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Glauber coherence of single-electron sources

G. Haack,1,2 M. Moskalets,1,3 and M. Büttiker1
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Recently demonstrated solid-state single-electron sources generate different quantum states depending on their
operation condition. For adiabatic and nonadiabatic sources, we determine the Glauber correlation function in
terms of the Floquet scattering matrix of the source. The correlation function provides full information on the
shape of the state and on its time-dependent amplitude and phase. The coherence properties of single-electron
states are therefore essential for the production of quantum multiparticle states.
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I. INTRODUCTION

The recent realization of triggered electron sources that
inject single electrons on demand into high-mobility semi-
conductors is attracting increasing attention to the field
of quantum coherent electronics.1–5 Future applications in
quantum-information processing demand a full characteriza-
tion of the coherence of the states emitted by such sources.6–8

The important feature of on-demand injected particles is that
they are traveling-wave packets with a spatial extent that
is less than the distance between them. Depending on the
operating conditions of the source, wave packets of different
spatial and temporal shape can be created.1,4 Such wave
packets are able to interfere with themselves over a restricted
interval of space and time, which sets the limits on the
synchronization of multiple single-electron sources needed to
generate on-demand multiparticle states. It is the purpose of
this work to present a full characterization of the coherence of
the single-particle states generated by on-demand sources.

In optics, the coherence of light is discussed with
the help of correlation functions introduced by Glauber.9

The first-order correlation function reads G(1)(r1t1,r2t2) =
〈E(−)(r1t1)E(+)(r2t2)〉, where the electric field of a light
beam is split into positive E(+) and negative E(−) frequency
terms.10 The first-order Glauber correlation function can be
extracted from time- and space-resolved intensity (optics) or
current (electronic) at the output of an interferometer; see
Fig. 1. Remarkably, the characterization of single photons has
been achieved very recently with space-resolved measurement
of the intensity.11,12 In mesoscopic systems, time-resolved
current measurements on the scale of single-electron wave
packets have recently been demonstrated.1 This makes it
possible to reconstruct the single-particle state from current
measurements, as well as the complex wave function, the
duration of the wave packet, and the coherence time. The first-
order correlation function completely characterizes a single-
particle state, since the second- and higher-order correlation
functions are zero.13 The single-particle nature of an electron
state emitted by the source of interest here was unambiguously
demonstrated recently.4,14 Therefore, the first-order Glauber
correlation function is the central object, and, in this work, our
aim is to discuss it for the states of adiabatic and nonadiabatic
emitters. From the analysis of characteristic times, similarly
to the discussion of single-photon sources (see, for instance,
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FIG. 1. (Color online) Schematic representation of an MZI,
threaded by a magnetic flux �. With a time-resolved measurement of
the current in one of the output arms, one can access the first-order
correlation function G(1) as a function of the time delay of the
interferometer �τ and time t . This allows us to reconstruct the
incoming state emitted by the single-electron source. In the adiabatic
regime, the single-electron current pulse has a Lorentzian shape, with
a width 2�SES.

Ref. 15), we assert that this source is of high interest for
quantum-information purposes: the coherence time is equal to
twice the lifetime of the single-particle pulse in the adiabatic
as well as the nonadiabatic regimes. This clearly demonstrates
the absence of intrinsic dephasing processes taking place in
the source.

The fermionic first-order correlation function can be de-
fined in close analogy with the bosonic one.16 However,
the single electrons we are interested in are injected into
the conductor with other electrons constituting the Fermi
sea. Importantly, the underlying Fermi sea has a nonzero
correlation function which we treat as the reference point.6,7

We define the first-order correlation function for injected single
particles as G(1)(t1,t2) = 〈�̂†(t1)�̂(t2)〉 − 〈�̂†(t1)�̂(t2)〉0, with
�̂(t1,2) a single-particle electronic field operator at times t1,2.
We omit the spatial coordinates (r1,r2) of the correlation
function, since the current is measured in the reservoir at
r1 = r2. The angular brackets denote the quantum-statistical
average over the state of the Fermi sea and the subscript
0 indicates that the single-electron source (SES) is not
active. This electronic first-order correlation function G(1) is
accessible in a Mach-Zehnder interferometric (MZI) setup.
The electronic MZI was first reported in two-dimensional
electron gas in a high magnetic field in the quantum Hall
regime.17 Experimentally it has been shown to exhibit high
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visibility while varying a phase φ by tuning the magnetic flux
� enclosed by the arms of the MZI and/or the time delay
between its arms. Below we show that the interference part of
the current at the output of the MZI is written in terms of the
correlation function G(1) as follows:

I int
out(t) ∝ Re{e−iφG(1)(t − τu,t − τd)}. (1)

Here τu,d are the traversal times for the upper and lower
arms of the MZI. Fixing the phase φ to zero or π/2 gives
access experimentally to the real or imaginary parts of the
correlation function, respectively. This allows us to extract the
shape of the single-particle state, its phase, and its coherence
properties from a measurement of the full time dependence of
the first-order correlation function. The most challenging step,
the time-resolved measurement of a current at a nanosecond
scale characteristic of a single-electron wave-packet, was
recently shown to be possible.1

II. MODEL AND FIRST-ORDER CORRELATION
FUNCTION

To be specific, we focus on single-particle states emitted
by the on-demand source of Ref. 1. This source consists of a
mesoscopic capacitor18–21 driven by a periodic potential V (t).
Built in the quantum Hall regime, the single-electron source
(SES) is made of a small cavity with a confined circular edge
state, which is connected via a quantum point contact (QPC)
with transmission TSES � 1 to the nearby linear edge state.
By shifting the levels of the cavity above and below the Fermi
sea level with V (t), the emission of a single electron and a
single hole in one period of the potential is achieved.1 Within
a scattering-matrix approach, the SES is described by a Floquet
scattering amplitude SSES(Em,E), calculated in Ref. 22, where
the energy of the outgoing particle Em = E + mh̄	 differs
from the energy E of the incoming particle by mh̄	. Here 	

is the frequency of the periodic potential and m is an integer.
In the quantum Hall regime, the chirality of the edge states
due to the absence of backscattering23,24 allows us to write
the scattering amplitude of the entire system S(Em,E) as the
product of the scattering amplitude of the MZI, calculated at
energy Em, with the Floquet scattering amplitude SSES(Em,E)
of the source.3,8 Following the same scattering matrix approach
as in Ref. 8, the outgoing current is expressed in terms of
a current emitted by the cavity, ISES, and of the first-order
correlation function introduced above, G(1):

Iout(t) = RLRR ISES(t − τu) + TLTR ISES(t − τd)

− 2
√

RLRRTLTR evD Re{e−iφG(1)(t − τu,t − τd)}.
(2)

The coefficients RL,R and TL,R are the reflection and
transmission probabilities for the left and right QPCs of
the MZI, respectively. The term φ = 2π�/�0 + kμvD�τ

corresponds to the phase difference acquired by an electron
with Fermi energy μ traveling along the upper and lower arms
of the interferometer, where �0 = h/e is the quantum flux, kμ

and vD are the wave vector and the drift velocity both evaluated
at the Fermi energy, and �τ = τu − τd is the time delay of
the interferometer. The time-dependent current emitted by the

source is25

ISES(t) = e

h

∫ ∞

0
dE

∑
m

[f (E) − f (Em)]

×
∫

dt ′

T e−im	(t ′−t)S∗
SES(t ′,E)SSES(t,E), (3)

and the first-order correlation function is expressed in terms of
the Floquet scattering amplitude of the source SSES as follows
(we denote tu ≡ t − τu and td ≡ t − τd):

G(1)(tu,td) =
∫ ∞

0

dE

hvD

∑
m

[f (E) − f (Em)]e−i(E−μ) �τ
h̄

×
∫

dt ′

T e−im	(t ′−tu)S∗
SES(t ′,E)SSES(td,E). (4)

Here we have introduced the Floquet scattering ampli-
tude of the source in a mixed energy-time representation,
SSES(t,E) = ∑

n e−in	tSSES(En,E). Importantly, Eq. (4) de-
rived here is valid at arbitrary emission conditions. This is in
contrast to Ref. 8, where we used the version of Eq. (4) valid
in the adiabatic regime only. Moreover, in Ref. 8, we defined
the single-particle coherence on the basis of an interference
current. In contrast, in the present work, we adapt the Glauber
definition of the correlation function and show precisely how it
is connected to the interference current. Thereby, we justify an
interferometric method of reconstruction of a single-particle
wave function.

III. ADIABATIC VERSUS NONADIABATIC REGIMES

We illustrate our claim that we can fully characterize the
single-particle state by its first-order correlation function,
Eq. (4), by considering the source of Ref. 1 in the two
operation regimes in which single-particle emission can be
achieved, namely the adiabatic and nonadiabatic regimes. In
the following, we assume zero temperature. If the temporal
shape of the periodic driving potential V (t) = V (t + 2π/	)
varies on a time scale much longer than the dwell time τD of the
source, defined as the time that the particle remains inside the
cavity, the operation regime of the source is called adiabatic.26

Experimentally, it can be reached with a sinusoidal potential
V ad(t) = V0 cos(	t) with 	τD � TSES.25 This last assump-
tion ensures that an electron has enough time to leave the cavity
during the time when the topmost occupied level crosses the
Fermi energy; see Fig. 2(a) . Here V0 is the amplitude of the
potential. In this regime, the single-particle states are emitted
close to the Fermi sea, and the energy in Eqs. (3) and (4) is
therefore well approximated by the Fermi energy μ. The SES
is described by the frozen scattering amplitude,22 which, close
to the emission time t− of an electron, reads27 Sad

SES,e(t,μ)=
(t − t− + i�)/(t − t− − i�). The corresponding current emit-
ted by the SES consists of a Lorentzian pulse, I ad

e (t) =
(e�/π )/([t − t−]2 + �2), where the half-width of the current
pulse � is proportional to TSES/	. Importantly, it sets the
lifetime (or the relaxation time) of the emitted single-particle
state, T ad

1 = �. To find the coherence time of the emitted state
T2, we look at the correlation function, which now reads

G
(1)
e,ad(tu,td) = 1

π�vD

1(
1 − i tu−t−

�

)(
1 + i td−t−

�

) . (5)
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FIG. 2. (Color online) Time-dependent potential V driving the
SES and induced current I consisting of electron and hole pulses are
shown for one period of V : (a) in the adiabatic regime and (b) in the
nonadiabatic regime. The emission process takes place when V makes
the topmost occupied level cross the Fermi energy μ. The emission
times of an electron and a hole are, respectively, denoted t− = π/2	

and t+ = 3π/2	. The strong symmetric (asymmetric) shape of the
current pulse is characteristic of the adiabatic (nonadiabatic) emission
process.

The characteristic time of decay of G(1) with respect to the
time delay �τ =τu−τd is by definition the coherence time
T2 of the single-particle states. To make clear the dependence
on �τ , we introduce the middle time t ′ = (tu + td)/2 and
write tu = t ′ − �τ/2, td = t ′ + �τ/2. Thus we find from
Eq. (5) that T2 is set by twice the lifetime of the current pulse,
T ad

2 = 2�. The relation T ad
2 = 2T ad

1 means that the emitted
state is a Fourier-transform limited one.28 This important result
tells us that the SES has no intrinsic dephasing time Tϕ , since
the three times are related via 1/T2 = 1/(2T1) + 1/Tϕ .13,29

Additional dephasing processes within the MZI30–33 would
modify the relation between the interference current and
the coherence function [Eq. (2)], but would not modify the
coherence properties of the states emitted by the source.
The real and imaginary parts of the correlation function for
adiabatically emitted electrons are shown in Fig. 3. They allow
us to reconstruct the shape of the incoming wave packet as well
as its phase.34 The correlation function for the hole, G

(1)
h,ad, is

given by the complex conjugate of Eq. (5), where the electron
emission time t− is replaced by the hole emission time t+.

The nonadiabatic regime is reached when the driving poten-
tial varies much faster than the dwell time τD . Experimentally,
the emission of single-particle states has been observed in this
regime with a square potential in the GHz range.1 Importantly,
while the potential changes on a time scale faster than τD ,
the overall cycle remains much longer than τD , ensuring that
an electron has been emitted before the excitation leading to
the hole emission starts; see Fig. 2(b).35 This corresponds to
the condition τD � π/	, which can be fulfilled at higher
frequencies than the condition for an adiabatic regime. To
provide simple analytical equations, we assume the optimal
conditions used in the experiment:1,14,36,37 the Fermi level lies
exactly in the middle of two successive cavity’s levels, and the

t /T1

Δτ/T2

(a)

Re{G(1)
e,ad}

t /T1

Δτ/T2

(b)

Im{G(1)
e,ad}

FIG. 3. (Color online) Real (a) and imaginary (b) part of the first-
order correlation function G

(1)
e,ad(t ′ − �τ/2,t ′ + �τ/2) for electrons

emitted adiabatically [Eq. (5) in units of 1/(π�vD)]. Here we set
t− ≡ 0. At t ′ = �τ = 0, the overlap of the wave packets is maximal
(G(1)

e,ad = 1 in normalized units). The decrease of G
(1)
e,ad as a function

of t ′ and �τ is set, respectively, by the lifetime T1 = � and the
coherence time T2 = 2�. The real part of the G

(1)
e,ad function at �τ = 0

corresponds to the current pulse emitted by the source as a function
of t ′, whereas its imaginary part is zero as expected.

square potential V na(t) applied to the cavity shifts the levels
sharply by one level spacing � at time t−. With such a driving,
the Floquet amplitude given in Ref. 22 can be cast into a form
appropriated for analytical calculations:38

Sna
SES(En,E) = S(E)eiπ nh̄	

�

sin(πnh̄	
�

)

πn

×
⎧⎨
⎩

�

h̄	
δn,0 −

ein	t−

1− nh̄	
�

+ ein	t+

1+ nh̄	
�

ρ∗(E)ρ(En)

⎫⎬
⎭ . (6)

Here ρ(E) = {1 + √
1 − TSES exp[iφ(E)]}/√TSES with

φ(E) = 2π (E − μ)/� and S(E) = exp[iφ(E)]ρ∗(E)/ρ(E)
is the scattering amplitude of the cavity with stationary
potential. Since τD = h/(TSES�) � 2π/	, the emissions of
an electron and a hole close to t− and t+ are independent of
each other. Therefore, as before, we concentrate on electron
emission only. Calculating the current emitted by the SES close
to t− from Eq. (3), we reproduce a well-known exponential
decay,1,22 I na

e (t) = (e/τD)
(t − t−) e−(t−t−)/τD , with 
(x) the
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t /T1

Δτ/T2

G(1)
e,na

FIG. 4. (Color online) First-order correlation function for elec-
trons emitted nonadiabatically, G(1)

e,na(t
′ − �τ/2,t ′ + �τ/2), Eq. (7),

in units of 1/(τDvD). The exponential factor e−iπ�τ/τ is omitted as
it sets the energy at which the single-particle state is emitted (see
text). Here t− is set to 0. The correlation function clearly reflects the
temporal shape of the single-electronic state emitted by the source,
which is set by T1 and T2 as a function of t ′ and �τ , respectively.

Heaviside step function. From the temporal shape of the
current pulse, we extract the lifetime of the single-particle state
in the nonadiabatic regime, namely T na

1 = τD . Remarkably, in
contrast to the current pulse in the adiabatic regime, the pulse
I na
e (t) is highly asymmetric in time, as shown in Fig. 2(b).39,40

This strong asymmetry is a signature of a nonadiabatic emis-
sion process and is also present in the first-order correlation
function. Indeed, inserting Eq. (6) into Eq. (4), we find

G(1)
e,na(tu,td) = 1

τDvD


(tu − t−)
(td − t−) exp

(
−iπ

�τ

τ

)

× exp

(
− (tu + td)/2 − t−

τD

)
. (7)

The factor exp(−iπ�τ/τ ) reflects the fact that the single-
particle states are emitted at energy �/2 above the Fermi
energy μ, (τ ≡ h/�). Due to the presence of the Heaviside step
functions, the middle time t ′ = (tu+td)/2 has to be larger than
t− + �τ/2 for G(1)

e,na to be nonzero, as shown in Fig. 4. Thus
we see that the first-order correlation function decays with
increasing �τ with a characteristic time T na

2 = 2τD . Similarly
to the adiabatic regime, the coherence time is equal to twice
the lifetime, T na

2 = 2T na
1 , witnessing the absence of intrinsic

dephasing in the SES.41

IV. CONCLUSIONS

We have shown that an MZI setup is appropriate for the full
characterization of the coherence properties of single electrons
and holes propagating in solids. We have provided a general
expression for the Glauber correlation function G(1) in terms of
the Floquet scattering amplitude of the source. The coherence
time enabled us to show that the source of Ref. 1 has no intrinsic
dephasing time, which makes the emitted single-particle states
of high interest for future experiments in quantum electronics.
Importantly, the time-resolved measurement of the first-order
correlation function G(1) is within the reach of the present-
day experimental capabilities, permitting a direct access to a
single-electronic quantum state.
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18M. Büttiker, H. Thomas, and A. Prêtre, Z. Phys. B 94, 133

(1994).
19J. Gabelli et al., Science 313, 499 (2006).
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