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Abstract This paper presents recent results of a network projectngirat the

modelling and simulation of coupled surface and subsurflaves. In particular,

a discontinuous Galerkin method for the shallow water éqoathas been devel-
oped which includes a special treatment of wetting and dryinrobust solver for

saturated—unsaturated groundwater flow in homogeneousssat hand, which,

by domain decomposition techniques, can be reused as arsabusolver for

flow in heterogeneous soil. Coupling of surface and subserfaocesses is im-
plemented based on a heterogeneous nonlinear Dirichletbien method, using
thedune- gri d- gl ue module in the numerics softwareUuNE.

1 Introduction

Reliable flood prediction and the design of efficient floodtpetion measures are
tasks that engineering companies for water managementtbdsee. Since flood
control basins and water retention walls on rivers havectffen the groundwater
table, sound modelling and simulation of coupled groundt surface water pro-
cesses is required. Challenges include the temporal artihlspeale differences
between ground- and surface water, and the anisotropy afrthendwater domain.

As the surface water model we consider the shallow watertemsa given by
hyperbolic conservation laws for the water heigland the discharge

&h+divg=S,,  aq+div(g?/h+0.5gh) = —ghlb. (1)
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Here,S, denotes a source tergithe gravity constant and the graphof the function
b on the domain2s ¢ R? coincides with the topography. The latter is identical to
the top boundary of the domaid, C RS that represents the porous medium.
Saturated—unsaturated groundwater floijnis modelled by the Richards equa-
tion
né(p)r+divv(p) =0,  v(p)=—Knkr(6(p))U(p—2) )

in case of homogeneous equations of state for the satu@tion the relative per-
meabilitykr. It combines mass conservation on the left with a nonlineasion of
Darcy’s law on the right. The water or capillary pressurechisadenoted by and
zis the downward pointing component & Q. The porosityn € [0, 1] and the
hydraulic conductivityK, > 0 may depend om. The functionsp — 6(p) € [0,1]
and6@ — kr(0) € [0,1] are increasing withkr(1) = 1.

Conditions for coupling Equations (1) and (2) across théaser> are given by
mass conservation and continuity of the pressure

S=v-n and p=h onxX 3

wheren is the outward normal of2, on Z.
All algorithms described in this paper have been implentimethe software
framework DUNE [1].

2 DG method for the shallow water equations

The shallow water equations (1) are a special case of theg@ewolution problem
du(t,) = Zut,)]() in ([0,T)xQs) c (RxRY), de{1,2,3},

with the spatial operato#’[w] = S(w) — divF (w), wherew : Qs — ¥ C R" belongs
to some suitable function spade W is the set of states for a given probleSiw) is
a source term function arfe(w) is the analytical flux function. For a tessellatioh
of Qs we consider the discrete spade:= {¢ € L?(Qs)| o7 €PP(T) VT € %}
and, forg €V, define the discrete operatéf, : Vi — \V{, by

/Qszh[uh]cp - Tezﬁh </TS(uh)¢+/TF(uh)~D¢/5T¢G(uh+,ug,...)~nT) .

nt denotes the outward normal ©f anduﬁ andu, are the values of the function
un on both sides 08T. G(u,v,x) : V xV x R? — RY is a numerical flux function.
The discontinuous Galerkin (DG) method is determined byftinetionsS andF,
the numerical fluwG (we use the Local-Lax—Friedrichs flux) and the spdggeThis
space discretization leads to a system of OFEs(t) = Zhlun(t)], solved with an
explicit Runge—Kutta (RK) method of order- 1, cf. [8]. Since the RK-DG method
is not stable for nonlinear problems where strong shock$inaigpear, a stabilized
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version.%, of 4, is used. We apply the stabilization mechanism of [7], exéehod
a specific criterion to guarantee, in particular, the coretésn of nonnegative water
levels.

For a correct handling of steady states, [8] suggests ahaddincing method
based on a reformulation of the topography source term im#fence law (1) for
the discharge. We rewrite this term a§, = —2ghOb— 3 div(ghb) + 3gbOh, move
the divergence term to the left hand side, and treat the tapbgb as an additional
unknown. Then, under suitable assumptions, it is straogitird to derive well-
balanced schemes for a wide range of standard numericakftoxsolve this new
representation of the shallow water equations with DG.

The wetting—drying treatment is based on the thin waterrlapgroach of [6].
Simplifying the stability condition in [6], we use the “reffiion numerical flux” to
prohibit mass transfer through an element boundary as sowe aetect an empty-
ing of this element. After the positivity of the mean watepttein each element is
guaranteed, the so-calledsitive depth operatdi6] ensures the positivity of water
depth node-wise. See [8] for details of our implementation.

3 Efficient solver for the Richards equation in heterogeneousaoill

Our solution technique for the Richards equation is basagimmhoff transforma-
tion and convex minimization for homogeneous state eqoatmd, in addition, on
domain decomposition methods for layered heterogenedud-so simplicity, we
assumen = Ky, = 1 here. Then, a time discretization of (2) which treats thenma
part implicitly and the convective part (mdirection) explicitly leads to the spatial
problem

6(p) — div(kr(8(p))0p) = f )

with some functionf. By theKirchhoff transformatiork : p+— u:= [J'kr(6(q))dq
and the definitioM (u) := 8(k~%(u)) we can rewrite Equation (4) as

M(u)—Au=f. (5)

We can endow (5) with quite general boundary conditionsuitliclg outflow condi-
tions of Signorini-typeThen, sinceM : R — R is an increasing function, the weak
form of Problem (5) allows an equivalent formulation as aquely solvableconvex
minimization problenon a convex subset ¢11(Q,). Using linear finite elements,
we construct a convergent discretization of (5), which isamiegful also in the
physical variablep. It can be solved efficiently and robustly byonotone multigrid
methodg3].

In layered heterogeneous soils, different functiéris) andkri(-), i =1,...,m,
belonging to the layer®; of Q, occur. Application of different Kirchhoff transfor-
mationsk; in the layers and the assumption of pressure continuity disasenass
conservation across the interfaces between the layersddachl convex minimiza-
tion problems that are coupled Impnlinear transmission conditionk particular,
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for m= 2 we obtain the transmission problem
Mi(u) —Au =f on @, Kyt =k, tup, vi-ni=va-ng onr, (6)

wherel™ := QN Q5 is the interface between the layers ands the outward nor-
mal of Q1 onI". The coupled problem (6) can be solved iteratively by n@din
Dirichlet—-Neumanror Robin methoddg~or analytical and numerical results on such
methods we refer to [4].

4 Coupling strategy: algorithm and modular implementation

We obtain a spatial coupled problem by implicitly discritgzthe time dependent
problem (1)—(3). Typically, the time scale for (1) is coresiably smaller than the
time scale for (2). Therefore, our time discretization gf(B) attributes a certain
numberN of equidistant time steps to (1) within an interval betwega time steps
for (2). Correspondingly, we assigrifM of the source terng;, in (3) from one time
step of (2) equally to the sub time steps of (1).

In order to solve the resulting discretization of (1)—(3g @apply a Dirichlet—
Neumann-type iteration technique. Given solutipggndug of the Richards equa-
tion (RE) and the shallow water equations (SWE) for a time &teysing the water
flux Fs = vg-n as the source term, we solve the SWE at sub time azeptj( <tykiz-
Thus we obtain a Dirichlet valup = h; on X for the RE at time stefx, 1. The so-
lution of the RE aty. 1 yields a water fluxr; = v1 - n. SettingFs = F;, the SWE
are solved again id( < tx.1 and we obtain a new Dirichlet valyz= h, for the RE
at the time stef., 1. We repeat this iteration until the errfh;.1 — hj||e is small
enough.

Implementing the treatment of (1)—(3) is challenging sitiee surface and the
subsurface solvers exist as completely separate codep af tioe DUNE libraries.
Coupling is obtained via the NE moduledune- gr i d- gl ue, which offers ab-
stract interfaces for the geometric coupling of finite elatgrids. Its design fol-
lows the concept of intersections, used in theN® grid interface [1], and it sup-
ports most domain decomposition techniques in use todalydimg overlapping
and nonoverlapping couplings between non-matching gtidsur case, by in-
jection in R? and projection ontd®, the surface water domaif?s C R? is cou-
pled to the top boundary of the porous media domaif,. The correspond-
ing image 7 (Qs) of the two-dimensional (surface) grid a@s and the restric-
tion .7 (Qp|s) of the porous media (subsurface) grid orfcare in general non-
matching. Thedune- gri d- gl ue module efficiently computes all intersections
between elements of (Qs) and.7 (Qp|5). These so-callegemote intersection@]
encapsulate the relationships between elements in theajgmegrids.7 (Qs) and
7 (Qp|5) and constitute a new partitiof () of 2.

For high performance parallel computations, the concefntefsections is ex-
tended and provides parallel communication methods toamgd data associated
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with intersections between elements on remote proceskddqdg parallel index-
sets [5], each remote intersectioh provides information about relations with re-
mote processes. The index-sets provide means of commiani¢atexchange data
between different processes. The communication intesfaoe designed similar to
those of a single DNE grid. The user has to providegat aHandl e objects defining
gat her andscatt er methods to read and write data associated with an intersec-
tion .7.

For the Dirichlet-Neumann coupling, the fluxés are computed at quadrature
points on.# from the solution of (2). Communicating the fluxes, the seuerm
S, can be computed on the surface grid. To evaluate Dirichleesa = h; for the
Richards equation, a representatiorhpbn the boundary of the subsurface grid is
required. On the surface grid the solution is projected ardscontinuous function
hgisc On .7 (Z). The coefficients ohgisc for each intersection” are communicated
andhgisc can be evaluated on the subsurface grid.

5 Benchmark problems and numerical experiments

We close by giving some numerical results obtained by thdiegin of the
Richards and shallow water solver to realistic data (gridi soil parameters) which
was provided by the engineering company WALD+CORBE. Thawgtoy is a real
piece of landscape (size: 252512415 m; 5 mx 5m resolution of the digital ele-
vation model). Measured groundwater levels were availgdde Figure 1). The ob-
served region consists of three separate geologic fornstiith different hydraulic

Fig. 1 Initial groundwater distribution for computation a) and depmsition of the domain in its
3 layers (overlying strata, aquifer and riverbed). Scalmdirection of gravity by a factor of 10.

a)

b)

Fig. 2 Simulations of flood events: a) Richards equation — visuabnatif capillary pressure.
b) Shallow water equations — visualization of discharge wigtting and drying effect.
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conductivities: a hardly permeable top layer (alluvialyglahe aquifer (quaternary
gravel sand) and the riverbed (river gravel). The decontiposis illustrated in Fig-
ure 1. Numerical experiments showed that we need a resolofiabout 40 nodes
in gravity direction in order to capture the infiltration agmtely. Since the geo-
logical layers are very thin (B m—15m) in comparison to width and length of the
domain, we developed a nonlinear line smoother for the gridtimethod to treat
the anisotropy. The numerical experiments simulate floah&vin the considered
domain (Figures 2 and 3), which contains a fictional polder@aretention basin to
be built for flood protection. The results qualitatively tathe behaviour expected
for flood scenarios under the given circumstances.

i

Fig. 3 Flooding of a small subdomain, with reflexion by an artificial obltaHere, we used the
coupling of the solvers for the Richards and the shallow wajaagon. After several flood waves,
a slight infiltration can be observed (processes take placefatatit time scales).
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