‖, for all x∗ ∈ X∗. Such mappings
were introduced by M. Zippin [37] and are called Zippin selectors by Nigel.
Based on this notion, the following technical key result on X = `p or, more
generally, an `p-sum of finite-dimensional spaces, 1 < p < ∞, is proved,
where again types play an essential role:

Theorem 6.3. Let X be as above. For a separable superspace Z ⊃ X, the
pair (X,Z) has the C-extension property if and only if Z can be renormed
so as to contain X isometrically and such that

lim
n→∞

‖z + xn‖ ≥ lim
n→∞

(‖z‖p + ‖xn‖p)1/p

for all z ∈ Z and all weakly null sequences (xn) ⊂ X, provided both limits
exist.

Many of Nigel’s extension theorems have counterparts for Lipschitz func-
tions; for a detailed study see [K27] and [K28].
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