
A Language and an Execution Model for the Detection of
Active Situations

Asaf Adi1 adi@il.ibm.com

Information Systems Engineering Area
Faculty of Industrial Engineering and

Management
Technion - Israel Institute of Technology

IBM Research Laboratory in Haifa
ISRAEL

Abstract
This paper presents a thesis about a language and an execution model for the detection of
situations aimed at reducing the complexity of active applications. This work has been
motivated by the observation that in many cases, there is a gap between current tools that
enable to react to a single event (following the ECA: Event – condition – action
paradigm), and the reality, in which a single event may not require any reaction, however
the reaction should be given to patterns over the event history. The concept of situation
presented in this paper, extends the concept of composite event, in its expressive power,
flexibility, and usability. This paper motivates the work, surveys other efforts in this are,
and presents preliminary ideas for both the language and the execution model.

1. Introduction
In recent years, a substantial amount of work has been invested in systems that
either react automatically to actual changes (reactive systems), or to predicted
changes in their environment (proactive systems). These systems perform actions
or signal alerts in response to the occurrence of events that are signaled when
changes in the environment occur (or inferred). Such systems are used in a wide
spectrum of areas and include command and control systems, active databases,
system management tools, customer relationship management systems and e-
commerce applications.
A central issue in reactive and proactive systems is the ability to bridge the gap
between the events that are identified by the system and the situations, the cases
to which the system is required to react. Some examples, from various areas, of
situations that need to be handled are shown in figure 1.
There are a variety of tools that have been constructed to provide work
environment for event driven applications. The work described in this paper has
been motivated by the observation that most of the contemporary tools can react
to the occurrence of a single event. In many applications (including all the
examples shown in figure 1) the customer wishes to react to the occurrence of a
situation, which is a semantic concept in the customer’s domain of discourse. The
syntactic equivalent of a situation is a (possibly complex) pattern over the event
history. Thus, there is a gap between applications’ requirements and the
capabilities of the supporting tools, resulting in excessive work. This thesis is
aimed at developing methodology (a language and execution model) to bridge this

1 Asaf is a Ph.D. candidate at the Technion – Israel Institute of Technology where he performs his
research under the supervision of Dr. Opher Etzion. He is a research staff member in the Active
Management Technology group at the IBM Research Laboratory in Haifa, Israel.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/199413683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

gap and save the resulted excessive work. It should be noted that the “pattern over
the event history” may in some cases be only an approximation of the actual
situation, or express the situation with some level of uncertainty. In this work we
have made the simplified assumption of equivalence between these two terms.

• A client wishes to activate an automatic “buy or sell” program, if
a security that is traded in two stock markets, has a difference of
more than five percent between its values in the markets, such that
the time difference between the reported values is less than five
minutes (“arbitrage”).

• A customer relationship manager wishes to receive an alert, if a
customer’s request was reassigned at least three times.

• A groupware user wishes to start a session when there are ten
members of the group logged in to the groupware server.

• A network manager whishes to receive an alert, if the probability
that the network will be overloaded in the next hour is high.

Figure 1 – Possible situations
Some tools and some research prototypes approach this difficulty by providing a
mechanism for the definition of composite events that are detected when a
predicate over the event history is satisfied. However, previous research was
focused on specific fields such as active database [3] [9] [17] and network
management [14] [16], and resulted in partial solutions that have limited
expressive power and can only be used in these specific domains by systems to
which they were specially designed. Moreover, these prototypes are not able to
fully express some of the basic elements of situation definition. These elements
are described by the following requirements:
1. The events that can participate in situation detection.
2. The context during which situation detection is relevant.
3. The impact of the semantic information that is reported with events on

situation detection (i.e. the semantic conditions that must be satisfied in order
to detection a situation).

4. The decision possibilities about the reuse of event instances that participated
in situation detection. The decision is whether, and on which conditions, the
event instance is “consumed” and cannot be used for the detection of other
situations.

5. The execution order when two or more events occur simultaneously or when
an event has multiple roles in a situation.

6. The reflection of a correct order of events when there is a distinction between
the time in which the event happens in reality and the time it is detected by the
system. Phenomena of long delays in event reporting and events that are
reported not according to their real order are ignored in current systems.
Moreover, these systems assume equality of these two time points and base
the composition upon the order in which events are detected.

This paper presents a thesis that addresses the situation concept, and defines a
language and an execution model for the detection of active situations. In section
2, we review some previous work; in section 3, we outline the proposed solution,
the methodology that is used to accomplish it, and the results achieved so far; and
in section 4 we describe the thesis contribution.

2. Related Work
Contemporary commercial systems do not support composite events. However,
they support triggers as specified in the SQL3 standard [11]. A trigger in SQL3 is
an ECA rule that is activated by a database state transition and has an SQL3
predicate as a condition and a list of SQL3 statements as an action. Commercial
databases that support triggers include DBMS products such as DB2, Oracle,
Sybase and Informix.
Research on complex events for active databases is quite comprehensive and
several research prototypes have been proposed, most of them are basing their
event composition capabilities on some kind of event algebra.
1. ODE [9] is limited to database events only. It detects composite events over an

event history that contains all event occurrences (i.e. ODE can not express
time interval during which situation detection is relevant) and forbids the
reuse of event instances (i.e. events are always consumed). Although semantic
information is reported with events in ODE, this information can only be used
to impose some filtering conditions (masks) and equality conditions
(parameters) on events that participate in an event expression (composite
event).

2. Snoop [3] supports both database event and external events (the semantics of
external events are not described). It has limited expressive capabilities for the
definition of time internals using the operators A, A*, P, and P* in association
with a parameter context. Parameter contexts describe some decision
possibilities for event reuse (consumption). However, Snoops cannot express
all possibilities of event reuse (consumption) policies. Although semantic
information is reported with events in Snoop, this information cannot be used
during event composition (it can be used in the condition part of the ECA
rule).

3. Zimmer’s and Unland’s model [17] support both database event and external
events. It does not define the time interval during which situation detection is
relevant and supports only few, predetermined, event reuse (consumption)
policies. Semantic information is reported only with database event. This
information can only be used to impose equality conditions on composing
events.

Additional research prototypes of complex events for active databases including
EXACT [6], REACH [18], ACOOD [2], ROCK & ROLL [7], Chimera [12], and
REFLEX [13] do not offer new functionality. Other prototypes offer new
functionality by introducing new operators. These include HiPAC [5], NAOS [4],
and SAMOS [8] that deals with the detection of complex events using colored
petri-nets in addition to the introduction of a new operator. Additional prototypes
that are not based on event algebra, but on functional programming and real time
logic include PFL [15] that is based on functional programming; JEM [10], that is
based on the logic RTL (Real Time Logic); and ADL [1].
Event correlation (network management) systems (HP openView Event
Correlation Services [14], SMARTS InCharge [16], VERITAS NerveCenter
[19]) are designed to handle only network events. Their expressive power is
limited to the network management domain and they do not aim at providing a

general (domain independent) solution that supports the fundamentals of a
situation definition we described earlier.
We have shown that none of these prototypes and systems is a comprehensive
solution that satisfies the requirements we have defined. We have shown that
these solutions suffer from a deficiency in their expressional power, inaccuracies
in their semantics and a centric approach that prevent the possibility to use these
solutions in most of the real world applications. We have shown that a
comprehensive solution to these problems is needed.

3. Proposed Solution
The research goal is to define a language and an execution model for the
detection of active situations that satisfies all the requirements detailed in the
introduction.

3.1. Methodology
The methodology consists of the following activities:
• Review several case studies of active systems (e.g. previous work, active

applications) to identify requirements for a situation definition language.
• Define the situation language syntactically (XML) and formally (first order

logic).
• Define an execution model (pseudo code algorithms) to enable situation

detection.
• Build a prototype that demonstrates both the language and the execution

model
The activities detailed above aim at identifying the gap between contemporary
solution and the requirements, suggesting a language that bridge the identified
gap, suggest an efficient execution model that implements the language, and
demonstrated both the language and the execution model by building a prototype.

3.2. Results achieved so far

3.2.1. Case study – reactive distributed traffic control system
A traffic control system consists of control units that are placed in every junction.
A control unit is responsible for the operation of traffic lights in a junction. It
receives events from sensors that detect vehicles and pedestrians, traffic light
buttons, other neighbor control units and external sources such as citizens
reporting about traffic load. The control units detect situations in which the traffic
lights should change, or the traffic load in the junction is too high.
The control unit that is responsible for the junction is described in figure 2. It
receives events from nine sensors: four pedestrian sensors, three vehicle sensors
and two traffic-light buttons for pedestrians. A pedestrian sensor reports an event
to the control unit for every pedestrian that waits for the light to change. It also
reports an event for every pedestrian that stops waiting. A vehicle sensor operates
in the same method. Whenever a pedestrian presses a button on a traffic light, an
event is reported to the control unit.

Figure 2 – A junction

3.2.2. Event model
An event is a significant (in some domains) instantaneous (happens in a specific
point in time), atomic (happens completely or not at all) occurrence that is
triggered by a transition between states. It is materialized by an event instance that
contains the necessary information about the event.
An event class describes the common properties of a similar set of event instances
on an abstract level. It defines the type of information that can be associated with
the event through event attributes.

The event model defines the event classes and the their semantic
relationships with other events and entities (e.g. classification of an
event instance to an event class). The event buttonPressed occurs
whenever a pedestrian button is pressed. This event has three
attributes: buttonId of type string, junctionId of type number and
pressingTime of type chronon (indicates a timestamp).
(B1, 1, 08:00:00) is an instance of the event buttonPressed. ButtonId,
which is the first attribute, has the value B1; JunctionId, which is the
second attribute, has the value 1; and pressingTime, which is the last
attribute, has the value 08:00:00. This event instance occurred at eight
o’clock when button B1 in junction 1 was pressed.
The event buttonPressed is a specialization of the event junctionEvent
that is triggered whenever a significant event occurs in the junction.

Figure 3 – Event model

3.2.3. Event group
Event group is a collection of semantically associated event instances (e.g. events
that reports about the same junction belong to the same event group). Event
groups are used to match different event instances that refer to the same entity or
concept. An event group divides the situation detection process to numerous
separate independent detection process (denote partitions); one partition for every
event group.
An event group class defines a set of grouping expressions that semantically
associate event instances with an event group or several event groups according to
specific semantics (examples are: all pedestrians that wait for the same cross light,
all vehicles that are on the same road). The result of a grouping expression over
the information that is associated with an event, denoted group value, describes
the event group.

P2

P4

P1

V2

V1

V3

P3

Button

B2

B1

Crosswalk Road B

Three event groups partition situation that detects vehicle overload in
a group of junctions that are in the same area. These event groups
associated events that report about vehicles at the northern part of the
city (junctions 1 to 5), the southern part of the city (junction 6 to 10)
and the city center (junctions 11 to 15).
The same situation can be used to detect vehicle overload in a single
junction if event groups that associates events that report about
vehicles in a single junction partition it.

Figure 4 – Event group

3.2.4. Lifespan
A lifespan is a temporal interval during which situation detection is relevant. It is
bounded by two events called initiator and terminator. An occurrence of an
initiator event initiates the lifespan and an occurrence of a terminator event
terminates it.
A lifespan class describes the common properties of a similar set of lifespans on
an abstract level. It defines the set of events that can initiate a lifespan, the set of
events that can terminate it, the conditions for the lifespan’s initiation and
termination, and the lifespan’s maximal length.

The situations buttonPressedThreeTimes and lightIsRedFiveMinutes
are relevant, and detected, during a lifespan that is initiated when the
light in crosswalk A becomes red and is terminated when the light
turns green again.
The situation congestionInRoadB is relevant, and detected, during a
lifespan that starts every three minutes and is terminated five minutes
after it starts thus more than one lifespan of this class exist
simultaneously.

Figure 5 – Lifespan

3.2.5. Context
A context is a semantic notion that describes partial knowledge about the world’s
state. It is a combination of one or more partitioning expressions and a predicate.
A partitioning expression explicitly defines a set of states that has common
semantics. Examples are temporal element, area, and semantic connotation. In this
work, we define a context as a combination of a temporal element (lifespan), a
semantic connotation (event group) and a predicate. The temporal element
designates the time in which the context is active if the predicate evaluates to true.
The semantic connotation designates event instances that are relevant in the
context. Note that a single context is associated with (opened for) every
combination of an event group and a lifespan (one to one relationship).
One or more situations can be associated with a context. A situation that is
associated with a context is detected while the context is active. The decision,
whether a situation has occurred, considers only event instances that occur while
the context is active and are relevant in it.

The situations buttonPressedThreeTimes and lightIsRedFiveMinutes
are relevant, and detected, in a context that is consist of
1. A lifespan that is initiated when the light in crosswalk A becomes

red and is terminated when the light turns green again.
2. An event group that associates event instances originated from the

same junction
3. A predicate that checks that an operator did not override the

control unit.

Figure 6 – Context

3.2.6. Event collection
An event collection designates the event instances that are considered for situation
detection, if they occur while the context that is associated with the situation is
active. These event instances, denoted candidates, are partitioned into candidate
lists. A candidate list is a collection of event instances (candidates) that have the
same role in situation detection (e.g. in the situation congestionInRodeB, events
that report about vehicles has one role, and events that report about pedestrians
has other role). An event collection defines these candidate lists: conditions that
events must satisfy in order to participate in a candidate list, condition for
removing event instances from a candidate list, and decision possibilities about
the reuse of event instances that participate in situation detection.

The situation trafficJam is detected if the total number of vehicles in
the junction as detected by the sensors V1, V2, and V3 is over 50 or the
number of vehicles detected by a single sensor is over 30. An event
collection for this situation consists of three candidate lists, one for
every sensor. A candidate list holds events that report on vehicles that
wait in the junction. The event collection defines that:
• Events detected by sensor Vi belong to the ith candidate list

(conditions that events must satisfy in order to participate in a
candidate list).

• Events are removed from a candidate list if the vehicle on which
they reported, stops waiting in the junction (condition for
removing event instances from a candidate list).

• Events that triggered situation detection continue to participate in
situation detection (decision possibilities about the reuse of event
instances that participate in situation detection).

Figure 7 – Event collection

3.2.7. Situation
A situation definition is an event algebra expression over a combination of a
context and event collection. The context determines the lifespan during which the
situation is detected and the situation’s semantic connotation (event group). The
event collection determines the event instances that are considered for situation
detection.
A situation consists of a combination of a situation expression and a triggering
expression. The situation expression determines the conditions for situation
detection, and the event instances that caused it. The triggering expression defines
the event (or events) that is triggered as result of situation detection and its
associated information.

The situation expression itself consists of a combination of an operator and
qualifiers (designate a selection strategy when several candidates of an event that
is in the domain of a situation operator exists), a predicate (applicable for certain
operators), and detection mode. The combination of an operator and qualifiers
designates an event pattern; the predicate designates a condition over the events in
the pattern results in tuples of event instances that could have cause the situation;
and the detection mode determines if a situation can be detected during the
context (immediate) or at the end of it (deferred)
The language supports joining operators (conjunction, disjunction, sequence,
strictSequence, simultaneous, and aggregation), selection operators (first, until,
since, and range), assertion operators (never, sometimes, last, min, max, and
unless), and temporal operators (at, after, and every).

• The situation buttonPressedThreeTimes is detected in the
immediate detection mode by an aggregation operator.

• The situation lightIsRedFiveMinutes is detected in the immediate
detection mode by a temporal operator.

Figure 8 – Situation

3.2.8. Prioritization algorithms
Prioritization algorithms identify cases in which the order of situation detection is
undetermined and defines a mechanism for the definition of a deterministic
detection execution. These cases take place when two events occur
simultaneously or an event has multiple roles in situation.

In a junction with 49 vehicles is unclear if the situation trafficJam
should be detected when two events, one that reports on a new vehicle
that waits in the junction and another that reports on a vehicle that left
the junction, occur simultaneously. Prioritization algorithms should
identify such cases and suggest a solution strategy.

Figure 9 – Prioritization

3.2.9. Synchronization algorithms
Synchronization algorithms designate how to distinct between the time in which
an event happens in realty and the time it is detected by the system and to
overcome the phenomena that result from the gap between these times.
Composition of situations, without applying some methods for synchronization,
may result in the detection of situations that have not occurred in reality or in
missing the detection of situations that occurred in reality.

The situation trafficJam can be detected by mistake, if there are 49
vehicles in the junction, and an event that reports on a new vehicle
that in the junction arrives to the systems before an event that reports
on a vehicle that left the junction, although these event occurs in the
opposite order in reality.

Figure 10 – Synchronization

4. Contribution
The proposed output of this thesis is a powerful situation detection language and
execution model that supports situations than cannot be defined by contemporary
models. The main advantages of this work in comparison with existing models
are:
• A comprehensive event model.
• Context management enables the detection of the same situation in parallel

contexts that is determined by a combination of a temporal element (lifespan),
a semantic connotation (event group) and a predicate.

• Powerful event algebra combined with partitioning, filtering, event expiration
polices, and conditions results in an extensive expressional power of a
situation language. The combination of event algebra operators and other
elements of the langue extends the concept of composite event (that is based
only on event algebra operators) in its expressive power, flexibility and
usability.

• Deterministic order of execution when two or more events occur
simultaneously or when an event has multiple roles in a situation.

• Situation detection is performed with respect to the event occurrence time and
not the time in which the event is detect by the system.

5. References
[1] Behrends-H. "Simulation-based Debugging of Active Databases." Proceedings
of IEEE International Workshop on Research Issues in Data Engineering: Active
Databases Systems. Feb. 1994; Houston, TX, USA. IEEE Comput. Soc. Press,
1994. 172-180.
[2] Berndtsson-M. "ACOOD: an Approach to an Active Object Oriented DBMS"
Master's thesis, Department of Computer Science, University of Skovde, Sweden.
1991.
[3] Chakravarthy-S, and Mishra-D. "Snoop: an expressive event specification
language for active databases." Data and Knowledge Engineering 14.1 (1994): 1-
26.
[4] Collet-C, and Coupaye-T. "Composite events in NAOS." Proceedings of the
7th International Conference on Database and Expert Systems Applications,
DEXA. Sept. 1996; Zurich, Switzerland. Springer Verlag, 1996. 244-253.
[5] Dayal-U, Buchmann-A, and Chakravarthy-U. "The HiPAC Project." Active
Database Systems: Triggers and Rules For Advanced Database Processing
Morgan Kaufmann, 1996. 177-206.
[6] Diaz-O, and Jaime-A. "EXACT: an extensible approach to active object-
oriented databases." VLDB Journal. 6.4 (1997): 282-295.
[7] Dinn-A, Paton-NW, Williams-MH, and Fernandes-AAA. "An Active Rule
Language for ROCK & ROLL." Proceedings of the 14th British National
Conferenc on Databases. July 1996; Edinburgh, UK. Springer Verlag, 1996. 36-
55.
[8] Gatziu-S, and Dittrich-KR. "Events in an active object-oriented database
system." proceedings of the 1st International Workshop on Rules in Database
Systems. Sept. 1993; Edinburgh, UK Springer Verlag, 1994. 23-29.

[9] Gehani-NH, Jagadish-HV, and Shmueli-O. "Composite event specification in
active databases: model and implementation." Proceedings of 18th International
Conference on Very Large Data Bases. Aug. 1992; Vancouver, BC, Canada.
Morgan Kaufmann, 1992. 23-27.
[10] Guangtian-Liu, Mok-AK, and Konana-P. "A unified approach for specifying
timing constraints and composite events in active real-time database systems."
Proceedings of 4th IEEE Real-Time Technology and Applications Symposium.
1998; Denver, CO, USA. IEEE Comput. Soc. Press, 1998. 199-208.
[11] Kulkarni-K, Mattos-NM, and Cochrane-R. "Active Database Features in
SQL3." Active Rules in Database Systems. Springer Verlag, 1999. 197-219.
[12] Meo-R, Psaila-G, and Ceri-S. "Composite Events in Chimera." Proceedings
of 5th Conference on Extended Database Technology (EDBT`96). March 1996;
Avignon, France. Springer Verlag, 1996. 56-78.
[13] Naqvi-W, and Ibrahim-MT. "EECA: An Active Knowledge Model."
Proceedings of 5th International Conference on Database and Expert Systems
Applications. Sept. 1994; Athens, Greece. Springer Verlag, 1994. 380-389.
[14] Sheers-KR. "HP OpenView event correlation services." Hewlett Packard
Journal. 47.5 (1996): 31-42.
[15] Swaup-R, Alexandra-P, and Carol-S. "PFL: An Active Functional DBPL."
Active Rules in Database Systems. Springer Verlag, 1999. 297-308.
[16] Yemini-SA, Kliger-S, Mozes-E, Yemini-Y, and Ohsie-D. "High speed and
robust event correlation." IEEE Communications Magazine. 34.5 (1996): 82-90.
[17] Zimmer-D, and Unland-R. "A General Model for Specification of the
Semantics of Complex Events in Active Database Management Systems." C-LAB
Report. 1998.
[18] Zimmermann-J, and Buchmann-A. "REACH." Active Rules in Database
Systems. Springer Verlag, 1999. 263-277.
[19] “VERITAS NerveCentertm” VERITAS Software.
http://eval.veritas.com/webfiles/docs/ NCOverview.pdf

