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Abstract This paper presents recent results of a network project aiming at the
modelling and simulation of coupled surface and subsurfaceflows. In particular,
a discontinuous Galerkin method for the shallow water equations has been devel-
oped which includes a special treatment of wetting and drying. A robust solver for
saturated–unsaturated groundwater flow in homogeneous soil is at hand, which,
by domain decomposition techniques, can be reused as a subdomain solver for
flow in heterogeneous soil. Coupling of surface and subsurface processes is im-
plemented based on a heterogeneous nonlinear Dirichlet–Neumann method, using
thedune-grid-glue module in the numerics software DUNE.

1 Introduction

Reliable flood prediction and the design of efficient flood protection measures are
tasks that engineering companies for water management haveto face. Since flood
control basins and water retention walls on rivers have effects on the groundwater
table, sound modelling and simulation of coupled ground- and surface water pro-
cesses is required. Challenges include the temporal and spatial scale differences
between ground- and surface water, and the anisotropy of thegroundwater domain.

As the surface water model we consider the shallow water equations, given by
hyperbolic conservation laws for the water heighth and the dischargeq

∂th+divq = Sh , ∂tq+div(q2/h+0.5gh2) = −gh∇b. (1)
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Here,Sh denotes a source term,g the gravity constant and the graphΣ of the function
b on the domainΩs ⊂ R

2 coincides with the topography. The latter is identical to
the top boundary of the domainΩp ⊂ R

3 that represents the porous medium.
Saturated–unsaturated groundwater flow inΩp is modelled by the Richards equa-

tion
nθ(p)t +divv(p) = 0, v(p) = −Khkr(θ(p))∇(p−z) (2)

in case of homogeneous equations of state for the saturationθ and the relative per-
meabilitykr. It combines mass conservation on the left with a nonlinear version of
Darcy’s law on the right. The water or capillary pressure head is denoted byp and
z is the downward pointing component ofx∈ Ωp. The porosityn ∈ [0,1] and the
hydraulic conductivityKh > 0 may depend onx. The functionsp 7→ θ(p) ∈ [0,1]
andθ 7→ kr(θ) ∈ [0,1] are increasing withkr(1) = 1.

Conditions for coupling Equations (1) and (2) across the surfaceΣ are given by
mass conservation and continuity of the pressure

Sh = v ·n and p = h on Σ (3)

wheren is the outward normal ofΩp on Σ .
All algorithms described in this paper have been implemented in the software

framework DUNE [1].

2 DG method for the shallow water equations

The shallow water equations (1) are a special case of the general evolution problem

∂tu(t, ·) = L [u(t, ·)](·) in ([0,T)×Ωs) ⊂ (IR× IRd) , d ∈ {1,2,3} ,

with the spatial operatorL [w] = S(w)−divF(w), wherew : Ωs→Ψ ⊆ IRr belongs
to some suitable function spaceV,Ψ is the set of states for a given problem,S(w) is
a source term function andF(w) is the analytical flux function. For a tessellationTh

of Ωs we consider the discrete spaceVh := {ϕ ∈ L2(Ωs)| ϕ|T ∈ P
p(T) ∀T ∈ Th}

and, forϕ ∈Vh, define the discrete operatorLh : Vh →V ′
h by

∫

Ωs

Lh[uh]ϕ := ∑
T∈Th

(∫

T
S(uh)ϕ +

∫

T
F(uh) ·∇ϕ −

∫

∂T
ϕ G(u+

h ,u−h , . . .) ·nT

)
.

nT denotes the outward normal ofT, andu+
h andu−h are the values of the function

uh on both sides of∂T. G(u,v,x) : V ×V × IRd → IRd is a numerical flux function.
The discontinuous Galerkin (DG) method is determined by thefunctionsSandF ,
the numerical fluxG (we use the Local-Lax–Friedrichs flux) and the spaceVh. This
space discretization leads to a system of ODEsd

dt uh(t) = L̃h[uh(t)], solved with an
explicit Runge–Kutta (RK) method of orderp+1, cf. [8]. Since the RK–DG method
is not stable for nonlinear problems where strong shocks might appear, a stabilized
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versionL̃h of Lh is used. We apply the stabilization mechanism of [7], extended to
a specific criterion to guarantee, in particular, the conservation of nonnegative water
levels.

For a correct handling of steady states, [8] suggests a well-balancing method
based on a reformulation of the topography source term in thebalance law (1) for
the dischargeq. We rewrite this term asSq =−1

2gh∇b− 1
2 div(ghb)+ 1

2gb∇h, move
the divergence term to the left hand side, and treat the topographyb as an additional
unknown. Then, under suitable assumptions, it is straightforward to derive well-
balanced schemes for a wide range of standard numerical fluxes to solve this new
representation of the shallow water equations with DG.

The wetting–drying treatment is based on the thin water layer approach of [6].
Simplifying the stability condition in [6], we use the “reflection numerical flux” to
prohibit mass transfer through an element boundary as soon as we detect an empty-
ing of this element. After the positivity of the mean water depth in each element is
guaranteed, the so-calledpositive depth operator[6] ensures the positivity of water
depth node-wise. See [8] for details of our implementation.

3 Efficient solver for the Richards equation in heterogeneoussoil

Our solution technique for the Richards equation is based onKirchhoff transforma-
tion and convex minimization for homogeneous state equations and, in addition, on
domain decomposition methods for layered heterogeneous soil. For simplicity, we
assumen = Kh = 1 here. Then, a time discretization of (2) which treats the main
part implicitly and the convective part (inz-direction) explicitly leads to the spatial
problem

θ(p)−div(kr(θ(p))∇p) = f (4)

with some functionf . By theKirchhoff transformationκ : p 7→ u :=
∫ p

0 kr(θ(q))dq
and the definitionM(u) := θ(κ−1(u)) we can rewrite Equation (4) as

M(u)−∆u = f . (5)

We can endow (5) with quite general boundary conditions includingoutflow condi-
tions of Signorini-type. Then, sinceM : R → R is an increasing function, the weak
form of Problem (5) allows an equivalent formulation as a uniquely solvableconvex
minimization problemon a convex subset ofH1(Ωp). Using linear finite elements,
we construct a convergent discretization of (5), which is meaningful also in the
physical variablep. It can be solved efficiently and robustly bymonotone multigrid
methods[3].

In layered heterogeneous soils, different functionsθi(·) andkri(·), i = 1, . . . ,m,
belonging to the layersΩi of Ωp occur. Application of different Kirchhoff transfor-
mationsκi in the layers and the assumption of pressure continuity as well as mass
conservation across the interfaces between the layers leadto local convex minimiza-
tion problems that are coupled bynonlinear transmission conditions.In particular,
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for m= 2 we obtain the transmission problem

Mi(ui)−∆ui = f on Ωi , κ−1
1 u1 = κ−1

2 u2 , v1 ·n1 = v2 ·n1 on Γ , (6)

whereΓ := Ω1∩Ω2 is the interface between the layers andn1 is the outward nor-
mal of ∂Ω1 on Γ . The coupled problem (6) can be solved iteratively by nonlinear
Dirichlet–Neumannor Robin methods. For analytical and numerical results on such
methods we refer to [4].

4 Coupling strategy: algorithm and modular implementation

We obtain a spatial coupled problem by implicitly discretizing the time dependent
problem (1)–(3). Typically, the time scale for (1) is considerably smaller than the
time scale for (2). Therefore, our time discretization of (1)–(3) attributes a certain
numberN of equidistant time steps to (1) within an interval between two time steps
for (2). Correspondingly, we assign 1/N of the source termSh in (3) from one time
step of (2) equally to the sub time steps of (1).

In order to solve the resulting discretization of (1)–(3), we apply a Dirichlet–
Neumann-type iteration technique. Given solutionsp0 andu0 of the Richards equa-
tion (RE) and the shallow water equations (SWE) for a time steptk, using the water
flux FΣ = v0 ·n as the source term, we solve the SWE at sub time stepstk < t i

k ≤ tk+1.
Thus we obtain a Dirichlet valuep = h1 on Σ for the RE at time steptk+1. The so-
lution of the RE attk+1 yields a water fluxF1 = v1 ·n. SettingFΣ = F1, the SWE
are solved again int i

k ≤ tk+1 and we obtain a new Dirichlet valuep = h2 for the RE
at the time steptk+1. We repeat this iteration until the error‖h j+1−h j‖∞ is small
enough.

Implementing the treatment of (1)–(3) is challenging sincethe surface and the
subsurface solvers exist as completely separate codes on top of the DUNE libraries.
Coupling is obtained via the DUNE moduledune-grid-glue, which offers ab-
stract interfaces for the geometric coupling of finite element grids. Its design fol-
lows the concept of intersections, used in the DUNE grid interface [1], and it sup-
ports most domain decomposition techniques in use today, including overlapping
and nonoverlapping couplings between non-matching grids.In our case, by in-
jection in R

3 and projection ontoΣ , the surface water domainΩs ⊂ R
2 is cou-

pled to the top boundaryΣ of the porous media domainΩp. The correspond-
ing imageT (Ωs) of the two-dimensional (surface) grid onΩs and the restric-
tion T (Ωp|Σ ) of the porous media (subsurface) grid ontoΣ are in general non-
matching. Thedune-grid-glue module efficiently computes all intersections
between elements ofT (Ωs) andT (Ωp|Σ ). These so-calledremote intersections[2]
encapsulate the relationships between elements in the generating gridsT (Ωs) and
T (Ωp|Σ ) and constitute a new partitionT (Σ) of Σ .

For high performance parallel computations, the concept ofintersections is ex-
tended and provides parallel communication methods to exchange data associated
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with intersections between elements on remote processes [9]. Using parallel index-
sets [5], each remote intersectionI provides information about relations with re-
mote processes. The index-sets provide means of communication to exchange data
between different processes. The communication interfaces are designed similar to
those of a single DUNE grid. The user has to provideDataHandle objects defining
gather andscatter methods to read and write data associated with an intersec-
tion I .

For the Dirichlet–Neumann coupling, the fluxesFΣ are computed at quadrature
points onI from the solution of (2). Communicating the fluxes, the source term
Sh can be computed on the surface grid. To evaluate Dirichlet valuesp = h j for the
Richards equation, a representation ofh j on the boundary of the subsurface grid is
required. On the surface grid the solution is projected ontoa discontinuous function
hdisc on T (Σ). The coefficients ofhdisc for each intersectionI are communicated
andhdisc can be evaluated on the subsurface grid.

5 Benchmark problems and numerical experiments

We close by giving some numerical results obtained by the application of the
Richards and shallow water solver to realistic data (grid and soil parameters) which
was provided by the engineering company WALD+CORBE. The geometry is a real
piece of landscape (size: 2525 m×2415 m; 5 m×5 m resolution of the digital ele-
vation model). Measured groundwater levels were available(see Figure 1). The ob-
served region consists of three separate geologic formations with different hydraulic

Fig. 1 Initial groundwater distribution for computation a) and decomposition of the domain in its
3 layers (overlying strata, aquifer and riverbed). Scaling in direction of gravity by a factor of 10.

a)

b)

Fig. 2 Simulations of flood events: a) Richards equation – visualization of capillary pressure.
b) Shallow water equations – visualization of discharge with wetting and drying effect.
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conductivities: a hardly permeable top layer (alluvial clay), the aquifer (quaternary
gravel sand) and the riverbed (river gravel). The decomposition is illustrated in Fig-
ure 1. Numerical experiments showed that we need a resolution of about 40 nodes
in gravity direction in order to capture the infiltration adequately. Since the geo-
logical layers are very thin (0.5 m–15 m) in comparison to width and length of the
domain, we developed a nonlinear line smoother for the multigrid method to treat
the anisotropy. The numerical experiments simulate flood events in the considered
domain (Figures 2 and 3), which contains a fictional polder and a retention basin to
be built for flood protection. The results qualitatively match the behaviour expected
for flood scenarios under the given circumstances.

Fig. 3 Flooding of a small subdomain, with reflexion by an artificial obstacle. Here, we used the
coupling of the solvers for the Richards and the shallow water equation. After several flood waves,
a slight infiltration can be observed (processes take place at different time scales).
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