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In the ongoing discussion on thermalization in closed quantum many-body systems, the eigenstate
thermalization hypothesis has recently been proposed as a universal concept and has attracted considerable
attention. So far this concept is, as the name states, hypothetical. The majority of attempts to overcome this
hypothetical character are based on exact diagonalization, which implies for, e.g., spin systems a limitation
of roughly 15 spins. In this Letter we present an approach that pushes this limit up to system sizes of
roughly 35 spins, thereby going significantly beyond what is possible with exact diagonalization. A
concrete application to a Heisenberg spin ladder which yields conclusive results is demonstrated.
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Introduction.—Due to experiments in ultracold atomic
gases [1–5], the question of thermalization in closed
quantum systems has experienced an upsurge of interest
in recent years, and the eigenstate thermalization hypoth-
esis (ETH) has become a cornerstone of the theoretical
understanding of thermalizing quantum many-body sys-
tems. The ETH roughly postulates the following [6–8]:
eigenstates of a Hamiltonian H in certain energy regions
exhibit properties similar or equal to the properties of a
statistical ensemble, e.g., canonical or microcanonical,
corresponding to that energy region. The properties in this
context can be manifold: expectation values of certain
observables, entropies or purities of subsystems of an
interacting system, etc. Regardless of its significance in
the debate on thermalization [8,9], it is a challenging task to
“check” numerically whether or not the ETH applies to a
specific system and property. If this is done in a straightfor-
ward manner, it requires the diagonalization of the
Hamiltonian [10–14]. Due to the exponential scaling of
the Hilbert space dimension, this is only feasible for rather
limited system sizes. Considering, e.g., spin systems with-
out any symmetries, numerical diagonalization using state-
of-the-art computers and routines is feasible up to about
15 spins.
While numerical diagonalization of quantum systems is

costly, the approximation of exponentials of (functions of)
the Hamiltonian H applied to a pure state vector, i.e.,
expressions of the form

jψðτÞi≡ eτHjψi (1)

(τ being some complex number), has lately seen substantial
progress. Methods in this direction include or are related to
time-dependent density matrix renormalization group
(tDMRG) [15–17], Lanczos [18], or Chebyshev [19]

integrator codes. tDMRG allows one to reach system sizes
of the order of 100 or 200 lattice sites [20], not only in spin
systems [21]. It is however somewhat limited regarding
system geometries and initial states: systems must be more
or less linear and initial states usually need to be in some
sense close to the ground state. Lanczos and Chebyshev are
at present limited to systems comprising about 35 spins
[18,22,23]; however, pure initial states may be chosen
arbitrarily and the only requirement on the Hamiltonian is a
sparse structure when represented with respect to some
reasonable, practically accessible basis [24]. This wider
range of applicability makes especially the Chebyshev
integrator a good candidate for future applications of the
methods introduced here.
In the remainder of this Letter we present a scheme that

allows for the computation of ETH-related data on the basis
of numerical codes performing the application of matrix
exponentials in the sense of Eq. (1). Apart from the
computation of matrix exponentials, the scheme only
requires the “equilibration” of the addressed observable
in the sense discussed in Refs. [25–28] on a time scale
within the reach of the matrix-exponentiation code.
The scheme.—Before explaining the scheme in detail, we

specify more precisely what it eventually provides. Given a
nondegenerate Hamiltonian H and an observable A of a
system with Hilbert space dimension d. Then, in the
context of the ETH, the following two quantities are of
interest:

Ā≡Xd
n¼1

pnhnjAjni; Σ2 ≡Xd
n¼1

pnhnjAjni2 − Ā2; (2)

with Hjni ¼ Enjni, pn ∝ e−ðEn−UÞ2=2σ2 , and
P

npn ¼ 1;
i.e., jni are eigenstates of the Hamiltonian and ðpnÞd is a
Gaussian probability vector with standard deviation σ.

PRL 112, 130403 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
4 APRIL 2014

0031-9007=14=112(13)=130403(5) 130403-1 © 2014 American Physical Society

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/199413269?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevLett.112.130403
http://dx.doi.org/10.1103/PhysRevLett.112.130403
http://dx.doi.org/10.1103/PhysRevLett.112.130403
http://dx.doi.org/10.1103/PhysRevLett.112.130403


Thus, Ā ¼ ĀðU; σÞ is a weighted average of the expectation
values of A in the eigenstates of H that is most sensitive to
an energy region of width σ around U, and Σ2 ¼ Σ2ðU; σÞ
is a weighted variance corresponding to this energy region.
In Fig. 1 we illustrate the relation to the ETH: if the ETH

applies, the expectation values are supposed to be a smooth
function of energy, i.e., the variance Σ2 should become
small for sufficiently small σ. In this sense, Σ2 encodes
information about the ETH. The scheme we are going to
present in the following allows for a feasible computation
of both Σ2 and Ā. The smaller σ is, the more costly this
calculation will be. However, we will present a concrete
example in order to demonstrate the power of our approach.
The computational scheme we present relies on random

state vectors. The fact that few random states suffice to
obtain “nonrandom” information on the ETH is closely
related to the concept of “typicality” [24,26,29–34]. It has
been shown that state vectors drawn at random according to
the distribution which is invariant under all unitary trans-
formations (Haar measure) feature very similar expectation
values for a given observable with high probability [30,35].
Concretely, using the Hilbert space average method [35],
one finds that the “Hilbert space average” (HA), i.e., the
average of the expectation values for an observable A with
respect to the above distribution and the corresponding
“Hilbert space variance” (HV) are given by

HAðhψ jAjψiÞ ¼ TrðAÞ
d

; (3)

HVðhψ jAjψiÞ ¼ 1

dþ 1

�
TrðA2Þ

d
− HA2

�
: (4)

Equipped with these results, we now describe the scheme.
First step.—We start by defining an operator C,

C≡ e−
ðH−UÞ2
4σ2 ; (5)

which we will later use as an “energy filter”. (Similar
“filters” have been used previously, e.g., in Refs. [36–38]).
We are interested in computing TrðC2Þ since this will be
needed as a normalization constant below. To this end we
consider the random variable

α≡ dhψ jC2jψi; (6)

where jψi is a random state vector drawn according to the
above distribution. If we are able to apply matrix expo-
nentials to random pure state vectors, we are able to
compute random realizations of α. Using Eq. (3), we
immediately find

HAðαÞ ¼ TrðC2Þ ¼
Xd
n¼1

e−
ðEn−UÞ2

2σ2 : (7)

The average of α is the quantity we are interested in. If the
distribution of α was broad, estimating its HA would be
costly since it would require computing many realizations
of α. But from Eq. (4) we may directly read off an upper
bound on the variance of α:

HVðαÞ < d
dþ 1

TrðC4Þ ≤
Xd
n¼1

e−
ðEn−UÞ2

σ2 : (8)

We cannot directly compute the sums in Eqs. (7) and (8);
however, we can reasonably guess their scaling with the
density of states nðEÞ. If nðEÞ is a sufficiently smooth
function to be linearized on a scale of σ around U, then the
sums yield approximately

TrðC2Þ ≈
ffiffiffiffiffiffi
2π

p
σnðUÞ; TrðC4Þ ≈ ffiffiffi

π
p

σnðUÞ: (9)

Let us abbreviate σnðUÞ≡ deff . The meaning of deff is that
of an effective dimension. The number of states in the
respective energy window is roughly deff. If the size of a
quantum system is increased while σ is kept fixed, deff can
be expected to become very large rather quickly. Thus, with
respect to deff , the average of α and an upper bound to its
variance read in the limit of large d,

HAðαÞ ≈
ffiffiffiffiffiffi
2π

p
deff ; HVðαÞ≲ ffiffiffi

π
p

deff : (10)

Since the standard deviation scales with the square root of
the variance, the distribution of α with mean HAðαÞ ∝ deff
has the width

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HVðαÞp

∝
ffiffiffiffiffiffiffi
deff

p
. Because the mean of α is

the quantity of interest, calculating one α from one random
jψi amounts to the determination of the wanted quantity
with a relative error on the order of 1=

ffiffiffiffiffiffiffi
deff

p
. Thus, if deff is

large enough, calculating only very few realizations of α
will suffice.
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FIG. 1 (color online). Sketch of the question: in the energy
eigenbasis the diagonal elements Ann ¼ hnjAjni of a given observ-
ableA are in general not a smooth function of energy, but distributed
around their average Ā in a region of width 2Σ; the ETH breaks
downwhen Σ is significantly larger than zero.We present a scheme
that accuratelyapproximates Ā andΣby twootherquantitiesβ and γ̄.
The latter can be calculated on the basis of random state vectors jψi
that live in energy windows [U − σ, U þ σ], once operator expo-
nentials can be applied to pure state vectors in a numerical way.
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Second step.—Next we define

ρ≡ C2

TrðC2Þ ; (11)

which is a positive operator with trace one, i.e., a quantum
state, and consider its application to a pure state vector. We
note that hmjρjni ¼ pnδnm. In order to determine Ā, we
also define and consider

β≡ dhψ j ffiffiffi
ρ

p
A

ffiffiffi
ρ

p jψi: (12)

Using again Eqs. (3) and (4), and following the same line of
reasoning as in the context of α, we readily find the average
of β and an upper bound to its variance:

HAðβÞ ¼ TrðρAÞ ¼ Ā; (13)

HVðβÞ < d
dþ 1

TrðρAρAÞ: (14)

Again the average of β is the quantity of interest and its
computation is feasible if HVðβÞ is small. (Note that it is
not HVðβÞ from which the desired Σ is eventually calcu-
lated.) To upper bound the variance, we write

TrðρAρAÞ ¼
X
m;n

pnhnjAjmipmhmjAjni: (15)

From Eqs. (5), (9) [lhs], (11) we find pn ≤ 1=deff , which
implies

TrðρAρAÞ ≤
X
m;n

pnhnjAjmihmjAjni
deff

¼ TrðρA2Þ
deff

: (16)

IfA is taken to be traceless (w.l.o.g.), for large d the variance
HVðβÞ is essentially upper bounded by a term that scales as
the, say, largest squared eigenvalue of A divided by the
effective dimension deff . The largest eigenvalue of physical
observables scales at most polynomially with system size,
the effective dimension typically increases exponentially.
Hence, by calculating only a few β, it should be possible to
determine Ā within a relative error ∝ 1=

ffiffiffiffiffiffiffi
deff

p
.

Third step.—Next, aiming at Σ, we consider

γðtÞ≡ dhψ j ffiffiffi
ρ

p
AðtÞA ffiffiffi

ρ
p jψi; (17)

where AðtÞ refers to the Heisenberg picture. Again, given
the possibility to apply matrix exponentials to arbitrary
state vectors, γðtÞ can be computed for random state vectors
jψi. To proceed, one has to require that γðtÞ not only relaxes
with time to some value and then does not deviate much
from that value [25–28], but, moreover, this must happen
on time scales which are “short” compared to the time
scales over which γðtÞ can be approximated numerically. If
this applies, a time average from the relaxation time t1 to

the largest time t2 reachable with the given resource will
very accurately approximate the average over infinite time.
Whether or not the above condition holds has to be guessed
(or postulated), as well as the precise choice of t1 and t2.
However, the graph of γðtÞ itself may give good evidence
and suggest a reasonable choice for t1, t2. If the above
holds, we find

γ̄ ¼ 1

t2 − t1

Z
t2

t1

dtγðtÞ ≈ dhψ j ffiffiffi
ρ

p
ADA

ffiffiffi
ρ

p jψi; (18)

with AD being the diagonal part of A in the energy
eigenbasis. The random variable γ̄ is very similar to β,
cf. Eq. (12). Going through precisely the same arguments
that follow Eq. (12), one finds (still for large d)

HAðγ̄Þ ≈ TrðρADAÞ ¼ Σ2 þ Ā2; (19)

HVðγ̄Þ≲ 1

deff
TrðρADA2ADÞ: (20)

As before, if the largest eigenvalue of A does not scale
exponentially with the system size, Σ may be determined
from a few realizations of γ̄ within an error ∝ 1=

ffiffiffiffiffiffiffi
deff

p
.

Application.—Eventually, we illustrate the introduced
scheme using a Heisenberg spin ladder of length L without
periodic boundary conditions as an example. The
Hamiltonian H ¼ J∥H∥ þ J⊥H⊥ reads (ℏ ¼ 1)

H∥ ¼
XL−1
r¼1

X2
i¼1

Sxr;iS
x
rþ1;i þ Syr;iS

y
rþ1;i þ ΔSzr;iS

z
rþ1;i;

H⊥ ¼
XL
r¼1

Sxr;1S
x
r;2 þ Syr;1S

y
r;2 þ ΔSzr;1S

z
r;2; (21)

where Sx;y;zr are spin-1=2 operators at site (r, i), J∥ > 0 is
the antiferromagnetic exchange coupling constant along
the legs, and J⊥ ¼ 0.2J∥ is a small rung interaction. The
exchange anisotropy Δ ¼ 0.6 is chosen to realize several
nonthermalizing properties of the legs alone [13]. The
Hamiltonian preserves the total magnetization Sztotal and is
nondegenerate except for a twofold degeneracy due to
“particle-hole symmetry” [13,39]. We choose the largest
“half-filling” subspace Sztotal ¼ 0. This nonintegrable ladder
reduces to a integrable chain if J⊥ ¼ J∥ and only the first
rung is kept in H⊥, see Fig. 2(d).
We study the magnetization difference δM ¼P
L
r¼1 S

z
r;1 − Szr;2 of the two legs. Due to the “particle-hole

symmetry”, any energy eigenstate must necessarily yield
hnjδMjni ¼ 0 and describes the magnetization as being
equally distributed between the two legs. Hence, one could
say that the ETH is fulfilled with respect to the observable
δM. This, however, does not mean that in every single
measurement the magnetization on each of the two legs is
�L=2, which would be true only if hnjδM2jni ¼ 0. But the
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latter is not trivially fulfilled since δM2 shares “particle-
hole” symmetry other than δM. Therefore, δM2 may
possibly vary from eigenstate to eigenstate.
A recent publication [40] reported that hψðtÞjδMjψðtÞi

and hψðtÞjδM2jψðtÞi relax to some values, almost regard-
less of the initial state (restricted to a window of energy).
While this is not very surprising for δM, it hints towards the
validity of the ETH with respect to δM2. Since the behavior
described in Ref. [40] becomes pronounced only above
L ¼ 8, numerically checking the ETH is a highly nontrivial
task. We show that with our proposed scheme it is however
possible to convincingly verify numerically the validity of
the ETH with respect to the observable A ¼ δM2.
We begin with state vectors jψð0Þi ¼ P

icijii, where the
set of state vectors jii is the Ising basis in the convenient
spin-↑=↓ representation, in the subspace Sztotal ¼ 0. The
coefficients ci are obtained by generating independent
Gaussian random numbers with mean zero and variance
one for the real and imaginary part. In order to compute
realizations of α from Eq. (6), the “energy-filter” operatorC
in Eq. (5) is approximated by a fourth-order Runge-Kutta
integrator [41], iterating in imaginary time with a discrete
time step δt until the chosen energy window is reached. For
all calculations we choose σ ¼ 0.37, which is small
compared to the width of the spectrum of H. Using the
same imaginary-time iteration, the mean of β in Eq. (12)
can also be approximated. Similarly, a real-time iteration
[41] provides the technical foundation for the calculation of
γðtÞ in Eq. (17), starting from two different energy-filtered
initial state vectors, first Cjψð0Þi and second δM2Cjψð0Þi.
The choice of t1 and t2 in Eq. (18) is made manually by

reading off times where γðtÞ does not show any kind of
dynamics apart from minor oscillations (see the inset
of Fig. 3).
Figure 2(a) compares the scheme to results from exact

diagonalization for L ¼ 7. Apparently, the agreement is
remarkably good for a rather small system, supporting that
the mean of β and γ̄ indeed yield good approximations of
the exact average Ā and variance Σ. Figure 2(b) shows the
results for the “cloud” center Ā ≈ β and the “cloud” width
Σ ≈

ffiffiffiffiffiffiffiffiffiffiffiffi
γ̄ − β2

p
but now for L ¼ 9 and 10. While Σ very

clearly decreases with L, Ā ∝ L due δM being extensive
[40], but the slope of Ā as a function of energy stays
the same.
The question of how the “cloud” width Σ scales with the

system size can be answered by plotting it against the
effective dimension deff in Eq. (9) for some energy interval
in Fig. 2. For convenience, Fig. 3 shows Σ vs. the square
root of the effective dimension ðdeffÞ−1=2. Clearly, Fig. 3
supports the scaling Σ ∝ ðdeffÞ−1=2. Such a scaling is
expected for random Hamiltonians [14] and is consistent
with the nonintegrability of our model. Even though there
is a remaining offset at ðdeffÞ−1=2 → 0 (L → ∞), this offset
does not indicate the breakdown of the ETH for our
observable and model. In fact, the offset is a minimum
“cloud” width σdĀ=dU ≈ 0.17 given by the product of the
chosen energy-window width σ and the “cloud” slope
dĀ=dU. To illustrate how the breakdown of the ETH can be
detected by our approach, Fig. 3 shows also results on the
integrable chain (J⊥ ¼ J∥ and a single rung in H⊥), where
Σ does not depend on system size.
Conclusion.—In this Letter we presented an innovative

scheme for deciding whether or not the ETH is valid in a
given closed many-body quantum system of finite but very
large Hilbert space dimension. Using the framework of
typicality, we showed that both the average and variance
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of the diagonal matrix elements of a given observable in the
energy eigenbasis can be calculated froma single or fewpure
state vectors, if the application of operator exponentials is
available in a numericalway.Wedemonstrated the latter for a
prototypical spin model by using a Runge-Kutta iterator.
WhileRunge-Kuttawill allow formore than20 spins in cases
with several symmetries [42], sophisticated algorithms like
Chebyshev integrators, when used with our scheme, will
enable almost exact studies of theETH in systems of up to 35
spins [22,23] and provide further insight into thermalization
in large closed quantum many-body systems.
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Lett. (to be published)].
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