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Abstract: Chondrogenic differentiated mesenchymal stromal cells (MSCs) are a promising 

cell source for articular cartilage repair. This study was undertaken to determine the 

effectiveness of two three-dimensional (3D) culture systems for chondrogenic MSC 

differentiation in comparison to primary chondrocytes and to assess the effect of 

Interleukin (IL)-10 and Tumor Necrosis Factor (TNF)α on chondrogenesis by MSCs in  

3D high-density (H-D) culture. MSCs were isolated from femur spongiosa, characterized 

using a set of typical markers and introduced in scaffold-free H-D cultures or non-woven 

polyglycolic acid (PGA) scaffolds for chondrogenic differentiation. H-D cultures were 

stimulated with recombinant IL-10, TNFα, TNFα + IL-10 or remained untreated. Gene and 

protein expression of type II collagen, aggrecan, sox9 and TNFα were examined. MSCs 

expressed typical cell surface markers and revealed multipotency. Chondrogenic 

differentiated cells expressed cartilage-specific markers in both culture systems but to a 

lower extent when compared with articular chondrocytes. Chondrogenesis was more 

pronounced in PGA compared with H-D culture. IL-10 and/or TNFα did not impair the 

chondrogenic differentiation of MSCs. Moreover, in most of the investigated samples, 
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despite not reaching significance level, IL-10 had a stimulatory effect on the type II 

collagen, aggrecan and TNFα expression when compared with the respective controls. 

Keywords: bone-marrow MSC; three-dimensional culture; articular chondrocytes; 

chondrogenesis; IL-10; TNFα 

 

1. Introduction 

Cartilage injury remains still an orthopedic challenge, since mature cartilage has only a limited 

capacity for intrinsic repair. A major restriction for cell-based strategies suitable for improving 

cartilage repair, such as matrix assisted chondrocyte transplantation (MACT), are limited in their 

accessibility of autologous cartilage for chondrocyte isolation and in vitro expansion as well as donor 

site morbidity. The clinical outcomes are still unsatisfying [1,2]. Mesenchymal stromal cells (MSCs) 

are an accessible cell source in the body capable for chondrogenic differentiation with low donor site 

morbidity and hence, could be a promising approach for articular cartilage repair. Osteochondral 

defects are usually covered by MSCs which emigrate from the bone marrow cavities into the defect 

and start chondrogenic differentiation [3]. 

However, effective, pure and permanent chondrogenic differentiation of MSCs still remains  

a challenge [4,5]. 

The role of particular cytokines in chondrogenic MSC differentiation is mostly unclear. Cartilage injury 

can lead to an inflammatory milieu and the development of osteoarthritis (OA) [6]. Pro-inflammatory 

cytokines such as Tumor Necrosis Factor (TNF)α play a crucial role in the pathogenesis of OA [7]. 

Whereas the chondrogenic differentiation of MSCs is inhibited by TNFα and Interleukin (IL)-1β 

involving the NF-κB pathway [8], TNFα is known to induce proliferation and migration of MSCs [9]. 

MSCs can easily be isolated, extensively and rapidly be expanded while maintaining their 

chondrogenic differentiation potential. Therefore, large cell numbers can be obtained for therapeutic 

use, whereby their immunosuppressive effects might be interesting in arthritis therapy [10]. 

MSCs exert their immunomodulatory effects by expressing IL-10 and furthermore enhancing its 

expression within local tissue [11–13]. IL-10 is a typical anti-inflammatory cytokine [14]. Its over-expression 

by MSC has been established as a tool to utilize their immunosuppressive potential, e.g., to suppress acute 

graft-versus-host disease [14,15]. Whether IL-10 is a valuable tool in OA therapy remains unclear. 

It is crucial to develop an effective method of MSC cultivation that allows a pure differentiation 

towards the selected mesenchymal lineage. A challenging approach in chondrogenic differentiation of 

MSCs can be the use of 3D cultures. Most commonly used are the pellet cultures [16,17]. To optimize 

this process, some researchers developed different 3D cultures consisting of a cell aggregate on a 

porous membrane [4,18]. Another interesting approach to achieve chondrogenic differentiation is the 

application of MSCs on polyglycolic acid (PGA). PGA is a resorbable polymer that can already be 

found in clinical use [19,20]. PGA scaffolds may enhance the repair of cartilage defects and are able to 

induce chondrogenic differentiation of MSCs [21,22]. Several mediators such as Transforming Growth 

Factor (TGF)-β1 and -β3 are known to induce effective chondrogenic differentiation of MSCs [18,23–25]. 
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The aim of the present study was to determine the effectiveness of a scaffold-free and a  

scaffold-associated 3D culture system for chondrogenic MSC differentiation in comparison to primary 

chondrocytes and to gain a first insight into the impact of IL-10 and TNFα on chondrogenic 

differentiation of MSCs. 

2. Results 

2.1. Results of Mesenchymal Stromal Cell (MSC) Characterization 

More than 92% of isolated plastic adherent cells from all donors expressed CD29 (β1-integrin), 

CD44 (hyaluronan receptor) and CD90 (thymocyte differentiation antigen 1) and less than 8% 

expressed the leukocyte surface proteins CD3, CD4, CD8, CD14 and the hematopoetic cell marker 

CD34. The CD106 was expressed on 44.13% of all isolated cells (Figure 1). In agreement with the 

flow cytometrical results typical surface marker expression such as CD29, CD44 and CD90 could be 

depicted on the undifferentiated MSCs and localized using immunofluorescence labelling (Figure 2A–I). 

The CD34 expression on the MSCs was weak compared with the endothelial cell line (PAEICKR, 

positive control, Figure 2F2). The endothelial cell line expressed only very weakly CD44 and CD90 

(Figure 2G2,H2). 

Figure 1. Characterization of mesenchymal stromal cells (MSCs) surface marker expression 

(passages 4–6) using flow cytometry. The isolated and adherent MSCs (cultured expanded 

for at least 4 passages) were tested for both, negative (CD3, CD4, CD8, CD14) (n = 5) and 

positive (CD29, CD44, CD90) markers (n = 10) using flow cytometry. The percentage of 

MSCs positive for the respective marker is shown (A); Less than a half of the MSCs were 

positive for the questionable surface marker CD106 (n = 10). The majority of the adherent 

MSCs was CD34 negative (n = 10) and negative for leukocyte surface proteins. The histograms 

of surface marker expression by MSCs of a representative donor are shown (B1–B5). 
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Figure 2. Characterization of MSCs surface marker expression (passages 4–6) using 

fluorescence microscopy. Surface markers such as leukocyte surface proteins CD3 (A); 

CD4 (B); CD8 (C); CD14 (D); cell adhesion protein CD29 (E); endothelial cell marker 

CD34 (F1,F2); hyaluronan receptor CD44 (G1,G2); mesenchymal cell marker CD90 

(H1,H2); and CD106 (I) are depicted by immunofluorescence microscopy (green).  

Cells of the human endothelial cell line PAEICKR were immunolabelled for CD34 (F2), 

CD44 (G2) and CD90 (H2) as a control. Cell nuclei were counterstained using 4',6-diamidino-

2-phenylindole (DAPI, blue). Scale bars = 50 µm. 
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2.2. Multipotency of MSCs 

Undifferentiated MSCs revealed a flattened and multipolar cell shape (Figure 3A). Chondrogenic 

differentiated cells formed 3D cell clusters when cultured in monolayer (not shown) and expressed 

typical cartilage markers such as type II collagen and sulfated glycosaminoglycans in H-D culture and 

PGA scaffold culture after 14 days. In contrast to undifferentiated MSCs (Figure 3A), adipogenically 

differentiated cells revealed multiple fat vacuoles after 21–28 days (Figure 3B–D) which were oil red 

positive (Figure 3D). Osteogenic differentiated cells became granulated and had a mostly bipolar shape 

(Figure 3C,E,G) compared to undifferentiated cells. Compared to adipogenic cells they were (Figure 3F) 

von Kossa positive (Figure 3G). 

2.3. IL-10 and IL-10 Receptor-α Expression 

Undifferentiated MSCs cultivated in monolayer culture for at least 3 passages revealed synthesis of 

IL-10. In addition IL-10 was detectable in the cytoplasm and in various cases in long cellular 

cytoplasmic extensions in cell-cell contact areas. The IL-10 receptor (IL-10R)α chain could also be 

detected using specific antibodies revealing a cytoplasmic distribution (Figure 4A–D). In contrast to 

IL-10Rβ chain which is also a component in other IL-10 family cytokine receptors the α chain is 

specific for IL-10 signaling. 
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Figure 3. Adipogenic and osteogenic differentiated MSCs. Invert microscopical images of 

undifferentiated (A), adipogenic (B,D,F) and osteogenic (C,E,G) differentiated MSCs in 

monolayer culture. The cells were adipogenically and osteogenically differentiated for  

21 days. Adipogenic differentiated cells revealed multiple fat vacuoles (B,D) which were 

red after oil red staining (D, arrows). Osteogenic differentiation of MSCs led to granulated 

elongated cells (C,E,G) which were von Kossa positive (G) and formed clusters of 

extracellular matrix deposits (C,G, arrows). Images of a representative experiment are 

shown. Scale bars = 200 µm. 
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Figure 4. IL-10 and IL-10Rα expression in undifferentiated MSCs. Undifferentiated MSCs 

were cultured for at least 3 passages in monolayer culture and immunolabelled with IL-10 

(A) or IL-10R (C) specific antibodies or respective isotype controls (B,D) and Alexa-488 

coupled secondary antibodies (green). Cell nuclei were counterstained using DAPI (blue). 

A representative experiment of 4 independent tests with cells of different donors is shown. 

Scale bars = 50 µm. 
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The MSCs showed immunoreactivity of STAT3. In some cells of the population a translocation of 

STAT3 in response to the short time treatment with IL-10 was detectable (Figure 5). Cells depicted 

only a faint STAT1 immunoreactivity and very few cells revealed nuclear STAT1 staining in response 

to IL-10 treatment. 

Figure 5. STAT3 and STAT1 expression in undifferentiated human MSCs. Undifferentiated 

MSCs were seeded (third passage) for 24 h on cover slips, serum starved and treated with 

10 ng/mL recombinant IL-10 or remained untreated (control). Subsequently, the cover slips 

with MSCs were immunolabelled either with STAT3 (A1–A4) or STAT1 (B1–B4) specific 

antibodies and Alexa-Fluor®488 coupled secondary antibodies (green). As a staining control 

the primary antibody was omitted (C1–C4). Cell nuclei were counterstained using DAPI 

(blue). The cytoskeleton of the MSCs (also in the staining controls) is depicted using 

phalloidin-555 staining. A representative experiment of 2 tests with cells of 2 different 

donors is shown by confocal laser scanning microscopy. Scale bar = 100 µm. 
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2.4. Gene Expression of Chondrogenic Differentiated MSCs under the Influence of IL-10 and TNFα in 

High-Density (H-D) Culture 

Neither IL-10 nor TNFα inhibited the chondrogenic gene expression during chondrogenic 

differentiation of MSC. Moreover, in most of the investigated samples, IL-10 had a slightly 

stimulatory, but not significant effect on the type II collagen, aggrecan and even TNFα expression 

when compared with the respective undifferentiated and differentiated controls (Figure 6A–D). 

Despite not reaching the significance level, TNFα had also inductive effects on COL2A1, SOX9,  

ACAN and TNFα gene expression. The shape and size of the cultures revealed no major differences 

(Figure 6E1–E7). 
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Figure 6. Relative gene expression of cartilage markers in H-D cultures after 14 days of 

differentiation and 7 days cytokine stimulation. The H-D cultures were differentiated  

for 14 days and stimulated during the last 7 days with either IL-10 or TNFα alone, or in 

combination (each 10 ng/mL). COL2A1 (A, n = 3) and ACAN (B, n = 4) encodes main 

structural components of articular cartilage; SOX9 (C, n = 4) encodes one of the most 

important transcription factors during chondrocyte differentiation, whereas TNFα (D, n = 5) 

encodes a pro-inflammatory cytokine; (E1–E7) Representative macroscopic images of the 

14 day old H-D cultures after treatment. Data was normalized. (A–C) The number of 

experiments did not allow approving a Gaussian distribution of the data. Therefore,  

a Wilcoxon signed rank test was performed. p < 0.05; (D) A Gaussian distribution could be 

determined for the data hence one-sample-t-test, one way ANOVA and Bonferoni post test 

were used. n = 3–5 independent experiments with cells of different donors were performed. 

Co, control; (−) undifferentiated; (+) differentiated. 

 

2.5. Histological Structure and Type II Collagen Expression of MSCs in H-D Culture  

Histological structure of H-D culture under the different treatment conditions was firstly visualized 

using HE staining (Figure 7A1–A6). In most cultures the bottom and top cell layers revealed more or 

less elongated cells whereas the middle of the culture consisted of round cells. Irrespective of cell layer 

and treatment all cells were embedded into a fibril-rich and alcian blue positive ECM which suggested 

a substantial content of sulfated glycosaminoglycan (Figure 7B1–B6). However, cultures treated with 

TNFα either alone or in combination with IL-10 revealed a looser consistency of the ECM. The ECM 

of chondrogenically differentiated MSC cultures contained sulfated glycosaminoglycan and type II 

collagen. There was a slightly higher type II collagen fluorescence intensity in the chondrogenic 3D 

cultures untreated or treated with IL-10 that correlated with the gene expression results (Figure 7). 
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Figure 7. Histology and type II collagen synthesis in chondrogenic differentiated MSCs 

under the influence of cytokines in H-D cultures. The H-D cultures were differentiated for 

14 days and stimulated during the last 7 days with either IL-10 or TNFα alone, or in 

combination (each 10 ng/mL). HE (A1–A6) and alcian blue (B1–B6) stainings were 

performed; Additionally, type II collagen was immunolabelled (green, C1–C6). Cell nuclei 

were counterstained using DAPI (blue). Co, control; (−) undifferentiated; (+) differentiated. 

Scale bars = 100 µm (A1–A6 and B1–B6), 200 µm (C1–C6). 
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2.6. Chondrogenic Gene Expression and Histology of Chondrogenic Differentiated MSCs in H-D and 

Polyglycolic Acid (PGA) Culture 

To answer the question whether MSCs could undergo chondrogenic differentiation in scaffold 

culture in a similar manner to the H-D culture, both 3D culture types were directly compared 

concerning their gene expression profile. Non cultured human articular chondrocytes served as 

controls. Chondrogenic differentiated MSCs expressed typical cartilage markers, such as type II 

collagen, aggrecan and sox9 in H-D culture and PGA scaffold culture (Figure 8A–C). However, gene 

expression of cartilage markers was inferior in chondrogenic differentiated MSCs cultured in both 3D 

culture systems compared with freshly isolated human articular chondrocytes. Further, despite the 

difference was not significant, the expression of type II collagen was higher in PGA compared with  

H-D culture (Figure 8A). The expression level of aggrecan and sox9 revealed no major differences in 

both culture systems (Figure 8B,C). The PGA seeded for 14–21 days with chondrogenically induced or 

non induced MSCs were analyzed for cell vitality, histology and protein expression of type II collagen. 

MSCs adhered on the PGA and formed cell-matrix sails between the PGA fibers (Figure 9A1,A2).  

The majority of MSCs cultured for 14 days on PGA scaffolds survived irrespectively whether 

chondrogenically induced or not (Figure 9B1,B2). 

Not induced and chondrogenically induced chondrocytes cultured in H-D cultures produced an 

ECM which contained cartilage-specific sulfated glycosaminoglycans (Figure 9C1–D2) and type II 
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collagen (Figure 9E1,E2). However, the synthesis of cartilage-specific glycosaminoglycans and type II 

collagen was inferior in undifferentiated cells (Figure 9D1–E2). 

Figure 8. Relative gene expression of chondrogenic differentiated MSCs in H-D culture 

and on PGA scaffolds compared with freshly isolated, non-cultured articular chondrocytes 

(co). MSCs (passage 4–6) underwent chondrogenic differentiation for 14 days. (A) COL2A1; 

(B) ACAN; (C) SOX9. n = 3–4 independent experiments with cells of different donors were 

performed. Data was analyzed using the Wilcoxon signed rank test, Kruskal Wallis and 

Dunns post test. 
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Figure 9. Vitality, histology and type II collagen expression of chondrogenically differentiated 

and undifferentiated MSCs on PGA scaffolds. Undifferentiated (−) and chondrogenically 

differentiated (+) MSCs were cultured in PGA. (A1,A2) Invert microscopical pictures 

(“native”) of undifferentiated and chondrogenically differentiated MSCs in PGA, (B1,B2) 

MSCs stained with FDA/PI, dead cells and PGA fibers are red and viable cells are green, 

(C1,C2) HE, (D1,D2) alcian blue or immunolabelled for type II collagen (E1,E2). In the HE 

and alcian blue staining the fibers and cell nuclei are stained violet. Cell nuclei were 

counterstained using DAPI (blue). Scale bars = 200 µm (A1–B2), 100 µm (C1–E2). 
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3. Discussion 

Cartilage defects, degenerative or traumatic, remain one of the major problems in orthopedics, 

orthopedic surgery and regenerative medicine [26]. Chondrogenically differentiated MSCs could 

represent a therapeutic option as proposed previously [27]. The aim of this study was to determine the 

effect of particular anti- and pro-inflammatory cytokines (IL-10, TNFα) on the chondrogenesis of  

pre-differentiated MSCs. 

In our study, we were able to demonstrate that bone marrow derived MSCs (BM-MSCs) from all 

donors investigated expressed typical surface molecules for MSCs. The MSC characterization revealed 

that the isolated, plastic adherent cell population contained nearly no blood cells such as lymphocyte 

subpopulations and macrophages discernible by CD3-, CD4- and CD8- as well as CD14-negativity. 

Most of the MSCs were CD29, CD44 and CD90 positive [28,29]. When characterizing MSCs,  

BM-MSCs were negative for CD34 [28,30,31]. However, the expression of this marker can be 

influenced by the origin and passage of stem cells, for instance adipose-derived stem cells at early 

passages may express CD34 [32,33]. This marker is also typical for the hematopoietic stem cells [28]. 

Accordingly, in the present study, a high rate of cells negative for the hematopoietic marker CD34 

became evident. As far as the CD106 is concerned, the expression of this marker differs among the 

donors and the origin of the MSCs [28,34–36]. The expression of CD106 varied between different 

donors with the mean of 44.13% ± 28.8% in our study. 

Further MSCs expressed IL-10 and the IL-10Rα. IL-10 and/or TNFα did not inhibit the 

chondrogenic differentiation of MSC. The MSCs expressed STAT3 which is the main downstream 

transcription factor in IL-10 signaling [37]. Some cells of the population revealed an enhanced STAT3 

expression and translocation of STAT3 in response to short time IL-10 exposition suggesting their 

sensibility for IL-10. Sensibility for IL-10 has already been demonstrated by Jung et al. (2013) in MSC 

micromass cultures [37]. In contrast, STAT1, which can also be induced by IL-10, was only weakly 

expressed by the MSCs. Furthermore, in most of the investigated samples, IL-10 had a slightly 

stimulatory effect on the expression of cartilage markers when compared with the respective controls. 

This observation is in agreement with a study of Jung et al. who demonstrated a role for IL-10 in 

endochondral bone formation stimulating chondrocyte proliferation and hypertrophic differentiation [37]. 

These cells were able to differentiate into different cell lineages, indicating the multipotent stem cell 

character of the isolated cells. After chondrogenic differentiation, MSCs cultured in both H-D and 

PGA culture systems expressed typical cartilage markers. Every biomaterial implanted in the human 

body may potentially cause an inflammation or infection followed by a rejection. Therefore, as some 

authors suggest [18], we investigated also the H-D cultures, a culture system which remains mostly 

unaffected by the influence of a biomaterial. 

We found almost no difference between these two culture systems in the gene expression of ACAN 

or SOX9. However, the expression of the type II collagen was higher in PGA cultures but the 

difference did not reach the significance level. It could be assumed that the diffusion in the scaffold 

culture is easier compared with the H-D culture which is maintained at the medium–air interface and is 

much denser. The expression profile of cartilage markers was inferior in chondrogenically induced 

MSCs in both culture systems compared to freshly isolated non cultured chondrocytes underlining the 

need for further optimization of chondrogenesis. PGA scaffolds have been implicated as a biocompatible 
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scaffold for cartilage repair, yet further clinical studies are required [21,38–43]. PGA scaffolds allow 

chondrogenic differentiation of MSCs not only in vitro but also in vivo. The cartilage defects covered 

with PGA scaffolds have shown more hyaline-like repair tissue in comparison to different surgical 

techniques as for instance microfracturing. However, in the in vivo studies so far available only small 

numbers of animals were investigated and the analyzed cartilage defects were small [21,22,38,44]. 

Therefore, the role of PGA scaffolds in cartilage repair requires further investigation. Unlike pellet 

cultures, MSCs were cultivated in micromasses on a porous cellulose membrane where the cell 

conglomerate can easily be isolated for analysis. The limitation of this method for a potential in vivo 

research is the fact that a great amount of MSCs is required to form a patch big enough to cover 

cartilage defects. The success of chondrogenic differentiation of MSCs was donor-dependent in this 

study. Donor and age dependencies of chondrogenic differentiation have already been observed  

by others [5,45]. 

In comparison to a healthy tissue, the osteoarthritic joint shows histological features of cartilage 

degeneration. These features probably support the migration and chondrogenic differentiation of the 

MSCs [46,47]. Furthermore, traumatic cartilage damage leads to an inflammatory milieu in the joint. 

High levels of matrix metalloproteinases (MMP) 1 and 3, IL-1β and TNFα have been detected in 

patients with posttraumatic cartilage defects. These alterations might affect the healing response. TNFα 

is supposed to play a key role [48–50]. A typical anti-inflammatory cytokine in human chondrocytes is 

IL-10. It has an anti-apoptotic effect and plays an antagonistic role to TNFα [51]. There exist only 

spare information about the role and the mechanisms of action of IL-10 in cartilage and under OA 

conditions. It is supposed to have a protective effect on the cartilage tissue [52]. However, the increase 

of both, TNFα and IL-10 correlates with the OA progression [53]. 

The expression of IL-10 has been observed in mesodermal cell types not only in chondrocytes [51] 

and synovial fibroblasts [54], but also in MSCs of different origins, yet the presence of IL-10R and the 

effect of this cytokine in BM-MSCs requires further investigation [23,55,56]. 

Moreover, BM-MSCs are able to induce an IL-10 secretion in other immune cells such as  

T-cells [57,58]. An important issue is the sensitivity of MSCs for IL-10, which has not been 

sufficiently addressed so far. The study of Jung et al. indicates that chondrogenic precursor cells are 

responsive to IL-10 [37]. An inflammatory micromilieu in the joint triggered by pro-inflammatory 

cytokines which were released by synovium-derived leukocyte subpopulations is known to affect 

chondrogenesis [59]. It has been reported that TNFα may enhance the osteogenic differentiation of 

MSCs in vitro [60–63]. It may also inhibit myogenic differentiation of the myoblasts [64] and the 

chondrogenic differentiation of chondrocytes [65,66]. In regard to BM-MSCs, the effect of the 

inflammation, in particular driven by TNFα has not been thoroughly investigated and certainly has not 

been fully understood. TNFα is able to induce a joint destruction and it is supposed to block the 

chondrogenic differentiation of the MSCs via NF-κB activation. Through this pathway transcription of 

sox9, a crucial transcription factor mediating chondrogenesis, can be blocked [8]. Furthermore, the 

stimulation of TNFα can inhibit the synthesis of typical cartilage markers such as type II collagen or 

aggrecan and increase the synthesis of degradative enzymes such as MMPs in the MSCs. Some subtypes 

of MMPs play a key role during joint cartilage degeneration [67]. Furthermore, TNFα amplifies 

cytokine expression in MSCs and it is an important regulator of MSC migration [68]. The possibility 

of TNFα inhibition could be an interesting approach in the therapy of cartilage defects. Interestingly,  
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it has been shown recently that intraarticularly administered MSCs are able to impair the systemic 

TNFα concentrations underlining their immunomodulatory properties [69]. TNFα inhibitors are 

already common in the therapy of rheumatoid arthritis [65,70,71]. 

As shown in the Figure 4, freshly isolated MSC expressed both, IL-10 and its receptor. We could 

hypothesize that there might exist inductive stimuli modulating IL-10 and IL-10Rα expression which 

were not further investigated by us. IL-10 and/or TNFα did not inhibit the chondrogenic differentiation 

of MSCs. In contrast, in this study an inductory effect (not significant) of TNFα on the SOX9 gene 

expression by the MSCs was detected. It might depend on time point of analysis and culture system. 

Taking in account the important influence of the microenvironment Chung and Burdick reported that 

the chondrogenesis by MSCs depended on the particular biomaterial used for 3D culturing [27]. 

However, protein expression levels and the nuclear translocation indicative for activation of sox9 

which is mandatory for mediating chondrogenesis was not tested. In most of the investigated samples, 

IL-10 had a slightly stimulatory effect on the type II collagen and aggrecan expression when compared 

with the respective controls. Higher expression of TNFα under the influence of IL-10 could implicate 

an interaction between these particular cytokines in MSCs. Cytokines were applied in a concentration 

of 10 ng/mL, which is supposed to correlate with the physiological concentration in peripheral  

blood [72]. Our purpose was to investigate the effect under standard conditions. However, to estimate 

potentially remedial effect of IL-10 on chondrogenic differentiation of MSCs higher concentrations of 

the applied cytokines should be considered. 

4. Experimental Section 

4.1. MSC Isolation 

MSCs were isolated from human femoral head spongiosa (obtained from 10 patients between the 

age of 55 and 88 undergoing joint replacement surgeries of the hip joints) using density gradient 

centrifugation with biocoll separating solution (Biochrom AG, Berlin, Germany). 

The spongiosa of a femoral head was minced and pressed through a sieve. Bone spongiosa 

fragments were removed and the liquid rest was pressed through a 140 μm pore diameter filter 

membrane (Millipore, Billerica, MA, USA). To remove the remnants of the particles the isolated cell 

suspension was washed with phosphate buffered saline (PBS) and centrifuged at 200× g in 4 °C for  

5 min. The purified pellet was mixed with the biocoll solution (Biochrom AG, Berlin, Germany) and 

centrifuged at 200× g in 4 °C. After 20 min the interphase containing MSCs was extracted, washed 

with PBS and centrifuged at 200× g in 4 °C for 5 min. Subsequently, MSCs were resuspended in stem 

cell growth medium (Table 1) and seeded in culture flasks for cell expansion (Cell plus culture flask, 

Sarstedt, Nümbrecht, Germany). The cultivation proceeded at 37 °C, 90% air humidity and 5% CO2. The 

growth medium was changed every 2–3 days. 
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Table 1. Chemical composition of used growth media. 

Stem Cell Growth Medium Concentration 

Selenium (Sigma–Aldrich, Munich, Germany) 5 ng/mL 
Transferrin (Sigma–Aldrich) 5 µg/mL  
Linoleic acid (Sigma–Aldrich) 4.7 µg/mL 
Insulin (Sigma–Aldrich) 5 µg/mL 
Ascorbic acid (Sigma–Aldrich) 1 µg/mL 
Dexamethasone (Sigma–Aldrich) 1 µg/mL 
MCDB 201 with L-glutamine solution (Sigma–Aldrich) 34 mL/100 mL 
Dulbecco’s modified Eagle’s medium (Biochrom AG) 51 mL/100 mL 
Fetal calf serum (FCS, Biochrom AG) 15 mL/100 mL 
Streptomycin (Biochrom AG) 50 IU/mL  
Penicillin (Biochrom AG) 50 IU/mL  

Chondrocytes Growth Medium Concentration 

Ham’s F-12/Dulbecco’s modified Eagle’s medium supplemented with 25 μg/mL ascorbic acid 
(Sigma–Aldrich) 

1000 mL 

Streptomycin (Biochrom AG) 50 IU/mL  
Penicillin (Biochrom AG) 50 IU/mL  
Amphotericin B (Biochrom AG) 2.5 μg/mL  
Essential amino acids (Biochrom AG) 1 mL/100 mL 
Fetal calf serum (Biochrom AG) 1 mL/100 mL 

Lipogenic Medium Concentration 

Indomethacin (Sigma–Aldrich) 2 µL/mL 
Isobutyl-1-methylxanthine (Sigma–Aldrich) 1 µL/mL 
Rosiglitazone (Sigma–Aldrich) 1 µL/mL 
Insulin (Sigma–Aldrich) 4 µL/mL 
Dexamethasone (Sigma–Aldrich) 1 µL/mL 
Fetal calf serum (FCS, Biochrom AG) 0.1 mL/mL 
Streptomycin (Biochrom AG) 50 IU/mL  
Penicillin (Biochrom AG) 50 IU/mL  
HEPES (Biochrom AG) 25 µL/mL 
Dulbecco’s modified Eagle’s medium with 3.7 g/L NaHCO3 and 4.5 g/L glucose (Biochrom AG) 10 mL 

Osteogenic Medium Concentration 

Dexamethasone (Sigma–Aldrich) 1 µL/mL 
Glycerol-3-phosphate (Sigma–Aldrich) 10 µL/mL 
Ascorbic acid (Sigma–Aldrich) 2 µL/mL 
HEPES (Biochrom AG) 25 µL/mL 
Streptomycin (Biochrom AG) 50 IU/mL  
Penicillin (Biochrom AG) 50 IU/mL  

Chondrogenic Medium Concentration 

L-Glutamine (Biochrom AG) 10 µL/mL 
HEPES (Biochrom AG) 25 µL/mL 
Sodium pyruvate (Sigma–Aldrich) 10 µL/mL 
Dexamethason (Sigma–Aldrich) 0.1 µL/mL 
Ascorbic acid (Sigma–Aldrich) 1.7 µL/mL 
Prolin (Sigma–Aldrich) 1 µL/mL 
ITS+1 (Sigma–Aldrich) 10 µL/mL 
Streptomycin (Biochrom AG) 50 IU/mL  
Penicillin (Biochrom AG) 50 IU/mL  
TGF-β1 (Pepro Tech GmbH, Hamburg, Germany) 10 ng/mL 
Dulbecco’s modified Eagle’s medium with 3.7 g/L NaHCO3 and 4.5 g/L glucose (Biochrom AG) 10 mL 
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4.2. Chondrocyte Isolation 

Freshly isolated non cultured human articular chondrocytes served as a positive control. Primary 

human articular chondrocytes and MSCs were isolated in accordance with the institutional ethical 

committee of the Charité-University Medical School Berlin, Campus Benjamin Franklin (Berlin, 

Germany; Register ID: EA4 024 09; 27 July 2009). Human femoral head articular cartilage chips were 

obtained from 3 female patients between the age of 83 and 90 undergoing joint replacement surgery 

for femoral neck fractures. Each surgery was performed within 24 h after the trauma. Chips were cut 

into small slices followed by digestion with pronase deriving from Streptomyces griseus at 20 mg/mL 

(7 U/mg, Roche Diagnostics, Mannheim, Germany) in Ham’s F-12/Dulbecco’s modified Eagle’s medium 

(50/50, Biochrom-AG, Berlin, Germany) for 30 min at 37 °C and subsequently with collagenase NB5 

deriving from Clostridium histolyticum at 1 mg/mL (Serva, Heidelberg, Germany) in chondrocyte 

growth medium (Table 1). Isolated chondrocytes were resuspended in chondrocyte growth medium 

containing 10% FCS and seeded in culture flasks (Cell plus culture flask). 

4.3. MSC Characterisation Using Flow Cytometry 

Subsequently to the isolation, approximately 3 × 106 MSCs from each donor were rinsed in PBS 

followed by a fixation with 4% paraformaldehyde (PFA) solution (Santa Cruz Biotechnology, Inc., 

Santa Cruz, CA, USA) for 15 min. To characterize the cell type, fixed MSCs were washed with PBS, 

centrifuged at 400× g and labelled with the following mouse anti-human antibodies: CD3, CD4, CD8, 

CD14, CD29, CD34, CD44, CD90 and CD106. The solution with primary labelled antibodies was 

diluted 1:200 in PBS and the solution with unlabelled antibodies 1:20 in PBS. Fifty micro liters of each 

diluted antibody solution was added to approximately 2 × 105 MSCs. The incubation lasted for 30 min 

at room temperature (RT). Afterwards, the MSCs were washed in PBS and centrifuged at 400× g.  

The supernatants were decanted and the probes were suspended in FACS-buffer consisting of 1× PBS, 

1% bovine serum albumin (BSA, Carl Roth GmbH, Karlsruhe, Germany) and 0.01% sodium acid.  

The unlabeled primary antibodies were detected with appropriate secondary immunophor-labelled 

secondary antibody solution, diluted 1:200 in PBS, for 30 min at RT. All probes were washed in  

PBS and centrifuged at 400× g. The supernatants were decanted and the probes were suspended in  

FACS-buffer for analysis. All specifications of used antibodies are listed in (Table 2). 

All samples were measured using FACS calibur flow cytometer (BD Bioscience, San Jose, CA, 

USA). For the analysis of the results FlowJo 7.0 (Tree Star Inc., Ashland, OR, USA) was used. 

4.4. Chondrogenic, Adipogenic and Osteogenic Differentiation of MSCs 

Four H-D cultures from each donor underwent a chondrogenic differentiation that took 14 days.  

To confirm the multipotency of the MSCs, additionally a chondrogenic, adipogenic and osteogenic 

differentiation was performed in monolayer culture. 

Subsequently to the cultivation process, 20 µM azacytidine (Sigma–Aldrich, Munich, Germany) 

was added to the growth medium for 24 h. After 24 h approximately 6 × 104 MSCs were cultured as 

monolayer on cover slips in one well of a 6 well plate. Each well was incubated with 2 mL adipogenic 

or osteogenic medium (Table 1). The adipogenic medium was changed every two days and after five 
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days the MSC growth medium was added for two days. Two thirds of the osteogenic medium was 

changed every two or three days. The cover slips with differentiating MSCs were analyzed after 14, 21 

and 28 days. To determine the osteogenic differentiation we used von Kossa staining and for the 

adipogenic differentiation oil red staining (Figure 3). 

Table 2. Antibodies to surface markers used for flow cytometry and immunofluorescence labeling. 

Primary Antibody Secondary Antibody 

CD3, mouse anti-human CD3 (mouse IgG2a), r-phycoerythrin 
conjugate (Caltag, Buckingham, UK) 

none 

CD4, mouse anti-human CD 4 (mouse IgG2a), fluorescein 
(FITC) conjugate (Caltag) 

none 

CD8, mouse anti-human CD 8 (mouse IgG2a), fluorescein 
(FITC) conjugate (Caltag) 

none 

CD14, mouse anti-human CD14 antigen (mouse IgG 2a), 
fluorescein (FITC) conjugate (Invitrogen, Carlsbad,  
CA, USA) 

none 

CD29, mouse anti-human Integrin β1 monoclonal antibody 
(mouse IgG1) (Millipore, Billerica, MA, USA) 

Donkey F(ab)2 Fragment-anti-mouse-APC 
(Dianova, Hamburg, Germany) 

CD34, mouse anti-human CD34 (mouse IgG1, k), 
allophycocyanin (APC) conjugate  
(BD Pharmingen, Franklin Lakes, NJ, USA) 

none 

CD44, mouse anti-human CD 44 antibody (mouse IgG 2a) 
(Cell signaling, Cambridge, UK) 

Donkey F(ab)2 Fragment-anti-mouse-APC 
(Dianova, Hamburg, Germany) 

CD90, mouse anti-human CD90 (mouse IgG1, k), fluorescein 
(FITC) conjugate (BD Pharmingen) 

none 

CD106, mouse anti-human VCAM-1 monoclonal antibody 
(mouse IgG1) (Chemicon, Billerica, MA, USA) 

Donkey F(ab)2 Fragment-anti-mouse-APC 
(Dianova) 

Type II collagen, rabbit anti-human polyclonal antibody 
(Acris Antibodies, Herford, Germany) 

Alexa-Fluor®488, donkey-anti-rabbit 
(Invitrogen) 

IL-10, rabbit anti-human polyclonal antibody  
(tebu bio GmbH, Le-Perray-en-Yvelines, France) 

Alexa-Fluor®488, donkey-anti-rabbit 
(Invitrogen) 

IL-10-Receptor-α, mouse anti-human monoclonal antibody 
(Sigma–Aldrich) 

Alexa-Fluor®488, donkey-anti-mouse 
(Invitrogen) 

STAT1, rabbit anti-human monoclonal antibody  
(Cell Signaling) 

Alexa-Fluor®488, donkey-anti-mouse 
(Invitrogen) 

STAT3, rabbit anti-human monoclonal antibody  
(Cell Signaling) 

Alexa-Fluor®488, donkey-anti-mouse 
(Invitrogen) 

4.5. MSCs in H-D Culture and Cultured in Non-Woven PGA Scaffolds 

One million eight hundred thousand MSCs, expanded at least until passage 4–6 to achieve sufficient 

cell numbers, were introduced in scaffold-free H-D culture. 

For each donor, one 6-well-plate was prepared for six scaffold-free H-D cultures. In each well one 

metal grid was placed and covered with a cellulose acetate filter (pore size 0.2 µm, Sartorius AG, 

Göttingen, Germany) on the top of it. MSCs were detached from culture flasks using 0.05% 
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trypsin/0.02% EDTA (Biochrom AG), washed with PBS and centrifuged in falcon tubes twice. Eight to 

ten micro liters of the pure MSC cell pellet was transferred on each of the filter membrane. To avoid 

direct contact between growth medium and the 3D culture, only 1.8 mL of medium per well was 

added. The cultivation proceeded at 37 °C, 90% air humidity and 5% CO2. Additionally, about  

4 × 106 MSCs per donor were transferred to non-woven PGA scaffolds (1 × 1 × 0.11 cm) which were 

cultured in the insert of a two chamber system (pore size 0.4 µm, Beckton–Dickinson, Franklin Lakes, 

NJ, USA). The scaffolds remained in alginate coated 6-well plates with 3 mL of chondrogenic 

induction or stem cell growth medium (control) per well. The cultivation under chondrogenic or  

non-chondrogenic conditions proceeded at 37 °C, 90% air humidity and 5% CO2. The 14-day-old 

scaffolds were rinsed in PBS and then incubated in fluorescein diacetate (FDA) (3 µg/mL dissolved in 

acetone (stock solution), Sigma–Aldrich and further diluted 1:1000 in PBS (working solution)) for  

15 min at 37 °C, rinsed three times with PBS before being counterstained with propidium iodide (PI,  

Sigma–Aldrich) solution (1 mg/mL dissolved in PBS (stock solution), Sigma–Aldrich, further diluted 

1:100 in PBS (working solution)) for 1 min in the dark at RT. The green or red fluorescence was 

visualized using fluorescence microscopy. 

4.6. Differentiation of MSCs and Stimulation with Cytokines 

Four H-D cultures were chondrogenic differentiated for seven days in chondroinductive medium 

(Table 1). Two additional H-D cultures remained undifferentiated and were treated only with MSC 

growth medium. 

For the next 7 days the chondrogenic differentiated H-D cultures were stimulated with 10 ng/mL 

recombinant IL-10, TNFα (both: Peprotech GmbH, Hamburg, Germany), TNFα with IL-10, or remained 

untreated. One undifferentiated H-D culture was stimulated with 10 ng/mL recombinant IL-10 and one 

culture remained untreated. 

4.7. Histological Staining Procedures 

For histological staining procedures cryo-sections (thickness: 7 µm), or cover slips were used.  

For Haematoxylin & Eosin (HE) staining sections were incubated for 4 min in Harris haematoxylin 

solution (Sigma–Aldrich) rinsed in water and counterstained for 4 min in eosin (Carl Roth GmbH,  

Karlsruhe, Germany). 

For alcian blue (AB) staining, the sections or cover slips were incubated for 3 min in 1% acetic acid 

and then stained 30 min in 1% AB (Carl Roth GmbH). Subsequently, they were rinsed in 3% acetic 

acid. Counterstaining of cell nuclei was performed using nuclear fast red aluminum sulfate solution 

(Carl Roth GmbH) for 5 min. 

For von Kossa staining, the sections, or the cover slips were incubated for 5 min in methanol, rinsed 

in water and then stained 30 min in 1% silver nitrate. After rinsing in water, a reduction with 5% 

sodium bicarbonate was performed for 7 min. Counterstaining of cell nuclei was performed using 

nuclear fast red aluminum sulfate solution (Carl Roth GmbH) for 5 min. 

For oil red staining, the cover slips were incubated for 20 min in 4% PFA, rinsed in PBS and then 

stained 30 min in 60% oil red solution (Sigma–Aldrich). 
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Finally, all sections were rinsed with aqua dest, and subsequently dehydrated in an ascending 

alcohol series. Then, the sections were embedded with Entellan (Merck, Darmstadt, Germany).  

All slices were analyzed by light microscopy (Axioskop 40 microscope: Zeiss Jena, Jena, Germany). 

Imaging of the sections were achieved using an Olympus digital camera XC30 (Olympus Soft Imaging 

Solutions GmbH, Muenster, Germany). 

4.8. Gene Expression Analysis Using RTD-PCR 

Gene expression was determined using RTD-PCR. MSCs were cultured for at least 14 days in 3D 

culture. MSC total RNA was isolated using MasterPure™ Plant RNA Purification Kit (MasterPure 

Plant, RNA Purification-Kit, Epicentre, Biotechnologies, Madison, WI, USA). RNA quantity and 

quality was evaluated with the RNA 6000 Nano assay (Agilent Technologies, Santa Clara, CA, USA). 

Equal amounts of total RNA (500 ng in a volume of 20 µL) were reverse transcribed using the Qiagen 

QuantiTect reverse transcription Kit (Qiagen, Hilden, Germany) according to the manufacturer’s 

instructions. One micro liter aliquots containing 16.7 ng of cDNA were amplified by RTD-PCR in  

a 20-µL reaction mixture using specific primer pairs for COL2A1, ACAN, SOX9, TNFα and the  

house-keeping gene ACTB (all: Applied Biosystems, Foster City, CA, USA). Assays were performed 

using the TaqMan Gene Expression Assay (Applied Biosystems) or the Quantitec Gene Expression 

Assay (Qiagen) in an Opticon 1 Real-Time-Cycler (Opticon™ RTD-PCR, Bio-Rad, Hercules, CA, 

USA) according to the manufacturer’s protocols. We performed for each primer (Table 3) used in this 

study an efficiency testing using a linear regression analysis using MSC cDNA. Relative amounts of 

mRNA expression for the gene of interest, and the ACTB were calculated using the ΔΔCt method [73]. 

Table 3. Sequences of the primers used in the present study. 

Gene (Symbol) NCBI Gene Reference Length Manufacturer 

β-actin (ACTB) NM_001101.2 171 ABI® * 
aggrecan (ACAN) NM_013227.2 93 ABI® * 

sox9 (SOX9) NM_000346.2 102 ABI® * 
TNFα (TNFα) NM_000594.2 80 ABI® * 

β-actin (ACTB) (5'–3') 
TGGGACGACATGGAGAA/ 

GAAGGTCTCAAACATGATCTGG
146 Qiagen® 

type II collagen (COL2A1) NM_001844, NM_033150 142 Qiagen® 

* ABI, Applied Biosystems® (Life Technologies™, Carlsbad, CA, USA). 

4.9. Immunolabelling 

Undifferentiated MSCs isolated from three different donors were cultured for 48 h on cover slides. 

Cryo-sections of 14-day-old 3D cultures and cover slides with cells were fixed with 4% PFA solution 

for 15 min before rinsed in Tris buffered saline (TBS: 0.05 M Tris, 0.015 M NaCl, pH 7.6). Sections 

were subsequently blocked with protease-free donkey serum ((Merck Millipore), 5% diluted in TBS) 

for 30 min at RT, rinsed and incubated with the anti-type II collagen antibody in a humidifier chamber 

overnight at 4 °C. Cover slides were immunolabelled with anti-IL-10, IL-10Rα, STAT1, STAT3, CD3, 

CD4, CD8, CD14, CD29, CD34, CD44, CD90, CD106 antibodies. Sections and cover slides were 

subsequently washed with TBS before incubation with Alexa-Fluor®488 secondary antibodies for  
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30 min at RT. STAT3 and STAT1 immunolabelling was combined with phalloidin-CruzFluor555-staining 

(diluted 1:200 in blocking buffer, Santa Cruz Biotechnology, Biotechnology, Santa Cruz, CA, USA) to 

depict the cytoskeleton. Negative controls included omitting the primary antibody or using human  

IgG as primary antibody during the staining procedure. Cell nuclei were counterstained using  

4',6-diamidino-2-phenylindole (DAPI) (0.1 µg/mL, Roche Diagnostics, Mannheim, Germany). Labelled 

sections were rinsed several times with TBS, embedded with Fluoromount G (Southern Biotech, 

Biozol Diagnostica, Birmingham, AL, USA) and examined using fluorescence microscopy (Axioskop 

40) or confocal laser scanning microscopy (SPE-II, Leica, Wetzlar, Germany). Images were taken 

using the XC30 camera. All specifications of used antibodies are listed in (Table 2). 

4.10. Statistical Analysis 

All values were expressed as mean with standard deviation. Kolmogorov-Smirnov test was used to 

detect the presence of Gaussian distribution. Data of experiments where the Gaussian distribution could 

not be determined due to only n = 3–4 was analyzed using the Wilcoxon signed rank test, Kruskal 

Wallis and Dunns post test (GraphPad Prism 5, GraphPad Software Inc., San Diego, CA, USA). Data 

for which a Gaussian distribution could be proven were analyzed using one-sample-t-test, one way 

ANOVA and Bonferoni post test. Statistical significance was set at a p value of ≤0.05. 

5. Conclusions 

In summary, independent of the 3D culture system used for differentiation, the expression of 

chondrogenic markers was lower in differentiated MSCs compared with freshly isolated chondrocytes. 

Chondrogenic differentiated MSCs expressed COL2A1, ACAN and SOX9. An improved understanding 

of IL-10 and TNFα involvement in chondrogenesis could be a key issue to optimize cell-based joint 

repair strategies, so the influence of IL-10 and TNFα on MSC differentiation requires further investigation. 
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